On the Matrix Method for Solving Heat Conduction Problems in a Multilayer Medium in the Presence of Phase Transitions
This paper is devoted to the applicability of the matrix method for solving the heat equation for multilayer media in the case where a phase transition is possible in some layer. We consider only stationary processes in the absence of internal heat sources. We propose a general method for layer syst...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 267; no. 6; pp. 698 - 705 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
04.11.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper is devoted to the applicability of the matrix method for solving the heat equation for multilayer media in the case where a phase transition is possible in some layer. We consider only stationary processes in the absence of internal heat sources. We propose a general method for layer systems with translation, axial, or central symmetry based on the technique of generalized Bers powers. Using this method, we perform calculations for one substance, when after a phase transition, the system becomes a two-layer system. We consider the dependence of the coordinate of the phase-transition point on the external temperature and compare results obtained for media with types of symmetry indicated above. A temperature field is constructed for multilayer media with various types of symmetry when a phase transition has occurred in a certain layer. |
---|---|
AbstractList | This paper is devoted to the applicability of the matrix method for solving the heat equation for multilayer media in the case where a phase transition is possible in some layer. We consider only stationary processes in the absence of internal heat sources. We propose a general method for layer systems with translation, axial, or central symmetry based on the technique of generalized Bers powers. Using this method, we perform calculations for one substance, when after a phase transition, the system becomes a two-layer system. We consider the dependence of the coordinate of the phase-transition point on the external temperature and compare results obtained for media with types of symmetry indicated above. A temperature field is constructed for multilayer media with various types of symmetry when a phase transition has occurred in a certain layer. This paper is devoted to the applicability of the matrix method for solving the heat equation for multilayer media in the case where a phase transition is possible in some layer. We consider only stationary processes in the absence of internal heat sources. We propose a general method for layer systems with translation, axial, or central symmetry based on the technique of generalized Bers powers. Using this method, we perform calculations for one substance, when after a phase transition, the system becomes a two-layer system. We consider the dependence of the coordinate of the phase-transition point on the external temperature and compare results obtained for media with types of symmetry indicated above. A temperature field is constructed for multilayer media with various types of symmetry when a phase transition has occurred in a certain layer. Keywords and phrases: mathematical model, matrix method, heat equation, multilayer medium, phase transition. AMS Subject Classification: 34B05, 34B60, 80A20 |
Audience | Academic |
Author | Gladyshev, Yu. A. Kalmanovich, V. V. |
Author_xml | – sequence: 1 givenname: Yu. A. surname: Gladyshev fullname: Gladyshev, Yu. A. email: v572264@yandex.ru organization: Tsiolkovsky Kaluga State University – sequence: 2 givenname: V. V. surname: Kalmanovich fullname: Kalmanovich, V. V. organization: Tsiolkovsky Kaluga State University |
BookMark | eNp9kk1r3DAQhk1IIF_9AzkJcurBqSzZkn0MS9sEsmRp0rOYlUdeBVtKJbkk_77abiEsLEWHEcPzzID0nhfHzjssiquK3lSUyi-xol3TlpSxkopK8FIcFWdVI3nZyq45zncqWcm5rE-L8xhfaJZEy8-K-dGRtEGyhBTsG1li2vieGB_Ikx9_WzeQO4REFt71s07WO7IKfj3iFIl1BMhyHpMd4R1Ddns7T9v2duAqYESnkXhDVhuISJ4DuGi3M-JlcWJgjPjpX70ofn77-ry4Kx8ev98vbh9KzbpWlILRmglcA8fOSKN709dVA2vBe91ywWTHOuhQriX2YCoGsoIamG5l03POGn5RXO_mvgb_a8aY1Iufg8srFZNcSl7n8kENMKKyzvgUQE82anUrWctq0XZdpsoD1IAOA4z5N4zN7T3-5gCfT4-T1QeFz3tCZhK-pQHmGNX90499lu1YHXyMAY16DXaC8K4qqraJULtEqJwI9TcRSmSJ76SYYTdg-HiN_1h_AFdtuF4 |
Cites_doi | 10.1090/S0002-9947-1944-0010910-5 10.31114/2078-7707-2018-3-194-201 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2022 Springer |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2022 Springer |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10958-022-06163-6 |
DatabaseName | CrossRef Science in Context |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 705 |
ExternalDocumentID | A728246899 10_1007_s10958_022_06163_6 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c2986-620426eba3e9f7fcdfd415ab63dc83627929a9e7b7edaf12a71a4a2c875d33253 |
IEDL.DBID | U2A |
ISSN | 1072-3374 |
IngestDate | Fri Jul 25 11:02:55 EDT 2025 Tue Jun 17 22:10:07 EDT 2025 Fri Jun 13 00:00:03 EDT 2025 Tue Jun 10 21:04:21 EDT 2025 Fri Jun 27 05:26:36 EDT 2025 Tue Jul 01 01:42:22 EDT 2025 Fri Feb 21 02:44:30 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | 34B05 heat equation mathematical model matrix method multilayer medium phase transition 34B60 80A20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2986-620426eba3e9f7fcdfd415ab63dc83627929a9e7b7edaf12a71a4a2c875d33253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10958-022-06163-6.pdf |
PQID | 2737734273 |
PQPubID | 2043545 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2737734273 gale_infotracmisc_A728246899 gale_infotracgeneralonefile_A728246899 gale_infotracacademiconefile_A728246899 gale_incontextgauss_ISR_A728246899 crossref_primary_10_1007_s10958_022_06163_6 springer_journals_10_1007_s10958_022_06163_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221104 |
PublicationDateYYYYMMDD | 2022-11-04 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221104 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2022 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Carslaw, Jaeger (CR2) 1947 CR4 CR3 CR6 CR8 CR7 Bers, Gelbart (CR1) 1944; 56 CR9 Gladyshev, Kalmanovich, Stepovich (CR5) 2017; 10 6163_CR7 6163_CR6 6163_CR9 6163_CR8 HS Carslaw (6163_CR2) 1947 6163_CR3 YA Gladyshev (6163_CR5) 2017; 10 L Bers (6163_CR1) 1944; 56 6163_CR4 |
References_xml | – year: 1947 ident: CR2 – ident: CR9 – volume: 10 start-page: 105 year: 2017 end-page: 110 ident: CR5 article-title: On application of the Bers method to modeling of heat and mass transfer processes induces by electrons in a flat multilayer medium publication-title: Poverkhn. Rentgen. Sinkhrotron. Neitron. Issled. – ident: CR6 – volume: 56 start-page: 67 year: 1944 end-page: 93 ident: CR1 article-title: On a class of functions defined by partial differential equations publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1944-0010910-5 – ident: CR7 – ident: CR8 – ident: CR3 – ident: CR4 – ident: 6163_CR3 – volume: 56 start-page: 67 year: 1944 ident: 6163_CR1 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1944-0010910-5 – volume: 10 start-page: 105 year: 2017 ident: 6163_CR5 publication-title: Poverkhn. Rentgen. Sinkhrotron. Neitron. Issled. – ident: 6163_CR6 doi: 10.31114/2078-7707-2018-3-194-201 – volume-title: Conduction of Heat in Solids year: 1947 ident: 6163_CR2 – ident: 6163_CR4 – ident: 6163_CR9 – ident: 6163_CR7 – ident: 6163_CR8 |
SSID | ssj0007683 |
Score | 2.2614954 |
Snippet | This paper is devoted to the applicability of the matrix method for solving the heat equation for multilayer media in the case where a phase transition is... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 698 |
SubjectTerms | Conduction heating Conductive heat transfer Heat sources Mathematics Mathematics and Statistics Matrix methods Multilayers Phase transitions Stationary processes Symmetry Temperature distribution Thermodynamics Transition points |
Title | On the Matrix Method for Solving Heat Conduction Problems in a Multilayer Medium in the Presence of Phase Transitions |
URI | https://link.springer.com/article/10.1007/s10958-022-06163-6 https://www.proquest.com/docview/2737734273 |
Volume | 267 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge2EPCBhohTGdEGIPw9JqJ3bz2I2VAupWbVQaT5ad2ANpS6allfjzuXOSjcB44ClKfLJi3_k-7LufGXtLGE7pvseV5q3mSSY0z7xX3KP1yoMSehhxumfHarpIPp-n521RWN1lu3dHklFT_1bslqUjTtnnaIOU5OohW08xdqdEroUY3-pfdKCbtHotuJQ6aUtl7u-jZ47-VMp_nY5GozN5wh633iKMG_Y-ZQ98-YxtzG6hVutNtjopAV9hRlj7P2EWb4QGdEXhrLqk3QKYorqFw6osGqBYmDd3yNTwowQLsQL30qLnDXRos7qiz9ThPBYm5R6qAPPvaOwg2rUmxes5W0yOvh5OeXuXAs9FNlKcYOeF8s5KnwUd8iIUyCTrlCzyERoxjW6Szbx22hc2DIXVQ5tYkWM4U0gpUvmCrZVV6bcYFElEDXSZky4R-6nTTvkwHAVJ2PwhHbC9bkrNdQOZYe7AkYkBBhlgIgOMGrA3NOuGsChKSna5sKu6Np_OTs1YYzyYKIwIB2y3JQrV8sbmtq0dwB8i-Koe5bse5UUD3n0f4XaPEFdV3m_upMC0q7o26OppjYPXcsDed5Jx1_zvQb78P_JX7JEgGaXd62SbrS1vVv41-j5Lt8PWxwcfDib0_Pjty9FOFP1fI-_7Pw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgHIADKl_qQltGCMEBLHXtxE6Oq4pqC01Z0a7Um2UndkEqCWp2JX4-M07SEloOHBOPrMQznnm2Z54Ze0McTumex5nmreZJLjTPvVfcY_QqgxJ6Gnm6i2M1XyafztKzviisHbLdhyPJ6Kn_KHbL04xT9jnGICW5usvuIRjIyJaXYnblfxFAd2n1WnApddKXytzexygc_e2Ub5yOxqBzsMke9WgRZp16H7M7vn7CHhZXVKvtU7b-UgM-QkFc-7-giDdCA0JROGkuaLcA5uhuYb-pq44oFhbdHTItfK_BQqzAvbCIvIEObdY_6DV1uIiFSaWHJsDiGwY7iHGtS_F6xpYHH0_357y_S4GXIs8UJ9p5obyz0udBh7IKFSrJOiWrMsMgphEm2dxrp31lw1RYPbWJFSUuZyopRSqfs426qf0WgyqJrIEud9IlYi912ikfplmQxM0f0gl7Pwyp-dlRZphrcmRSgEEFmKgAoybsNY26IS6KmpJdzu26bc3hyVcz07geTBSuCCfsXS8UmtWlLW1fO4AfRPRVI8m3I8nzjrz7NsHtkSDOqnLcPFiB6Wd1axDqaY0_r-WEfRgs47r53z_54v_EX7H789PiyBwdHn9-yR4IslfayU622cbqcu13EAet3G40-99mTfss |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgSAgeED9FYYwTQvAA1lbbsZvHalvVAR0Vo9LeLDuxB9JIpqWV-PO5c9JtYeOBx9gnK_adfWf7vs-MvSUOp2wn4EwLznCVC8PzEDQP6L2KqIUZJp7u2aGeLtSn4-z4Coo_ZbuvryRbTAOxNFXL7bMybl8BvuXZiFMmOvojLbm-ze4oQgOjRS_E-GItxmC6TbE3gktpVAebubmNnmv6e4G-dlOaHNDkIXvQRY4wblX9iN0K1WN2f3ZBu9o8YauvFeAnzIh3_zfM0uvQgGEpHNWndHIAU1x6YbeuypY0FubtezIN_KzAQULjnjqMwoEucFa_qJganCeQUhGgjjD_gY4Pko9r072essVk__vulHfvKvBC5CPNiYJe6OCdDHk0sShjiQpzXsuyGKFDMxgyuTwYb0Lp4lA4M3TKiQK3NqWUIpPP2EZVV-E5g1IlBkGfe-mV2Mm88TrE4ShK4umP2YB9WA-pPWvpM-wlUTIpwKICbFKA1QP2hkbdEi9FRYkvJ27VNPbg6JsdG9wbKo27wwF73wnFennuCtfhCPCHiMqqJ_muJ3nSEnnfJLjZE8QZVvSr11ZguxneWAz7jMHOGzlgH9eWcVn9706--D_x1-zufG9ivxwcfn7J7gkyVzrUVptsY3m-Cq8wJFr6rWT1fwDC-v9f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ON+THE+MATRIX+METHOD+FOR+SOLVING+HEAT+CONDUCTION+PROBLEMS+IN+A+MULTILAYER+MEDIUM+IN+THE+PRESENCE+OF+PHASE+TRANSITIONS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Gladyshev%2C+Yu.A&rft.au=Kalmanovich%2C+V.V&rft.date=2022-11-04&rft.pub=Springer&rft.issn=1072-3374&rft.volume=267&rft.issue=6&rft.spage=698&rft_id=info:doi/10.1007%2Fs10958-022-06163-6&rft.externalDBID=ISR&rft.externalDocID=A728246899 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |