Automatic Recognition Method for Optical Measuring Instruments Based on Machine Vision

Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope(UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adoptin...

Full description

Saved in:
Bibliographic Details
Published inTransactions of Tianjin University Vol. 14; no. 3; pp. 202 - 207
Main Author 宋乐 林玉池 郝立果
Format Journal Article
LanguageEnglish
Published Heidelberg Tianjin University 01.06.2008
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope(UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation(BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.
AbstractList TH11; Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope (UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation (BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.
Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope(UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation(BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.
Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope(UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation(BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.
Author 宋乐 林玉池 郝立果
AuthorAffiliation State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
AuthorAffiliation_xml – name: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
Author_xml – sequence: 1
  fullname: 宋乐 林玉池 郝立果
BookMark eNp9kE9r3DAQxUVJoUnaD9Cb6aGnuh2NbEs6pqF_AimBkOQqZHm8q61X2kg2Tb99tDjQWw-DhtH7vRneGTsJMRBj7zl85gDyS-aIoGsAVUrIWrxip1zrtlZcdyelB-jqRit8w85y3gE0GiQ_ZQ8Xyxz3dvauuiUXN8HPPobqF83bOFRjTNXNoXzaqYxsXpIPm-oq5Dktewpzrr7aTEN1JKzb-kDVg8_F4C17Pdop07uX95zdf_92d_mzvr75cXV5cV071ErX7WiplYhNj4NAHNzQczcq3jTELSo1DJIjSDWiQK2lRit47zpBFjQ5xcU5-7T6_rFhtGFjdnFJoWw0s7dhNzw99YawpAICQBf5x1V-SPFxoTybvc-OpskGiks2om1lh6ItQr4KXYo5JxrNIfm9TX8NB3MM3KyBm2JtjoEbURhcmXw4xkTp3zH_gz68LNrGsHksnOmt-z36iQzKRpVjOvEM6JiQEA
CitedBy_id crossref_primary_10_1177_00202940221098070
crossref_primary_10_1177_0954405416640189
Cites_doi 10.1109/72.125865
10.1109/34.3913
10.1016/S0031-3203(01)00203-5
10.1109/72.286911
10.1109/72.165597
10.1109/34.55109
10.1109/ICONIP.2002.1201951
ClassificationCodes TH11
ContentType Journal Article
Copyright Tianjin University and Springer-Verlag GmbH 2008
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Tianjin University and Springer-Verlag GmbH 2008
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s12209-008-0037-3
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList

Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
DocumentTitleAlternate Automatic Recognition Method for Optical Measuring Instruments Based on Machine Vision
EISSN 1995-8196
EndPage 207
ExternalDocumentID tianjdxxb_e200803009
10_1007_s12209_008_0037_3
27482356
GroupedDBID -03
-0C
-5B
-5G
-BR
-EM
-SC
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
29Q
29~
2B.
2C-
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
69O
6NX
8TC
92D
92I
92L
92M
93E
93N
95-
95.
95~
96X
9D9
9DC
AAAVM
AABHQ
AAFGU
AAHNG
AAHTB
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABPEJ
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADRFC
ADTIX
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESTI
AETLH
AEVTX
AEXYK
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMYLF
AMYQR
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CAJEC
CAJUS
CCEZO
CDYEO
CEKLB
CHBEP
COF
CQIGP
CS3
CSCUP
CTIDA
CW9
DNIVK
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IPNFZ
IXC
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NQJWS
NU0
O9-
O9J
P9P
PF0
PT4
Q--
Q-2
QOS
R-C
R89
R9I
RIG
ROL
RPX
RSV
RT3
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SNE
SNX
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T8S
TCJ
TGH
TSG
TSV
TUC
U1F
U1G
U2A
U5C
U5M
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W92
WK8
YLTOR
Z7R
ZMTXR
~A9
~WA
AATNV
AAYFA
ABJNI
ABTKH
ABWNU
ADOXG
ADTPH
AESKC
AEVLU
AFNRJ
AMXSW
AOCGG
DDRTE
DPUIP
IKXTQ
IWAJR
NPVJJ
SNPRN
SOHCF
AACDK
AAJBT
AASML
AAXDM
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AIGIU
CITATION
SJYHP
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
AAYZH
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
4A8
PSX
ID FETCH-LOGICAL-c2989-5fae57224b2d322dcdb1cf8144e1a288dd712078f23299792a31bc63ea09ec813
IEDL.DBID AGYKE
ISSN 1006-4982
IngestDate Tue Feb 13 23:35:44 EST 2024
Fri Oct 25 06:04:04 EDT 2024
Thu Sep 12 19:16:19 EDT 2024
Sat Dec 16 12:00:32 EST 2023
Thu Nov 24 20:31:36 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords template matching
optical measuring instruments
neural network
automatic recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2989-5fae57224b2d322dcdb1cf8144e1a288dd712078f23299792a31bc63ea09ec813
Notes optical measuring instruments
automatic recognition; optical measuring instruments; template matching; neural network
12-1248/T
template matching
TP391.44
neural network
automatic recognition
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35576235
PQPubID 23500
PageCount 6
ParticipantIDs wanfang_journals_tianjdxxb_e200803009
proquest_miscellaneous_35576235
crossref_primary_10_1007_s12209_008_0037_3
springer_journals_10_1007_s12209_008_0037_3
chongqing_backfile_27482356
PublicationCentury 2000
PublicationDate 2008-06-00
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-00
PublicationDecade 2000
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Transactions of Tianjin University
PublicationTitleAbbrev Trans. Tianjin Univ
PublicationTitleAlternate Transactions of Tianjin University
PublicationTitle_FL TRANSACTIONS OF TIANJIN UNIVERSITY
PublicationYear 2008
Publisher Tianjin University
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
Publisher_xml – name: Tianjin University
– name: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
References Chen, Pei (CR8) 2003
Chen, Lin, Zhao (CR1) 2005; 16
CR6
Khotanzad, Hong (CR9) 1990; 12
Shi, Fujisawa (CR2) 2002; 35
Perantonis, Lisboa (CR5) 1992; 3
Delopoulos, Tirakis, Kollias (CR7) 1994; 5
Stefan, Leon (CR4) 1992; 3
Teh, Chin (CR10) 1988; 10
Wang, Chen, Huang (CR11) 2005; 32
Wang, Zhao, Lin (CR3) 2006; 3
M. Shi (37_CR2) 2002; 35
Z. Chen (37_CR1) 2005; 16
A. Delopoulos (37_CR7) 1994; 5
37_CR6
K. Stefan (37_CR4) 1992; 3
X. Chen (37_CR8) 2003
C. H. Teh (37_CR10) 1988; 10
H. Wang (37_CR11) 2005; 32
S. Wang (37_CR3) 2006; 3
S. Perantonis (37_CR5) 1992; 3
A. Khotanzad (37_CR9) 1990; 12
References_xml – volume: 3
  start-page: 241
  issue: 2
  year: 1992
  end-page: 251
  ident: CR5
  article-title: Translation, rotation, and scale invariant pattern recognition by high-order neural networks and moment classifiers [J]
  publication-title: IEEE Trans on Neural Networks
  doi: 10.1109/72.125865
  contributor:
    fullname: Lisboa
– ident: CR6
– volume: 10
  start-page: 496
  issue: 4
  year: 1988
  end-page: 513
  ident: CR10
  article-title: On image analysis by the methods of moments[J]
  publication-title: IEEE Trans on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.3913
  contributor:
    fullname: Chin
– volume: 35
  start-page: 2051
  issue: 10
  year: 2002
  end-page: 2059
  ident: CR2
  article-title: Handwritten numeral recognition using gradient and curvature of gray scale image [J]
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(01)00203-5
  contributor:
    fullname: Fujisawa
– volume: 5
  start-page: 392
  issue: 3
  year: 1994
  end-page: 409
  ident: CR7
  article-title: Invariant image classification using triple-correlation based neural networks [J]
  publication-title: IEEE Trans on Neural Networks
  doi: 10.1109/72.286911
  contributor:
    fullname: Kollias
– volume: 32
  start-page: 32
  issue: 6
  year: 2005
  end-page: 34
  ident: CR11
  article-title: The technology of virtual instrument based on PC [J]
  publication-title: Metrology and Measurement Technique
  contributor:
    fullname: Huang
– volume: 3
  start-page: 962
  issue: 6
  year: 1992
  end-page: 968
  ident: CR4
  article-title: Handwritten digit recognition by neural networks with single-layer training [J]
  publication-title: IEEE Trans on Neural Networks
  doi: 10.1109/72.165597
  contributor:
    fullname: Leon
– volume: 12
  start-page: 489
  issue: 5
  year: 1990
  end-page: 498
  ident: CR9
  article-title: Invariant image recognition by Zernike moments [J]
  publication-title: IEEE Trans on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.55109
  contributor:
    fullname: Hong
– volume: 3
  start-page: 70
  issue: 3
  year: 2006
  end-page: 72
  ident: CR3
  article-title: Design of a portable auto-reading system based on DSP of universal tools microscope [J]
  publication-title: Modular Machine Tool and Automatic Manufacturing Technique
  contributor:
    fullname: Lin
– year: 2003
  ident: CR8
  publication-title: [M]
  contributor:
    fullname: Pei
– volume: 16
  start-page: 80
  issue: 1
  year: 2005
  end-page: 82
  ident: CR1
  article-title: Pretreatment algorithm of numeric character auto recognition in view field of eye lens on universal tools microscope [J]
  publication-title: Journal of Optoelectronics Lasers
  contributor:
    fullname: Zhao
– volume: 3
  start-page: 70
  issue: 3
  year: 2006
  ident: 37_CR3
  publication-title: Modular Machine Tool and Automatic Manufacturing Technique
  contributor:
    fullname: S. Wang
– ident: 37_CR6
  doi: 10.1109/ICONIP.2002.1201951
– volume: 3
  start-page: 241
  issue: 2
  year: 1992
  ident: 37_CR5
  publication-title: IEEE Trans on Neural Networks
  doi: 10.1109/72.125865
  contributor:
    fullname: S. Perantonis
– volume: 35
  start-page: 2051
  issue: 10
  year: 2002
  ident: 37_CR2
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(01)00203-5
  contributor:
    fullname: M. Shi
– volume: 32
  start-page: 32
  issue: 6
  year: 2005
  ident: 37_CR11
  publication-title: Metrology and Measurement Technique
  contributor:
    fullname: H. Wang
– volume: 5
  start-page: 392
  issue: 3
  year: 1994
  ident: 37_CR7
  publication-title: IEEE Trans on Neural Networks
  doi: 10.1109/72.286911
  contributor:
    fullname: A. Delopoulos
– volume: 10
  start-page: 496
  issue: 4
  year: 1988
  ident: 37_CR10
  publication-title: IEEE Trans on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.3913
  contributor:
    fullname: C. H. Teh
– volume: 16
  start-page: 80
  issue: 1
  year: 2005
  ident: 37_CR1
  publication-title: Journal of Optoelectronics Lasers
  contributor:
    fullname: Z. Chen
– volume: 3
  start-page: 962
  issue: 6
  year: 1992
  ident: 37_CR4
  publication-title: IEEE Trans on Neural Networks
  doi: 10.1109/72.165597
  contributor:
    fullname: K. Stefan
– volume-title: The Technology and Application of Artificial Neural Network [M]
  year: 2003
  ident: 37_CR8
  contributor:
    fullname: X. Chen
– volume: 12
  start-page: 489
  issue: 5
  year: 1990
  ident: 37_CR9
  publication-title: IEEE Trans on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.55109
