Automatic Recognition Method for Optical Measuring Instruments Based on Machine Vision
Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope(UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adoptin...
Saved in:
Published in | Transactions of Tianjin University Vol. 14; no. 3; pp. 202 - 207 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Tianjin University
01.06.2008
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope(UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation(BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements. |
---|---|
AbstractList | TH11; Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope (UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation (BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements. Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope(UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation(BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements. Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope(UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation(BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements. |
Author | 宋乐 林玉池 郝立果 |
AuthorAffiliation | State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China |
AuthorAffiliation_xml | – name: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China |
Author_xml | – sequence: 1 fullname: 宋乐 林玉池 郝立果 |
BookMark | eNp9kE9r3DAQxUVJoUnaD9Cb6aGnuh2NbEs6pqF_AimBkOQqZHm8q61X2kg2Tb99tDjQWw-DhtH7vRneGTsJMRBj7zl85gDyS-aIoGsAVUrIWrxip1zrtlZcdyelB-jqRit8w85y3gE0GiQ_ZQ8Xyxz3dvauuiUXN8HPPobqF83bOFRjTNXNoXzaqYxsXpIPm-oq5Dktewpzrr7aTEN1JKzb-kDVg8_F4C17Pdop07uX95zdf_92d_mzvr75cXV5cV071ErX7WiplYhNj4NAHNzQczcq3jTELSo1DJIjSDWiQK2lRit47zpBFjQ5xcU5-7T6_rFhtGFjdnFJoWw0s7dhNzw99YawpAICQBf5x1V-SPFxoTybvc-OpskGiks2om1lh6ItQr4KXYo5JxrNIfm9TX8NB3MM3KyBm2JtjoEbURhcmXw4xkTp3zH_gz68LNrGsHksnOmt-z36iQzKRpVjOvEM6JiQEA |
CitedBy_id | crossref_primary_10_1177_00202940221098070 crossref_primary_10_1177_0954405416640189 |
Cites_doi | 10.1109/72.125865 10.1109/34.3913 10.1016/S0031-3203(01)00203-5 10.1109/72.286911 10.1109/72.165597 10.1109/34.55109 10.1109/ICONIP.2002.1201951 |
ClassificationCodes | TH11 |
ContentType | Journal Article |
Copyright | Tianjin University and Springer-Verlag GmbH 2008 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Tianjin University and Springer-Verlag GmbH 2008 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s12209-008-0037-3 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Engineering |
DocumentTitleAlternate | Automatic Recognition Method for Optical Measuring Instruments Based on Machine Vision |
EISSN | 1995-8196 |
EndPage | 207 |
ExternalDocumentID | tianjdxxb_e200803009 10_1007_s12209_008_0037_3 27482356 |
GroupedDBID | -03 -0C -5B -5G -BR -EM -SC -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 29Q 29~ 2B. 2C- 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 408 40D 40E 5VR 5VS 69O 6NX 8TC 92D 92I 92L 92M 93E 93N 95- 95. 95~ 96X 9D9 9DC AAAVM AABHQ AAFGU AAHNG AAHTB AAIAL AAJKR AANZL AAPBV AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTV ABHQN ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABPEJ ABQBU ABSXP ABTEG ABTHY ABTMW ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADTIX ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYLF AMYQR ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG CAJEC CAJUS CCEZO CDYEO CEKLB CHBEP COF CQIGP CS3 CSCUP CTIDA CW9 DNIVK EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IPNFZ IXC IXD I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- NQJWS NU0 O9- O9J P9P PF0 PT4 Q-- Q-2 QOS R-C R89 R9I RIG ROL RPX RSV RT3 S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SNE SNX SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T8S TCJ TGH TSG TSV TUC U1F U1G U2A U5C U5M UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 W92 WK8 YLTOR Z7R ZMTXR ~A9 ~WA AATNV AAYFA ABJNI ABTKH ABWNU ADOXG ADTPH AESKC AEVLU AFNRJ AMXSW AOCGG DDRTE DPUIP IKXTQ IWAJR NPVJJ SNPRN SOHCF AACDK AAJBT AASML AAXDM AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AIGIU CITATION SJYHP 7SC 7SP 7SR 7TB 7U5 8BQ 8FD AAYZH FR3 JG9 JQ2 KR7 L7M L~C L~D 4A8 PSX |
ID | FETCH-LOGICAL-c2989-5fae57224b2d322dcdb1cf8144e1a288dd712078f23299792a31bc63ea09ec813 |
IEDL.DBID | AGYKE |
ISSN | 1006-4982 |
IngestDate | Tue Feb 13 23:35:44 EST 2024 Fri Oct 25 06:04:04 EDT 2024 Thu Sep 12 19:16:19 EDT 2024 Sat Dec 16 12:00:32 EST 2023 Thu Nov 24 20:31:36 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | template matching optical measuring instruments neural network automatic recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2989-5fae57224b2d322dcdb1cf8144e1a288dd712078f23299792a31bc63ea09ec813 |
Notes | optical measuring instruments automatic recognition; optical measuring instruments; template matching; neural network 12-1248/T template matching TP391.44 neural network automatic recognition ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 35576235 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | wanfang_journals_tianjdxxb_e200803009 proquest_miscellaneous_35576235 crossref_primary_10_1007_s12209_008_0037_3 springer_journals_10_1007_s12209_008_0037_3 chongqing_backfile_27482356 |
PublicationCentury | 2000 |
PublicationDate | 2008-06-00 |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-00 |
PublicationDecade | 2000 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Transactions of Tianjin University |
PublicationTitleAbbrev | Trans. Tianjin Univ |
PublicationTitleAlternate | Transactions of Tianjin University |
PublicationTitle_FL | TRANSACTIONS OF TIANJIN UNIVERSITY |
PublicationYear | 2008 |
Publisher | Tianjin University State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China |
Publisher_xml | – name: Tianjin University – name: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China |
References | Chen, Pei (CR8) 2003 Chen, Lin, Zhao (CR1) 2005; 16 CR6 Khotanzad, Hong (CR9) 1990; 12 Shi, Fujisawa (CR2) 2002; 35 Perantonis, Lisboa (CR5) 1992; 3 Delopoulos, Tirakis, Kollias (CR7) 1994; 5 Stefan, Leon (CR4) 1992; 3 Teh, Chin (CR10) 1988; 10 Wang, Chen, Huang (CR11) 2005; 32 Wang, Zhao, Lin (CR3) 2006; 3 M. Shi (37_CR2) 2002; 35 Z. Chen (37_CR1) 2005; 16 A. Delopoulos (37_CR7) 1994; 5 37_CR6 K. Stefan (37_CR4) 1992; 3 X. Chen (37_CR8) 2003 C. H. Teh (37_CR10) 1988; 10 H. Wang (37_CR11) 2005; 32 S. Wang (37_CR3) 2006; 3 S. Perantonis (37_CR5) 1992; 3 A. Khotanzad (37_CR9) 1990; 12 |
References_xml | – volume: 3 start-page: 241 issue: 2 year: 1992 end-page: 251 ident: CR5 article-title: Translation, rotation, and scale invariant pattern recognition by high-order neural networks and moment classifiers [J] publication-title: IEEE Trans on Neural Networks doi: 10.1109/72.125865 contributor: fullname: Lisboa – ident: CR6 – volume: 10 start-page: 496 issue: 4 year: 1988 end-page: 513 ident: CR10 article-title: On image analysis by the methods of moments[J] publication-title: IEEE Trans on Pattern Analysis and Machine Intelligence doi: 10.1109/34.3913 contributor: fullname: Chin – volume: 35 start-page: 2051 issue: 10 year: 2002 end-page: 2059 ident: CR2 article-title: Handwritten numeral recognition using gradient and curvature of gray scale image [J] publication-title: Pattern Recognition doi: 10.1016/S0031-3203(01)00203-5 contributor: fullname: Fujisawa – volume: 5 start-page: 392 issue: 3 year: 1994 end-page: 409 ident: CR7 article-title: Invariant image classification using triple-correlation based neural networks [J] publication-title: IEEE Trans on Neural Networks doi: 10.1109/72.286911 contributor: fullname: Kollias – volume: 32 start-page: 32 issue: 6 year: 2005 end-page: 34 ident: CR11 article-title: The technology of virtual instrument based on PC [J] publication-title: Metrology and Measurement Technique contributor: fullname: Huang – volume: 3 start-page: 962 issue: 6 year: 1992 end-page: 968 ident: CR4 article-title: Handwritten digit recognition by neural networks with single-layer training [J] publication-title: IEEE Trans on Neural Networks doi: 10.1109/72.165597 contributor: fullname: Leon – volume: 12 start-page: 489 issue: 5 year: 1990 end-page: 498 ident: CR9 article-title: Invariant image recognition by Zernike moments [J] publication-title: IEEE Trans on Pattern Analysis and Machine Intelligence doi: 10.1109/34.55109 contributor: fullname: Hong – volume: 3 start-page: 70 issue: 3 year: 2006 end-page: 72 ident: CR3 article-title: Design of a portable auto-reading system based on DSP of universal tools microscope [J] publication-title: Modular Machine Tool and Automatic Manufacturing Technique contributor: fullname: Lin – year: 2003 ident: CR8 publication-title: [M] contributor: fullname: Pei – volume: 16 start-page: 80 issue: 1 year: 2005 end-page: 82 ident: CR1 article-title: Pretreatment algorithm of numeric character auto recognition in view field of eye lens on universal tools microscope [J] publication-title: Journal of Optoelectronics Lasers contributor: fullname: Zhao – volume: 3 start-page: 70 issue: 3 year: 2006 ident: 37_CR3 publication-title: Modular Machine Tool and Automatic Manufacturing Technique contributor: fullname: S. Wang – ident: 37_CR6 doi: 10.1109/ICONIP.2002.1201951 – volume: 3 start-page: 241 issue: 2 year: 1992 ident: 37_CR5 publication-title: IEEE Trans on Neural Networks doi: 10.1109/72.125865 contributor: fullname: S. Perantonis – volume: 35 start-page: 2051 issue: 10 year: 2002 ident: 37_CR2 publication-title: Pattern Recognition doi: 10.1016/S0031-3203(01)00203-5 contributor: fullname: M. Shi – volume: 32 start-page: 32 issue: 6 year: 2005 ident: 37_CR11 publication-title: Metrology and Measurement Technique contributor: fullname: H. Wang – volume: 5 start-page: 392 issue: 3 year: 1994 ident: 37_CR7 publication-title: IEEE Trans on Neural Networks doi: 10.1109/72.286911 contributor: fullname: A. Delopoulos – volume: 10 start-page: 496 issue: 4 year: 1988 ident: 37_CR10 publication-title: IEEE Trans on Pattern Analysis and Machine Intelligence doi: 10.1109/34.3913 contributor: fullname: C. H. Teh – volume: 16 start-page: 80 issue: 1 year: 2005 ident: 37_CR1 publication-title: Journal of Optoelectronics Lasers contributor: fullname: Z. Chen – volume: 3 start-page: 962 issue: 6 year: 1992 ident: 37_CR4 publication-title: IEEE Trans on Neural Networks doi: 10.1109/72.165597 contributor: fullname: K. Stefan – volume-title: The Technology and Application of Artificial Neural Network [M] year: 2003 ident: 37_CR8 contributor: fullname: X. Chen – volume: 12 start-page: 489 issue: 5 year: 1990 ident: 37_CR9 publication-title: IEEE Trans on Pattern Analysis and Machine Intelligence doi: 10.1109/34.55109 contributor: fullname: A. Khotanzad |
SSID | ssj0049071 |
Score | 1.7563196 |
Snippet | Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a... TH11; Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a... |
SourceID | wanfang proquest crossref springer chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 202 |
SubjectTerms | Engineering Humanities and Social Sciences Mechanical Engineering multidisciplinary Science 光学测量工具 机器视觉 神经网络 自动识别 |
Title | Automatic Recognition Method for Optical Measuring Instruments Based on Machine Vision |
URI | http://lib.cqvip.com/qk/85460X/20083/27482356.html https://link.springer.com/article/10.1007/s12209-008-0037-3 https://search.proquest.com/docview/35576235 https://d.wanfangdata.com.cn/periodical/tianjdxxb-e200803009 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QUOhRYQS3n4ABIPZRXbcR7HFWqpQHCiqJwsv1JgJafV7koVv54ZJ9ktAiH1GiUTJWPPfPP6DPCCC24LK2TmSm6ywjqeWXQkGXo_q5zJW5XGoz99Lk9Oiw9n6mwHxCZ1ERezsSKZDPV21k0IyuNTtZ5G2-Qt2KW5UzWB3fn7bx-PRvtbYLiXwiyKlYumFmMt819CiFHhexfPL_GFf3qmLdzcVEjTXE9sTTy_5oKO7_ZjgcvEXEidJ4vZemVn7tffvI43-Lp7sDcgUjbvl9A-7IR4AHeu8RQewP5gAZbs1UBT_fo-fJ2vV10ifGWbLqQusv5IaoZYmHUXKVGOlygPiZLYj8RXm6bqGPlPz-iJ1M8ZWD_m_gBOj4--vDvJhlMaMkfs7ZlqTVAVIgErPFoH77zlrq0xUAvciLr2vuICgUiL2K1pqkYYya0rZTB5E1zN5UOYxC6GR8DyqpUVAqzKVKLwRlqXl16Fxni0y3khp3C40RZ6ebcg7iqNcXUtpCqn8GbUn77oqTr0lpSZ_q9OR27i_9Uo6vmoYY0biqokJoZuvdQIwNBBSDWFt6Oq9LCvl_-T93JYG9ubyUT_9FdXVgfqMkFzmjePbyT1EG73_SmU9XkCE1RReIogaGWfDav-N_Jp-7c |
link.rule.ids | 315,783,787,27938,27939,41095,42164,52125 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcigcKFAQy7bgA0gtKCi28zyuKmBbHqcFwcnyK9AiJaDdlVb8-o6dZBeqqhLXKJkkHnvmG8_MZ4B9yqiKFOOBTqgMIqVpoNCRBOj9VKxlWMS-PfryKhlcRz9v49umj3vUVru3KUlvqefNboy5jXyXrne9bXwRliKGaL8DS_2zu_OT1gBHGO_5OMsFy1GesTaZ-S8hjlLhoSrvn_GFb13THG_OUqS-sacsZHn_ygedfoRh-_V16cnj8WSsjvXLX8SO7_y9NVhtMCnp15NoHRZsuQErr5gKN2C9sQEj8rUhqv72CW76k3HlKV_JrA6pKkl9KDVBNEyqJ79VjpfcTiRKIr88Y63vqyPOgxrinvAVnZbUje6bcH16Mvw-CJpzGgLt-NuDuJA2ThELKGbQPhhtFNVFhqGapZJlmTEpZQhFCkRveZ7mTHKqdMKtDHOrM8q3oFNWpd0GEqYFTxFipTJlkZFc6TAxsc2lQcscRrwLvZm60M_rR8deJTCyzhiPky4ctgoUTzVZh5jTMrvxFf7QTRxfgaL2WhULXFIuTyJLW01GAiEYugged-GoVZVoVvbof_IOmskxv9kZ6d9mOlXCujoTNKhhvvMuqXvwYTC8vBAXP67Oe7BcV6u4PaDP0EF12S8IicZqt1kCfwDKB_-L |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ_okRh5EAENJ199wAQxC9t2Px8vwInyER-EwFPt16KSdM_cXUL86512d-_QGBPj62Z3Nu20M7_pzPwKsEMZVYliPNIZlVGiNI0UOpIIvZ9KtYyrNLRHn19kJ5fJh-v0ur3ndNxVu3cpyaanwbM0ucnByFQH88Y3xvyhvk_d-z43_hgWEopooQcLg3c3p8edMU4w9gsxlw-ck7JgXWLzT0I8vcKX2t1-x5__6qbm2HOWLg1NPq6S7vaBPxouweduJE0Zyt3-dKL29Y_fSB7_Y6jP4VmLVcmgWVzL8Mi6FVh8wGC4AsutbRiT3ZbA-s0qXA2mkzpQwZJZfVLtSHNZNUGUTOpROELHR_6EEiWRr4HJNvTbEe9ZDfFfhEpPS5oG-BdwOTz-dHgStfc3RNrzukdpJW2aI0ZQzKDdMNooqqsCQzhLJSsKY3LKEKJUiOrKMi-Z5FTpjFsZl1YXlL-EnqudXQMS5xXPEXrlMmeJkVzpODOpLaVBix0nvA_rM9Wh_9d3ntVKYMRdMJ5mfdjrlClGDYmHmNM1-_kV4TJOnF-BorY7dQvcaj5_Ip2tp2OB0AxdB0_78LZTm2h3_Phv8l63C2X-sjfe38z9vRLW15-goY3LV_8kdRuefDwairP3F6fr8LQpYvFHQxvQQ23ZTURKE7XV7oafUIIIfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Recognition+Method+for+Optical+Measuring+Instruments+Based+on+Machine+Vision&rft.jtitle=%E5%A4%A9%E6%B4%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%28%E8%8B%B1%E6%96%87%E7%89%88%29&rft.au=SONG+Le&rft.au=LIN+Yuchi&rft.au=HAO+Liguo&rft.date=2008-06-01&rft.pub=State+Key+Laboratory+of+Precision+Measuring+Technology+and+Instruments%2C+Tianjin+University%2C+Tianjin+300072%2C+China&rft.issn=1006-4982&rft.eissn=1995-8196&rft.volume=14&rft.issue=3&rft.spage=202&rft.epage=207&rft_id=info:doi/10.1007%2Fs12209-008-0037-3&rft.externalDocID=tianjdxxb_e200803009 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85460X%2F85460X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftianjdxxb-e%2Ftianjdxxb-e.jpg |