Multi-Objective Optimization of Water-Sedimentation-Power in Reservoir Based on Pareto-Optimal Solution

A multi-objective optimal operation model of water-sedimentation-power in reservoir is established with power-generation, sedimentation and water storage taken into account. Moreover, the inertia weight self-adjusting mechanism and Pareto-optimal archive are introduced into the particle swarm optimi...

Full description

Saved in:
Bibliographic Details
Published inTransactions of Tianjin University Vol. 14; no. 4; pp. 282 - 288
Main Author 李辉 练继建
Format Journal Article
LanguageEnglish
Published Heidelberg Tianjin University 01.08.2008
School of Civil Engineering, Tianjin University, Tianjin 300072, China
Subjects
Online AccessGet full text
ISSN1006-4982
1995-8196
DOI10.1007/s12209-008-0048-0

Cover

Abstract A multi-objective optimal operation model of water-sedimentation-power in reservoir is established with power-generation, sedimentation and water storage taken into account. Moreover, the inertia weight self-adjusting mechanism and Pareto-optimal archive are introduced into the particle swarm optimization and an improved multi-objective particle swarm optimization (IMOPSO) is proposed. The IMOPSO is employed to solve the optimal model and obtain the Pareto-optimal front. The multi-objective optimal operation of Wanjiazhai Reservoir during the spring breakup was investigated with three typical flood hydrographs. The results show that the former method is able to obtain the Pareto-optimal front with a uniform distribution property. Different regions (A, B, C) of the Pareto-optimal front correspond to the optimized schemes in terms of the objectives of sediment deposition, sediment deposition and power generation, and power generation, respectively. The level hydrographs and outflow hydrographs show the operation of the reservoir in details. Compared with the non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ), IMOPSO has close global optimization capability and is suitable for multi-objective optimization problems.
AbstractList TV6; A multi-objective optimal operation model of water-sedimentation-power in reservoir is established with power-generation, sedimentation and water storage taken into account. Moreover,the inertia weight serf-adjusting mechanism and Pareto-optimal archive are introduced into the par-ticle swarm optimization and an improved multi-objective particle swarm optimization (IMOPSO) is proposed. The IMOPSO is employed to solve the optimal model and obtain the Pareto-optimal front. The multi-objective optimal operation of Wanjiazhai Reservoir during the spring breakup was investigated with three typical flood hydrographs. The results show that the former method is able to obtain the Pareto-optimal front with a uniform distribution property. Different regions (A, B, C) of the Pareto-optimal front correspond to the optimized schemes in terms of the objectives of sedi-ment deposition, sediment deposition and power generation, and power generation, respectively.The level hydrographs and outflow hydrographs show the operation of the reservoir in details. Com-pared with the non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ), IMOPSO has close global op-timization capability and is suitable for multi-objective optimization problems.
A multi-objective optimal operation model of water-sedimentation-power in reservoir is established with power-generation, sedimentation and water storage taken into account. Moreover, the inertia weight self-adjusting mechanism and Pareto-optimal archive are introduced into the particle swarm optimization and an improved multi-objective particle swarm optimization (IMOPSO) is proposed. The IMOPSO is employed to solve the optimal model and obtain the Pareto-optimal front. The multi-objective optimal operation of Wanjiazhai Reservoir during the spring breakup was investigated with three typical flood hydrographs. The results show that the former method is able to obtain the Pareto-optimal front with a uniform distribution property. Different regions (A, B, C) of the Pareto-optimal front correspond to the optimized schemes in terms of the objectives of sediment deposition, sediment deposition and power generation, and power generation, respectively. The level hydrographs and outflow hydrographs show the operation of the reservoir in details. Compared with the non-dominated sorting genetic algorithm-II (NSGA-II), IMOPSO has close global optimization capability and is suitable for multi-objective optimization problems.
A multi-objective optimal operation model of water-sedimentation-power in reservoir is established with power-generation, sedimentation and water storage taken into account. Moreover, the inertia weight self-adjusting mechanism and Pareto-optimal archive are introduced into the particle swarm optimization and an improved multi-objective particle swarm optimization (IMOPSO) is proposed. The IMOPSO is employed to solve the optimal model and obtain the Pareto-optimal front. The multi-objective optimal operation of Wanjiazhai Reservoir during the spring breakup was investigated with three typical flood hydrographs. The results show that the former method is able to obtain the Pareto-optimal front with a uniform distribution property. Different regions (A, B, C) of the Pareto-optimal front correspond to the optimized schemes in terms of the objectives of sediment deposition, sediment deposition and power generation, and power generation, respectively. The level hydrographs and outflow hydrographs show the operation of the reservoir in details. Compared with the non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ), IMOPSO has close global optimization capability and is suitable for multi-objective optimization problems.
Author 李辉 练继建
AuthorAffiliation School of Civil Engineering, Tianjin University, Tianjin 300072, China
AuthorAffiliation_xml – name: School of Civil Engineering, Tianjin University, Tianjin 300072, China
Author_xml – sequence: 1
  fullname: 李辉 练继建
BookMark eNp9kUtv1DAUhS1UJNqBH8AuYsEKg1-J4yVUvKSiqSiIpWUn14OHjD21nbbw6_FMKiGx6MIPWee71_ecM3QSYgCEnlPymhIi32TKGFGYkL4uUbdH6JQq1eKequ6k3gnpsFA9e4LOct5WjSKSnqLNl3kqHq_tFobib6BZ74vf-T-m-Bia6JofpkDCVzD6HYRyfMaX8RZS40PzFTKkm-hT885kGJuKXJoEJeJjGTM1V3GaD8xT9NiZKcOz-3OFvn94_-38E75Yf_x8_vYCD0z1HbZCGm5GKbqu5Z1pZata6QRreW9Fz4V1ZHCMiVFaNSrWS2K5ZYOjTI3QEcdX6NVS99YEZ8JGb-OcQu2oizdhO97dWQ2s2kREdaTKXy7yfYrXM-Sidz4PME0mQJyz5q0gx7-sEF2EQ4o5J3B6n-qA6bemRB8S0EsCupbWhwQ0qYz8jxn84mBJxk8Pkmwhc-0SNpD-jfEQ9OK-3c8YNteV09YMv5yfQLOeUMl7xf8C0kqoEQ
CitedBy_id crossref_primary_10_3390_w15193523
crossref_primary_10_1016_j_ijsrc_2020_03_018
crossref_primary_10_1080_15715124_2019_1705317
crossref_primary_10_3390_w15213852
crossref_primary_10_1016_j_infrared_2015_01_022
crossref_primary_10_1631_FITEE_1500168
Cites_doi 10.1109/4235.996017
10.1109/TAC.1976.1101338
10.1162/evco.1994.2.3.221
10.1007/978-3-642-17144-4_1
10.1109/ICNN.1995.488968
ClassificationCodes TV6
ContentType Journal Article
Copyright Tianjin University and Springer-Verlag GmbH 2008
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Tianjin University and Springer-Verlag GmbH 2008
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s12209-008-0048-0
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
DocumentTitleAlternate Multi-Objective Optimization of Water-Sedimentation-Power in Reservoir Based on Pareto-Optimal Solution
EISSN 1995-8196
EndPage 288
ExternalDocumentID tianjdxxb_e200804006
10_1007_s12209_008_0048_0
28017389
GrantInformation_xml – fundername: 国家自然科学基金; 国家自然科学基金(50539060; 50679052)
  funderid: (50725929); 国家自然科学基金(50539060; 50679052)
GroupedDBID -03
-0C
-5B
-5G
-BR
-EM
-SC
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
29Q
29~
2B.
2C-
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
69O
6NX
8TC
92D
92I
92L
92M
93E
93N
95-
95.
95~
96X
9D9
9DC
AAAVM
AABHQ
AAFGU
AAHNG
AAHTB
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABPEJ
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADRFC
ADTIX
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESTI
AETLH
AEVTX
AEXYK
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMYLF
AMYQR
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CAJEC
CAJUS
CCEZO
CDYEO
CEKLB
CHBEP
COF
CQIGP
CS3
CSCUP
CTIDA
CW9
DNIVK
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IPNFZ
IXC
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NQJWS
NU0
O9-
O9J
P9P
PF0
PT4
Q--
Q-2
QOS
R-C
R89
R9I
RIG
ROL
RPX
RSV
RT3
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SNE
SNX
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T8S
TCJ
TGH
TSG
TSV
TUC
U1F
U1G
U2A
U5C
U5M
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W92
WK8
YLTOR
Z7R
ZMTXR
~A9
~WA
AACDK
AAJBT
AASML
AATNV
AAXDM
AAYZH
ABAKF
ABJNI
ABTKH
ABWNU
ACAOD
ACDTI
ACPIV
ACZOJ
ADTPH
AEFQL
AEMSY
AESKC
AEVLU
AFBBN
AGQEE
AIGIU
AMXSW
AOCGG
DDRTE
DPUIP
IKXTQ
IWAJR
NPVJJ
SJYHP
SNPRN
SOHCF
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
ABRTQ
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
4A8
PSX
ID FETCH-LOGICAL-c2986-b47a3ad7466536a575957f42538b4834bf0cf224d7b9d92870b3b2cf129de60f3
IEDL.DBID AGYKE
ISSN 1006-4982
IngestDate Thu May 29 04:11:17 EDT 2025
Fri Sep 05 08:00:39 EDT 2025
Tue Jul 01 02:15:52 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Fri Feb 21 02:33:42 EST 2025
Fri Nov 25 02:42:11 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords multi-objective optimization of water-sedimentation-power
optimal operation of reservoir
particle swarm optimization
Pareto-optimal solution
optimal operation of reser-voir
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2986-b47a3ad7466536a575957f42538b4834bf0cf224d7b9d92870b3b2cf129de60f3
Notes 12-1248/T
multi-objective optimization of water-sedimentation-power; optimal operation of reservoir; Pareto-optimal solution; particle swarm optimization
Pareto-optimal solution
TV145
multi-objective optimization of water-sedimentation-power
optimal operation of reservoir
particle swarm optimization
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35404665
PQPubID 23500
PageCount 7
ParticipantIDs wanfang_journals_tianjdxxb_e200804006
proquest_miscellaneous_35404665
crossref_primary_10_1007_s12209_008_0048_0
crossref_citationtrail_10_1007_s12209_008_0048_0
springer_journals_10_1007_s12209_008_0048_0
chongqing_backfile_28017389
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20080800
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 8
  year: 2008
  text: 20080800
PublicationDecade 2000
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Transactions of Tianjin University
PublicationTitleAbbrev Trans. Tianjin Univ
PublicationTitleAlternate Transactions of Tianjin University
PublicationTitle_FL TRANSACTIONS OF TIANJIN UNIVERSITY
PublicationYear 2008
Publisher Tianjin University
School of Civil Engineering, Tianjin University, Tianjin 300072, China
Publisher_xml – name: Tianjin University
– name: School of Civil Engineering, Tianjin University, Tianjin 300072, China
References Lin (CR8) 1976; 21
Zitzler, Laumanns, Bleuler (CR10) 2004; 2
CR11
Deb, Pratap, Agarwal (CR12) 2002; 6
Bao, Huang, Yang (CR2) 2005; 21
Horn, Nafpliotis (CR6) 1993
Shao, Xia, Sun (CR1) 1998; 16
CR7
CR9
Fonseca, Fleming (CR4) 1993
Lin, Xu, Pan (CR3) 1992; 3
Srinivas, Deb (CR5) 1994; 2
D. Shao (48_CR1) 1998; 16
N. Srinivas (48_CR5) 1994; 2
48_CR7
E. Zitzler (48_CR10) 2004; 2
J. Horn (48_CR6) 1993
48_CR9
J. Lin (48_CR8) 1976; 21
W. Bao (48_CR2) 2005; 21
C. M. Fonseca (48_CR4) 1993
X. Lin (48_CR3) 1992; 3
48_CR11
K. Deb (48_CR12) 2002; 6
References_xml – ident: CR9
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  end-page: 197
  ident: CR12
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II [J]
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 16
  start-page: 7
  issue: 4
  year: 1998
  end-page: 11
  ident: CR1
  article-title: Study on real optimal operation model for the reservoir of water resources multi-objective comprehensive utilization [J]
  publication-title: International Journal Hydroelectric Energy
– volume: 21
  start-page: 641
  issue: 5
  year: 1976
  end-page: 650
  ident: CR8
  article-title: Multi-objective problems: Pareto-optimal solutions by method of proper equality constraints [J]
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1976.1101338
– ident: CR7
– volume: 2
  start-page: 3
  issue: 1
  year: 2004
  end-page: 37
  ident: CR10
  article-title: A tutorial on evolutionary multi-objective optimization [J]
  publication-title: Metaheuristics for Multiobjective Optimization
– volume: 21
  start-page: 421
  issue: 4
  year: 2005
  end-page: 424
  ident: CR2
  article-title: Research on reservoir optimal operation based on multi-purpose dynamic model [J]
  publication-title: Journal of Xi’an University of Technology
– volume: 3
  start-page: 112
  issue: 2
  year: 1992
  end-page: 119
  ident: CR3
  article-title: Multi-objective optimal operation for comprehensive utilization of reservoirs [J]
  publication-title: Advances in Water Science
– start-page: 141
  year: 1993
  end-page: 153
  ident: CR4
  article-title: Genetic algorithms for multi-objective optimization: Formulation, discussion and generalization [C]
  publication-title: Proceedings of the Fifth International Conference on Genetic Algorithms
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  end-page: 248
  ident: CR5
  article-title: Multi-objective optimization using nondominated sorting in genetic algorithms [J]
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 1993
  ident: CR6
  publication-title: Multi-objective optimization using the niched Pareto genetic algorithm [R]
– ident: CR11
– volume: 16
  start-page: 7
  issue: 4
  year: 1998
  ident: 48_CR1
  publication-title: International Journal Hydroelectric Energy
– volume: 21
  start-page: 421
  issue: 4
  year: 2005
  ident: 48_CR2
  publication-title: Journal of Xi’an University of Technology
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 48_CR5
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1162/evco.1994.2.3.221
– start-page: 141
  volume-title: Proceedings of the Fifth International Conference on Genetic Algorithms
  year: 1993
  ident: 48_CR4
– volume: 2
  start-page: 3
  issue: 1
  year: 2004
  ident: 48_CR10
  publication-title: Metaheuristics for Multiobjective Optimization
  doi: 10.1007/978-3-642-17144-4_1
– volume: 3
  start-page: 112
  issue: 2
  year: 1992
  ident: 48_CR3
  publication-title: Advances in Water Science
– ident: 48_CR11
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 48_CR12
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– ident: 48_CR7
  doi: 10.1109/ICNN.1995.488968
– volume: 21
  start-page: 641
  issue: 5
  year: 1976
  ident: 48_CR8
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1976.1101338
– ident: 48_CR9
– volume-title: Multi-objective optimization using the niched Pareto genetic algorithm [R]
  year: 1993
  ident: 48_CR6
SSID ssj0049071
Score 1.7284242
Snippet A multi-objective optimal operation model of water-sedimentation-power in reservoir is established with power-generation, sedimentation and water storage taken...
TV6; A multi-objective optimal operation model of water-sedimentation-power in reservoir is established with power-generation, sedimentation and water storage...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 282
SubjectTerms Engineering
Humanities and Social Sciences
Mechanical Engineering
multidisciplinary
Science
多目标最优化
泥沙尺寸
泥沙沉淀
Title Multi-Objective Optimization of Water-Sedimentation-Power in Reservoir Based on Pareto-Optimal Solution
URI http://lib.cqvip.com/qk/85460X/20084/28017389.html
https://link.springer.com/article/10.1007/s12209-008-0048-0
https://www.proquest.com/docview/35404665
https://d.wanfangdata.com.cn/periodical/tianjdxxb-e200804006
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5Vy6U9tAWKuqUPH6hEi4yCk3XiI6qgCERPINGTFcfxFigObHYp6q_vTGLv0qpC4pKTM36Nvxl7XgAbiTIyU4nilRWWZzKzeOYsflAc2sLa0imKHT7-Jg9Os8Oz0VmI426jt3s0SXZIvQh2E4Ie8slcj2zH8Z6-NNopVDGApd2v34_2IgBj1_09iy7LmSpENGb-jwilVPjR-PENdvi3aFrom3MTaRfY413px_dk0P4LOImj711PLrdnU7Nd_f4nseMjp_cSngedlO32TLQMT2q_As_uZSpcgeWAAS3bDImqP63CuIve5Y256FGTNYg_VyGwkzWO_UJFdsJblI9XIcTJ82sqy8bOPaO4p8ltcz5hJEktw1_IG37a8I4MDigei1dwur938uWAh8INvBKqkNxkeZmWNs-kHKWypBqgo9whOqSFocdL45LKoe5gc6OsIlOrSY2oHOoetpaJS9dg4BtfvwaWGYWYU9ZKCiRgdkqXWKraK1GxratUDGF9vn8o-KtLSmelBcrdHFWxISRxR3UVcp5T6Y2fepGtmZZdd7U4cdl1MoTP81-u-4QfDzX-ENlE47EkW0vp62bWanpOo-kPYStutw7o0D5E72NgsEVjAvoLe3dndE2-KgS68s2jqK7D097LhdwW38JgOpnV71CVmpr34ej8Ae3PE-Y
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6h7QE4AC0gtgXqA0g85Co4WWd9rFDLQh-nrVROVhzH2wd12s0uVPx6ZhJ7tyBUqZecnPFr_M3Y8wJ4kygjM5UoXlpheSYzi2fO4gfFoR1aWzhFscMHh3J0lH07HhyHOO4mertHk2SL1MtgNyHoIZ_M9ch2HO_pKxlewZMerGx_-b63EwEYu-7uWXRZztRQRGPm_4hQSoWT2k-usMO_RdNS31yYSNvAHu8KP7khg3YfwziOvnM9Od-az8xW-fufxI53nN4TeBR0UrbdMdEq3Kv8Gjy8kalwDVYDBjTsXUhU_f4pTNroXV6bsw41WY34cxECO1nt2C9UZKe8Qfl4EUKcPL-ksmzs1DOKe5r-rE-njCSpZfgLecPPat6SwQHFY_EMjnZ3xp9HPBRu4KVQQ8lNlhdpYfNMykEqC6oBOsgdokM6NPR4aVxSOtQdbG6UVWRqNakRpUPdw1Yycelz6PnaVy-AZUYh5hSVkgIJmE-FSyxV7ZWo2FZlKvqwsdg_FPzlOaWz0gLlbo6qWB-SuKO6DDnPqfTGD73M1kzLrttanLjsOunDh8Uvl13Cj9sab0Y20XgsydZS-KqeN5qe02j6ffgYt1sHdGhuo_c2MNiyMQH9mb2-NroiXxUCXbl-J6qbcH80PtjX-18P9zbgQefxQi6ML6E3m86rV6hWzczrcIz-AND9FsM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6hTkLwAGyAVgbMDyDxQ96C4zr14wQrg8HEA5PGk4njuGxjTmlSmPjruWucdiA0CfGSp_hix_bdZ9_ddwCPEm2V1InmhROOSyUd7jmHDzSHbuhc7jXlDr8_UHuH8u3R4CjWOa27aPfOJdnmNBBLU2i2J85vLxPfhKBLfXLd4xLkeGZfkQli_x6s7Lz-tL_bKWPsRnvmooOz1EPROTb_JoToFb5UYfwNP_67mVpiz4W7dJ7kE3wexhfs0egmfO5G0oahnG7NGrtV_PyD5PE_hnoLbkSsynbaxbUKV8qwBtcvMBiuwWrUDTV7Egmsn96G8Tyrl1f2pNWmrEK9dBYTPlnl2Q8EuFNeo908i6lPgU-oXBs7Dozyoabfq-MpIwvrGDahKPmm4nMx2KFuu9yBw9Hux5d7PBZ04IXQQ8WtzPI0d5lUapCqnGqDDjKPWiMdWrrUtD4pPGIKl1ntNLlgbWpF4RGTuFIlPr0LvVCFch2YtBp1UV5qJVCAfZH7xFE1X4WAtyxS0YeNxVwiIChOiebKCLTHGUK0PiTd7JoicqFTSY6vZsniTL_dzGt04m83SR-eLZpMWiKQy17e7JaMwe1KPpg8lNWsNnTNRsPvw_Nu6k3UGvVl8h7HxbZ8mQzAiTs_t6akGBZSxureP0ndhKsfXo3MuzcH-xtwrQ2EocjG-9BrprPyAaKtxj6MO-oXwysfpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Optimization+of+Water-Sedimentation-Power+in+Reservoir+Based+on+Pareto-Optimal+Solution&rft.jtitle=Transactions+of+Tianjin+University&rft.au=%E6%9D%8E%E8%BE%89+%E7%BB%83%E7%BB%A7%E5%BB%BA&rft.date=2008-08-01&rft.issn=1006-4982&rft.eissn=1995-8196&rft.volume=14&rft.issue=4&rft.spage=282&rft.epage=288&rft_id=info:doi/10.1007%2Fs12209-008-0048-0&rft.externalDocID=28017389
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85460X%2F85460X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftianjdxxb-e%2Ftianjdxxb-e.jpg