  contributor:
    fullname: A. Khotanzad
SSID ssj0049071
Score 1.7563196
Snippet Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a...
TH11; Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Publisher
StartPage 202
SubjectTerms Engineering
Humanities and Social Sciences
Mechanical Engineering
multidisciplinary
Science
光学测量工具
机器视觉
神经网络
自动识别
Title Automatic Recognition Method for Optical Measuring Instruments Based on Machine Vision
URI http://lib.cqvip.com/qk/85460X/20083/27482356.html
https://link.springer.com/article/10.1007/s12209-008-0037-3
https://search.proquest.com/docview/35576235
https://d.wanfangdata.com.cn/periodical/tianjdxxb-e200803009
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QUOhRYQS3n4ABIPZRXbcR7HFWqpQHCiqJwsv1JgJafV7koVv54ZJ9ktAiH1GiUTJWPPfPP6DPCCC24LK2TmSm6ywjqeWXQkGXo_q5zJW5XGoz99Lk9Oiw9n6mwHxCZ1ERezsSKZDPV21k0IyuNTtZ5G2-Qt2KW5UzWB3fn7bx-PRvtbYLiXwiyKlYumFmMt819CiFHhexfPL_GFf3qmLdzcVEjTXE9sTTy_5oKO7_ZjgcvEXEidJ4vZemVn7tffvI43-Lp7sDcgUjbvl9A-7IR4AHeu8RQewP5gAZbs1UBT_fo-fJ2vV10ifGWbLqQusv5IaoZYmHUXKVGOlygPiZLYj8RXm6bqGPlPz-iJ1M8ZWD_m_gBOj4--vDvJhlMaMkfs7ZlqTVAVIgErPFoH77zlrq0xUAvciLr2vuICgUiL2K1pqkYYya0rZTB5E1zN5UOYxC6GR8DyqpUVAqzKVKLwRlqXl16Fxni0y3khp3C40RZ6ebcg7iqNcXUtpCqn8GbUn77oqTr0lpSZ_q9OR27i_9Uo6vmoYY0biqokJoZuvdQIwNBBSDWFt6Oq9LCvl_-T93JYG9ubyUT_9FdXVgfqMkFzmjePbyT1EG73_SmU9XkCE1RReIogaGWfDav-N_Jp-7c
link.rule.ids 315,783,787,27938,27939,41095,42164,52125
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcigcKFAQy7bgA0gtKCi28zyuKmBbHqcFwcnyK9AiJaDdlVb8-o6dZBeqqhLXKJkkHnvmG8_MZ4B9yqiKFOOBTqgMIqVpoNCRBOj9VKxlWMS-PfryKhlcRz9v49umj3vUVru3KUlvqefNboy5jXyXrne9bXwRliKGaL8DS_2zu_OT1gBHGO_5OMsFy1GesTaZ-S8hjlLhoSrvn_GFb13THG_OUqS-sacsZHn_ygedfoRh-_V16cnj8WSsjvXLX8SO7_y9NVhtMCnp15NoHRZsuQErr5gKN2C9sQEj8rUhqv72CW76k3HlKV_JrA6pKkl9KDVBNEyqJ79VjpfcTiRKIr88Y63vqyPOgxrinvAVnZbUje6bcH16Mvw-CJpzGgLt-NuDuJA2ThELKGbQPhhtFNVFhqGapZJlmTEpZQhFCkRveZ7mTHKqdMKtDHOrM8q3oFNWpd0GEqYFTxFipTJlkZFc6TAxsc2lQcscRrwLvZm60M_rR8deJTCyzhiPky4ctgoUTzVZh5jTMrvxFf7QTRxfgaL2WhULXFIuTyJLW01GAiEYugged-GoVZVoVvbof_IOmskxv9kZ6d9mOlXCujoTNKhhvvMuqXvwYTC8vBAXP67Oe7BcV6u4PaDP0EF12S8IicZqt1kCfwDKB_-L
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ_okRh5EAENJ199wAQxC9t2Px8vwInyER-EwFPt16KSdM_cXUL86512d-_QGBPj62Z3Nu20M7_pzPwKsEMZVYliPNIZlVGiNI0UOpIIvZ9KtYyrNLRHn19kJ5fJh-v0ur3ndNxVu3cpyaanwbM0ucnByFQH88Y3xvyhvk_d-z43_hgWEopooQcLg3c3p8edMU4w9gsxlw-ck7JgXWLzT0I8vcKX2t1-x5__6qbm2HOWLg1NPq6S7vaBPxouweduJE0Zyt3-dKL29Y_fSB7_Y6jP4VmLVcmgWVzL8Mi6FVh8wGC4AsutbRiT3ZbA-s0qXA2mkzpQwZJZfVLtSHNZNUGUTOpROELHR_6EEiWRr4HJNvTbEe9ZDfFfhEpPS5oG-BdwOTz-dHgStfc3RNrzukdpJW2aI0ZQzKDdMNooqqsCQzhLJSsKY3LKEKJUiOrKMi-Z5FTpjFsZl1YXlL-EnqudXQMS5xXPEXrlMmeJkVzpODOpLaVBix0nvA_rM9Wh_9d3ntVKYMRdMJ5mfdjrlClGDYmHmNM1-_kV4TJOnF-BorY7dQvcaj5_Ip2tp2OB0AxdB0_78LZTm2h3_Phv8l63C2X-sjfe38z9vRLW15-goY3LV_8kdRuefDwairP3F6fr8LQpYvFHQxvQQ23ZTURKE7XV7oafUIIIfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Recognition+Method+for+Optical+Measuring+Instruments+Based+on+Machine+Vision&rft.jtitle=%E5%A4%A9%E6%B4%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%28%E8%8B%B1%E6%96%87%E7%89%88%29&rft.au=SONG+Le&rft.au=LIN+Yuchi&rft.au=HAO+Liguo&rft.date=2008-06-01&rft.pub=State+Key+Laboratory+of+Precision+Measuring+Technology+and+Instruments%2C+Tianjin+University%2C+Tianjin+300072%2C+China&rft.issn=1006-4982&rft.eissn=1995-8196&rft.volume=14&rft.issue=3&rft.spage=202&rft.epage=207&rft_id=info:doi/10.1007%2Fs12209-008-0037-3&rft.externalDocID=tianjdxxb_e200803009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85460X%2F85460X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftianjdxxb-e%2Ftianjdxxb-e.jpg