Assessment of MRF for simultaneous T1 and T2 quantification and water–fat separation in the liver at 0.55 T

Objective The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water–fat separation using rosette MRF at 0.55 T. Materials and methods Spiral and rosette MRF sequences were implemented on a commercial 0.55 T scanner....

Full description

Saved in:
Bibliographic Details
Published inMagma (New York, N.Y.) Vol. 36; no. 3; pp. 513 - 523
Main Authors Liu, Yuchi, Hamilton, Jesse, Jiang, Yun, Seiberlich, Nicole
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.07.2023
Subjects
Online AccessGet full text
ISSN1352-8661
1352-8661
DOI10.1007/s10334-022-01057-9

Cover

Loading…
Abstract Objective The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water–fat separation using rosette MRF at 0.55 T. Materials and methods Spiral and rosette MRF sequences were implemented on a commercial 0.55 T scanner. The accuracy of both sequences in T 1 and T 2 quantification was validated in the ISMRM/NIST system phantom. The efficacy of rosette MRF in water-fat separation was evaluated in simulations and water/oil phantoms. Both spiral and rosette MRF were performed in the liver of healthy subjects. Results In the ISMRM/NIST phantom, both spiral and rosette MRF achieved good agreement with reference values in T 1 and T 2 measurements. In addition, rosette MRF enables water–fat separation and can generate water- and fat- specific T 1 maps, T 2 maps, and proton density images from the same dataset for a spatial resolution of 1.56 × 1.56 × 5mm 3 within the acquisition time of 15 s. Conclusion It is feasible to measure T 1 and T 2 simultaneously in the liver using MRF on a 0.55 T system with lower performance gradients compared to state-of-the-art 1.5 T and 3 T systems within an acquisition time of 15 s. In addition, rosette MRF enables water–fat separation along with T 1 and T 2 quantification with no time penalty.
AbstractList The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water-fat separation using rosette MRF at 0.55 T.OBJECTIVEThe goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water-fat separation using rosette MRF at 0.55 T.Spiral and rosette MRF sequences were implemented on a commercial 0.55 T scanner. The accuracy of both sequences in T1 and T2 quantification was validated in the ISMRM/NIST system phantom. The efficacy of rosette MRF in water-fat separation was evaluated in simulations and water/oil phantoms. Both spiral and rosette MRF were performed in the liver of healthy subjects.MATERIALS AND METHODSSpiral and rosette MRF sequences were implemented on a commercial 0.55 T scanner. The accuracy of both sequences in T1 and T2 quantification was validated in the ISMRM/NIST system phantom. The efficacy of rosette MRF in water-fat separation was evaluated in simulations and water/oil phantoms. Both spiral and rosette MRF were performed in the liver of healthy subjects.In the ISMRM/NIST phantom, both spiral and rosette MRF achieved good agreement with reference values in T1 and T2 measurements. In addition, rosette MRF enables water-fat separation and can generate water- and fat- specific T1 maps, T2 maps, and proton density images from the same dataset for a spatial resolution of 1.56 × 1.56 × 5mm3 within the acquisition time of 15 s.RESULTSIn the ISMRM/NIST phantom, both spiral and rosette MRF achieved good agreement with reference values in T1 and T2 measurements. In addition, rosette MRF enables water-fat separation and can generate water- and fat- specific T1 maps, T2 maps, and proton density images from the same dataset for a spatial resolution of 1.56 × 1.56 × 5mm3 within the acquisition time of 15 s.It is feasible to measure T1 and T2 simultaneously in the liver using MRF on a 0.55 T system with lower performance gradients compared to state-of-the-art 1.5 T and 3 T systems within an acquisition time of 15 s. In addition, rosette MRF enables water-fat separation along with T1 and T2 quantification with no time penalty.CONCLUSIONIt is feasible to measure T1 and T2 simultaneously in the liver using MRF on a 0.55 T system with lower performance gradients compared to state-of-the-art 1.5 T and 3 T systems within an acquisition time of 15 s. In addition, rosette MRF enables water-fat separation along with T1 and T2 quantification with no time penalty.
Objective The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water–fat separation using rosette MRF at 0.55 T. Materials and methods Spiral and rosette MRF sequences were implemented on a commercial 0.55 T scanner. The accuracy of both sequences in T 1 and T 2 quantification was validated in the ISMRM/NIST system phantom. The efficacy of rosette MRF in water-fat separation was evaluated in simulations and water/oil phantoms. Both spiral and rosette MRF were performed in the liver of healthy subjects. Results In the ISMRM/NIST phantom, both spiral and rosette MRF achieved good agreement with reference values in T 1 and T 2 measurements. In addition, rosette MRF enables water–fat separation and can generate water- and fat- specific T 1 maps, T 2 maps, and proton density images from the same dataset for a spatial resolution of 1.56 × 1.56 × 5mm 3 within the acquisition time of 15 s. Conclusion It is feasible to measure T 1 and T 2 simultaneously in the liver using MRF on a 0.55 T system with lower performance gradients compared to state-of-the-art 1.5 T and 3 T systems within an acquisition time of 15 s. In addition, rosette MRF enables water–fat separation along with T 1 and T 2 quantification with no time penalty.
Author Jiang, Yun
Seiberlich, Nicole
Liu, Yuchi
Hamilton, Jesse
Author_xml – sequence: 1
  givenname: Yuchi
  orcidid: 0000-0003-3533-1697
  surname: Liu
  fullname: Liu, Yuchi
  email: yuchiliu@med.umich.edu
  organization: Department of Radiology, University of Michigan
– sequence: 2
  givenname: Jesse
  surname: Hamilton
  fullname: Hamilton, Jesse
  organization: Department of Radiology, University of Michigan, Department of Biomedical Engineering, University of Michigan
– sequence: 3
  givenname: Yun
  surname: Jiang
  fullname: Jiang, Yun
  organization: Department of Radiology, University of Michigan, Department of Biomedical Engineering, University of Michigan
– sequence: 4
  givenname: Nicole
  surname: Seiberlich
  fullname: Seiberlich, Nicole
  organization: Department of Radiology, University of Michigan, Department of Biomedical Engineering, University of Michigan
BookMark eNp9kM1KAzEQgIMoqNUX8JSjl9X8bDbZoxSrQkWQeg4hnWjKNtsmWcWb7-AL-Cw-ik_i2vUgHnqaYWa-GeY7RLuhDYDQCSVnlBB5nijhvCwIYwWhRMii3kEHlAtWqKqiu3_yfXSY0oIQRgXhByhcpAQpLSFk3Dp8ez_Bro04-WXXZBOg7RKeUWzCHM8YXncmZO-8Ndm3YVN9MRni19u7MxknWJk4tHzA-Qlw458h4r5FzoT4_JgdoT1nmgTHv3GEHiaXs_F1Mb27uhlfTAvLapULWlJgkjlTgwQqK1rNS66Is0Ixxpkr1dzQkgjDha2VpKqWjkkJwlrDOWV8hE6HvavYrjtIWS99stA0w0uaSaGErGRd9aNsGLWxTSmC06volya-akr0j1w9yNW9XL2Rq-seUv8g6_Pm8xyNb7ajfEBTfyc8QtSLtouht7GN-gZ4x5BT
CitedBy_id crossref_primary_10_1007_s10334_023_01123_w
crossref_primary_10_3390_bioengineering11030236
crossref_primary_10_1002_jmri_28890
crossref_primary_10_1007_s10334_023_01089_9
crossref_primary_10_1007_s10334_023_01106_x
crossref_primary_10_1016_j_acra_2024_01_018
Cites_doi 10.1148/radiol.2019181705
10.1002/NBM.4531
10.1148/radiol.2019190452
10.1148/radiol.2017161599
10.1002/mrm.20624
10.1002/mrm.26216
10.1002/mrm.21737
10.1109/42.611345
10.1002/mp.15202
10.1016/j.jmr.2007.06.012
10.1002/jmri.27155
10.1006/jmre.1998.1396
10.1109/JPROC.2019.2936998
10.1016/j.mri.2022.05.015
10.1109/TMI.2014.2337321
10.1002/mrm.24441
10.1002/mrm.1910180211
10.1148/radiol.2016152037
10.1002/mrm.28311
10.1148/radiol.2018180836
10.1002/mrm.25559
10.1016/j.mri.2021.06.002
10.1002/mrm.28096
10.1097/RLI.0000000000000836
10.1002/mrm.25161
10.1002/mrm.26639
10.1148/radiology.153.1.6089263
10.1038/nature11971
10.1002/mrm.26580
10.1002/mrm.25799
10.1002/mrm.1910390507
10.1002/mrm.28404
10.1016/j.mri.2018.06.018
10.1002/mrm.27198
10.1002/mrm.27665
ContentType Journal Article
Copyright The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2022. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB).
Copyright_xml – notice: The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2022. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB).
DBID AAYXX
CITATION
7X8
DOI 10.1007/s10334-022-01057-9
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1352-8661
EndPage 523
ExternalDocumentID 10_1007_s10334_022_01057_9
GrantInformation_xml – fundername: National Cancer Institute
  grantid: R37CA263583
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: National Heart, Lung, and Blood Institute
  grantid: R01HL094557; R01HL163030
  funderid: http://dx.doi.org/10.13039/100000050
– fundername: National Science Foundation
  grantid: 1553441
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID ---
--K
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1B1
1N0
1SB
203
28-
29M
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
7X7
88E
88I
8FE
8FG
8FH
8FI
8FJ
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANXM
AANZL
AAQFI
AAQXK
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIUM
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACRPL
ACSNA
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMUD
ADNMO
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK5
LLZTM
M1P
M2P
M41
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9S
PCBAR
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R2-
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SEW
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
SSZ
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UHS
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7X
Z82
Z83
Z88
Z8R
Z8V
Z8W
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7X8
ID FETCH-LOGICAL-c298t-141e272fa9e7e17616d4380fc582232f48da1405a35c9871897f277e5cca33123
IEDL.DBID U2A
ISSN 1352-8661
IngestDate Fri Jul 11 04:58:41 EDT 2025
Tue Jul 01 01:44:09 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Fri Feb 21 02:42:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords MRF
Water–fat separation
Multi-parametric mapping
Low field
Liver
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-141e272fa9e7e17616d4380fc582232f48da1405a35c9871897f277e5cca33123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3533-1697
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10293475
PQID 2758576796
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2758576796
crossref_primary_10_1007_s10334_022_01057_9
crossref_citationtrail_10_1007_s10334_022_01057_9
springer_journals_10_1007_s10334_022_01057_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle Official Journal of the European Society for Magnetic Resonance in Medicine and Biology
PublicationTitle Magma (New York, N.Y.)
PublicationTitleAbbrev Magn Reson Mater Phy
PublicationYear 2023
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Dixon (CR35) 1984; 153
Hamilton, Jiang, Ma, Chen, Lo, Griswold, Seiberlich (CR22) 2018; 32
Glover, Schneider (CR36) 1991; 18
CR34
Sarracanie (CR15) 2021
Assländer, Cloos, Knoll, Sodickson, Hennig, Lattanzi (CR23) 2018; 79
CR33
Campbell-Washburn, Ramasawmy, Restivo, Bhattacharya, Basar, Herzka, Hansen, Rogers, Patricia Bandettini, McGuirt, Mancini, Grodzki, Schneider, Majeed, Bhat, Xue, Moss, Malayeri, Jones, Koretsky, Kellman, Chen, Lederman, Balaban (CR12) 2019; 293
CR32
Ye, Ma, Jiang, Cauley, Du, Wald, Griswold, Setsompop (CR41) 2016; 75
Jaubert, Arrieta, Cruz, Bustin, Schneider, Georgiopoulos, Masci, Sing-Long, Botnar, Prieto (CR6) 2020
CR31
Reeder, Pineda, Wen, Shimakawa, Yu, Brittain, Gold, Beaulieu, Pelc (CR37) 2005; 54
Chen, Jiang, Pahwa, Ma, Lu, Twieg, Wright, Seiberlich, Griswold, Gulani (CR5) 2016; 279
Ma, Gulani, Seiberlich, Liu, Sunshine, Duerk, Griswold (CR1) 2013; 495
Jaubert, Cruz, Bustin, Schneider, Lavin, Koken, Hajhosseiny, Doneva, Rueckert, Botnar, Prieto (CR4) 2019; 00
Yu, Shimakawa, McKenzie, Brodsky, Brittain, Reeder (CR26) 2008; 60
Hamilton, Seiberlich (CR39) 2020; 108
van Riel, Yu, Hodono, Xia, Chandarana, Fujimoto, Cloos (CR8) 2021
Cohen, Zhu, Rosen (CR38) 2018; 80
Liu, Hamilton, Eck, Griswold, Seiberlich (CR16) 2021; 85
Jiang, Ma, Seiberlich, Gulani, Griswold (CR2) 2015; 74
Chen, Panda, Pahwa, Hamilton, Dastmalchian, McGivney, Ma, Batesole, Seiberlich, Griswold, Plecha, Gulani (CR9) 2019; 290
Hamilton, Jiang, Ma, Lo, Gulani, Griswold, Seiberlich (CR18) 2018; 53
Zhang, Pauly, Levesque (CR24) 2015; 73
Noll (CR17) 1997; 16
Duyn, Yang, Frank, van der Veen (CR21) 1998; 132
Yu, Badve, Ponsky, Pahwa, Dastmalchian, Rogers, Jiang, Margevicius, Schluchter, Tabayoyong, Abouassaly, McGivney, Griswold, Gulani (CR11) 2017; 283
Campbell-Washburn, Jiang, Körzdörfer, Nittka, Griswold (CR13) 2021; 81
Ma, Coppo, Chen, McGivney, Jiang, Pahwa, Gulani, Griswold (CR30) 2017; 78
Panda, Obmann, Lo, Margevicius, Jiang, Schluchter, Patel, Nakamoto, Badve, Griswold, Jaeger, Ponsky, Gulani (CR10) 2019; 292
Hamilton, Pahwa, Adedigba, Frankel, O’Connor, Thomas, Walker, Killinc, Lo, Batesole, Margevicius, Griswold, Rajagopalan, Gulani, Seiberlich (CR28) 2020
Mickevicius, Kim, Zhao, Morris, Hurst, Glide-Hurst (CR14) 2021
Cao, Wang, Liu, Li, Hui, Cai (CR7) 2022; 91
Tsao, Jiang (CR27) 2013; 70
McGivney, Pierre, Ma, Jiang, Saybasili, Gulani, Griswold (CR19) 2014; 33
CR40
Hilbert, Xia, Block, Yu, Lattanzi, Sodickson, Kober, Cloos (CR29) 2019; 84
Noll, Peltier, Boada (CR42) 1998; 39
Lima da Cruz, Bustin, Jaubert, Schneider, Botnar, Prieto (CR25) 2019; 81
Hamilton, Jiang, Chen, Ma, Lo, Griswold, Seiberlich (CR3) 2017; 77
Fessler (CR20) 2007; 188
H Yu (1057_CR26) 2008; 60
O Jaubert (1057_CR4) 2019; 00
P Cao (1057_CR7) 2022; 91
T Zhang (1057_CR24) 2015; 73
SB Reeder (1057_CR37) 2005; 54
O Jaubert (1057_CR6) 2020
JI Hamilton (1057_CR18) 2018; 53
NJ Mickevicius (1057_CR14) 2021
Y Chen (1057_CR9) 2019; 290
AE Campbell-Washburn (1057_CR13) 2021; 81
JI Hamilton (1057_CR28) 2020
AE Campbell-Washburn (1057_CR12) 2019; 293
1057_CR40
JI Hamilton (1057_CR3) 2017; 77
DC Noll (1057_CR17) 1997; 16
DC Noll (1057_CR42) 1998; 39
A Panda (1057_CR10) 2019; 292
DF McGivney (1057_CR19) 2014; 33
J Assländer (1057_CR23) 2018; 79
D Ma (1057_CR1) 2013; 495
G Lima da Cruz (1057_CR25) 2019; 81
Y Liu (1057_CR16) 2021; 85
H Ye (1057_CR41) 2016; 75
Y Jiang (1057_CR2) 2015; 74
JH Duyn (1057_CR21) 1998; 132
J Tsao (1057_CR27) 2013; 70
T Hilbert (1057_CR29) 2019; 84
O Cohen (1057_CR38) 2018; 80
GH Glover (1057_CR36) 1991; 18
MHC van Riel (1057_CR8) 2021
JI Hamilton (1057_CR22) 2018; 32
JA Fessler (1057_CR20) 2007; 188
TW Dixon (1057_CR35) 1984; 153
D Ma (1057_CR30) 2017; 78
Y Chen (1057_CR5) 2016; 279
1057_CR31
AC Yu (1057_CR11) 2017; 283
M Sarracanie (1057_CR15) 2021
1057_CR32
1057_CR33
1057_CR34
JI Hamilton (1057_CR39) 2020; 108
References_xml – volume: 292
  start-page: 685
  year: 2019
  end-page: 694
  ident: CR10
  article-title: MR fingerprinting and ADC mapping for characterization of lesions in the transition zone of the prostate gland
  publication-title: Radiology
  doi: 10.1148/radiol.2019181705
– year: 2021
  ident: CR8
  article-title: Free-breathing abdominal mapping using an optimized MR fingerprinting sequence
  publication-title: NMR Biomed
  doi: 10.1002/NBM.4531
– volume: 293
  start-page: 384
  year: 2019
  end-page: 393
  ident: CR12
  article-title: Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI
  publication-title: Radiology
  doi: 10.1148/radiol.2019190452
– volume: 283
  start-page: 729
  year: 2017
  end-page: 738
  ident: CR11
  article-title: Development of a combined MR fingerprinting and diffusion examination for prostate cancer
  publication-title: Radiology
  doi: 10.1148/radiol.2017161599
– volume: 54
  start-page: 636
  year: 2005
  end-page: 644
  ident: CR37
  article-title: Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20624
– volume: 77
  start-page: 1446
  year: 2017
  end-page: 1458
  ident: CR3
  article-title: MR fingerprinting for rapid quantification of myocardial , , and proton spin density
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26216
– volume: 60
  start-page: 1122
  year: 2008
  end-page: 1134
  ident: CR26
  article-title: Multiecho water-fat separation and simultaneous R estimation with multifrequency fat spectrum modeling
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21737
– volume: 16
  start-page: 372
  year: 1997
  end-page: 377
  ident: CR17
  article-title: Multishot rosette trajectories for spectrally selective MR imaging
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.611345
– ident: CR33
– year: 2021
  ident: CR14
  article-title: Toward magnetic resonance fingerprinting for low-field MR-guided radiation therapy
  publication-title: Med Phy
  doi: 10.1002/mp.15202
– volume: 188
  start-page: 191
  year: 2007
  end-page: 195
  ident: CR20
  article-title: On NUFFT-based gridding for non-Cartesian MRI
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2007.06.012
– year: 2020
  ident: CR28
  article-title: Simultaneous mapping of and using cardiac magnetic resonance fingerprinting in a cohort of healthy subjects at 1.5T
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.27155
– volume: 132
  start-page: 150
  year: 1998
  end-page: 3
  ident: CR21
  article-title: Simple correction method for k-space trajectory deviations in MRI
  publication-title: J Magn Reson
  doi: 10.1006/jmre.1998.1396
– volume: 108
  start-page: 69
  year: 2020
  end-page: 85
  ident: CR39
  article-title: Machine learning for rapid magnetic resonance fingerprinting tissue property quantification
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2019.2936998
– volume: 91
  start-page: 69
  year: 2022
  end-page: 80
  ident: CR7
  article-title: Motion-resolved and free-breathing liver MRF
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2022.05.015
– volume: 33
  start-page: 2311
  year: 2014
  end-page: 2322
  ident: CR19
  article-title: SVD compression for magnetic resonance fingerprinting in the time domain
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2337321
– volume: 70
  start-page: 155
  year: 2013
  end-page: 159
  ident: CR27
  article-title: Hierarchical IDEAL: Fast, robust, and multiresolution separation of multiple chemical species from multiple echo times
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24441
– ident: CR40
– volume: 18
  start-page: 371
  year: 1991
  end-page: 383
  ident: CR36
  article-title: Three-point dixon technique for true water/fat decomposition with inhomogeneity correction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910180211
– volume: 32
  year: 2018
  ident: CR22
  article-title: Simultaneous multislice cardiac magnetic resonance fingerprinting using low rank reconstruction
  publication-title: NMR Biomed
– volume: 279
  start-page: 278
  year: 2016
  end-page: 286
  ident: CR5
  article-title: MR fingerprinting for rapid quantitative abdominal imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2016152037
– year: 2020
  ident: CR6
  article-title: Multi-parametric liver tissue characterization using MR fingerprinting: simultaneous , , , and fat fraction mapping
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28311
– volume: 290
  start-page: 33
  year: 2019
  end-page: 40
  ident: CR9
  article-title: Three-dimensional MR fingerprinting for quantitative breast imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2018180836
– volume: 74
  start-page: 1621
  year: 2015
  end-page: 1631
  ident: CR2
  article-title: MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25559
– volume: 81
  start-page: 88
  year: 2021
  end-page: 93
  ident: CR13
  article-title: Feasibility of MR fingerprinting using a high-performance 0.55 T MRI system
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2021.06.002
– ident: CR31
– volume: 84
  start-page: 128
  year: 2019
  end-page: 141
  ident: CR29
  article-title: Magnetization transfer in magnetic resonance fingerprinting
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28096
– year: 2021
  ident: CR15
  article-title: Fast quantitative low-field magnetic resonance imaging with OPTIMUM-optimized magnetic resonance fingerprinting using a stationary steady-state cartesian approach and accelerated acquisition schedules
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000836
– volume: 73
  start-page: 655
  year: 2015
  end-page: 661
  ident: CR24
  article-title: Accelerating parameter mapping with a locally low rank constraint
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25161
– volume: 81
  start-page: 3530
  year: 2019
  end-page: 3543
  ident: CR25
  article-title: Sparsity and locally low rank regularization for MR fingerprinting
  publication-title: Magn Reson Med
– ident: CR32
– ident: CR34
– volume: 79
  start-page: 83
  year: 2018
  end-page: 96
  ident: CR23
  article-title: Low rank alternating direction method of multipliers reconstruction for MR fingerprinting
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26639
– volume: 153
  start-page: 189
  year: 1984
  end-page: 194
  ident: CR35
  article-title: Simple proton spectroscopic imaging
  publication-title: Radiology
  doi: 10.1148/radiology.153.1.6089263
– volume: 495
  start-page: 187
  year: 2013
  end-page: 192
  ident: CR1
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
  doi: 10.1038/nature11971
– volume: 78
  start-page: 1781
  year: 2017
  end-page: 1789
  ident: CR30
  article-title: Slice profile and corrections in 2D magnetic resonance fingerprinting
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26580
– volume: 75
  start-page: 2078
  year: 2016
  end-page: 2085
  ident: CR41
  article-title: Accelerating magnetic resonance fingerprinting (MRF) using t-blipped simultaneous multislice (SMS) acquisition
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25799
– volume: 39
  start-page: 709
  year: 1998
  end-page: 716
  ident: CR42
  article-title: Simultaneous multislice acquisition using rosette trajectories (SMART): a new imaging method for functional MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910390507
– volume: 00
  start-page: 1
  year: 2019
  end-page: 17
  ident: CR4
  article-title: Water–fat Dixon cardiac magnetic resonance fingerprinting
  publication-title: Magn Reson Med
– volume: 85
  start-page: 103
  year: 2021
  end-page: 119
  ident: CR16
  article-title: Myocardial and quantification and water–fat separation using cardiac MR fingerprinting with rosette trajectories at 3T and 1.5T
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28404
– volume: 53
  start-page: 40
  year: 2018
  end-page: 51
  ident: CR18
  article-title: Investigating and reducing the effects of confounding factors for robust and mapping with cardiac MR fingerprinting
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2018.06.018
– volume: 80
  start-page: 885
  year: 2018
  end-page: 894
  ident: CR38
  article-title: MR fingerprinting Deep RecOnstruction NEtwork (DRONE)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27198
– volume: 00
  start-page: 1
  year: 2019
  ident: 1057_CR4
  publication-title: Magn Reson Med
– volume: 53
  start-page: 40
  year: 2018
  ident: 1057_CR18
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2018.06.018
– volume: 54
  start-page: 636
  year: 2005
  ident: 1057_CR37
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20624
– volume: 70
  start-page: 155
  year: 2013
  ident: 1057_CR27
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24441
– volume: 290
  start-page: 33
  year: 2019
  ident: 1057_CR9
  publication-title: Radiology
  doi: 10.1148/radiol.2018180836
– ident: 1057_CR34
– volume: 18
  start-page: 371
  year: 1991
  ident: 1057_CR36
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910180211
– volume: 81
  start-page: 3530
  year: 2019
  ident: 1057_CR25
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27665
– volume: 495
  start-page: 187
  year: 2013
  ident: 1057_CR1
  publication-title: Nature
  doi: 10.1038/nature11971
– volume: 79
  start-page: 83
  year: 2018
  ident: 1057_CR23
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26639
– ident: 1057_CR32
– volume: 293
  start-page: 384
  year: 2019
  ident: 1057_CR12
  publication-title: Radiology
  doi: 10.1148/radiol.2019190452
– volume: 91
  start-page: 69
  year: 2022
  ident: 1057_CR7
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2022.05.015
– volume: 283
  start-page: 729
  year: 2017
  ident: 1057_CR11
  publication-title: Radiology
  doi: 10.1148/radiol.2017161599
– volume: 132
  start-page: 150
  year: 1998
  ident: 1057_CR21
  publication-title: J Magn Reson
  doi: 10.1006/jmre.1998.1396
– volume: 77
  start-page: 1446
  year: 2017
  ident: 1057_CR3
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26216
– volume: 81
  start-page: 88
  year: 2021
  ident: 1057_CR13
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2021.06.002
– volume: 73
  start-page: 655
  year: 2015
  ident: 1057_CR24
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25161
– volume: 85
  start-page: 103
  year: 2021
  ident: 1057_CR16
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28404
– year: 2021
  ident: 1057_CR14
  publication-title: Med Phy
  doi: 10.1002/mp.15202
– volume: 84
  start-page: 128
  year: 2019
  ident: 1057_CR29
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28096
– volume: 78
  start-page: 1781
  year: 2017
  ident: 1057_CR30
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26580
– year: 2020
  ident: 1057_CR6
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28311
– volume: 292
  start-page: 685
  year: 2019
  ident: 1057_CR10
  publication-title: Radiology
  doi: 10.1148/radiol.2019181705
– ident: 1057_CR40
– year: 2021
  ident: 1057_CR8
  publication-title: NMR Biomed
  doi: 10.1002/NBM.4531
– volume: 188
  start-page: 191
  year: 2007
  ident: 1057_CR20
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2007.06.012
– volume: 33
  start-page: 2311
  year: 2014
  ident: 1057_CR19
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2337321
– volume: 32
  year: 2018
  ident: 1057_CR22
  publication-title: NMR Biomed
– volume: 60
  start-page: 1122
  year: 2008
  ident: 1057_CR26
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21737
– volume: 108
  start-page: 69
  year: 2020
  ident: 1057_CR39
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2019.2936998
– volume: 279
  start-page: 278
  year: 2016
  ident: 1057_CR5
  publication-title: Radiology
  doi: 10.1148/radiol.2016152037
– year: 2021
  ident: 1057_CR15
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000836
– year: 2020
  ident: 1057_CR28
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.27155
– ident: 1057_CR31
– volume: 80
  start-page: 885
  year: 2018
  ident: 1057_CR38
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27198
– volume: 75
  start-page: 2078
  year: 2016
  ident: 1057_CR41
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25799
– volume: 39
  start-page: 709
  year: 1998
  ident: 1057_CR42
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910390507
– volume: 16
  start-page: 372
  year: 1997
  ident: 1057_CR17
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.611345
– ident: 1057_CR33
– volume: 74
  start-page: 1621
  year: 2015
  ident: 1057_CR2
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25559
– volume: 153
  start-page: 189
  year: 1984
  ident: 1057_CR35
  publication-title: Radiology
  doi: 10.1148/radiology.153.1.6089263
SSID ssj0021503
Score 2.3905547
Snippet Objective The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water–fat...
The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water-fat separation...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 513
SubjectTerms Basic Science - Parametric mapping and quantitative MRI
Biomedical Engineering and Bioengineering
Computer Appl. in Life Sciences
Health Informatics
Imaging
Medicine
Medicine & Public Health
Radiology
Research Article
Solid State Physics
Title Assessment of MRF for simultaneous T1 and T2 quantification and water–fat separation in the liver at 0.55 T
URI https://link.springer.com/article/10.1007/s10334-022-01057-9
https://www.proquest.com/docview/2758576796
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF60BfEi_mL9KSt405Vmk80mxyCtxVIPJcV6CrvpLhRKqk2KV9_BF_BZfBSfxNn8tCoieApkd3OY2d35JjPzDULn2uXS0JATGUtOHLARRAAsIExpzVxPMJVXpfXv3O7QuR2xUVkUllbZ7lVIMr-pvxS72bZDTPa56erIib-O6gx8d7OvhzRYulkAceyyPOb3dd9N0ApX_giF5hams422SmiIg0KXO2hNJbtoo18Gv_dQEixZNPFM4_6ggwFx4nRikgJFosCHx6GFRTLGIcVPC1HkAeWiz98-A66cf7y8apHhVBWk3zA0STCgQDw1GRoYhlpXjL2_hfto2GmH111StksgMfW9jFiOpSinWviKK4u7ljs2dPI6ZgACbKodbyzAnWLCZrEPfpLnc005VwyUaNtgwQ5QLZkl6hBhyVzuS0_CNaoc11ayZQktW7Gg2m8pZ9xAViXBKC65xE1Li2m0YkE2Uo9A6lEu9chvoIvlmseCSePP2WeVYiLY8CaKUQgyosbD4eb3VwNdVhqLypOX_vHJo_9NP0abprV8kZp7gmrZfKFOAYBksonqwc1Dr22evcF9r5nvv0_zqtUb
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxEB7RILVcKLRFDZRiJG7UUfbH691jVBHCTzigjRROlr2xpYhoU7IbIXHiHXgBnoVH4Uk63p9AowqJ63q9smZszzc7M98AHJiAK0tDTlWiOPXRRlCJsIAybQwLQsl0UZXWvwh6A_90yIZVUVhWZ7vXIcnipn5V7OZ5PrXZ57arI6fRB1j10QdnDVjtHF-dHS0cLQQ5XlUg8_-Z_xqhF2S5FAwtbEz3Mwzq1ZWpJdetea5ayd0SceN7l78B6xXoJJ1yl2zCik6_wMd-FVb_Cmlnwc9Jpob0L7sEsSzJxjbdUKZ6Os9I7BCZjkjskpu5LDOMCqUWT28Rsc6e7x-MzEmmSzpxHBqnBPElmdjcD4JD7RZjT4_xNxh0j-LfPVo1YqCJG4U5dXxHu9w1MtJcOzxwgpElqjcJQ3jhucYPRxIdNSY9lkTogYURNy7nmuH28Dy0jVvQSKep_g5EsYBHKlR4QWs_8LRqO9KodiJdE7W1P2qCU2tGJBVLuW2WMREv_MpWkAIFKQpBiqgJh4s5f0qOjjff3q8VLvAo2fhIKUjhWt-J2x9rTfhVK1FUZzp745Pb73t9Dz714v65OD-5ONuBNdvAvkwA_gGNfDbXuwhzcvWz2tV_AQAm8cQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYpIoLYhVlNRI3MG2cOE6OFRCVpRVCqdSbZSe2VAmFpUFc-Qd-gG_hU_gSxlnKIlSJa2znMON43sRv3iB0YHyurAw5UYnixIMYQSTAAsK0McwPJNNFVVqv73cH3sWQDb9V8Rds9_pKsqxpsCpNWd66T03rW-Gb63rEMtFth0dOwlk0D8exY0ldA9qZpFwAd9yqVObvdT_D0RfG_HUtWkSbaAktVjARd0q_LqMZna2gRq-6CF9FWWeiqInvDO7dRBjQJx6PLEFQZhryeRw7WGYpjil-eJIlJ6hwQ_H0GTDm48fLq5E5HutSAByGRhkGRIhvLVsDw1D7mLH3t3gNDaKz-KRLqtYJJKFhkBPHczTl1MhQc-1w3_FTKy1vEgaAwKXGC1IJqRWTLktCyJmCkBvKuWbgUNeFaLaO5rK7TG8grJjPQxUoOFK157tatR1pVDuR1IRt7aVN5NQWFEmlK27bW9yKL0Vka3UBVheF1UXYRIeTNfelqsbU2fu1YwRsfnujURpSUJvtcPsrrImOao-J6iscT3nl5v-m76HG9Wkkrs77l1towXacLxm722guf3zSO4BLcrVbbL1POHvZEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+MRF+for+simultaneous+T1+and+T2+quantification+and+water%E2%80%93fat+separation+in+the+liver+at+0.55%C2%A0T&rft.jtitle=Magma+%28New+York%2C+N.Y.%29&rft.au=Liu%2C+Yuchi&rft.au=Hamilton%2C+Jesse&rft.au=Jiang%2C+Yun&rft.au=Seiberlich%2C+Nicole&rft.date=2023-07-01&rft.pub=Springer+International+Publishing&rft.eissn=1352-8661&rft.volume=36&rft.issue=3&rft.spage=513&rft.epage=523&rft_id=info:doi/10.1007%2Fs10334-022-01057-9&rft.externalDocID=10_1007_s10334_022_01057_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-8661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-8661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-8661&client=summon