Assessment of MRF for simultaneous T1 and T2 quantification and water–fat separation in the liver at 0.55 T
Objective The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water–fat separation using rosette MRF at 0.55 T. Materials and methods Spiral and rosette MRF sequences were implemented on a commercial 0.55 T scanner....
Saved in:
| Published in | Magma (New York, N.Y.) Vol. 36; no. 3; pp. 513 - 523 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.07.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1352-8661 1352-8661 |
| DOI | 10.1007/s10334-022-01057-9 |
Cover
Loading…
| Abstract | Objective
The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water–fat separation using rosette MRF at 0.55 T.
Materials and methods
Spiral and rosette MRF sequences were implemented on a commercial 0.55 T scanner. The accuracy of both sequences in
T
1
and
T
2
quantification was validated in the ISMRM/NIST system phantom. The efficacy of rosette MRF in water-fat separation was evaluated in simulations and water/oil phantoms. Both spiral and rosette MRF were performed in the liver of healthy subjects.
Results
In the ISMRM/NIST phantom, both spiral and rosette MRF achieved good agreement with reference values in
T
1
and
T
2
measurements. In addition, rosette MRF enables water–fat separation and can generate water- and fat- specific
T
1
maps,
T
2
maps, and proton density images from the same dataset for a spatial resolution of 1.56 × 1.56 × 5mm
3
within the acquisition time of 15 s.
Conclusion
It is feasible to measure
T
1
and
T
2
simultaneously in the liver using MRF on a 0.55 T system with lower performance gradients compared to state-of-the-art 1.5 T and 3 T systems within an acquisition time of 15 s. In addition, rosette MRF enables water–fat separation along with
T
1
and
T
2
quantification with no time penalty. |
|---|---|
| AbstractList | The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water-fat separation using rosette MRF at 0.55 T.OBJECTIVEThe goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water-fat separation using rosette MRF at 0.55 T.Spiral and rosette MRF sequences were implemented on a commercial 0.55 T scanner. The accuracy of both sequences in T1 and T2 quantification was validated in the ISMRM/NIST system phantom. The efficacy of rosette MRF in water-fat separation was evaluated in simulations and water/oil phantoms. Both spiral and rosette MRF were performed in the liver of healthy subjects.MATERIALS AND METHODSSpiral and rosette MRF sequences were implemented on a commercial 0.55 T scanner. The accuracy of both sequences in T1 and T2 quantification was validated in the ISMRM/NIST system phantom. The efficacy of rosette MRF in water-fat separation was evaluated in simulations and water/oil phantoms. Both spiral and rosette MRF were performed in the liver of healthy subjects.In the ISMRM/NIST phantom, both spiral and rosette MRF achieved good agreement with reference values in T1 and T2 measurements. In addition, rosette MRF enables water-fat separation and can generate water- and fat- specific T1 maps, T2 maps, and proton density images from the same dataset for a spatial resolution of 1.56 × 1.56 × 5mm3 within the acquisition time of 15 s.RESULTSIn the ISMRM/NIST phantom, both spiral and rosette MRF achieved good agreement with reference values in T1 and T2 measurements. In addition, rosette MRF enables water-fat separation and can generate water- and fat- specific T1 maps, T2 maps, and proton density images from the same dataset for a spatial resolution of 1.56 × 1.56 × 5mm3 within the acquisition time of 15 s.It is feasible to measure T1 and T2 simultaneously in the liver using MRF on a 0.55 T system with lower performance gradients compared to state-of-the-art 1.5 T and 3 T systems within an acquisition time of 15 s. In addition, rosette MRF enables water-fat separation along with T1 and T2 quantification with no time penalty.CONCLUSIONIt is feasible to measure T1 and T2 simultaneously in the liver using MRF on a 0.55 T system with lower performance gradients compared to state-of-the-art 1.5 T and 3 T systems within an acquisition time of 15 s. In addition, rosette MRF enables water-fat separation along with T1 and T2 quantification with no time penalty. Objective The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water–fat separation using rosette MRF at 0.55 T. Materials and methods Spiral and rosette MRF sequences were implemented on a commercial 0.55 T scanner. The accuracy of both sequences in T 1 and T 2 quantification was validated in the ISMRM/NIST system phantom. The efficacy of rosette MRF in water-fat separation was evaluated in simulations and water/oil phantoms. Both spiral and rosette MRF were performed in the liver of healthy subjects. Results In the ISMRM/NIST phantom, both spiral and rosette MRF achieved good agreement with reference values in T 1 and T 2 measurements. In addition, rosette MRF enables water–fat separation and can generate water- and fat- specific T 1 maps, T 2 maps, and proton density images from the same dataset for a spatial resolution of 1.56 × 1.56 × 5mm 3 within the acquisition time of 15 s. Conclusion It is feasible to measure T 1 and T 2 simultaneously in the liver using MRF on a 0.55 T system with lower performance gradients compared to state-of-the-art 1.5 T and 3 T systems within an acquisition time of 15 s. In addition, rosette MRF enables water–fat separation along with T 1 and T 2 quantification with no time penalty. |
| Author | Jiang, Yun Seiberlich, Nicole Liu, Yuchi Hamilton, Jesse |
| Author_xml | – sequence: 1 givenname: Yuchi orcidid: 0000-0003-3533-1697 surname: Liu fullname: Liu, Yuchi email: yuchiliu@med.umich.edu organization: Department of Radiology, University of Michigan – sequence: 2 givenname: Jesse surname: Hamilton fullname: Hamilton, Jesse organization: Department of Radiology, University of Michigan, Department of Biomedical Engineering, University of Michigan – sequence: 3 givenname: Yun surname: Jiang fullname: Jiang, Yun organization: Department of Radiology, University of Michigan, Department of Biomedical Engineering, University of Michigan – sequence: 4 givenname: Nicole surname: Seiberlich fullname: Seiberlich, Nicole organization: Department of Radiology, University of Michigan, Department of Biomedical Engineering, University of Michigan |
| BookMark | eNp9kM1KAzEQgIMoqNUX8JSjl9X8bDbZoxSrQkWQeg4hnWjKNtsmWcWb7-AL-Cw-ik_i2vUgHnqaYWa-GeY7RLuhDYDQCSVnlBB5nijhvCwIYwWhRMii3kEHlAtWqKqiu3_yfXSY0oIQRgXhByhcpAQpLSFk3Dp8ez_Bro04-WXXZBOg7RKeUWzCHM8YXncmZO-8Ndm3YVN9MRni19u7MxknWJk4tHzA-Qlw458h4r5FzoT4_JgdoT1nmgTHv3GEHiaXs_F1Mb27uhlfTAvLapULWlJgkjlTgwQqK1rNS66Is0Ixxpkr1dzQkgjDha2VpKqWjkkJwlrDOWV8hE6HvavYrjtIWS99stA0w0uaSaGErGRd9aNsGLWxTSmC06volya-akr0j1w9yNW9XL2Rq-seUv8g6_Pm8xyNb7ajfEBTfyc8QtSLtouht7GN-gZ4x5BT |
| CitedBy_id | crossref_primary_10_1007_s10334_023_01123_w crossref_primary_10_3390_bioengineering11030236 crossref_primary_10_1002_jmri_28890 crossref_primary_10_1007_s10334_023_01089_9 crossref_primary_10_1007_s10334_023_01106_x crossref_primary_10_1016_j_acra_2024_01_018 |
| Cites_doi | 10.1148/radiol.2019181705 10.1002/NBM.4531 10.1148/radiol.2019190452 10.1148/radiol.2017161599 10.1002/mrm.20624 10.1002/mrm.26216 10.1002/mrm.21737 10.1109/42.611345 10.1002/mp.15202 10.1016/j.jmr.2007.06.012 10.1002/jmri.27155 10.1006/jmre.1998.1396 10.1109/JPROC.2019.2936998 10.1016/j.mri.2022.05.015 10.1109/TMI.2014.2337321 10.1002/mrm.24441 10.1002/mrm.1910180211 10.1148/radiol.2016152037 10.1002/mrm.28311 10.1148/radiol.2018180836 10.1002/mrm.25559 10.1016/j.mri.2021.06.002 10.1002/mrm.28096 10.1097/RLI.0000000000000836 10.1002/mrm.25161 10.1002/mrm.26639 10.1148/radiology.153.1.6089263 10.1038/nature11971 10.1002/mrm.26580 10.1002/mrm.25799 10.1002/mrm.1910390507 10.1002/mrm.28404 10.1016/j.mri.2018.06.018 10.1002/mrm.27198 10.1002/mrm.27665 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2022. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB). |
| Copyright_xml | – notice: The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2022. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB). |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1007/s10334-022-01057-9 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1352-8661 |
| EndPage | 523 |
| ExternalDocumentID | 10_1007_s10334_022_01057_9 |
| GrantInformation_xml | – fundername: National Cancer Institute grantid: R37CA263583 funderid: http://dx.doi.org/10.13039/100000054 – fundername: National Heart, Lung, and Blood Institute grantid: R01HL094557; R01HL163030 funderid: http://dx.doi.org/10.13039/100000050 – fundername: National Science Foundation grantid: 1553441 funderid: http://dx.doi.org/10.13039/100000001 |
| GroupedDBID | --- --K -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1B1 1N0 1SB 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 7X7 88E 88I 8FE 8FG 8FH 8FI 8FJ 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANXM AANZL AAQFI AAQXK AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABWVN ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIUM ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACRPL ACSNA ACUDM ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMUD ADNMO ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FDB FEDTE FERAY FFXSO FGOYB FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK5 LLZTM M1P M2P M41 M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9S PCBAR PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R2- R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SEW SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD SSZ STPWE SV3 SZ9 SZN T13 T16 TSG TSK TSV TT1 TUC U2A U9L UG4 UHS UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7X Z82 Z83 Z88 Z8R Z8V Z8W ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7X8 |
| ID | FETCH-LOGICAL-c298t-141e272fa9e7e17616d4380fc582232f48da1405a35c9871897f277e5cca33123 |
| IEDL.DBID | U2A |
| ISSN | 1352-8661 |
| IngestDate | Fri Jul 11 04:58:41 EDT 2025 Tue Jul 01 01:44:09 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Fri Feb 21 02:42:38 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | MRF Water–fat separation Multi-parametric mapping Low field Liver |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-141e272fa9e7e17616d4380fc582232f48da1405a35c9871897f277e5cca33123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3533-1697 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10293475 |
| PQID | 2758576796 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2758576796 crossref_primary_10_1007_s10334_022_01057_9 crossref_citationtrail_10_1007_s10334_022_01057_9 springer_journals_10_1007_s10334_022_01057_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationSubtitle | Official Journal of the European Society for Magnetic Resonance in Medicine and Biology |
| PublicationTitle | Magma (New York, N.Y.) |
| PublicationTitleAbbrev | Magn Reson Mater Phy |
| PublicationYear | 2023 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | Dixon (CR35) 1984; 153 Hamilton, Jiang, Ma, Chen, Lo, Griswold, Seiberlich (CR22) 2018; 32 Glover, Schneider (CR36) 1991; 18 CR34 Sarracanie (CR15) 2021 Assländer, Cloos, Knoll, Sodickson, Hennig, Lattanzi (CR23) 2018; 79 CR33 Campbell-Washburn, Ramasawmy, Restivo, Bhattacharya, Basar, Herzka, Hansen, Rogers, Patricia Bandettini, McGuirt, Mancini, Grodzki, Schneider, Majeed, Bhat, Xue, Moss, Malayeri, Jones, Koretsky, Kellman, Chen, Lederman, Balaban (CR12) 2019; 293 CR32 Ye, Ma, Jiang, Cauley, Du, Wald, Griswold, Setsompop (CR41) 2016; 75 Jaubert, Arrieta, Cruz, Bustin, Schneider, Georgiopoulos, Masci, Sing-Long, Botnar, Prieto (CR6) 2020 CR31 Reeder, Pineda, Wen, Shimakawa, Yu, Brittain, Gold, Beaulieu, Pelc (CR37) 2005; 54 Chen, Jiang, Pahwa, Ma, Lu, Twieg, Wright, Seiberlich, Griswold, Gulani (CR5) 2016; 279 Ma, Gulani, Seiberlich, Liu, Sunshine, Duerk, Griswold (CR1) 2013; 495 Jaubert, Cruz, Bustin, Schneider, Lavin, Koken, Hajhosseiny, Doneva, Rueckert, Botnar, Prieto (CR4) 2019; 00 Yu, Shimakawa, McKenzie, Brodsky, Brittain, Reeder (CR26) 2008; 60 Hamilton, Seiberlich (CR39) 2020; 108 van Riel, Yu, Hodono, Xia, Chandarana, Fujimoto, Cloos (CR8) 2021 Cohen, Zhu, Rosen (CR38) 2018; 80 Liu, Hamilton, Eck, Griswold, Seiberlich (CR16) 2021; 85 Jiang, Ma, Seiberlich, Gulani, Griswold (CR2) 2015; 74 Chen, Panda, Pahwa, Hamilton, Dastmalchian, McGivney, Ma, Batesole, Seiberlich, Griswold, Plecha, Gulani (CR9) 2019; 290 Hamilton, Jiang, Ma, Lo, Gulani, Griswold, Seiberlich (CR18) 2018; 53 Zhang, Pauly, Levesque (CR24) 2015; 73 Noll (CR17) 1997; 16 Duyn, Yang, Frank, van der Veen (CR21) 1998; 132 Yu, Badve, Ponsky, Pahwa, Dastmalchian, Rogers, Jiang, Margevicius, Schluchter, Tabayoyong, Abouassaly, McGivney, Griswold, Gulani (CR11) 2017; 283 Campbell-Washburn, Jiang, Körzdörfer, Nittka, Griswold (CR13) 2021; 81 Ma, Coppo, Chen, McGivney, Jiang, Pahwa, Gulani, Griswold (CR30) 2017; 78 Panda, Obmann, Lo, Margevicius, Jiang, Schluchter, Patel, Nakamoto, Badve, Griswold, Jaeger, Ponsky, Gulani (CR10) 2019; 292 Hamilton, Pahwa, Adedigba, Frankel, O’Connor, Thomas, Walker, Killinc, Lo, Batesole, Margevicius, Griswold, Rajagopalan, Gulani, Seiberlich (CR28) 2020 Mickevicius, Kim, Zhao, Morris, Hurst, Glide-Hurst (CR14) 2021 Cao, Wang, Liu, Li, Hui, Cai (CR7) 2022; 91 Tsao, Jiang (CR27) 2013; 70 McGivney, Pierre, Ma, Jiang, Saybasili, Gulani, Griswold (CR19) 2014; 33 CR40 Hilbert, Xia, Block, Yu, Lattanzi, Sodickson, Kober, Cloos (CR29) 2019; 84 Noll, Peltier, Boada (CR42) 1998; 39 Lima da Cruz, Bustin, Jaubert, Schneider, Botnar, Prieto (CR25) 2019; 81 Hamilton, Jiang, Chen, Ma, Lo, Griswold, Seiberlich (CR3) 2017; 77 Fessler (CR20) 2007; 188 H Yu (1057_CR26) 2008; 60 O Jaubert (1057_CR4) 2019; 00 P Cao (1057_CR7) 2022; 91 T Zhang (1057_CR24) 2015; 73 SB Reeder (1057_CR37) 2005; 54 O Jaubert (1057_CR6) 2020 JI Hamilton (1057_CR18) 2018; 53 NJ Mickevicius (1057_CR14) 2021 Y Chen (1057_CR9) 2019; 290 AE Campbell-Washburn (1057_CR13) 2021; 81 JI Hamilton (1057_CR28) 2020 AE Campbell-Washburn (1057_CR12) 2019; 293 1057_CR40 JI Hamilton (1057_CR3) 2017; 77 DC Noll (1057_CR17) 1997; 16 DC Noll (1057_CR42) 1998; 39 A Panda (1057_CR10) 2019; 292 DF McGivney (1057_CR19) 2014; 33 J Assländer (1057_CR23) 2018; 79 D Ma (1057_CR1) 2013; 495 G Lima da Cruz (1057_CR25) 2019; 81 Y Liu (1057_CR16) 2021; 85 H Ye (1057_CR41) 2016; 75 Y Jiang (1057_CR2) 2015; 74 JH Duyn (1057_CR21) 1998; 132 J Tsao (1057_CR27) 2013; 70 T Hilbert (1057_CR29) 2019; 84 O Cohen (1057_CR38) 2018; 80 GH Glover (1057_CR36) 1991; 18 MHC van Riel (1057_CR8) 2021 JI Hamilton (1057_CR22) 2018; 32 JA Fessler (1057_CR20) 2007; 188 TW Dixon (1057_CR35) 1984; 153 D Ma (1057_CR30) 2017; 78 Y Chen (1057_CR5) 2016; 279 1057_CR31 AC Yu (1057_CR11) 2017; 283 M Sarracanie (1057_CR15) 2021 1057_CR32 1057_CR33 1057_CR34 JI Hamilton (1057_CR39) 2020; 108 |
| References_xml | – volume: 292 start-page: 685 year: 2019 end-page: 694 ident: CR10 article-title: MR fingerprinting and ADC mapping for characterization of lesions in the transition zone of the prostate gland publication-title: Radiology doi: 10.1148/radiol.2019181705 – year: 2021 ident: CR8 article-title: Free-breathing abdominal mapping using an optimized MR fingerprinting sequence publication-title: NMR Biomed doi: 10.1002/NBM.4531 – volume: 293 start-page: 384 year: 2019 end-page: 393 ident: CR12 article-title: Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI publication-title: Radiology doi: 10.1148/radiol.2019190452 – volume: 283 start-page: 729 year: 2017 end-page: 738 ident: CR11 article-title: Development of a combined MR fingerprinting and diffusion examination for prostate cancer publication-title: Radiology doi: 10.1148/radiol.2017161599 – volume: 54 start-page: 636 year: 2005 end-page: 644 ident: CR37 article-title: Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging publication-title: Magn Reson Med doi: 10.1002/mrm.20624 – volume: 77 start-page: 1446 year: 2017 end-page: 1458 ident: CR3 article-title: MR fingerprinting for rapid quantification of myocardial , , and proton spin density publication-title: Magn Reson Med doi: 10.1002/mrm.26216 – volume: 60 start-page: 1122 year: 2008 end-page: 1134 ident: CR26 article-title: Multiecho water-fat separation and simultaneous R estimation with multifrequency fat spectrum modeling publication-title: Magn Reson Med doi: 10.1002/mrm.21737 – volume: 16 start-page: 372 year: 1997 end-page: 377 ident: CR17 article-title: Multishot rosette trajectories for spectrally selective MR imaging publication-title: IEEE Trans Med Imaging doi: 10.1109/42.611345 – ident: CR33 – year: 2021 ident: CR14 article-title: Toward magnetic resonance fingerprinting for low-field MR-guided radiation therapy publication-title: Med Phy doi: 10.1002/mp.15202 – volume: 188 start-page: 191 year: 2007 end-page: 195 ident: CR20 article-title: On NUFFT-based gridding for non-Cartesian MRI publication-title: J Magn Reson doi: 10.1016/j.jmr.2007.06.012 – year: 2020 ident: CR28 article-title: Simultaneous mapping of and using cardiac magnetic resonance fingerprinting in a cohort of healthy subjects at 1.5T publication-title: J Magn Reson Imaging doi: 10.1002/jmri.27155 – volume: 132 start-page: 150 year: 1998 end-page: 3 ident: CR21 article-title: Simple correction method for k-space trajectory deviations in MRI publication-title: J Magn Reson doi: 10.1006/jmre.1998.1396 – volume: 108 start-page: 69 year: 2020 end-page: 85 ident: CR39 article-title: Machine learning for rapid magnetic resonance fingerprinting tissue property quantification publication-title: Proc IEEE doi: 10.1109/JPROC.2019.2936998 – volume: 91 start-page: 69 year: 2022 end-page: 80 ident: CR7 article-title: Motion-resolved and free-breathing liver MRF publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2022.05.015 – volume: 33 start-page: 2311 year: 2014 end-page: 2322 ident: CR19 article-title: SVD compression for magnetic resonance fingerprinting in the time domain publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2337321 – volume: 70 start-page: 155 year: 2013 end-page: 159 ident: CR27 article-title: Hierarchical IDEAL: Fast, robust, and multiresolution separation of multiple chemical species from multiple echo times publication-title: Magn Reson Med doi: 10.1002/mrm.24441 – ident: CR40 – volume: 18 start-page: 371 year: 1991 end-page: 383 ident: CR36 article-title: Three-point dixon technique for true water/fat decomposition with inhomogeneity correction publication-title: Magn Reson Med doi: 10.1002/mrm.1910180211 – volume: 32 year: 2018 ident: CR22 article-title: Simultaneous multislice cardiac magnetic resonance fingerprinting using low rank reconstruction publication-title: NMR Biomed – volume: 279 start-page: 278 year: 2016 end-page: 286 ident: CR5 article-title: MR fingerprinting for rapid quantitative abdominal imaging publication-title: Radiology doi: 10.1148/radiol.2016152037 – year: 2020 ident: CR6 article-title: Multi-parametric liver tissue characterization using MR fingerprinting: simultaneous , , , and fat fraction mapping publication-title: Magn Reson Med doi: 10.1002/mrm.28311 – volume: 290 start-page: 33 year: 2019 end-page: 40 ident: CR9 article-title: Three-dimensional MR fingerprinting for quantitative breast imaging publication-title: Radiology doi: 10.1148/radiol.2018180836 – volume: 74 start-page: 1621 year: 2015 end-page: 1631 ident: CR2 article-title: MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout publication-title: Magn Reson Med doi: 10.1002/mrm.25559 – volume: 81 start-page: 88 year: 2021 end-page: 93 ident: CR13 article-title: Feasibility of MR fingerprinting using a high-performance 0.55 T MRI system publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2021.06.002 – ident: CR31 – volume: 84 start-page: 128 year: 2019 end-page: 141 ident: CR29 article-title: Magnetization transfer in magnetic resonance fingerprinting publication-title: Magn Reson Med doi: 10.1002/mrm.28096 – year: 2021 ident: CR15 article-title: Fast quantitative low-field magnetic resonance imaging with OPTIMUM-optimized magnetic resonance fingerprinting using a stationary steady-state cartesian approach and accelerated acquisition schedules publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000836 – volume: 73 start-page: 655 year: 2015 end-page: 661 ident: CR24 article-title: Accelerating parameter mapping with a locally low rank constraint publication-title: Magn Reson Med doi: 10.1002/mrm.25161 – volume: 81 start-page: 3530 year: 2019 end-page: 3543 ident: CR25 article-title: Sparsity and locally low rank regularization for MR fingerprinting publication-title: Magn Reson Med – ident: CR32 – ident: CR34 – volume: 79 start-page: 83 year: 2018 end-page: 96 ident: CR23 article-title: Low rank alternating direction method of multipliers reconstruction for MR fingerprinting publication-title: Magn Reson Med doi: 10.1002/mrm.26639 – volume: 153 start-page: 189 year: 1984 end-page: 194 ident: CR35 article-title: Simple proton spectroscopic imaging publication-title: Radiology doi: 10.1148/radiology.153.1.6089263 – volume: 495 start-page: 187 year: 2013 end-page: 192 ident: CR1 article-title: Magnetic resonance fingerprinting publication-title: Nature doi: 10.1038/nature11971 – volume: 78 start-page: 1781 year: 2017 end-page: 1789 ident: CR30 article-title: Slice profile and corrections in 2D magnetic resonance fingerprinting publication-title: Magn Reson Med doi: 10.1002/mrm.26580 – volume: 75 start-page: 2078 year: 2016 end-page: 2085 ident: CR41 article-title: Accelerating magnetic resonance fingerprinting (MRF) using t-blipped simultaneous multislice (SMS) acquisition publication-title: Magn Reson Med doi: 10.1002/mrm.25799 – volume: 39 start-page: 709 year: 1998 end-page: 716 ident: CR42 article-title: Simultaneous multislice acquisition using rosette trajectories (SMART): a new imaging method for functional MRI publication-title: Magn Reson Med doi: 10.1002/mrm.1910390507 – volume: 00 start-page: 1 year: 2019 end-page: 17 ident: CR4 article-title: Water–fat Dixon cardiac magnetic resonance fingerprinting publication-title: Magn Reson Med – volume: 85 start-page: 103 year: 2021 end-page: 119 ident: CR16 article-title: Myocardial and quantification and water–fat separation using cardiac MR fingerprinting with rosette trajectories at 3T and 1.5T publication-title: Magn Reson Med doi: 10.1002/mrm.28404 – volume: 53 start-page: 40 year: 2018 end-page: 51 ident: CR18 article-title: Investigating and reducing the effects of confounding factors for robust and mapping with cardiac MR fingerprinting publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2018.06.018 – volume: 80 start-page: 885 year: 2018 end-page: 894 ident: CR38 article-title: MR fingerprinting Deep RecOnstruction NEtwork (DRONE) publication-title: Magn Reson Med doi: 10.1002/mrm.27198 – volume: 00 start-page: 1 year: 2019 ident: 1057_CR4 publication-title: Magn Reson Med – volume: 53 start-page: 40 year: 2018 ident: 1057_CR18 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2018.06.018 – volume: 54 start-page: 636 year: 2005 ident: 1057_CR37 publication-title: Magn Reson Med doi: 10.1002/mrm.20624 – volume: 70 start-page: 155 year: 2013 ident: 1057_CR27 publication-title: Magn Reson Med doi: 10.1002/mrm.24441 – volume: 290 start-page: 33 year: 2019 ident: 1057_CR9 publication-title: Radiology doi: 10.1148/radiol.2018180836 – ident: 1057_CR34 – volume: 18 start-page: 371 year: 1991 ident: 1057_CR36 publication-title: Magn Reson Med doi: 10.1002/mrm.1910180211 – volume: 81 start-page: 3530 year: 2019 ident: 1057_CR25 publication-title: Magn Reson Med doi: 10.1002/mrm.27665 – volume: 495 start-page: 187 year: 2013 ident: 1057_CR1 publication-title: Nature doi: 10.1038/nature11971 – volume: 79 start-page: 83 year: 2018 ident: 1057_CR23 publication-title: Magn Reson Med doi: 10.1002/mrm.26639 – ident: 1057_CR32 – volume: 293 start-page: 384 year: 2019 ident: 1057_CR12 publication-title: Radiology doi: 10.1148/radiol.2019190452 – volume: 91 start-page: 69 year: 2022 ident: 1057_CR7 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2022.05.015 – volume: 283 start-page: 729 year: 2017 ident: 1057_CR11 publication-title: Radiology doi: 10.1148/radiol.2017161599 – volume: 132 start-page: 150 year: 1998 ident: 1057_CR21 publication-title: J Magn Reson doi: 10.1006/jmre.1998.1396 – volume: 77 start-page: 1446 year: 2017 ident: 1057_CR3 publication-title: Magn Reson Med doi: 10.1002/mrm.26216 – volume: 81 start-page: 88 year: 2021 ident: 1057_CR13 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2021.06.002 – volume: 73 start-page: 655 year: 2015 ident: 1057_CR24 publication-title: Magn Reson Med doi: 10.1002/mrm.25161 – volume: 85 start-page: 103 year: 2021 ident: 1057_CR16 publication-title: Magn Reson Med doi: 10.1002/mrm.28404 – year: 2021 ident: 1057_CR14 publication-title: Med Phy doi: 10.1002/mp.15202 – volume: 84 start-page: 128 year: 2019 ident: 1057_CR29 publication-title: Magn Reson Med doi: 10.1002/mrm.28096 – volume: 78 start-page: 1781 year: 2017 ident: 1057_CR30 publication-title: Magn Reson Med doi: 10.1002/mrm.26580 – year: 2020 ident: 1057_CR6 publication-title: Magn Reson Med doi: 10.1002/mrm.28311 – volume: 292 start-page: 685 year: 2019 ident: 1057_CR10 publication-title: Radiology doi: 10.1148/radiol.2019181705 – ident: 1057_CR40 – year: 2021 ident: 1057_CR8 publication-title: NMR Biomed doi: 10.1002/NBM.4531 – volume: 188 start-page: 191 year: 2007 ident: 1057_CR20 publication-title: J Magn Reson doi: 10.1016/j.jmr.2007.06.012 – volume: 33 start-page: 2311 year: 2014 ident: 1057_CR19 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2337321 – volume: 32 year: 2018 ident: 1057_CR22 publication-title: NMR Biomed – volume: 60 start-page: 1122 year: 2008 ident: 1057_CR26 publication-title: Magn Reson Med doi: 10.1002/mrm.21737 – volume: 108 start-page: 69 year: 2020 ident: 1057_CR39 publication-title: Proc IEEE doi: 10.1109/JPROC.2019.2936998 – volume: 279 start-page: 278 year: 2016 ident: 1057_CR5 publication-title: Radiology doi: 10.1148/radiol.2016152037 – year: 2021 ident: 1057_CR15 publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000836 – year: 2020 ident: 1057_CR28 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.27155 – ident: 1057_CR31 – volume: 80 start-page: 885 year: 2018 ident: 1057_CR38 publication-title: Magn Reson Med doi: 10.1002/mrm.27198 – volume: 75 start-page: 2078 year: 2016 ident: 1057_CR41 publication-title: Magn Reson Med doi: 10.1002/mrm.25799 – volume: 39 start-page: 709 year: 1998 ident: 1057_CR42 publication-title: Magn Reson Med doi: 10.1002/mrm.1910390507 – volume: 16 start-page: 372 year: 1997 ident: 1057_CR17 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.611345 – ident: 1057_CR33 – volume: 74 start-page: 1621 year: 2015 ident: 1057_CR2 publication-title: Magn Reson Med doi: 10.1002/mrm.25559 – volume: 153 start-page: 189 year: 1984 ident: 1057_CR35 publication-title: Radiology doi: 10.1148/radiology.153.1.6089263 |
| SSID | ssj0021503 |
| Score | 2.3905547 |
| Snippet | Objective
The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water–fat... The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water-fat separation... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 513 |
| SubjectTerms | Basic Science - Parametric mapping and quantitative MRI Biomedical Engineering and Bioengineering Computer Appl. in Life Sciences Health Informatics Imaging Medicine Medicine & Public Health Radiology Research Article Solid State Physics |
| Title | Assessment of MRF for simultaneous T1 and T2 quantification and water–fat separation in the liver at 0.55 T |
| URI | https://link.springer.com/article/10.1007/s10334-022-01057-9 https://www.proquest.com/docview/2758576796 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF60BfEi_mL9KSt405Vmk80mxyCtxVIPJcV6CrvpLhRKqk2KV9_BF_BZfBSfxNn8tCoieApkd3OY2d35JjPzDULn2uXS0JATGUtOHLARRAAsIExpzVxPMJVXpfXv3O7QuR2xUVkUllbZ7lVIMr-pvxS72bZDTPa56erIib-O6gx8d7OvhzRYulkAceyyPOb3dd9N0ApX_giF5hams422SmiIg0KXO2hNJbtoo18Gv_dQEixZNPFM4_6ggwFx4nRikgJFosCHx6GFRTLGIcVPC1HkAeWiz98-A66cf7y8apHhVBWk3zA0STCgQDw1GRoYhlpXjL2_hfto2GmH111StksgMfW9jFiOpSinWviKK4u7ljs2dPI6ZgACbKodbyzAnWLCZrEPfpLnc005VwyUaNtgwQ5QLZkl6hBhyVzuS0_CNaoc11ayZQktW7Gg2m8pZ9xAViXBKC65xE1Li2m0YkE2Uo9A6lEu9chvoIvlmseCSePP2WeVYiLY8CaKUQgyosbD4eb3VwNdVhqLypOX_vHJo_9NP0abprV8kZp7gmrZfKFOAYBksonqwc1Dr22evcF9r5nvv0_zqtUb |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxEB7RILVcKLRFDZRiJG7UUfbH691jVBHCTzigjRROlr2xpYhoU7IbIXHiHXgBnoVH4Uk63p9AowqJ63q9smZszzc7M98AHJiAK0tDTlWiOPXRRlCJsIAybQwLQsl0UZXWvwh6A_90yIZVUVhWZ7vXIcnipn5V7OZ5PrXZ57arI6fRB1j10QdnDVjtHF-dHS0cLQQ5XlUg8_-Z_xqhF2S5FAwtbEz3Mwzq1ZWpJdetea5ayd0SceN7l78B6xXoJJ1yl2zCik6_wMd-FVb_Cmlnwc9Jpob0L7sEsSzJxjbdUKZ6Os9I7BCZjkjskpu5LDOMCqUWT28Rsc6e7x-MzEmmSzpxHBqnBPElmdjcD4JD7RZjT4_xNxh0j-LfPVo1YqCJG4U5dXxHu9w1MtJcOzxwgpElqjcJQ3jhucYPRxIdNSY9lkTogYURNy7nmuH28Dy0jVvQSKep_g5EsYBHKlR4QWs_8LRqO9KodiJdE7W1P2qCU2tGJBVLuW2WMREv_MpWkAIFKQpBiqgJh4s5f0qOjjff3q8VLvAo2fhIKUjhWt-J2x9rTfhVK1FUZzp745Pb73t9Dz714v65OD-5ONuBNdvAvkwA_gGNfDbXuwhzcvWz2tV_AQAm8cQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYpIoLYhVlNRI3MG2cOE6OFRCVpRVCqdSbZSe2VAmFpUFc-Qd-gG_hU_gSxlnKIlSJa2znMON43sRv3iB0YHyurAw5UYnixIMYQSTAAsK0McwPJNNFVVqv73cH3sWQDb9V8Rds9_pKsqxpsCpNWd66T03rW-Gb63rEMtFth0dOwlk0D8exY0ldA9qZpFwAd9yqVObvdT_D0RfG_HUtWkSbaAktVjARd0q_LqMZna2gRq-6CF9FWWeiqInvDO7dRBjQJx6PLEFQZhryeRw7WGYpjil-eJIlJ6hwQ_H0GTDm48fLq5E5HutSAByGRhkGRIhvLVsDw1D7mLH3t3gNDaKz-KRLqtYJJKFhkBPHczTl1MhQc-1w3_FTKy1vEgaAwKXGC1IJqRWTLktCyJmCkBvKuWbgUNeFaLaO5rK7TG8grJjPQxUoOFK157tatR1pVDuR1IRt7aVN5NQWFEmlK27bW9yKL0Vka3UBVheF1UXYRIeTNfelqsbU2fu1YwRsfnujURpSUJvtcPsrrImOao-J6iscT3nl5v-m76HG9Wkkrs77l1towXacLxm722guf3zSO4BLcrVbbL1POHvZEw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+MRF+for+simultaneous+T1+and+T2+quantification+and+water%E2%80%93fat+separation+in+the+liver+at+0.55%C2%A0T&rft.jtitle=Magma+%28New+York%2C+N.Y.%29&rft.au=Liu%2C+Yuchi&rft.au=Hamilton%2C+Jesse&rft.au=Jiang%2C+Yun&rft.au=Seiberlich%2C+Nicole&rft.date=2023-07-01&rft.pub=Springer+International+Publishing&rft.eissn=1352-8661&rft.volume=36&rft.issue=3&rft.spage=513&rft.epage=523&rft_id=info:doi/10.1007%2Fs10334-022-01057-9&rft.externalDocID=10_1007_s10334_022_01057_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-8661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-8661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-8661&client=summon |