On the Matrix Method for Solving Heat Conduction Problems in a Multilayer Medium in the Presence of Phase Transitions

This paper is devoted to the applicability of the matrix method for solving the heat equation for multilayer media in the case where a phase transition is possible in some layer. We consider only stationary processes in the absence of internal heat sources. We propose a general method for layer syst...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 267; no. 6; pp. 698 - 705
Main Authors Gladyshev, Yu. A., Kalmanovich, V. V.
Format Journal Article
LanguageEnglish
Published New York Springer US 04.11.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is devoted to the applicability of the matrix method for solving the heat equation for multilayer media in the case where a phase transition is possible in some layer. We consider only stationary processes in the absence of internal heat sources. We propose a general method for layer systems with translation, axial, or central symmetry based on the technique of generalized Bers powers. Using this method, we perform calculations for one substance, when after a phase transition, the system becomes a two-layer system. We consider the dependence of the coordinate of the phase-transition point on the external temperature and compare results obtained for media with types of symmetry indicated above. A temperature field is constructed for multilayer media with various types of symmetry when a phase transition has occurred in a certain layer.
AbstractList This paper is devoted to the applicability of the matrix method for solving the heat equation for multilayer media in the case where a phase transition is possible in some layer. We consider only stationary processes in the absence of internal heat sources. We propose a general method for layer systems with translation, axial, or central symmetry based on the technique of generalized Bers powers. Using this method, we perform calculations for one substance, when after a phase transition, the system becomes a two-layer system. We consider the dependence of the coordinate of the phase-transition point on the external temperature and compare results obtained for media with types of symmetry indicated above. A temperature field is constructed for multilayer media with various types of symmetry when a phase transition has occurred in a certain layer.
This paper is devoted to the applicability of the matrix method for solving the heat equation for multilayer media in the case where a phase transition is possible in some layer. We consider only stationary processes in the absence of internal heat sources. We propose a general method for layer systems with translation, axial, or central symmetry based on the technique of generalized Bers powers. Using this method, we perform calculations for one substance, when after a phase transition, the system becomes a two-layer system. We consider the dependence of the coordinate of the phase-transition point on the external temperature and compare results obtained for media with types of symmetry indicated above. A temperature field is constructed for multilayer media with various types of symmetry when a phase transition has occurred in a certain layer. Keywords and phrases: mathematical model, matrix method, heat equation, multilayer medium, phase transition. AMS Subject Classification: 34B05, 34B60, 80A20
Audience Academic
Author Gladyshev, Yu. A.
Kalmanovich, V. V.
Author_xml – sequence: 1
  givenname: Yu. A.
  surname: Gladyshev
  fullname: Gladyshev, Yu. A.
  email: v572264@yandex.ru
  organization: Tsiolkovsky Kaluga State University
– sequence: 2
  givenname: V. V.
  surname: Kalmanovich
  fullname: Kalmanovich, V. V.
  organization: Tsiolkovsky Kaluga State University
BookMark eNp9kk1r3DAQhk1IIF_9AzkJcurBqSzZkn0MS9sEsmRp0rOYlUdeBVtKJbkk_77abiEsLEWHEcPzzID0nhfHzjssiquK3lSUyi-xol3TlpSxkopK8FIcFWdVI3nZyq45zncqWcm5rE-L8xhfaJZEy8-K-dGRtEGyhBTsG1li2vieGB_Ikx9_WzeQO4REFt71s07WO7IKfj3iFIl1BMhyHpMd4R1Ddns7T9v2duAqYESnkXhDVhuISJ4DuGi3M-JlcWJgjPjpX70ofn77-ry4Kx8ev98vbh9KzbpWlILRmglcA8fOSKN709dVA2vBe91ywWTHOuhQriX2YCoGsoIamG5l03POGn5RXO_mvgb_a8aY1Iufg8srFZNcSl7n8kENMKKyzvgUQE82anUrWctq0XZdpsoD1IAOA4z5N4zN7T3-5gCfT4-T1QeFz3tCZhK-pQHmGNX90499lu1YHXyMAY16DXaC8K4qqraJULtEqJwI9TcRSmSJ76SYYTdg-HiN_1h_AFdtuF4
Cites_doi 10.1090/S0002-9947-1944-0010910-5
10.31114/2078-7707-2018-3-194-201
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2022 Springer
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2022 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-022-06163-6
DatabaseName CrossRef
Science in Context
DatabaseTitle CrossRef
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 705
ExternalDocumentID A728246899
10_1007_s10958_022_06163_6
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c2986-620426eba3e9f7fcdfd415ab63dc83627929a9e7b7edaf12a71a4a2c875d33253
IEDL.DBID U2A
ISSN 1072-3374
IngestDate Fri Jul 25 11:02:55 EDT 2025
Tue Jun 17 22:10:07 EDT 2025
Fri Jun 13 00:00:03 EDT 2025
Tue Jun 10 21:04:21 EDT 2025
Fri Jun 27 05:26:36 EDT 2025
Tue Jul 01 01:42:22 EDT 2025
Fri Feb 21 02:44:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 34B05
heat equation
mathematical model
matrix method
multilayer medium
phase transition
34B60
80A20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2986-620426eba3e9f7fcdfd415ab63dc83627929a9e7b7edaf12a71a4a2c875d33253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10958-022-06163-6.pdf
PQID 2737734273
PQPubID 2043545
PageCount 8
ParticipantIDs proquest_journals_2737734273
gale_infotracmisc_A728246899
gale_infotracgeneralonefile_A728246899
gale_infotracacademiconefile_A728246899
gale_incontextgauss_ISR_A728246899
crossref_primary_10_1007_s10958_022_06163_6
springer_journals_10_1007_s10958_022_06163_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221104
PublicationDateYYYYMMDD 2022-11-04
PublicationDate_xml – month: 11
  year: 2022
  text: 20221104
  day: 04
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Carslaw, Jaeger (CR2) 1947
CR4
CR3
CR6
CR8
CR7
Bers, Gelbart (CR1) 1944; 56
CR9
Gladyshev, Kalmanovich, Stepovich (CR5) 2017; 10
6163_CR7
6163_CR6
6163_CR9
6163_CR8
HS Carslaw (6163_CR2) 1947
6163_CR3
YA Gladyshev (6163_CR5) 2017; 10
L Bers (6163_CR1) 1944; 56
6163_CR4
References_xml – year: 1947
  ident: CR2
– ident: CR9
– volume: 10
  start-page: 105
  year: 2017
  end-page: 110
  ident: CR5
  article-title: On application of the Bers method to modeling of heat and mass transfer processes induces by electrons in a flat multilayer medium
  publication-title: Poverkhn. Rentgen. Sinkhrotron. Neitron. Issled.
– ident: CR6
– volume: 56
  start-page: 67
  year: 1944
  end-page: 93
  ident: CR1
  article-title: On a class of functions defined by partial differential equations
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1944-0010910-5
– ident: CR7
– ident: CR8
– ident: CR3
– ident: CR4
– ident: 6163_CR3
– volume: 56
  start-page: 67
  year: 1944
  ident: 6163_CR1
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1944-0010910-5
– volume: 10
  start-page: 105
  year: 2017
  ident: 6163_CR5
  publication-title: Poverkhn. Rentgen. Sinkhrotron. Neitron. Issled.
– ident: 6163_CR6
  doi: 10.31114/2078-7707-2018-3-194-201
– volume-title: Conduction of Heat in Solids
  year: 1947
  ident: 6163_CR2
– ident: 6163_CR4
– ident: 6163_CR9
– ident: 6163_CR7
– ident: 6163_CR8
SSID ssj0007683
Score 2.2614954
Snippet This paper is devoted to the applicability of the matrix method for solving the heat equation for multilayer media in the case where a phase transition is...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 698
SubjectTerms Conduction heating
Conductive heat transfer
Heat sources
Mathematics
Mathematics and Statistics
Matrix methods
Multilayers
Phase transitions
Stationary processes
Symmetry
Temperature distribution
Thermodynamics
Transition points
Title On the Matrix Method for Solving Heat Conduction Problems in a Multilayer Medium in the Presence of Phase Transitions
URI https://link.springer.com/article/10.1007/s10958-022-06163-6
https://www.proquest.com/docview/2737734273
Volume 267
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge2EPCBhohTGdEGIPw9JqJ3bz2I2VAupWbVQaT5ad2ANpS6allfjzuXOSjcB44ClKfLJi3_k-7LufGXtLGE7pvseV5q3mSSY0z7xX3KP1yoMSehhxumfHarpIPp-n521RWN1lu3dHklFT_1bslqUjTtnnaIOU5OohW08xdqdEroUY3-pfdKCbtHotuJQ6aUtl7u-jZ47-VMp_nY5GozN5wh633iKMG_Y-ZQ98-YxtzG6hVutNtjopAV9hRlj7P2EWb4QGdEXhrLqk3QKYorqFw6osGqBYmDd3yNTwowQLsQL30qLnDXRos7qiz9ThPBYm5R6qAPPvaOwg2rUmxes5W0yOvh5OeXuXAs9FNlKcYOeF8s5KnwUd8iIUyCTrlCzyERoxjW6Szbx22hc2DIXVQ5tYkWM4U0gpUvmCrZVV6bcYFElEDXSZky4R-6nTTvkwHAVJ2PwhHbC9bkrNdQOZYe7AkYkBBhlgIgOMGrA3NOuGsChKSna5sKu6Np_OTs1YYzyYKIwIB2y3JQrV8sbmtq0dwB8i-Koe5bse5UUD3n0f4XaPEFdV3m_upMC0q7o26OppjYPXcsDed5Jx1_zvQb78P_JX7JEgGaXd62SbrS1vVv41-j5Lt8PWxwcfDib0_Pjty9FOFP1fI-_7Pw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgHIADKl_qQltGCMEBLHXtxE6Oq4pqC01Z0a7Um2UndkEqCWp2JX4-M07SEloOHBOPrMQznnm2Z54Ze0McTumex5nmreZJLjTPvVfcY_QqgxJ6Gnm6i2M1XyafztKzviisHbLdhyPJ6Kn_KHbL04xT9jnGICW5usvuIRjIyJaXYnblfxFAd2n1WnApddKXytzexygc_e2Ub5yOxqBzsMke9WgRZp16H7M7vn7CHhZXVKvtU7b-UgM-QkFc-7-giDdCA0JROGkuaLcA5uhuYb-pq44oFhbdHTItfK_BQqzAvbCIvIEObdY_6DV1uIiFSaWHJsDiGwY7iHGtS_F6xpYHH0_357y_S4GXIs8UJ9p5obyz0udBh7IKFSrJOiWrMsMgphEm2dxrp31lw1RYPbWJFSUuZyopRSqfs426qf0WgyqJrIEud9IlYi912ikfplmQxM0f0gl7Pwyp-dlRZphrcmRSgEEFmKgAoybsNY26IS6KmpJdzu26bc3hyVcz07geTBSuCCfsXS8UmtWlLW1fO4AfRPRVI8m3I8nzjrz7NsHtkSDOqnLcPFiB6Wd1axDqaY0_r-WEfRgs47r53z_54v_EX7H789PiyBwdHn9-yR4IslfayU622cbqcu13EAet3G40-99mTfss
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgSAgeED9FYYwTQvAA1lbbsZvHalvVAR0Vo9LeLDuxB9JIpqWV-PO5c9JtYeOBx9gnK_adfWf7vs-MvSUOp2wn4EwLznCVC8PzEDQP6L2KqIUZJp7u2aGeLtSn4-z4Coo_ZbuvryRbTAOxNFXL7bMybl8BvuXZiFMmOvojLbm-ze4oQgOjRS_E-GItxmC6TbE3gktpVAebubmNnmv6e4G-dlOaHNDkIXvQRY4wblX9iN0K1WN2f3ZBu9o8YauvFeAnzIh3_zfM0uvQgGEpHNWndHIAU1x6YbeuypY0FubtezIN_KzAQULjnjqMwoEucFa_qJganCeQUhGgjjD_gY4Pko9r072essVk__vulHfvKvBC5CPNiYJe6OCdDHk0sShjiQpzXsuyGKFDMxgyuTwYb0Lp4lA4M3TKiQK3NqWUIpPP2EZVV-E5g1IlBkGfe-mV2Mm88TrE4ShK4umP2YB9WA-pPWvpM-wlUTIpwKICbFKA1QP2hkbdEi9FRYkvJ27VNPbg6JsdG9wbKo27wwF73wnFennuCtfhCPCHiMqqJ_muJ3nSEnnfJLjZE8QZVvSr11ZguxneWAz7jMHOGzlgH9eWcVn9706--D_x1-zufG9ivxwcfn7J7gkyVzrUVptsY3m-Cq8wJFr6rWT1fwDC-v9f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ON+THE+MATRIX+METHOD+FOR+SOLVING+HEAT+CONDUCTION+PROBLEMS+IN+A+MULTILAYER+MEDIUM+IN+THE+PRESENCE+OF+PHASE+TRANSITIONS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Gladyshev%2C+Yu.A&rft.au=Kalmanovich%2C+V.V&rft.date=2022-11-04&rft.pub=Springer&rft.issn=1072-3374&rft.volume=267&rft.issue=6&rft.spage=698&rft_id=info:doi/10.1007%2Fs10958-022-06163-6&rft.externalDBID=ISR&rft.externalDocID=A728246899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon