Mitochondrial signal transduction
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the...
Saved in:
Published in | Cell metabolism Vol. 34; no. 11; pp. 1620 - 1653 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health. |
---|---|
AbstractList | The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health. The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health. |
Author | Shirihai, Orian S. Picard, Martin |
Author_xml | – sequence: 1 givenname: Martin surname: Picard fullname: Picard, Martin – sequence: 2 givenname: Orian S. surname: Shirihai fullname: Shirihai, Orian S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36323233$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ULtOxDAQtNAh7gE_QIGgo0nwM45LdOIlHaK53to4DviU2EecFPw9ju6uoUBbzGo0s9qZJZr54C1C1wTnBJPiYZebzg45xZQmIse4PEMLohjNJKd4lnYhcMYJI3O0jHGHMSuYYhdonpCmYQt09-6GYL6Cr3sH7W10nz7B0IOP9WgGF_wlOm-gjfbqiCu0fX7arl-zzcfL2_pxkxmqSpGpGmiFBZdQlCAlEKFqXnJKJTQNFKBsKQ2jFoPiVVWLilOhRCUVMU16ma3Q_eHsvg_fo42D7lw0tm3B2zBGTSUjkihFcJLeHKVj1dla73vXQf-jT6mSoDwITB9i7G2jjRtgCpOCuVYTrKcC9U5PBeqpwIlLBSYr_WM9Xf_H9AtmpnM4 |
CitedBy_id | crossref_primary_10_1016_j_bbadis_2025_167731 crossref_primary_10_2174_0115665240275594231229121030 crossref_primary_10_1016_j_addr_2023_115081 crossref_primary_10_1186_s12964_025_02125_y crossref_primary_10_1002_advs_202407757 crossref_primary_10_1016_j_cej_2024_149229 crossref_primary_10_1016_j_tox_2023_153678 crossref_primary_10_3390_antiox12091696 crossref_primary_10_1016_j_envpol_2024_125588 crossref_primary_10_3389_fceld_2024_1467272 crossref_primary_10_1016_j_addr_2024_115355 crossref_primary_10_1093_hmg_ddae031 crossref_primary_10_1186_s12862_024_02238_x crossref_primary_10_3389_fimmu_2024_1503087 crossref_primary_10_1186_s12929_023_00956_w crossref_primary_10_1016_j_bbadis_2024_167222 crossref_primary_10_1007_s10753_024_02156_6 crossref_primary_10_1371_journal_pone_0306849 crossref_primary_10_33549_physiolres_935269 crossref_primary_10_1016_j_neubiorev_2024_105837 crossref_primary_10_3748_wjg_v30_i23_2934 crossref_primary_10_1016_S0378_4274_23_00783_X crossref_primary_10_1186_s12964_024_01899_x crossref_primary_10_15252_embj_2023113743 crossref_primary_10_1016_j_tifs_2023_104319 crossref_primary_10_4102_jmh_v6i1_92 crossref_primary_10_1152_ajpheart_00170_2024 crossref_primary_10_3390_nu16203539 crossref_primary_10_1158_2326_6066_CIR_23_0359 crossref_primary_10_1089_ars_2023_0250 crossref_primary_10_1186_s40779_024_00556_1 crossref_primary_10_1016_j_arr_2024_102486 crossref_primary_10_3390_ijms25136841 crossref_primary_10_1038_s41586_023_06866_z crossref_primary_10_1038_s12276_024_01211_4 crossref_primary_10_1111_gbb_12840 crossref_primary_10_1097_PSY_0000000000001275 crossref_primary_10_1016_j_tips_2024_12_006 crossref_primary_10_1016_j_mito_2023_04_003 crossref_primary_10_3390_antiox13111343 crossref_primary_10_1021_acs_analchem_4c03799 crossref_primary_10_3390_ijms25137162 crossref_primary_10_3390_ijms24097837 crossref_primary_10_1016_j_jbc_2024_107728 crossref_primary_10_1016_j_neubiorev_2024_105971 crossref_primary_10_3803_EnM_2023_1813 crossref_primary_10_1007_s12272_023_01465_y crossref_primary_10_15252_embr_202255678 crossref_primary_10_1007_s12015_025_10847_2 crossref_primary_10_1016_j_cmet_2023_12_020 crossref_primary_10_1002_jcp_31441 crossref_primary_10_1007_s00421_024_05515_1 crossref_primary_10_1016_j_jbc_2024_108124 crossref_primary_10_1242_jeb_247432 crossref_primary_10_1016_j_phrs_2023_107054 crossref_primary_10_1016_j_devcel_2023_08_010 crossref_primary_10_1146_annurev_cellbio_111822_114733 crossref_primary_10_1186_s12964_024_01859_5 crossref_primary_10_1126_sciadv_adi4298 crossref_primary_10_3390_toxics12070491 crossref_primary_10_1016_j_tem_2023_11_004 crossref_primary_10_1128_msystems_00887_24 crossref_primary_10_1038_s41598_024_51427_7 crossref_primary_10_1186_s12929_023_00967_7 crossref_primary_10_1038_s41388_024_03058_5 crossref_primary_10_1038_s44318_024_00027_2 crossref_primary_10_1016_j_tips_2024_01_011 crossref_primary_10_1038_s41467_024_49159_3 crossref_primary_10_1016_j_jddst_2023_105286 crossref_primary_10_1038_s41556_024_01410_1 crossref_primary_10_1038_s41556_025_01625_w crossref_primary_10_1038_s41467_024_45751_9 crossref_primary_10_1038_s41392_024_02081_y crossref_primary_10_1186_s13062_025_00593_3 crossref_primary_10_1016_j_semcdb_2023_09_005 crossref_primary_10_1016_j_jlr_2024_100563 crossref_primary_10_1111_1348_0421_13206 crossref_primary_10_1016_j_cellsig_2023_110794 crossref_primary_10_1007_s00018_024_05529_0 crossref_primary_10_1186_s12967_024_05054_5 crossref_primary_10_1038_s41588_024_01838_z crossref_primary_10_1093_bfgp_elae026 crossref_primary_10_3389_fcell_2024_1381417 crossref_primary_10_1371_journal_pbio_3002895 crossref_primary_10_1016_j_bbrc_2023_08_032 crossref_primary_10_1111_apha_13950 crossref_primary_10_1042_BCJ20220378 crossref_primary_10_1016_j_molmet_2024_101983 crossref_primary_10_1038_s41598_024_75324_1 crossref_primary_10_1038_s41556_024_01527_3 crossref_primary_10_3389_fphar_2023_1138566 crossref_primary_10_3390_biomedicines12112539 crossref_primary_10_1016_j_celrep_2023_113147 crossref_primary_10_34133_research_0602 crossref_primary_10_1186_s10020_024_01027_y crossref_primary_10_1016_j_phrs_2024_107423 crossref_primary_10_1111_all_15672 crossref_primary_10_3390_life13040975 crossref_primary_10_1186_s12964_024_01843_z crossref_primary_10_1007_s00395_023_01002_4 crossref_primary_10_1016_j_redox_2025_103606 crossref_primary_10_1080_15476286_2023_2293343 crossref_primary_10_1016_j_dyepig_2025_112718 crossref_primary_10_1002_bies_202300246 crossref_primary_10_3389_fcell_2023_1328522 crossref_primary_10_1080_15548627_2023_2274205 crossref_primary_10_1016_j_jbc_2024_107403 crossref_primary_10_1038_s44318_024_00335_7 crossref_primary_10_1042_BCJ20230167 crossref_primary_10_1021_jacs_4c01335 crossref_primary_10_3390_ijms24031969 crossref_primary_10_1016_j_phrs_2024_107555 crossref_primary_10_1016_j_mitoco_2024_09_002 crossref_primary_10_1016_j_jpha_2024_101178 crossref_primary_10_1186_s12967_024_05805_4 crossref_primary_10_1016_j_envres_2024_119930 crossref_primary_10_1016_j_tem_2024_08_006 crossref_primary_10_1016_j_canlet_2025_217527 crossref_primary_10_21926_obm_neurobiol_2404260 crossref_primary_10_3390_v16030345 crossref_primary_10_1007_s12265_024_10514_w crossref_primary_10_3389_fendo_2023_1151691 crossref_primary_10_1038_s41420_024_02175_0 crossref_primary_10_1039_D3EM00188A crossref_primary_10_1111_febs_17119 crossref_primary_10_1016_j_psyneuen_2023_106683 crossref_primary_10_1016_j_phrs_2023_107018 crossref_primary_10_1002_acn3_52315 crossref_primary_10_1002_adfm_202402463 crossref_primary_10_1111_tpj_17215 crossref_primary_10_1111_jgs_19246 crossref_primary_10_1016_j_molmet_2023_101816 crossref_primary_10_3390_ijms241210300 crossref_primary_10_1016_j_bbadis_2023_166802 crossref_primary_10_1016_j_micres_2024_127995 crossref_primary_10_1039_D4AY00211C crossref_primary_10_3390_antiox14010108 crossref_primary_10_1088_1361_648X_ad65ad crossref_primary_10_1093_humrep_deae052 crossref_primary_10_3390_ijms25137420 crossref_primary_10_3788_AI_2024_20004 crossref_primary_10_7554_eLife_87340 crossref_primary_10_1007_s12033_024_01206_6 crossref_primary_10_1093_burnst_tkad051 crossref_primary_10_1096_fj_202402008R crossref_primary_10_1038_s41401_023_01225_0 crossref_primary_10_3390_biomedicines13030550 crossref_primary_10_3390_pharmaceutics16050651 crossref_primary_10_1111_boc_202400082 crossref_primary_10_1016_j_bioactmat_2025_02_040 crossref_primary_10_1016_j_arr_2024_102522 crossref_primary_10_1016_j_arr_2023_102145 crossref_primary_10_1016_j_tem_2024_10_009 crossref_primary_10_7717_peerj_17917 crossref_primary_10_1016_j_phrs_2024_107414 crossref_primary_10_4093_dmj_2023_0115 crossref_primary_10_1002_ctm2_1678 crossref_primary_10_1093_glycob_cwae014 crossref_primary_10_1002_slct_202401992 crossref_primary_10_1016_j_isci_2024_110710 crossref_primary_10_3390_biom14060704 crossref_primary_10_1002_smll_202311571 crossref_primary_10_31857_S0320972524020045NDAMJ crossref_primary_10_1134_S0006297924020044 crossref_primary_10_1038_s41467_025_55825_x crossref_primary_10_1016_j_jbc_2025_108252 crossref_primary_10_1096_fj_202301644RR crossref_primary_10_3389_fcell_2023_1252318 crossref_primary_10_3389_fcell_2023_1339385 crossref_primary_10_3390_ijms25126302 crossref_primary_10_5005_jp_journals_11002_0053 crossref_primary_10_1111_apha_14185 crossref_primary_10_1007_s12020_024_03967_1 crossref_primary_10_3390_biology12070988 crossref_primary_10_3390_ijms25115656 crossref_primary_10_1093_genetics_iyad087 crossref_primary_10_1111_acel_13770 crossref_primary_10_1016_j_mito_2024_101848 crossref_primary_10_1016_j_exger_2023_112158 crossref_primary_10_1111_febs_16992 crossref_primary_10_3389_fphys_2023_1236651 crossref_primary_10_3390_bios14010046 crossref_primary_10_1002_jimd_12766 crossref_primary_10_1002_smll_202400413 crossref_primary_10_1038_s41419_025_07504_4 crossref_primary_10_1038_s41576_025_00813_6 crossref_primary_10_1038_s41580_023_00613_y crossref_primary_10_1016_j_metabol_2023_155709 crossref_primary_10_1007_s44194_024_00032_x crossref_primary_10_1016_j_mito_2024_101950 crossref_primary_10_1098_rsob_230279 crossref_primary_10_1038_s43587_024_00716_x crossref_primary_10_1210_endrev_bnad004 crossref_primary_10_1038_s41392_024_01839_8 crossref_primary_10_3390_biomedicines11092514 crossref_primary_10_1016_j_jare_2024_01_036 crossref_primary_10_1038_s41398_023_02696_9 crossref_primary_10_3390_ph16111615 crossref_primary_10_1186_s12915_024_01953_7 crossref_primary_10_1002_1873_3468_14813 crossref_primary_10_1016_j_ab_2025_115840 crossref_primary_10_1016_j_tem_2024_05_005 crossref_primary_10_1186_s12967_024_05047_4 crossref_primary_10_3390_antiox12111983 crossref_primary_10_1038_s44303_024_00043_1 crossref_primary_10_1089_can_2023_0282 crossref_primary_10_1186_s40035_024_00435_8 crossref_primary_10_1038_s41420_023_01710_9 crossref_primary_10_1038_d41586_024_02528_w crossref_primary_10_1021_acsnano_4c02940 crossref_primary_10_1016_j_neuropharm_2024_110217 crossref_primary_10_3390_ijms242417198 crossref_primary_10_1016_j_arr_2024_102577 crossref_primary_10_1016_j_bbabio_2024_149532 crossref_primary_10_3390_jcdd10040154 crossref_primary_10_1002_mc_23812 crossref_primary_10_1016_j_bbcan_2024_189107 crossref_primary_10_1016_j_isci_2024_108883 crossref_primary_10_1186_s12967_024_05740_4 crossref_primary_10_37349_eemd_2023_00003 crossref_primary_10_1016_j_conb_2023_102720 crossref_primary_10_4236_cm_2024_153006 crossref_primary_10_1016_j_biomaterials_2024_122883 crossref_primary_10_3390_biology13030187 crossref_primary_10_1016_j_bbadis_2023_166795 crossref_primary_10_1094_MPMI_10_23_0168_R crossref_primary_10_3390_ijms25126299 crossref_primary_10_1038_s44324_024_00008_3 crossref_primary_10_3390_antiox12051072 crossref_primary_10_1177_0271678X251325805 crossref_primary_10_1186_s12967_023_04332_y crossref_primary_10_1007_s12015_024_10681_y crossref_primary_10_3168_jds_2024_25076 crossref_primary_10_1016_j_nbd_2025_106822 crossref_primary_10_1371_journal_pbio_3002723 crossref_primary_10_1038_s42003_024_06102_y crossref_primary_10_1016_j_canlet_2023_216590 crossref_primary_10_1098_rsbl_2023_0375 crossref_primary_10_1016_j_biomaterials_2024_122983 crossref_primary_10_1016_j_jbc_2023_105303 crossref_primary_10_1016_j_heliyon_2023_e13888 crossref_primary_10_7554_eLife_87340_3 crossref_primary_10_3389_fendo_2023_1277866 crossref_primary_10_1016_j_intimp_2024_113104 crossref_primary_10_1002_adma_202308239 crossref_primary_10_1038_s42255_023_00783_1 crossref_primary_10_1038_s43587_024_00672_6 crossref_primary_10_1016_j_dnarep_2025_103814 crossref_primary_10_1016_j_arr_2024_102469 crossref_primary_10_1016_j_ijbiomac_2024_139449 crossref_primary_10_1093_nsr_nwaf022 crossref_primary_10_1063_5_0239482 |
Cites_doi | 10.1093/icb/icx076 10.1038/s41467-017-01859-9 10.1146/annurev-genet-120215-035329 10.1126/science.1164097 10.1083/jcb.201308006 10.1083/jcb.201312066 10.1152/physrev.1984.64.1.1 10.1038/s41586-019-1506-7 10.3389/fphys.2016.00476 10.7554/eLife.10575 10.1126/scisignal.2001147 10.1016/j.cell.2022.05.013 10.1073/pnas.0906039107 10.1146/annurev-biochem-060815-014402 10.1042/CS20160485 10.1038/nature10230 10.1038/nature02555 10.1016/j.mito.2016.07.003 10.2337/db07-1781 10.1016/j.cmet.2013.03.002 10.7554/eLife.11583 10.1161/CIRCULATIONAHA.110.014506 10.1038/s41586-020-2551-y 10.1016/j.cmet.2016.01.019 10.1126/scisignal.2002712 10.1126/sciadv.abe2771 10.1128/MCB.01107-15 10.1016/j.cmet.2019.11.020 10.1016/j.cmet.2016.06.004 10.1111/acel.12848 10.1038/s41586-021-03269-w 10.1073/pnas.0306948101 10.1038/s41467-018-07416-2 10.1038/ncomms1714 10.1038/s41556-018-0124-1 10.1038/s42255-022-00594-w 10.1016/j.cell.2010.12.016 10.1002/glia.23314 10.1126/science.1218099 10.1126/science.aav4011 10.1126/scisignal.aav1439 10.1074/jbc.M401229200 10.1016/0014-5793(96)00782-X 10.1038/331717a0 10.1038/s41467-020-16572-3 10.1242/jcs.226084 10.18632/aging.100943 10.1073/pnas.1706643114 10.1016/j.cell.2018.11.025 10.1016/j.cmet.2020.01.011 10.1093/toxsci/kfu164 10.1038/90116 10.26508/lsa.201800228 10.1016/j.molcel.2016.01.031 10.1038/nature10234 10.3390/ijms21062122 10.1016/j.cmet.2016.08.006 10.1016/j.neuron.2021.02.006 10.1038/nchembio.2307 10.1038/nn.3053 10.1016/j.cell.2021.02.034 10.1038/s41593-019-0479-z 10.1126/science.210507 10.1210/jcem.84.11.6235 10.1038/s41589-020-0517-x 10.1152/japplphysiol.00032.2020 10.1002/pmic.201000173 10.1016/j.cell.2017.04.004 10.1038/nature22082 10.1038/417087a 10.1529/biophysj.103.035097 10.1016/j.ymgme.2013.07.009 10.15252/msb.202110726 10.1038/s42255-021-00389-5 10.1042/bio_2022_119 10.1002/jcb.20985 10.1093/hmg/ddq310 10.1016/j.tibs.2019.11.001 10.1101/cshperspect.a011148 10.1002/ana.25288 10.1016/S0021-9258(19)57193-9 10.12688/f1000research.10397.1 10.1038/s41586-020-2337-2 10.1016/j.cub.2016.06.002 10.1016/j.bpj.2013.09.020 10.1016/j.cmet.2021.11.001 10.1126/sciadv.abc9955 10.1016/j.cmet.2015.05.013 10.1038/s41586-021-03510-6 10.1016/j.celrep.2013.06.040 10.26508/lsa.202000797 10.1126/scitranslmed.abd1869 10.1038/ncomms1003 10.1038/tp.2016.236 10.1210/edrv-9-3-295 10.1073/pnas.101133498 10.1038/ncomms7259 10.1016/j.bbamcr.2011.05.014 10.1038/srep36289 10.1016/j.exger.2019.110796 10.1371/journal.pone.0039183 10.4161/cbt.7.8.6215 10.1128/MCB.19.1.657 10.1101/gad.331272.119 10.15252/embr.201949799 10.1083/jcb.201909154 10.1073/pnas.1515733112 10.1007/s00294-008-0194-x 10.1016/j.devcel.2019.05.033 10.1016/j.celrep.2017.03.063 10.1093/emboj/cdf445 10.1016/j.cmet.2020.11.008 10.1152/ajpcell.00348.2005 10.1073/pnas.1101507108 10.1016/j.cmet.2019.08.019 10.1038/ng.863 10.1038/nri.2017.21 10.7554/eLife.70899 10.1093/humrep/dei267 10.1186/1471-2202-13-118 10.1134/S0026893310030027 10.2337/db12-1203 10.1038/ncb2220 10.1016/j.tcb.2017.04.004 10.1016/j.cell.2008.06.016 10.1038/s41559-022-01833-9 10.1016/0022-2828(83)90261-4 10.1016/j.cmet.2018.07.011 10.7554/eLife.08931 10.1038/s42255-022-00591-z 10.1038/s41398-018-0264-x 10.18632/aging.103534 10.1038/cr.2015.89 10.1073/pnas.2005885117 10.1038/s41586-020-2078-2 10.1152/ajpregu.00584.2012 10.1073/pnas.1705768114 10.1152/ajpendo.00330.2013 10.1016/j.celrep.2022.111198 10.1379/CSC-300.1 10.1093/function/zqab005 10.1371/journal.pcbi.1002066 10.1016/j.cmet.2015.02.009 10.1038/s41591-021-01441-3 10.1007/s00109-020-01967-y 10.1097/PSY.0000000000000544 10.1016/j.tcb.2014.08.005 10.1038/nature17399 10.1007/s00018-015-1863-9 10.1016/j.cmet.2021.08.002 10.1073/pnas.1617788113 10.1126/science.aao6047 10.1038/ng.2299 10.1016/j.cmet.2005.05.001 10.1074/jbc.274.42.29905 10.1007/s00213-014-3655-6 10.1021/acschemneuro.7b00516 10.1016/j.neuron.2015.02.016 10.1016/j.cmet.2021.02.003 10.1016/j.molmet.2015.11.002 10.3389/fcell.2017.00090 10.1371/journal.pcbi.1000657 10.15252/embj.201592862 10.1007/978-1-59745-521-3_11 10.1172/JCI136055 10.1007/s10863-017-9704-1 10.1007/s00125-019-05082-7 10.1073/pnas.1905585116 10.1016/j.psyneuen.2022.105852 10.7554/eLife.01489 10.1016/j.cell.2019.07.033 10.1096/fj.202000959RR 10.1210/er.2018-00084 10.1016/j.tcb.2017.08.009 10.1016/j.mce.2013.04.014 10.1111/j.0269-8463.2004.00841.x 10.1038/191144a0 10.1128/MCB.19.12.7913 10.1016/j.cell.2016.04.011 10.15252/embj.2018101056 10.1038/s42255-019-0150-8 10.1152/ajpendo.00249.2020 10.1016/j.cmet.2012.01.009 10.7554/eLife.49178 10.1126/science.1218530 10.1016/j.cell.2020.03.036 10.1073/pnas.1512653112 10.1083/jcb.37.2.345 10.1186/1741-7007-8-100 10.1038/emboj.2013.124 10.1073/pnas.1617288114 10.1038/nature20165 10.1152/japplphysiol.00873.2014 10.1371/journal.pone.0002501 10.1042/bj20021594 10.1186/s13073-017-0420-6 10.1038/s41467-020-20790-0 10.1038/nature12985 10.1016/j.cell.2012.02.035 10.1096/fj.13-248161 10.1016/S0092-8674(00)80085-9 10.1073/pnas.0401077101 10.1016/j.cmet.2021.01.003 10.1126/science.aax9553 10.1093/biolre/ioy102 10.1038/s41467-017-00043-3 10.1146/annurev-pathmechdis-012419-032711 10.1111/nyas.12956 10.15252/embr.201948804 10.1016/j.cell.2017.02.030 10.1016/j.cmet.2018.06.008 10.1016/j.cub.2006.06.054 10.1146/annurev-genet-102108-134850 10.1038/nrg1606 10.1126/science.aaw8806 10.1073/pnas.1107402108 10.1016/j.celrep.2019.01.010 10.1073/pnas.1414028111 10.1111/acel.13195 10.1111/j.1474-9726.2010.00607.x 10.2337/db06-1601 10.1091/mbc.8.7.1233 10.1002/jcb.20144 10.1016/B978-0-444-53630-3.00008-7 10.1016/j.psyneuen.2019.03.026 10.1126/science.aay5947 10.1016/j.cell.2020.11.034 10.1093/nar/gkaa1011 10.1016/j.cmet.2021.12.017 10.1021/pr500295n 10.1016/j.ceca.2021.102517 10.7554/eLife.63104 10.1210/endrev/bnaa007 10.1101/gr.190470.115 10.1126/sciadv.abq5206 10.1081/ERC-120016800 10.1016/0092-8674(88)90218-8 10.1016/j.tem.2016.11.001 10.1038/318635a0 10.1016/j.celrep.2020.108131 10.1038/nrm.2017.66 10.1038/nature20127 10.1038/srep30610 10.1152/ajpcell.00496.2010 10.1016/j.peptides.2012.09.016 10.1038/s41586-018-0363-0 10.1007/s00439-020-02119-5 10.1073/pnas.89.10.4221 10.1007/s43657-021-00037-8 10.1038/s41586-022-04979-5 10.1038/s41586-018-0052-z 10.1016/j.mad.2017.08.005 10.1038/s41576-020-0270-8 10.1002/path.5146 10.1038/s42255-018-0018-3 10.1126/sciadv.abn7105 10.1126/science.196334 10.1016/j.neubiorev.2020.04.017 10.1016/j.cell.2015.10.001 10.1016/j.celrep.2021.109509 10.1016/S0021-9258(19)70620-6 10.1038/s42255-019-0126-8 10.4049/jimmunol.1101375 10.15252/embr.202050094 10.1016/j.tcb.2018.02.009 10.1016/j.cell.2013.05.021 10.1371/journal.pbio.2005707 10.1016/0022-5193(67)90079-3 10.1083/jcb.107.2.481 10.1038/s41556-018-0133-0 10.1016/j.molcel.2018.01.037 10.1016/j.cmet.2017.07.007 10.1677/jme.0.0260067 10.1016/j.ab.2017.11.008 10.1016/S0076-6879(09)05016-2 10.1126/science.1260384 10.1073/pnas.1300741110 10.1016/j.bpj.2009.11.002 10.1038/s42254-019-0040-8 10.1016/j.biopsych.2018.01.012 10.1016/j.cell.2018.06.029 10.1126/science.1175088 10.1002/acn3.51104 10.1097/01.fjc.0000139449.64337.1b 10.1016/j.cub.2016.07.064 10.1016/j.cell.2014.06.007 10.1038/s41598-019-56587-5 10.1038/nature14156 10.1016/j.celrep.2022.111193 10.1016/j.bbamcr.2005.05.010 10.1016/j.cmet.2014.02.004 10.1016/j.cell.2013.08.032 10.1016/j.cell.2005.08.012 10.1006/bbrc.1997.6787 10.1083/jcb.201702058 10.1016/j.cell.2022.07.025 10.1371/journal.pbio.2003992 10.1016/j.isci.2021.102181 10.1016/j.beem.2012.05.002 10.1093/brain/awq276 10.1096/fj.202101628R 10.1016/j.devcel.2019.07.019 10.1038/nm.3014 10.1073/pnas.0511154103 10.1073/pnas.1910574116 10.1016/j.tins.2015.06.001 10.1002/ana.24506 10.1073/pnas.91.15.7247 10.4155/fmc-2020-0326 10.1038/emboj.2009.255 10.1371/journal.pbio.1001969 10.1038/s41586-020-2076-4 10.1152/ajpregu.00324.2019 10.1152/ajpcell.00139.2004 10.1126/science.1223560 10.1016/j.cell.2022.06.010 10.1038/nrg1272 10.1016/j.cell.2005.02.001 10.1002/bies.202000273 10.1038/nature09486 10.1083/jcb.201607110 10.3389/fpsyt.2019.00882 10.1007/978-1-4939-7902-8_14 10.1016/j.cobeha.2019.04.015 10.1016/j.cmet.2018.05.009 10.1016/0960-0760(95)00159-W 10.1016/j.cmet.2015.09.004 10.1096/fj.201901917RR 10.1038/nrdp.2016.80 10.1093/emboj/20.15.4107 10.1016/j.ceb.2020.01.006 10.1056/NEJMra1215233 10.1016/j.cell.2020.08.031 10.1152/physrev.00001.2015 10.1371/journal.pone.0172344 10.1038/nature18618 10.1073/pnas.77.11.6715 10.1016/j.cell.2010.02.026 10.1016/j.immuni.2022.06.007 10.1038/s41556-021-00798-4 10.1038/s41583-021-00467-3 10.1038/s41586-019-1678-1 10.1016/j.mito.2021.02.006 10.1016/j.cmet.2018.03.003 10.1074/jbc.RA118.006727 10.1016/j.mito.2021.04.002 10.1371/journal.pmed.1001577 10.1038/s41588-021-00868-1 10.1126/sciadv.abe5310 10.7554/eLife.10955 10.1016/j.cmet.2018.01.016 10.1038/s42003-021-01833-8 10.1038/sj.emboj.7601963 10.2119/molmed.2013.00117 10.1515/hsz-2019-0268 10.1021/bi2018909 10.1016/j.biocel.2014.05.030 10.1152/ajpcell.00427.2009 10.1016/j.freeradbiomed.2020.11.016 10.1016/j.molcel.2021.07.014 10.1126/scisignal.abm7524 10.1038/s41593-019-0556-3 10.1152/ajpcell.00368.2011 10.1074/jbc.270.27.16347 10.1038/nm.4392 10.1016/j.cmet.2022.07.011 10.1152/japplphysiol.00819.2013 10.1038/s41589-022-01004-8 10.1038/s41467-019-13668-3 10.1074/jbc.M114.605808 10.1212/WNL.0000000000003374 10.1073/pnas.2106868118 10.1093/sleep/33.12.1605 10.1038/srep26419 10.1083/jcb.200406038 10.1371/journal.pgen.1004601 10.1126/science.abm1638 10.1126/science.1244360 10.1016/j.cell.2020.02.044 10.1073/pnas.1906896116 10.1093/clinchem/hvab091 10.1210/me.2010-0125 10.1016/0005-2787(70)90014-6 10.1152/physiol.00045.2008 10.1038/nn.3387 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cmet.2022.10.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 1653 |
ExternalDocumentID | 36323233 10_1016_j_cmet_2022_10_008 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH119336 – fundername: NIA NIH HHS grantid: R01 AG066828 – fundername: NIGMS NIH HHS grantid: R35 GM119793 – fundername: NIMH NIH HHS grantid: R21 MH123927 – fundername: NIMH NIH HHS grantid: R01 MH122706 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AAEDT AAEDW AAIKJ AAKRW AAKUH AALRI AAMRU AAVLU AAXUO AAYWO AAYXX ABDGV ABJNI ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGHFR AGKMS AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF HZ~ IHE IXB J1W JIG M3Z M41 O-L O9- OK1 OZT P2P RIG ROL RPZ SES SSZ TR2 UNMZH AACTN CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c2985-9da2b0547a68a77a159d484227affa6a9e87c32e0a94bbd5b42595b791cf9323 |
ISSN | 1550-4131 1932-7420 |
IngestDate | Fri Jul 11 07:44:31 EDT 2025 Thu Apr 03 07:08:41 EDT 2025 Tue Jul 01 03:58:20 EDT 2025 Thu Apr 24 23:08:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | metabokines receptors signal transduction tissue-specific health evolution stress responses amplification mito-nuclear signaling mitochondrial networks mitotypes membrane potential mitokines steroid hormones communication energy |
Language | English |
License | Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2985-9da2b0547a68a77a159d484227affa6a9e87c32e0a94bbd5b42595b791cf9323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9692202 |
PMID | 36323233 |
PQID | 2731719910 |
PQPubID | 23479 |
PageCount | 34 |
ParticipantIDs | proquest_miscellaneous_2731719910 pubmed_primary_36323233 crossref_citationtrail_10_1016_j_cmet_2022_10_008 crossref_primary_10_1016_j_cmet_2022_10_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-00 2022-11-01 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2022 |
References | Belous (10.1016/j.cmet.2022.10.008_bib89) 2006; 99 Keidar Haran (10.1016/j.cmet.2022.10.008_bib151) 2022; 18 Chretien (10.1016/j.cmet.2022.10.008_bib360) 2018; 16 Goodman (10.1016/j.cmet.2022.10.008_bib114) 2020; 583 Ji (10.1016/j.cmet.2022.10.008_bib172) 2021; 109 Bakeeva (10.1016/j.cmet.2022.10.008_bib160) 1983; 15 Reynolds (10.1016/j.cmet.2022.10.008_bib344) 2020; 139 Lehtonen (10.1016/j.cmet.2022.10.008_bib342) 2016; 87 Picard (10.1016/j.cmet.2022.10.008_bib42) 2018; 84 Shadel (10.1016/j.cmet.2022.10.008_bib215) 2015; 163 Murphy (10.1016/j.cmet.2022.10.008_bib247) 2022; 18 Sebastian (10.1016/j.cmet.2022.10.008_bib224) 2017; 28 Huang (10.1016/j.cmet.2022.10.008_bib233) 2021; 7 Hill (10.1016/j.cmet.2022.10.008_bib43) 2019; 401 Lundberg (10.1016/j.cmet.2022.10.008_bib131) 2022; 185 Hackenbrock (10.1016/j.cmet.2022.10.008_bib104) 1968; 37 Cimino (10.1016/j.cmet.2022.10.008_bib340) 2021; 118 Lambert (10.1016/j.cmet.2022.10.008_bib254) 2009; 554 Wrutniak (10.1016/j.cmet.2022.10.008_bib61) 1995; 270 Lu (10.1016/j.cmet.2022.10.008_bib100) 2014; 20 Semenza (10.1016/j.cmet.2022.10.008_bib135) 2009; 24 Kang (10.1016/j.cmet.2022.10.008_bib328) 2021; 24 Riley (10.1016/j.cmet.2022.10.008_bib280) 2020; 21 Yang (10.1016/j.cmet.2022.10.008_bib69) 2004; 101 Cushen (10.1016/j.cmet.2022.10.008_bib306) 2020; 318 Mosselman (10.1016/j.cmet.2022.10.008_bib67) 1996; 392 Gomes (10.1016/j.cmet.2022.10.008_bib188) 2011; 13 Suofu (10.1016/j.cmet.2022.10.008_bib87) 2017; 114 Mills (10.1016/j.cmet.2022.10.008_bib248) 2021; 3 Twig (10.1016/j.cmet.2022.10.008_bib177) 2006; 291 Sterling (10.1016/j.cmet.2022.10.008_bib60) 1977; 197 Yu (10.1016/j.cmet.2022.10.008_bib184) 2006; 103 Kasahara (10.1016/j.cmet.2022.10.008_bib213) 2014; 24 Chen (10.1016/j.cmet.2022.10.008_bib12) 2010; 141 Twig (10.1016/j.cmet.2022.10.008_bib13) 2008; 27 Funai (10.1016/j.cmet.2022.10.008_bib244) 2020; 63 Caicedo (10.1016/j.cmet.2022.10.008_bib315) 2021; 58 Trumpff (10.1016/j.cmet.2022.10.008_bib301) 2021; 59 Colvin (10.1016/j.cmet.2022.10.008_bib242) 2016; 6 Al Amir Dache (10.1016/j.cmet.2022.10.008_bib314) 2020; 34 Nikkanen (10.1016/j.cmet.2022.10.008_bib116) 2016; 23 Faitg (10.1016/j.cmet.2022.10.008_bib385) 2021; 36 Gottschling (10.1016/j.cmet.2022.10.008_bib47) 2017; 169 Csordas (10.1016/j.cmet.2022.10.008_bib207) 2018; 28 Nunnari (10.1016/j.cmet.2022.10.008_bib8) 1997; 8 Cheng (10.1016/j.cmet.2022.10.008_bib297) 2010; 9 Xian (10.1016/j.cmet.2022.10.008_bib287) 2022; 55 Picard (10.1016/j.cmet.2022.10.008_bib391) 2016; 30 Kerr (10.1016/j.cmet.2022.10.008_bib52) 2019; 9 Liu (10.1016/j.cmet.2022.10.008_bib9) 1996; 86 Mitchell (10.1016/j.cmet.2022.10.008_bib2) 1961; 191 Barabasi (10.1016/j.cmet.2022.10.008_bib155) 2004; 5 Forsstrom (10.1016/j.cmet.2022.10.008_bib18) 2019; 30 López-Otín (10.1016/j.cmet.2022.10.008_bib394) 2021; 184 Oikawa (10.1016/j.cmet.2022.10.008_bib198) 2021; 4 Fernandez-Vizarra (10.1016/j.cmet.2022.10.008_bib64) 2008; 54 Lane (10.1016/j.cmet.2022.10.008_bib112) 2022 Picard (10.1016/j.cmet.2022.10.008_bib192) 2015; 118 Martinez-Reyes (10.1016/j.cmet.2022.10.008_bib216) 2020; 11 Latorre-Pellicer (10.1016/j.cmet.2022.10.008_bib145) 2016; 535 Carreras-Sureda (10.1016/j.cmet.2022.10.008_bib317) 2022; 15 Maresca (10.1016/j.cmet.2022.10.008_bib305) 2020; 98 Rausser (10.1016/j.cmet.2022.10.008_bib375) 2021; 10 Picard (10.1016/j.cmet.2022.10.008_bib361) 2015; 38 Koval (10.1016/j.cmet.2022.10.008_bib124) 2019; 12 Yen (10.1016/j.cmet.2022.10.008_bib346) 2020; 12 Guzy (10.1016/j.cmet.2022.10.008_bib134) 2005; 1 Rubalcava-Gracia (10.1016/j.cmet.2022.10.008_bib56) 2022 Kanellopoulos (10.1016/j.cmet.2022.10.008_bib32) 2020; 180 Nita (10.1016/j.cmet.2022.10.008_bib126) 2014; 28 Altman (10.1016/j.cmet.2022.10.008_bib1) 1890 Wang (10.1016/j.cmet.2022.10.008_bib220) 2009; 43 Enríquez (10.1016/j.cmet.2022.10.008_bib399) 2019; 1 Stauch (10.1016/j.cmet.2022.10.008_bib381) 2014; 13 Nunnari (10.1016/j.cmet.2022.10.008_bib15) 2012; 148 Santo-Domingo (10.1016/j.cmet.2022.10.008_bib165) 2013; 32 Gustafsson (10.1016/j.cmet.2022.10.008_bib136) 2016; 85 Ferreira (10.1016/j.cmet.2022.10.008_bib382) 2010; 10 Tian (10.1016/j.cmet.2022.10.008_bib24) 2016; 165 Cox (10.1016/j.cmet.2022.10.008_bib262) 2018; 28 Taylor (10.1016/j.cmet.2022.10.008_bib105) 2017; 27 Pagliarini (10.1016/j.cmet.2022.10.008_bib372) 2008; 134 Bajpai (10.1016/j.cmet.2022.10.008_bib73) 2019; 294 Chakrabarty (10.1016/j.cmet.2022.10.008_bib45) 2022; 44 Abadir (10.1016/j.cmet.2022.10.008_bib91) 2012; 38 Taylor (10.1016/j.cmet.2022.10.008_bib141) 2005; 6 Murley (10.1016/j.cmet.2022.10.008_bib206) 2016; 61 Hein (10.1016/j.cmet.2022.10.008_bib153) 2015; 4 Berry (10.1016/j.cmet.2022.10.008_bib388) 2022 Wong (10.1016/j.cmet.2022.10.008_bib204) 2019; 50 Nakahira (10.1016/j.cmet.2022.10.008_bib311) 2013; 10 Vincent (10.1016/j.cmet.2022.10.008_bib167) 2017; 27 Gaziev (10.1016/j.cmet.2022.10.008_bib292) 2010; 44 Zhang (10.1016/j.cmet.2022.10.008_bib71) 2010; 24 Rosa (10.1016/j.cmet.2022.10.008_bib302) 2020; 34 Reiter (10.1016/j.cmet.2022.10.008_bib92) 2021; 13 Solakidi (10.1016/j.cmet.2022.10.008_bib74) 2005; 20 Rossignol (10.1016/j.cmet.2022.10.008_bib300) 2003; 370 Quiros (10.1016/j.cmet.2022.10.008_bib320) 2017; 216 Rosenberg (10.1016/j.cmet.2022.10.008_bib377) 2021 Zhou (10.1016/j.cmet.2022.10.008_bib175) 2010; 6 Klaus (10.1016/j.cmet.2022.10.008_bib337) 2020; 130 Trifunov (10.1016/j.cmet.2022.10.008_bib304) 2021; 67 Glancy (10.1016/j.cmet.2022.10.008_bib166) 2017; 19 Reynolds (10.1016/j.cmet.2022.10.008_bib350) 2021; 12 Black (10.1016/j.cmet.2022.10.008_bib278) 1994; 91 Shum (10.1016/j.cmet.2022.10.008_bib258) 2021; 13 Chouchani (10.1016/j.cmet.2022.10.008_bib257) 2016; 532 Courchet (10.1016/j.cmet.2022.10.008_bib365) 2013; 153 Lindqvist (10.1016/j.cmet.2022.10.008_bib309) 2016; 6 Giles (10.1016/j.cmet.2022.10.008_bib5) 1980; 77 Buck (10.1016/j.cmet.2022.10.008_bib38) 2017; 169 Solakidi (10.1016/j.cmet.2022.10.008_bib70) 2005; 1745 McArthur (10.1016/j.cmet.2022.10.008_bib288) 2018; 359 Hollis (10.1016/j.cmet.2022.10.008_bib39) 2015; 112 Jiang (10.1016/j.cmet.2022.10.008_bib217) 1999; 274 Nicolas-Avila (10.1016/j.cmet.2022.10.008_bib30) 2020; 183 Benard (10.1016/j.cmet.2022.10.008_bib88) 2012; 15 Mentch (10.1016/j.cmet.2022.10.008_bib228) 2016; 1363 Yonova-Doing (10.1016/j.cmet.2022.10.008_bib146) 2021; 53 Gutierrez-Rodriguez (10.1016/j.cmet.2022.10.008_bib94) 2018; 66 Picard (10.1016/j.cmet.2022.10.008_bib407) 2022; 2 Schavemaker (10.1016/j.cmet.2022.10.008_bib402) 2022; 6 Hummel (10.1016/j.cmet.2022.10.008_bib307) 2018; 8 Bar-Ziv (10.1016/j.cmet.2022.10.008_bib27) 2020; 21 Mendizabal-Zubiaga (10.1016/j.cmet.2022.10.008_bib95) 2016; 7 Meimaridou (10.1016/j.cmet.2022.10.008_bib279) 2012; 44 Gorman (10.1016/j.cmet.2022.10.008_bib140) 2016; 2 Kafkia (10.1016/j.cmet.2022.10.008_bib238) 2022; 8 Dudek (10.1016/j.cmet.2022.10.008_bib245) 2017; 5 Srinivasainagendra (10.1016/j.cmet.2022.10.008_bib294) 2017; 9 Murphy (10.1016/j.cmet.2022.10.008_bib256) 2022; 4 Kang (10.1016/j.cmet.2022.10.008_bib349) 2021; 33 Picard (10.1016/j.cmet.2022.10.008_bib218) 2013; 304 Okabe (10.1016/j.cmet.2022.10.008_bib358) 2012; 3 Lewis (10.1016/j.cmet.2022.10.008_bib386) 2016; 26 Nicholls (10.1016/j.cmet.2022.10.008_bib356) 1984; 64 Paltauf-Doburzynska (10.1016/j.cmet.2022.10.008_bib182) 2004; 44 Kasai (10.1016/j.cmet.2022.10.008_bib212) 2021; 22 Han (10.1016/j.cmet.2022.10.008_bib173) 2004; 430 Durieux (10.1016/j.cmet.2022.10.008_bib17) 2011; 144 Kopinski (10.1016/j.cmet.2022.10.008_bib234) 2019; 116 Pekkurnaz (10.1016/j.cmet.2022.10.008_bib203) 2014; 158 Papadopoulos (10.1016/j.cmet.2022.10.008_bib277) 2012; 26 Fecher (10.1016/j.cmet.2022.10.008_bib373) 2019; 22 Sarti (10.1016/j.cmet.2022.10.008_bib97) 2021; 2 Suomalainen (10.1016/j.cmet.2022.10.008_bib392) 2018; 19 Ayres (10.1016/j.cmet.2022.10.008_bib403) 2020; 181 Sassone-Corsi (10.1016/j.cmet.2022.10.008_bib149) 2012; 4 Sung (10.1016/j.cmet.2022.10.008_bib400) 2010; 1 Gandhi (10.1016/j.cmet.2022.10.008_bib251) 2015; 85 Kim (10.1016/j.cmet.2022.10.008_bib325) 2013; 19 Desai (10.1016/j.cmet.2022.10.008_bib255) 2020; 6 Levoux (10.1016/j.cmet.2022.10.008_bib29) 2021; 33 Sturm (10.1016/j.cmet.2022.10.008_bib237) 2022 Glancy (10.1016/j.cmet.2022.10.008_bib376) 2011; 300 Morgenstern (10.1016/j.cmet.2022.10.008_bib36) 2021; 33 Woodhead (10.1016/j.cmet.2022.10.008_bib351) 2020; 128 Lozoya (10.1016/j.cmet.2022.10.008_bib25) 2018; 16 Wu (10.1016/j.cmet.2022.10.008_bib147) 2019; 1 Bernardi (10.1016/j.cmet.2022.10.008_bib219) 2015; 95 Tsiriyotis (10.1016/j.cmet.2022.10.008_bib81) 1997; 235 Intlekofer (10.1016/j.cmet.2022.10.008_bib241) 2017; 13 Baughman (10.1016/j.cmet.2022.10.008_bib120) 2011; 476 Nargund (10.1016/j.cmet.2022.10.008_bib19) 2012; 337 Amchenkova (10.1016/j.cmet.2022.10.008_bib161) 1988; 107 Sterling (10.1016/j.cmet.2022.10.008_bib59) 1978; 201 Eisner (10.1016/j.cmet.2022.10.008_bib180) 2014; 205 Fessler (10.1016/j.cmet.2022.10.008_bib318) 2020; 579 Wallace (10.1016/j.cmet.2022.10.008_bib7) 1988; 55 Chaung (10.1016/j.cmet.2022.10.008_bib354) 2012; 30 Crivello (10.1016/j.cmet.2022.10.008_bib272) 1980; 255 Lane (10.1016/j.cmet.2022.10.008_bib401) 2010; 467 Simoes (10.1016/j.cmet.2022.10.008_bib85) 2012; 7 Sturm (10.1016/j.cmet.2022.10.008_bib236) 2021 Cole (10.1016/j.cmet.2022.10.008_bib405) 2014; 10 Enriquez (10.1016/j.cmet.2022.10.008_bib63) 1999; 19 Wikstrom (10.1016/j.cmet.2022.10.008_bib194) 2014; 33 Lynn (10.1016/j.cmet.2022.10.008_bib48) 2019; 1 Lee (10.1016/j.cmet.2022.10.008_bib348) 2015; 21 Spinelli (10.1016/j.cmet.2022.10.008_bib119) 2018; 20 Moon (10.1016/j.cmet.2022.10.008_bib336) 2020; 19 Herzig (10.1016/j.cmet.2022.10.008_bib108) 2012; 337 da Silva (10.1016/j.cmet.2022.10.008_bib266) 2019; 18 Kandel (10.1016/j.cmet.2022.10.008_bib150) 2021 Dogan (10.1016/j.cmet.2022.10.008_bib324) 2014; 19 Vernay (10.1016/j.cmet.2022.10.008_bib164) 2017; 114 Rivers (10.1016/j.cmet.2022.10.008_bib78) 1999; 84 Picard (10.1016/j.cmet.2022.10.008_bib187) 2013; 62 Birch (10.1016/j.cmet.2022.10.008_bib50) 2017 Sosna (10.1016/j.cmet.2022.10.008_bib154) 2019; 116 Ruprecht (10.1016/j.cmet.2022.10.008_bib102) 2019; 176 Abadir (10.1016/j.cmet.2022.10.008_bib86) 2011; 108 Chernet (10.1016/j |
References_xml | – volume: 57 start-page: 171 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib54 article-title: Systems biology of phenotypic robustness and plasticity publication-title: Integr. Comp. Biol. doi: 10.1093/icb/icx076 – volume: 9 start-page: 70 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib378 article-title: Loss of mtDNA activates astrocytes and leads to spongiotic encephalopathy publication-title: Nat. Commun. doi: 10.1038/s41467-017-01859-9 – volume: 51 start-page: 1 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib295 article-title: Witnessing genome evolution: experimental reconstruction of endosymbiotic and horizontal gene transfer publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-120215-035329 – volume: 324 start-page: 1076 year: 2009 ident: 10.1016/j.cmet.2022.10.008_bib117 article-title: ATP-citrate lyase links cellular metabolism to histone acetylation publication-title: Science doi: 10.1126/science.1164097 – volume: 204 start-page: 919 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib296 article-title: The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission publication-title: J. Cell Biol. doi: 10.1083/jcb.201308006 – year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib377 article-title: Mouse brain-wide mitochondrial connectivity anchored in gene, brain and behavior publication-title: Preprint at bioRxiv – volume: 205 start-page: 179 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib180 article-title: Mitochondrial fusion is frequent in skeletal muscle and supports excitation-contraction coupling publication-title: J. Cell Biol. doi: 10.1083/jcb.201312066 – year: 1957 ident: 10.1016/j.cmet.2022.10.008_bib4 – volume: 64 start-page: 1 year: 1984 ident: 10.1016/j.cmet.2022.10.008_bib356 article-title: Thermogenic mechanisms in brown fat publication-title: Physiol. Rev. doi: 10.1152/physrev.1984.64.1.1 – volume: 573 start-page: 61 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib397 article-title: Conserved cell types with divergent features in human versus mouse cortex publication-title: Nature doi: 10.1038/s41586-019-1506-7 – year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib156 – volume: 7 start-page: 476 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib95 article-title: Cannabinoid CB1 receptors are localized in striated muscle mitochondria and regulate mitochondrial respiration publication-title: Front. Physiol. doi: 10.3389/fphys.2016.00476 – volume: 5 start-page: e10575 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib229 article-title: Mitochondrial dysfunction remodels one-carbon metabolism in human cells publication-title: eLife doi: 10.7554/eLife.10575 – volume: 4 start-page: ra7 year: 2011 ident: 10.1016/j.cmet.2022.10.008_bib284 article-title: Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling publication-title: Sci. Signal. doi: 10.1126/scisignal.2001147 – volume: 185 start-page: 2559 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib323 article-title: Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq publication-title: Cell doi: 10.1016/j.cell.2022.05.013 – volume: 107 start-page: 1571 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib142 article-title: A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0906039107 – volume: 85 start-page: 133 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib136 article-title: Maintenance and expression of mammalian mitochondrial DNA publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060815-014402 – volume: 131 start-page: 803 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib75 article-title: Mitochondria: a central target for sex differences in pathologies publication-title: Clin. Sci. (Lond.) doi: 10.1042/CS20160485 – volume: 476 start-page: 336 year: 2011 ident: 10.1016/j.cmet.2022.10.008_bib121 article-title: A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter publication-title: Nature doi: 10.1038/nature10230 – volume: 430 start-page: 88 year: 2004 ident: 10.1016/j.cmet.2022.10.008_bib173 article-title: Evidence for dynamically organized modularity in the yeast protein-protein interaction network publication-title: Nature doi: 10.1038/nature02555 – volume: 30 start-page: 105 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib391 article-title: The rise of mitochondria in medicine publication-title: Mitochondrion doi: 10.1016/j.mito.2016.07.003 – volume: 58 start-page: 2303 year: 2009 ident: 10.1016/j.cmet.2022.10.008_bib191 article-title: Mitochondrial networking protects beta-cells from nutrient-induced apoptosis publication-title: Diabetes doi: 10.2337/db07-1781 – volume: Suppl 1 start-page: S1 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib393 article-title: endogenous voltage potentials and the microenvironment: bioelectric signals that reveal, induce and normalize cancer. publication-title: J. Clin. Exp. Oncol. – volume: 17 start-page: 491 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib186 article-title: Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.03.002 – volume: 5 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib366 article-title: Dendritic mitochondria reach stable positions during circuit development publication-title: eLife doi: 10.7554/eLife.11583 – volume: 124 start-page: 444 year: 2011 ident: 10.1016/j.cmet.2022.10.008_bib183 article-title: Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.014506 – volume: 586 start-page: 287 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib129 article-title: Na(+) controls hypoxic signalling by the mitochondrial respiratory chain publication-title: Nature doi: 10.1038/s41586-020-2551-y – volume: 23 start-page: 635 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib116 article-title: Mitochondrial DNA replication defects disturb cellular dNTP pools and remodel one-carbon metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.01.019 – volume: 5 start-page: ra47 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib197 article-title: Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription publication-title: Sci. Signal. doi: 10.1126/scisignal.2002712 – volume: 7 start-page: eabe2771 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib233 article-title: The regulatory enzymes and protein substrates for the lysine beta-hydroxybutyrylation pathway publication-title: Sci. Adv. doi: 10.1126/sciadv.abe2771 – volume: 36 start-page: 1032 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib276 article-title: An outer mitochondrial translocase, Tom22, is crucial for inner mitochondrial steroidogenic regulation in adrenal and gonadal tissues publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01107-15 – volume: 33 start-page: 418 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib194 article-title: Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure publication-title: EMBO J. – volume: 31 start-page: 267 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib110 article-title: A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.11.020 – volume: 24 start-page: 158 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib239 article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.06.004 – volume: 18 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib266 article-title: The bystander effect contributes to the accumulation of senescent cells in vivo publication-title: Aging Cell doi: 10.1111/acel.12848 – volume: 591 start-page: 477 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib289 article-title: Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance publication-title: Nature doi: 10.1038/s41586-021-03269-w – volume: 101 start-page: 4130 year: 2004 ident: 10.1016/j.cmet.2022.10.008_bib69 article-title: Mitochondrial localization of estrogen receptor β publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0306948101 – volume: 9 start-page: 5008 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib367 article-title: MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size publication-title: Nat. Commun. doi: 10.1038/s41467-018-07416-2 – volume: 3 start-page: 705 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib358 article-title: Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy publication-title: Nat. Commun. doi: 10.1038/ncomms1714 – volume: 20 start-page: 745 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib119 article-title: The multifaceted contributions of mitochondria to cellular metabolism publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0124-1 – volume: 4 start-page: 802 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib201 article-title: Mitochondrial heterogeneity and homeostasis through the lens of a neuron publication-title: Nat. Metab. doi: 10.1038/s42255-022-00594-w – volume: 144 start-page: 79 year: 2011 ident: 10.1016/j.cmet.2022.10.008_bib17 article-title: The cell-non-autonomous nature of electron transport chain-mediated longevity publication-title: Cell doi: 10.1016/j.cell.2010.12.016 – volume: 66 start-page: 1417 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib94 article-title: Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus publication-title: Glia doi: 10.1002/glia.23314 – volume: 337 start-page: 96 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib107 article-title: A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans publication-title: Science doi: 10.1126/science.1218099 – volume: 366 start-page: 1531 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib286 article-title: VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease publication-title: Science doi: 10.1126/science.aav4011 – volume: 12 start-page: eaav1439 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib124 article-title: Loss of MCU prevents mitochondrial fusion in G1-S phase and blocks cell cycle progression and proliferation publication-title: Sci. Signal. doi: 10.1126/scisignal.aav1439 – volume: 279 start-page: 25234 year: 2004 ident: 10.1016/j.cmet.2022.10.008_bib125 article-title: Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger publication-title: J. Biol. Chem. doi: 10.1074/jbc.M401229200 – volume: 392 start-page: 49 year: 1996 ident: 10.1016/j.cmet.2022.10.008_bib67 article-title: ERβ: identification and characterization of a novel human estrogen receptor publication-title: FEBS Lett. doi: 10.1016/0014-5793(96)00782-X – year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib236 article-title: OxPhos dysfunction causes hypermetabolism and reduces lifespan in cells and in patients with mitochondrial diseases publication-title: Preprint at bioRxiv – volume: 331 start-page: 717 year: 1988 ident: 10.1016/j.cmet.2022.10.008_bib6 article-title: Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies publication-title: Nature doi: 10.1038/331717a0 – volume: 11 start-page: 3347 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib128 article-title: NCLX prevents cell death during adrenergic activation of the brown adipose tissue publication-title: Nat. Commun. doi: 10.1038/s41467-020-16572-3 – volume: 134 start-page: jcs226084 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib200 article-title: Motor proteins at the mitochondria-cytoskeleton interface publication-title: J. Cell Sci. doi: 10.1242/jcs.226084 – volume: 8 start-page: 796 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib347 article-title: Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers publication-title: Aging (Albany NY) doi: 10.18632/aging.100943 – volume: 114 start-page: 8277 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib164 article-title: MitoNEET-dependent formation of intermitochondrial junctions publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1706643114 – volume: 176 start-page: 435 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib102 article-title: The molecular mechanism of transport by the mitochondrial ADP/ATP carrier publication-title: Cell doi: 10.1016/j.cell.2018.11.025 – volume: 31 start-page: 549 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib322 article-title: A conserved mito-cytosolic translational balance links two longevity pathways publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.01.011 – volume: 142 start-page: 182 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib93 article-title: Melatonin improves mitochondrial function by promoting MT1/SIRT1/PGC-1 alpha-dependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfu164 – volume: 28 start-page: 272 year: 2001 ident: 10.1016/j.cmet.2022.10.008_bib11 article-title: Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria publication-title: Nat. Genet. doi: 10.1038/90116 – volume: 2 start-page: e201800228 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib235 article-title: Mitochondrial acetyl-CoA reversibly regulates locus-specific histone acetylation and gene expression publication-title: Life Sci. Alliance doi: 10.26508/lsa.201800228 – volume: 61 start-page: 648 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib206 article-title: The emerging network of mitochondria-organelle contacts publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.01.031 – volume: 476 start-page: 341 year: 2011 ident: 10.1016/j.cmet.2022.10.008_bib120 article-title: Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter publication-title: Nature doi: 10.1038/nature10234 – year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib339 article-title: Mitochondrial stress-induced GDF15-GFRAL axis promotes anxiety-like behavior and CRH-dependent anorexia publication-title: bioRxiv – volume: 21 start-page: 2122 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib313 article-title: Existence of circulating mitochondria in human and animal peripheral blood publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21062122 – volume: 24 start-page: 348 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib398 article-title: Never waste a good crisis: confronting reproducibility in translational research publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.08.006 – volume: 109 start-page: 1168 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib172 article-title: Brain microvasculature has a common topology with local differences in geometry that match metabolic load publication-title: Neuron doi: 10.1016/j.neuron.2021.02.006 – volume: 13 start-page: 494 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib241 article-title: L-2-hydroxyglutarate production arises from noncanonical enzyme function at acidic pH publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2307 – volume: 15 start-page: 558 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib88 article-title: Mitochondrial CB(1) receptors regulate neuronal energy metabolism publication-title: Nat. Neurosci. doi: 10.1038/nn.3053 – year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib150 – volume: 184 start-page: 1971 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib51 article-title: Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer publication-title: Cell doi: 10.1016/j.cell.2021.02.034 – volume: 22 start-page: 1731 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib373 article-title: Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0479-z – volume: 269 start-page: 4985 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib303 article-title: Circulating cell-free mtDNA release is associated with the activation of cGAS-STING pathway and inflammation in mitochondrial diseases publication-title: J. Neurol. – volume: 201 start-page: 1126 year: 1978 ident: 10.1016/j.cmet.2022.10.008_bib59 article-title: Mitochondrial thyroid hormone receptor: localization and physiological significance publication-title: Science doi: 10.1126/science.210507 – volume: 84 start-page: 4283 year: 1999 ident: 10.1016/j.cmet.2022.10.008_bib78 article-title: Insertion of an amino acid in the DNA-binding domain of the glucocorticoid receptor as a result of alternative splicing publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem.84.11.6235 – volume: 16 start-page: 620 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib225 article-title: Chromatin as a key consumer in the metabolite economy publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0517-x – volume: 128 start-page: 1346 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib351 article-title: High-intensity interval exercise increases humanin, a mitochondrial encoded peptide, in the plasma and muscle of men publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00032.2020 – volume: 10 start-page: 3142 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib382 article-title: Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle publication-title: Proteomics doi: 10.1002/pmic.201000173 – volume: 169 start-page: 570 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib38 article-title: Metabolic instruction of immunity publication-title: Cell doi: 10.1016/j.cell.2017.04.004 – volume: 545 start-page: 93 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib127 article-title: The mitochondrial Na(+)/Ca(2+) exchanger is essential for Ca(2+) homeostasis and viability publication-title: Nature doi: 10.1038/nature22082 – volume: 417 start-page: 87 year: 2002 ident: 10.1016/j.cmet.2022.10.008_bib274 article-title: Rapid regulation of steroidogenesis by mitochondrial protein import publication-title: Nature doi: 10.1038/417087a – volume: 87 start-page: 2022 year: 2004 ident: 10.1016/j.cmet.2022.10.008_bib174 article-title: Coordinated behavior of mitochondria in both space and time: a reactive oxygen species-activated wave of mitochondrial depolarization publication-title: Biophys. J. doi: 10.1529/biophysj.103.035097 – volume: 110 start-page: 153 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib148 article-title: Molecular and clinical characterization of the myopathic form of mitochondrial DNA depletion syndrome caused by mutations in the thymidine kinase (TK2) gene publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2013.07.009 – volume: 18 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib151 article-title: From genes to modules, from cells to ecosystems publication-title: Mol. Syst. Biol. doi: 10.15252/msb.202110726 – year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib388 article-title: Optogenetic rejuvenation of mitochondrial membrane potential extends C. elegans lifespan publication-title: Preprint at bioRxiv – volume: 3 start-page: 604 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib248 article-title: UCP1 governs liver extracellular succinate and inflammatory pathogenesis publication-title: Nat. Metab. doi: 10.1038/s42255-021-00389-5 – volume: 44 start-page: 2 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib45 article-title: Beyond ATP, new roles of mitochondria publication-title: Biochemist doi: 10.1042/bio_2022_119 – volume: 99 start-page: 1165 year: 2006 ident: 10.1016/j.cmet.2022.10.008_bib89 article-title: Mitochondrial calcium transport is regulated by P2Y1- and P2Y2-like mitochondrial receptors publication-title: J. Cell. Biochem. doi: 10.1002/jcb.20985 – volume: 19 start-page: 3948 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib16 article-title: Mitochondrial myopathy induces a starvation-like response publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq310 – volume: 45 start-page: 244 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib106 article-title: The SLC25 mitochondrial carrier family: structure and mechanism publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2019.11.001 – volume: 4 start-page: a011148 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib149 article-title: The cyclic AMP pathway publication-title: Cold Spring Harbor Perspect. Biol. doi: 10.1101/cshperspect.a011148 – volume: 84 start-page: 289 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib143 article-title: Subcellular origin of mitochondrial DNA deletions in human skeletal muscle publication-title: Ann. Neurol. doi: 10.1002/ana.25288 – volume: 217 start-page: 439 year: 1955 ident: 10.1016/j.cmet.2022.10.008_bib3 article-title: Respiratory enzymes in oxidative phosphorylation. V. A mechanism for oxidative phosphorylation publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)57193-9 – volume: 6 start-page: 169 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib312 article-title: Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases publication-title: F1000Res. doi: 10.12688/f1000research.10397.1 – volume: 583 start-page: 122 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib114 article-title: Hepatic NADH reductive stress underlies common variation in metabolic traits publication-title: Nature doi: 10.1038/s41586-020-2337-2 – volume: 26 start-page: 2037 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib321 article-title: The transcription factor ATF5 mediates a mammalian mitochondrial UPR publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.06.002 – volume: 105 start-page: 2130 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib363 article-title: Molecular and subcellular-scale modeling of nucleotide diffusion in the cardiac myofilament lattice publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.09.020 – volume: 33 start-page: 2464 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib36 article-title: Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context publication-title: Cell Metab. doi: 10.1016/j.cmet.2021.11.001 – volume: 6 start-page: eabc9955 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib255 article-title: Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response publication-title: Sci. Adv. doi: 10.1126/sciadv.abc9955 – volume: 22 start-page: 204 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib14 article-title: Evolution of mitochondria as signaling organelles publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.05.013 – volume: 593 start-page: 435 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib185 article-title: Distinct fission signatures predict mitochondrial degradation or biogenesis publication-title: Nature doi: 10.1038/s41586-021-03510-6 – volume: 4 start-page: 413 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib31 article-title: Motile axonal mitochondria contribute to the variability of presynaptic strength publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.06.040 – volume: 3 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib389 article-title: Mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect publication-title: Life Sci. Alliance doi: 10.26508/lsa.202000797 – volume: 13 start-page: eabd1869 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib258 article-title: ABCB10 exports mitochondrial biliverdin, driving metabolic maladaptation in obesity publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abd1869 – volume: 1 start-page: 5 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib400 article-title: Mitochondrial respiration protects against oxygen-associated DNA damage publication-title: Nat. Commun. doi: 10.1038/ncomms1003 – volume: 6 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib309 article-title: Increased plasma levels of circulating cell-free mitochondrial DNA in suicide attempters: associations with HPA-axis hyperactivity publication-title: Transl. Psychiatry doi: 10.1038/tp.2016.236 – volume: 9 start-page: 295 year: 1988 ident: 10.1016/j.cmet.2022.10.008_bib270 article-title: Molecular biology of steroid hormone synthesis publication-title: Endocr. Rev. doi: 10.1210/edrv-9-3-295 – volume: 98 start-page: 6336 year: 2001 ident: 10.1016/j.cmet.2022.10.008_bib345 article-title: A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Aβ publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.101133498 – volume: 6 start-page: 6259 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib163 article-title: Trans-mitochondrial coordination of cristae at regulated membrane junctions publication-title: Nat. Commun. doi: 10.1038/ncomms7259 – volume: 1813 start-page: 1814 year: 2011 ident: 10.1016/j.cmet.2022.10.008_bib84 article-title: Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2011.05.014 – volume: 6 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib242 article-title: Oncometabolite D-2-hydroxyglurate directly induces epithelial-mesenchymal transition and is associated with distant metastasis in colorectal cancer publication-title: Sci. Rep. doi: 10.1038/srep36289 – volume: 130 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib337 article-title: Mitochondrial uncoupling and longevity - A role for mitokines? publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2019.110796 – volume: 7 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib85 article-title: Glucocorticoid and estrogen receptors are reduced in mitochondria of lung epithelial cells in asthma publication-title: PLoS One doi: 10.1371/journal.pone.0039183 – volume: 7 start-page: 1182 year: 2008 ident: 10.1016/j.cmet.2022.10.008_bib26 article-title: A novel role for mitochondria in regulating epigenetic modifications in the nucleus publication-title: Cancer Biol. Ther. doi: 10.4161/cbt.7.8.6215 – volume: 19 start-page: 657 year: 1999 ident: 10.1016/j.cmet.2022.10.008_bib63 article-title: Direct regulation of mitochondrial RNA synthesis by thyroid hormone publication-title: Mol. Cell Biol. doi: 10.1128/MCB.19.1.657 – volume: 34 start-page: 428 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib260 article-title: Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence publication-title: Genes Dev. doi: 10.1101/gad.331272.119 – volume: 21 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib280 article-title: Mitochondrial DNA in inflammation and immunity publication-title: EMBO Rep. doi: 10.15252/embr.201949799 – volume: 219 start-page: e201909154 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib269 article-title: Mitochondrial fragmentation enables localized signaling required for cell repair publication-title: J. Cell Biol. doi: 10.1083/jcb.201909154 – volume: 112 start-page: E6614 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib40 article-title: Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1515733112 – volume: 54 start-page: 13 year: 2008 ident: 10.1016/j.cmet.2022.10.008_bib64 article-title: Mitochondrial gene expression is regulated at multiple levels and differentially in the heart and liver by thyroid hormones publication-title: Curr. Genet. doi: 10.1007/s00294-008-0194-x – volume: 50 start-page: 339 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib204 article-title: Lysosomal regulation of inter-mitochondrial contact fate and motility in Charcot-Marie-Tooth type 2 publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.05.033 – volume: 19 start-page: 487 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib166 article-title: Power grid protection of the muscle mitochondrial reticulum publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.03.063 – volume: 21 start-page: 4411 year: 2002 ident: 10.1016/j.cmet.2022.10.008_bib316 article-title: A mitochondrial specific stress response in mammalian cells publication-title: EMBO J. doi: 10.1093/emboj/cdf445 – volume: 33 start-page: 270 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib369 article-title: Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.11.008 – volume: 291 start-page: C176 year: 2006 ident: 10.1016/j.cmet.2022.10.008_bib177 article-title: Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00348.2005 – volume: 108 start-page: 14849 year: 2011 ident: 10.1016/j.cmet.2022.10.008_bib86 article-title: Identification and characterization of a functional mitochondrial angiotensin system publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1101507108 – volume: 30 start-page: 1040 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib18 article-title: Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.08.019 – volume: 43 start-page: 806 year: 2011 ident: 10.1016/j.cmet.2022.10.008_bib139 article-title: Mitochondrial aging is accelerated by anti-retroviral therapy through the clonal expansion of mtDNA mutations publication-title: Nat. Genet. doi: 10.1038/ng.863 – volume: 17 start-page: 363 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib281 article-title: Mitochondrial DNA in innate immune responses and inflammatory pathology publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.21 – volume: 10 start-page: e70899 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib375 article-title: Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures publication-title: eLife doi: 10.7554/eLife.70899 – volume: 20 start-page: 3481 year: 2005 ident: 10.1016/j.cmet.2022.10.008_bib74 article-title: Estrogen receptors α and β (ERα and ERβ) and androgen receptor (AR) in human sperm: localization of ERβ and AR in mitochondria of the midpiece publication-title: Hum. Reprod. doi: 10.1093/humrep/dei267 – volume: 13 start-page: 118 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib82 article-title: A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells publication-title: BMC Neurosci. doi: 10.1186/1471-2202-13-118 – volume: 44 start-page: 358 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib292 article-title: [Nuclear mitochondrial pseudogenes] publication-title: Mol. Biol. (Mosk). doi: 10.1134/S0026893310030027 – volume: 62 start-page: 672 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib187 article-title: Linking the metabolic state and mitochondrial DNA in chronic disease, health, and aging publication-title: Diabetes doi: 10.2337/db12-1203 – volume: 13 start-page: 589 year: 2011 ident: 10.1016/j.cmet.2022.10.008_bib188 article-title: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability publication-title: Nat. Cell Biol. doi: 10.1038/ncb2220 – volume: 27 start-page: 633 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib105 article-title: Functional properties of the mitochondrial carrier system publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2017.04.004 – volume: 134 start-page: 112 year: 2008 ident: 10.1016/j.cmet.2022.10.008_bib372 article-title: A mitochondrial protein compendium elucidates complex I disease biology publication-title: Cell doi: 10.1016/j.cell.2008.06.016 – volume: 6 start-page: 1307 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib402 article-title: The role of mitochondrial energetics in the origin and diversification of eukaryotes publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-022-01833-9 – volume: 15 start-page: 413 year: 1983 ident: 10.1016/j.cmet.2022.10.008_bib160 article-title: Intermitochondrial contacts in myocardiocytes publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/0022-2828(83)90261-4 – volume: 28 start-page: 776 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib262 article-title: Mitohormesis in mice via sustained basal activation of mitochondrial and antioxidant signaling publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.07.011 – volume: 4 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib46 article-title: Digital signaling decouples activation probability and population heterogeneity publication-title: eLife doi: 10.7554/eLife.08931 – volume: 4 start-page: 651 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib256 article-title: Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo publication-title: Nat. Metab. doi: 10.1038/s42255-022-00591-z – volume: 8 start-page: 236 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib307 article-title: Cell-free DNA release under psychosocial and physical stress conditions publication-title: Transl. Psychiatry doi: 10.1038/s41398-018-0264-x – volume: 12 start-page: 11185 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib346 article-title: The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan publication-title: Aging (Albany NY) doi: 10.18632/aging.103534 – volume: 25 start-page: 1108 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib169 article-title: Dynamic tubulation of mitochondria drives mitochondrial network formation publication-title: Cell Res. doi: 10.1038/cr.2015.89 – volume: 117 start-page: 24778 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib41 article-title: Childhood maltreatment is associated with changes in mitochondrial bioenergetics in maternal, but not in neonatal immune cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2005885117 – volume: 579 start-page: 427 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib319 article-title: Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway publication-title: Nature doi: 10.1038/s41586-020-2078-2 – volume: 304 start-page: R393 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib218 article-title: Mitochondrial morphology transitions and functions: implications for retrograde signaling? publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00584.2012 – volume: 114 start-page: E7997 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib87 article-title: Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1705768114 – volume: 306 start-page: E469 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib326 article-title: Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00330.2013 – volume: 40 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib111 article-title: Mitochondrial hyperfusion via metabolic sensing of regulatory amino acids publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.111198 – volume: 12 start-page: 384 year: 2007 ident: 10.1016/j.cmet.2022.10.008_bib352 article-title: Plasma heat shock protein 60 and cardiovascular disease risk: the role of psychosocial, genetic, and biological factors publication-title: Cell Stress Chaperones doi: 10.1379/CSC-300.1 – volume: 2 start-page: zqab005 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib97 article-title: Mitochondrial P2X7 receptor localization modulates energy metabolism enhancing physical performance publication-title: Function (Oxf). doi: 10.1093/function/zqab005 – volume: 7 year: 2011 ident: 10.1016/j.cmet.2022.10.008_bib364 article-title: A new view of the bacterial cytosol environment publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002066 – volume: 21 start-page: 443 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib348 article-title: The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.02.009 – volume: 27 start-page: 1564 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib144 article-title: Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases publication-title: Nat. Med. doi: 10.1038/s41591-021-01441-3 – year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib285 article-title: Mitochondrial control of inflammation publication-title: Nat. Rev. Immunol. – volume: 98 start-page: 1467 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib305 article-title: Expanding and validating the biomarkers for mitochondrial diseases publication-title: J. Mol. Med. (Berl.) doi: 10.1007/s00109-020-01967-y – volume: 80 start-page: 126 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib404 article-title: Psychological stress and mitochondria: a conceptual framework publication-title: Psychosom. Med. doi: 10.1097/PSY.0000000000000544 – volume: 24 start-page: 761 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib213 article-title: Mitochondria: from cell death executioners to regulators of cell differentiation publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2014.08.005 – volume: 532 start-page: 112 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib257 article-title: Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1 publication-title: Nature doi: 10.1038/nature17399 – volume: 72 start-page: 2585 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib159 article-title: Mitochondrial fusion provides an 'initial metabolic complementation' controlled by mtDNA publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-015-1863-9 – volume: 33 start-page: 1853 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib370 article-title: Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes publication-title: Cell Metab. doi: 10.1016/j.cmet.2021.08.002 – volume: 114 start-page: E849 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib171 article-title: Increased mitochondrial nanotunneling activity, induced by calcium imbalance, affects intermitochondrial matrix exchanges publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1617788113 – volume: 359 start-page: eaao6047 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib288 article-title: BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis publication-title: Science doi: 10.1126/science.aao6047 – volume: 44 start-page: 740 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib279 article-title: Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency publication-title: Nat. Genet. doi: 10.1038/ng.2299 – volume: 1 start-page: 401 year: 2005 ident: 10.1016/j.cmet.2022.10.008_bib134 article-title: Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing publication-title: Cell Metab. doi: 10.1016/j.cmet.2005.05.001 – volume: 274 start-page: 29905 year: 1999 ident: 10.1016/j.cmet.2022.10.008_bib217 article-title: Cytochrome c-mediated apoptosis in cells lacking mitochondrial DNA publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.42.29905 – volume: 232 start-page: 245 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib130 article-title: Lithium increases leukocyte mitochondrial complex I activity in bipolar disorder during depressive episodes publication-title: Psychopharmacology (Berl) doi: 10.1007/s00213-014-3655-6 – volume: 9 start-page: 2162 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib90 article-title: Intracellular GPCRs play key roles in synaptic plasticity publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.7b00516 – volume: 85 start-page: 1193 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib251 article-title: Melatonin is required for the circadian regulation of sleep publication-title: Neuron doi: 10.1016/j.neuron.2015.02.016 – volume: 33 start-page: 688 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib29 article-title: Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming publication-title: Cell Metab. doi: 10.1016/j.cmet.2021.02.003 – volume: 5 start-page: 79 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib329 article-title: Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action publication-title: Mol. Metabol. doi: 10.1016/j.molmet.2015.11.002 – year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib56 article-title: No role for nuclear transcription regulators in mammalian mitochondria? publication-title: Mol. Cell – volume: 5 start-page: 90 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib245 article-title: Role of cardiolipin in mitochondrial signaling pathways publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2017.00090 – volume: 6 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib175 article-title: A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000657 – volume: 35 start-page: 724 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib265 article-title: Mitochondria are required for pro-ageing features of the senescent phenotype publication-title: EMBO J. doi: 10.15252/embj.201592862 – volume: 30 start-page: 199 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib354 article-title: Mitochondrial transcription factor A is a proinflammatory mediator in hemorrhagic shock publication-title: Int. J. Mol. Med. – volume: 554 start-page: 165 year: 2009 ident: 10.1016/j.cmet.2022.10.008_bib254 article-title: Reactive oxygen species production by mitochondria publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-521-3_11 – volume: 131 start-page: 136055 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib113 article-title: Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity publication-title: J. Clin. Invest. doi: 10.1172/JCI136055 – volume: 49 start-page: 307 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib68 article-title: Estrogens regulate life and death in mitochondria publication-title: J. Bioenerg. Biomembr. doi: 10.1007/s10863-017-9704-1 – volume: 63 start-page: 837 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib333 article-title: An adipocyte-specific defect in oxidative phosphorylation increases systemic energy expenditure and protects against diet-induced obesity in mouse models publication-title: Diabetologia doi: 10.1007/s00125-019-05082-7 – volume: 116 start-page: 20556 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib154 article-title: Individual and collective encoding of risk in animal groups publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1905585116 – volume: 143 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib310 article-title: Dynamic behavior of cell-free mitochondrial DNA in human saliva publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2022.105852 – volume: 3 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib282 article-title: Structural basis for the prion-like MAVS filaments in antiviral innate immunity publication-title: eLife doi: 10.7554/eLife.01489 – volume: 178 start-page: 1231 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib332 article-title: GDF15 is an inflammation-induced central mediator of tissue tolerance publication-title: Cell doi: 10.1016/j.cell.2019.07.033 – volume: 34 start-page: 12278 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib302 article-title: A case for measuring both cellular and cell-free mitochondrial DNA as a disease biomarker in human blood publication-title: FASEB J. doi: 10.1096/fj.202000959RR – volume: 39 start-page: 990 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib253 article-title: Melatonin as a hormone: new physiological and clinical insights publication-title: Endocr. Rev. doi: 10.1210/er.2018-00084 – volume: 27 start-page: 787 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib167 article-title: Mitochondrial nanotunnels publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2017.08.009 – volume: 379 start-page: 62 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib33 article-title: Steroid hormone synthesis in mitochondria publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2013.04.014 – year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib55 – volume: 18 start-page: 243 year: 2004 ident: 10.1016/j.cmet.2022.10.008_bib355 article-title: Why does metabolism scale with temperature? publication-title: Funct. Ecol. doi: 10.1111/j.0269-8463.2004.00841.x – volume: 191 start-page: 144 year: 1961 ident: 10.1016/j.cmet.2022.10.008_bib2 article-title: Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism publication-title: Nature doi: 10.1038/191144a0 – volume: 19 start-page: 7913 year: 1999 ident: 10.1016/j.cmet.2022.10.008_bib62 article-title: A variant form of the nuclear triiodothyronine receptor c-ErbAα1 plays a direct role in regulation of mitochondrial RNA synthesis publication-title: Mol. Cell Biol. doi: 10.1128/MCB.19.12.7913 – volume: 165 start-page: 1197 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib24 article-title: Mitochondrial stress induces chromatin reorganization to promote longevity and UPR(mt) publication-title: Cell doi: 10.1016/j.cell.2016.04.011 – volume: 38 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib387 article-title: Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent publication-title: EMBO J. doi: 10.15252/embj.2018101056 – volume: 1 start-page: 1209 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib147 article-title: Mitochondrial DNA stress signalling protects the nuclear genome publication-title: Nat. Metab. doi: 10.1038/s42255-019-0150-8 – volume: 319 start-page: E659 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib137 article-title: Mitochondrial-derived peptides in energy metabolism publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00249.2020 – volume: 15 start-page: 186 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib190 article-title: Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.01.009 – volume: 9 start-page: e49178 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib327 article-title: Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell publication-title: eLife doi: 10.7554/eLife.49178 – volume: 337 start-page: 93 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib108 article-title: Identification and functional expression of the mitochondrial pyruvate carrier publication-title: Science doi: 10.1126/science.1218530 – volume: 181 start-page: 250 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib403 article-title: The biology of physiological health publication-title: Cell doi: 10.1016/j.cell.2020.03.036 – volume: 112 start-page: 15486 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib39 article-title: Mitochondrial function in the brain links anxiety with social subordination publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1512653112 – volume: 37 start-page: 345 year: 1968 ident: 10.1016/j.cmet.2022.10.008_bib104 article-title: Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria publication-title: J. Cell Biol. doi: 10.1083/jcb.37.2.345 – volume: 8 start-page: 100 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib181 article-title: A novel cell-free mitochondrial fusion assay amenable for high-throughput screenings of fusion modulators publication-title: BMC Biol. doi: 10.1186/1741-7007-8-100 – volume: 32 start-page: 1927 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib165 article-title: OPA1 promotes pH flashes that spread between contiguous mitochondria without matrix protein exchange publication-title: EMBO J. doi: 10.1038/emboj.2013.124 – volume: 114 start-page: E859 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib178 article-title: Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1617288114 – volume: 540 start-page: 236 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib243 article-title: S-2-hydroxyglutarate regulates CD8(+) T-lymphocyte fate publication-title: Nature doi: 10.1038/nature20165 – year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib112 – volume: 118 start-page: 1161 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib192 article-title: Mechanical ventilation triggers abnormal mitochondrial dynamics and morphology in the diaphragm publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00873.2014 – volume: 3 year: 2008 ident: 10.1016/j.cmet.2022.10.008_bib65 article-title: Overexpression of the mitochondrial T3 receptor p43 induces a shift in skeletal muscle fiber types publication-title: PLoS One doi: 10.1371/journal.pone.0002501 – volume: 370 start-page: 751 year: 2003 ident: 10.1016/j.cmet.2022.10.008_bib300 article-title: Mitochondrial threshold effects publication-title: Biochem. J. doi: 10.1042/bj20021594 – volume: 9 start-page: 31 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib294 article-title: Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma publication-title: Genome Med. doi: 10.1186/s13073-017-0420-6 – volume: 12 start-page: 470 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib350 article-title: MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis publication-title: Nat. Commun. doi: 10.1038/s41467-020-20790-0 – volume: 505 start-page: 335 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib176 article-title: Mitochondrial form and function publication-title: Nature doi: 10.1038/nature12985 – volume: 148 start-page: 1145 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib15 article-title: Mitochondria: in sickness and in health publication-title: Cell doi: 10.1016/j.cell.2012.02.035 – volume: 28 start-page: 3301 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib126 article-title: Pancreatic beta-cell Na+ channels control global Ca2+ signaling and oxidative metabolism by inducing Na+ and Ca2+ responses that are propagated into mitochondria publication-title: FASEB J. doi: 10.1096/fj.13-248161 – volume: 86 start-page: 147 year: 1996 ident: 10.1016/j.cmet.2022.10.008_bib9 article-title: Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c publication-title: Cell doi: 10.1016/S0092-8674(00)80085-9 – volume: 101 start-page: 7805 year: 2004 ident: 10.1016/j.cmet.2022.10.008_bib157 article-title: Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0401077101 – volume: 33 start-page: 334 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib349 article-title: Mitohormesis in hypothalamic POMC neurons mediates regular exercise-induced high-turnover metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2021.01.003 – volume: 368 start-page: eaax9553 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib406 article-title: Social determinants of health and survival in humans and other animals publication-title: Science doi: 10.1126/science.aax9553 – volume: 99 start-page: 13 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib208 article-title: Current knowledge on the acute regulation of steroidogenesis publication-title: Biol. Reprod. doi: 10.1093/biolre/ioy102 – volume: 8 start-page: 31 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib268 article-title: Dendritic mitoflash as a putative signal for stabilizing long-term synaptic plasticity publication-title: Nat. Commun. doi: 10.1038/s41467-017-00043-3 – volume: 15 start-page: 235 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib395 article-title: Mitochondrial dynamics and its involvement in disease publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathmechdis-012419-032711 – volume: 1363 start-page: 91 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib228 article-title: One-carbon metabolism and epigenetics: understanding the specificity publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.12956 – volume: 21 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib334 article-title: Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress publication-title: EMBO Rep. doi: 10.15252/embr.201948804 – volume: 169 start-page: 24 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib47 article-title: The upsides and downsides of organelle interconnectivity publication-title: Cell doi: 10.1016/j.cell.2017.02.030 – volume: 28 start-page: 516 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib21 article-title: The mitochondrial-encoded peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response to metabolic stress publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.06.008 – volume: 16 start-page: R551 year: 2006 ident: 10.1016/j.cmet.2022.10.008_bib44 article-title: Mitochondria: more than just a powerhouse publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.06.054 – volume: 43 start-page: 95 year: 2009 ident: 10.1016/j.cmet.2022.10.008_bib220 article-title: The role of mitochondria in apoptosis publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-102108-134850 – volume: 6 start-page: 389 year: 2005 ident: 10.1016/j.cmet.2022.10.008_bib141 article-title: Mitochondrial DNA mutations in human disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1606 – volume: 368 start-page: 197 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib231 article-title: Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking publication-title: Science doi: 10.1126/science.aaw8806 – volume: 108 start-page: 10190 year: 2011 ident: 10.1016/j.cmet.2022.10.008_bib189 article-title: Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1107402108 – volume: 26 start-page: 996 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib170 article-title: Quantitative 3D mapping of the human skeletal muscle mitochondrial network publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.01.010 – volume: 111 start-page: E4033 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib23 article-title: Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1414028111 – volume: 19 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib336 article-title: Growth differentiation factor 15 protects against the aging-mediated systemic inflammatory response in humans and mice publication-title: Aging Cell doi: 10.1111/acel.13195 – volume: 9 start-page: 919 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib297 article-title: The migration of mitochondrial DNA fragments to the nucleus affects the chronological aging process of Saccharomyces cerevisiae publication-title: Aging Cell doi: 10.1111/j.1474-9726.2010.00607.x – volume: 56 start-page: 1783 year: 2007 ident: 10.1016/j.cmet.2022.10.008_bib259 article-title: Reactive oxygen species as a signal in glucose-stimulated insulin secretion publication-title: Diabetes doi: 10.2337/db06-1601 – volume: 8 start-page: 1233 year: 1997 ident: 10.1016/j.cmet.2022.10.008_bib8 article-title: Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA publication-title: Mol. Biol. Cell doi: 10.1091/mbc.8.7.1233 – volume: 92 start-page: 1062 year: 2004 ident: 10.1016/j.cmet.2022.10.008_bib96 article-title: Mitochondrial P2Y-like receptors link cytosolic adenosine nucleotides to mitochondrial calcium uptake publication-title: J. Cell. Biochem. doi: 10.1002/jcb.20144 – volume: 186 start-page: 113 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib271 article-title: Neurosteroids: endogenous role in the human brain and therapeutic potentials publication-title: Prog. Brain Res. doi: 10.1016/B978-0-444-53630-3.00008-7 – volume: 106 start-page: 268 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib308 article-title: Acute psychological stress increases serum circulating cell-free mitochondrial DNA publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2019.03.026 – volume: 367 start-page: eaay5947 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib384 article-title: An atlas of the protein-coding genes in the human, pig, and mouse brain publication-title: Science doi: 10.1126/science.aay5947 – volume: 184 start-page: 33 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib394 article-title: Hallmarks of health publication-title: Cell doi: 10.1016/j.cell.2020.11.034 – volume: 49 start-page: D1541 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib35 article-title: MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1011 – volume: 34 start-page: 197 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib380 article-title: Mosaic dysfunction of mitophagy in mitochondrial muscle disease publication-title: Cell Metab. doi: 10.1016/j.cmet.2021.12.017 – volume: 13 start-page: 2620 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib381 article-title: Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability publication-title: J. Proteome Res. doi: 10.1021/pr500295n – volume: 101 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib222 article-title: Cristae junction as a fundamental switchboard for mitochondrial ion signaling and bioenergetics publication-title: Cell Calcium doi: 10.1016/j.ceca.2021.102517 – volume: 10 start-page: e63104 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib103 article-title: Intrinsic OXPHOS limitations underlie cellular bioenergetics in leukemia publication-title: eLife doi: 10.7554/eLife.63104 – volume: 41 start-page: bnaa007 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib338 article-title: GDF15: a hormone conveying somatic distress to the brain publication-title: Endocr. Rev. doi: 10.1210/endrev/bnaa007 – volume: 25 start-page: 814 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib299 article-title: Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells publication-title: Genome Res. doi: 10.1101/gr.190470.115 – volume: 8 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib238 article-title: Operation of a TCA cycle subnetwork in the mammalian nucleus publication-title: Sci. Adv. doi: 10.1126/sciadv.abq5206 – volume: 28 start-page: 295 year: 2002 ident: 10.1016/j.cmet.2022.10.008_bib273 article-title: The steroidogenic acute regulatory protein, StAR, works only at the outer mitochondrial membrane publication-title: Endocr. Res. doi: 10.1081/ERC-120016800 – volume: 55 start-page: 601 year: 1988 ident: 10.1016/j.cmet.2022.10.008_bib7 article-title: Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease publication-title: Cell doi: 10.1016/0092-8674(88)90218-8 – volume: 28 start-page: 85 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib224 article-title: The various metabolic sources of histone acetylation publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2016.11.001 – volume: 318 start-page: 635 year: 1985 ident: 10.1016/j.cmet.2022.10.008_bib77 article-title: Primary structure and expression of a functional human glucocorticoid receptor cDNA publication-title: Nature doi: 10.1038/318635a0 – volume: 32 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib263 article-title: Single nucleotide resolution analysis reveals pervasive, long-lasting DNA methylation changes by developmental exposure to a mitochondrial toxicant publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108131 – volume: 19 start-page: 77 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib392 article-title: Mitochondrial diseases: the contribution of organelle stress responses to pathology publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.66 – volume: 539 start-page: 555 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib34 article-title: A cannabinoid link between mitochondria and memory publication-title: Nature doi: 10.1038/nature20127 – volume: 6 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib291 article-title: The spectrum of mitochondrial ultrastructural defects in mitochondrial myopathy publication-title: Sci. Rep. doi: 10.1038/srep30610 – volume: 300 start-page: C1280 year: 2011 ident: 10.1016/j.cmet.2022.10.008_bib376 article-title: Protein composition and function of red and white skeletal muscle mitochondria publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00496.2010 – volume: 38 start-page: 437 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib91 article-title: Subcellular characteristics of functional intracellular renin-angiotensin systems publication-title: Peptides doi: 10.1016/j.peptides.2012.09.016 – volume: 560 start-page: 238 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib290 article-title: Mitochondrial double-stranded RNA triggers antiviral signalling in humans publication-title: Nature doi: 10.1038/s41586-018-0363-0 – volume: 139 start-page: 381 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib344 article-title: Mitonuclear genomics and aging publication-title: Hum. Genet. doi: 10.1007/s00439-020-02119-5 – volume: 89 start-page: 4221 year: 1992 ident: 10.1016/j.cmet.2022.10.008_bib138 article-title: MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.89.10.4221 – volume: 2 start-page: 145 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib407 article-title: Why do we care more about disease than health? publication-title: Phenomics doi: 10.1007/s43657-021-00037-8 – volume: 607 start-page: 756 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib371 article-title: Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I publication-title: Nature doi: 10.1038/s41586-022-04979-5 – volume: 556 start-page: 501 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib240 article-title: Electrophilic properties of itaconate and derivatives regulate the IκBζ–ATF3 inflammatory axis publication-title: Nature doi: 10.1038/s41586-018-0052-z – volume: 170 start-page: 30 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib264 article-title: The senescent bystander effect is caused by ROS-activated NF-κB signalling publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2017.08.005 – volume: 21 start-page: 737 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib226 article-title: The evolving metabolic landscape of chromatin biology and epigenetics publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-0270-8 – volume: 246 start-page: 261 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib379 article-title: Multilevel heterogeneity of mitochondrial respiratory chain deficiency publication-title: J. Pathol. doi: 10.1002/path.5146 – volume: 1 start-page: 5 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib399 article-title: Mind your mouse strain publication-title: Nat. Metab. doi: 10.1038/s42255-018-0018-3 – volume: 8 start-page: eabn7105 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib331 article-title: FGF21 modulates mitochondrial stress response in cardiomyocytes only under mild mitochondrial dysfunction publication-title: Sci. Adv. doi: 10.1126/sciadv.abn7105 – volume: 9 start-page: 31 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib298 article-title: Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma publication-title: Genome Med. doi: 10.1186/s13073-017-0420-6 – volume: 197 start-page: 996 year: 1977 ident: 10.1016/j.cmet.2022.10.008_bib60 article-title: Thyroid hormone action: the mitochondrial pathway publication-title: Science doi: 10.1126/science.196334 – volume: 120 start-page: 595 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib152 article-title: The social nature of mitochondria: implications for human health publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2020.04.017 – volume: 163 start-page: 560 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib215 article-title: Mitochondrial ROS signaling in organismal homeostasis publication-title: Cell doi: 10.1016/j.cell.2015.10.001 – volume: 36 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib385 article-title: 3D neuronal mitochondrial morphology in axons, dendrites, and somata of the aging mouse hippocampus publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109509 – volume: 255 start-page: 8144 year: 1980 ident: 10.1016/j.cmet.2022.10.008_bib272 article-title: Intracellular movement of cholesterol in rat adrenal cells. Kinetics and effects of inhibitors publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)70620-6 – volume: 1 start-page: 975 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib123 article-title: Voltage-energized calcium-sensitive ATP production by mitochondria publication-title: Nat. Metab. doi: 10.1038/s42255-019-0126-8 – volume: 189 start-page: 433 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib353 article-title: Mitochondrial transcription factor A serves as a danger signal by augmenting plasmacytoid dendritic cell responses to DNA publication-title: J. Immunol. doi: 10.4049/jimmunol.1101375 – volume: 21 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib27 article-title: Systemic effects of mitochondrial stress publication-title: EMBO Rep. doi: 10.15252/embr.202050094 – volume: 28 start-page: 523 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib207 article-title: Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2018.02.009 – volume: 153 start-page: 1510 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib365 article-title: Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture publication-title: Cell doi: 10.1016/j.cell.2013.05.021 – year: 1890 ident: 10.1016/j.cmet.2022.10.008_bib1 – year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib101 – volume: 16 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib25 article-title: Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2005707 – volume: 14 start-page: 225 year: 1967 ident: 10.1016/j.cmet.2022.10.008_bib49 article-title: On the origin of mitosing cells publication-title: J. Theor. Biol. doi: 10.1016/0022-5193(67)90079-3 – volume: 107 start-page: 481 year: 1988 ident: 10.1016/j.cmet.2022.10.008_bib161 article-title: Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes publication-title: J. Cell Biol. doi: 10.1083/jcb.107.2.481 – volume: 20 start-page: 755 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib199 article-title: Mitochondrial dynamics in adaptive and maladaptive cellular stress responses publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0133-0 – volume: 69 start-page: 757 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib20 article-title: Mitochondrial retrograde signaling in mammals is mediated by the transcriptional cofactor GPS2 via direct mitochondria-to-nucleus translocation publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.01.037 – volume: 26 start-page: 419 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib115 article-title: mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.07.007 – volume: 26 start-page: 67 year: 2001 ident: 10.1016/j.cmet.2022.10.008_bib57 article-title: Thyroid hormone action in mitochondria publication-title: J. Mol. Endocrinol. doi: 10.1677/jme.0.0260067 – volume: 552 start-page: 75 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib28 article-title: Mitochondrial transfer between cells: methodological constraints in cell culture and animal models publication-title: Anal. Biochem. doi: 10.1016/j.ab.2017.11.008 – volume: 457 start-page: 289 year: 2009 ident: 10.1016/j.cmet.2022.10.008_bib179 article-title: Monitoring mitochondrial dynamics with photoactivatable [corrected] green fluorescent protein. publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(09)05016-2 – volume: 348 start-page: 340 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib53 article-title: Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness publication-title: Science doi: 10.1126/science.1260384 – volume: 110 start-page: 2846 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib168 article-title: Kissing and nanotunneling mediate intermitochondrial communication in the heart publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1300741110 – volume: 98 start-page: 552 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib362 article-title: Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli publication-title: Biophys. J. doi: 10.1016/j.bpj.2009.11.002 – volume: 1 start-page: 318 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib48 article-title: The physics of brain network structure, function and control publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0040-8 – volume: 84 start-page: 9 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib42 article-title: A mitochondrial health index sensitive to mood and caregiving stress publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2018.01.012 – volume: 174 start-page: 870 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib267 article-title: The mitochondrial unfolded protein response is mediated cell-non-autonomously by retromer-dependent Wnt signaling publication-title: Cell doi: 10.1016/j.cell.2018.06.029 – volume: 325 start-page: 477 year: 2009 ident: 10.1016/j.cmet.2022.10.008_bib209 article-title: An ER-mitochondria tethering complex revealed by a synthetic biology screen publication-title: Science doi: 10.1126/science.1175088 – volume: 7 start-page: 1204 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib343 article-title: Accuracy of FGF-21 and GDF-15 for the diagnosis of mitochondrial disorders: a meta-analysis publication-title: Ann. Clin. Transl. Neurol. doi: 10.1002/acn3.51104 – volume: 44 start-page: 423 year: 2004 ident: 10.1016/j.cmet.2022.10.008_bib182 article-title: Hyperglycemic conditions affect shape and Ca2+ homeostasis of mitochondria in endothelial cells publication-title: J. Cardiovasc. Pharmacol. doi: 10.1097/01.fjc.0000139449.64337.1b – volume: 26 start-page: 2602 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib386 article-title: Progressive decrease of mitochondrial motility during maturation of cortical axons in vitro and in vivo publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.07.064 – volume: 158 start-page: 54 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib203 article-title: Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase publication-title: Cell doi: 10.1016/j.cell.2014.06.007 – volume: 9 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib52 article-title: Intracellular energy variability modulates cellular decision-making capacity publication-title: Sci. Rep. doi: 10.1038/s41598-019-56587-5 – volume: 520 start-page: 553 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib22 article-title: Mitochondrial DNA stress primes the antiviral innate immune response publication-title: Nature doi: 10.1038/nature14156 – volume: 40 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib249 article-title: Succinate uptake by T cells suppresses their effector function via inhibition of mitochondrial glucose oxidation publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.111193 – volume: 1745 start-page: 382 year: 2005 ident: 10.1016/j.cmet.2022.10.008_bib70 article-title: Differential subcellular distribution of estrogen receptor isoforms: localization of ERα in the nucleoli and ERβ in the mitochondria of human osteosarcoma SaOS-2 and hepatocarcinoma HepG2 cell lines publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2005.05.010 – volume: 19 start-page: 458 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib324 article-title: Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.02.004 – volume: 155 start-page: 160 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib193 article-title: Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency publication-title: Cell doi: 10.1016/j.cell.2013.08.032 – volume: 122 start-page: 669 year: 2005 ident: 10.1016/j.cmet.2022.10.008_bib283 article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3 publication-title: Cell doi: 10.1016/j.cell.2005.08.012 – volume: 235 start-page: 349 year: 1997 ident: 10.1016/j.cmet.2022.10.008_bib81 article-title: The mitochondrion as a primary site of action of glucocorticoids: mitochondrial nucleotide sequences, showing similarity to hormone response elements, confer dexamethasone inducibility to chimaeric genes transfected in LATK- cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.6787 – volume: 216 start-page: 2027 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib320 article-title: Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals publication-title: J. Cell Biol. doi: 10.1083/jcb.201702058 – volume: 185 start-page: 3356 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib221 article-title: Sublethal cytochrome c release generates drug-tolerant persister cells publication-title: Cell doi: 10.1016/j.cell.2022.07.025 – volume: 16 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib360 article-title: Mitochondria are physiologically maintained at close to 50 °C publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2003992 – volume: 24 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib328 article-title: Differential roles of GDF15 and FGF21 in systemic metabolic adaptation to the mitochondrial integrated stress response publication-title: iScience doi: 10.1016/j.isci.2021.102181 – volume: 26 start-page: 771 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib277 article-title: Role of mitochondria in steroidogenesis publication-title: Best Pract. Res. Clin. Endocrinol. Metab. doi: 10.1016/j.beem.2012.05.002 – volume: 134 start-page: 220 year: 2011 ident: 10.1016/j.cmet.2022.10.008_bib72 article-title: Oestrogens ameliorate mitochondrial dysfunction in Leber's hereditary optic neuropathy publication-title: Brain doi: 10.1093/brain/awq276 – volume: 36 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib76 article-title: Human studies of mitochondrial biology demonstrate an overall lack of binary sex differences: a multivariate meta-analysis publication-title: FASEB J. doi: 10.1096/fj.202101628R – volume: 50 start-page: 259 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib205 article-title: Knowing when to let go: lysosomes regulate inter-mitochondrial tethering publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.07.019 – volume: 19 start-page: 83 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib325 article-title: Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine publication-title: Nat. Med. doi: 10.1038/nm.3014 – volume: 103 start-page: 2653 year: 2006 ident: 10.1016/j.cmet.2022.10.008_bib184 article-title: Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0511154103 – volume: 116 start-page: 18435 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib261 article-title: Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1910574116 – volume: 38 start-page: 468 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib361 article-title: Mitochondrial synapses: intracellular communication and signal integration publication-title: Trends Neurosci. doi: 10.1016/j.tins.2015.06.001 – volume: 78 start-page: 814 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib341 article-title: Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders publication-title: Ann. Neurol. doi: 10.1002/ana.24506 – volume: 91 start-page: 7247 year: 1994 ident: 10.1016/j.cmet.2022.10.008_bib278 article-title: The mitochondrial environment is required for activity of the cholesterol side-chain cleavage enzyme, cytochrome P450scc publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.15.7247 – volume: 13 start-page: 335 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib92 article-title: Melatonin synthesis in and uptake by mitochondria: implications for diseased cells with dysfunctional mitochondria publication-title: Future Med. Chem. doi: 10.4155/fmc-2020-0326 – volume: 28 start-page: 3074 year: 2009 ident: 10.1016/j.cmet.2022.10.008_bib158 article-title: Mitochondrial 'kiss-and-run': interplay between mitochondrial motility and fusion-fission dynamics publication-title: EMBO J. doi: 10.1038/emboj.2009.255 – volume: 12 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib210 article-title: A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001969 – volume: 579 start-page: 433 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib318 article-title: A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol publication-title: Nature doi: 10.1038/s41586-020-2076-4 – year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib237 article-title: A multi-omics and bioenergetics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations publication-title: Preprint at bioRxiv – volume: 318 start-page: R445 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib306 article-title: Cell-free mitochondrial DNA increases in maternal circulation during healthy pregnancy: a prospective, longitudinal study publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00324.2019 – volume: 287 start-page: C817 year: 2004 ident: 10.1016/j.cmet.2022.10.008_bib223 article-title: Calcium, ATP, and ROS: a mitochondrial love-hate triangle publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00139.2004 – volume: 337 start-page: 587 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib19 article-title: Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation publication-title: Science doi: 10.1126/science.1223560 – volume: 185 start-page: 2853 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib131 article-title: Nitric oxide signaling in health and disease publication-title: Cell doi: 10.1016/j.cell.2022.06.010 – volume: 5 start-page: 101 year: 2004 ident: 10.1016/j.cmet.2022.10.008_bib155 article-title: Network biology: understanding the cell's functional organization publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1272 – volume: 120 start-page: 483 year: 2005 ident: 10.1016/j.cmet.2022.10.008_bib214 article-title: Mitochondria, oxidants, and aging publication-title: Cell doi: 10.1016/j.cell.2005.02.001 – volume: 43 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib246 article-title: Metabolism and chromatin: a dynamic duo that regulates development and ageing publication-title: Bioessays doi: 10.1002/bies.202000273 – volume: 467 start-page: 929 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib401 article-title: The energetics of genome complexity publication-title: Nature doi: 10.1038/nature09486 – volume: 216 start-page: 149 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib330 article-title: Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis publication-title: J. Cell Biol. doi: 10.1083/jcb.201607110 – volume: 10 start-page: 882 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib250 article-title: Blunted nocturnal salivary melatonin secretion profiles in military-related posttraumatic stress disorder publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2019.00882 – volume: 1801 start-page: 163 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib66 article-title: Thyroid hormone action: the p43 mitochondrial pathway publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7902-8_14 – volume: 28 start-page: 142 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib37 article-title: Mitochondrial psychobiology: foundations and applications publication-title: Curr. Opin. Behav. Sci. doi: 10.1016/j.cobeha.2019.04.015 – volume: 28 start-page: 145 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib132 article-title: Acute O2 sensing: role of coenzyme QH2/Q ratio and mitochondrial ROS compartmentalization publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.05.009 – volume: 55 start-page: 43 year: 1995 ident: 10.1016/j.cmet.2022.10.008_bib80 article-title: The mitochondrion as a primary site of action of glucocorticoids: the interaction of the glucocorticoid receptor with mitochondrial DNA sequences showing partial similarity to the nuclear glucocorticoid responsive elements publication-title: J. Steroid Biochem. Mol. Biol. doi: 10.1016/0960-0760(95)00159-W – volume: 22 start-page: 825 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib133 article-title: Oxygen sensing by arterial chemoreceptors depends on mitochondrial complex I signaling publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.09.004 – volume: 34 start-page: 3616 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib314 article-title: Blood contains circulating cell-free respiratory competent mitochondria publication-title: FASEB J. doi: 10.1096/fj.201901917RR – volume: 2 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib140 article-title: Mitochondrial diseases publication-title: Nat. Rev. Dis. Primers doi: 10.1038/nrdp.2016.80 – volume: 20 start-page: 4107 year: 2001 ident: 10.1016/j.cmet.2022.10.008_bib10 article-title: Propagation of the apoptotic signal by mitochondrial waves publication-title: EMBO J. doi: 10.1093/emboj/20.15.4107 – volume: 63 start-page: 162 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib244 article-title: Reign in the membrane: how common lipids govern mitochondrial function publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2020.01.006 – volume: 369 start-page: 2236 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib396 article-title: Mitochondrial dynamics--mitochondrial fission and fusion in human diseases publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1215233 – volume: 183 start-page: 94 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib30 article-title: A network of macrophages supports mitochondrial homeostasis in the heart publication-title: Cell doi: 10.1016/j.cell.2020.08.031 – volume: 95 start-page: 1111 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib219 article-title: The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology publication-title: Physiol. Rev. doi: 10.1152/physrev.00001.2015 – volume: 12 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib359 article-title: Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response publication-title: PLoS One doi: 10.1371/journal.pone.0172344 – volume: 535 start-page: 561 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib145 article-title: Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing publication-title: Nature doi: 10.1038/nature18618 – volume: 77 start-page: 6715 year: 1980 ident: 10.1016/j.cmet.2022.10.008_bib5 article-title: Maternal inheritance of human mitochondrial DNA publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.77.11.6715 – volume: 141 start-page: 280 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib12 article-title: Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations publication-title: Cell doi: 10.1016/j.cell.2010.02.026 – volume: 55 start-page: 1370 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib287 article-title: Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling publication-title: Immunity doi: 10.1016/j.immuni.2022.06.007 – volume: 23 start-page: 1271 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib368 article-title: MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control publication-title: Nat. Cell Biol. doi: 10.1038/s41556-021-00798-4 – year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib293 – volume: 22 start-page: 407 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib212 article-title: Spine dynamics in the brain, mental disorders and artificial neural networks publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-021-00467-3 – volume: 574 start-page: 575 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib230 article-title: Metabolic regulation of gene expression by histone lactylation publication-title: Nature doi: 10.1038/s41586-019-1678-1 – volume: 58 start-page: 255 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib315 article-title: Extracellular mitochondria in the cerebrospinal fluid (CSF): potential types and key roles in central nervous system (CNS) physiology and pathogenesis publication-title: Mitochondrion doi: 10.1016/j.mito.2021.02.006 – volume: 27 start-page: 869 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib383 article-title: Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.03.003 – volume: 294 start-page: 6621 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib73 article-title: Mitochondrial localization, import, and mitochondrial function of the androgen receptor publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.006727 – volume: 59 start-page: 225 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib301 article-title: Stress and circulating cell-free mitochondrial DNA: a systematic review of human studies, physiological considerations, and technical recommendations publication-title: Mitochondrion doi: 10.1016/j.mito.2021.04.002 – volume: 10 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib311 article-title: Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001577 – start-page: 165 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib50 article-title: The multicellular organism as a social phenomenon – volume: 53 start-page: 982 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib146 article-title: An atlas of mitochondrial DNA genotype-phenotype associations in the UK Biobank publication-title: Nat. Genet. doi: 10.1038/s41588-021-00868-1 – volume: 6 start-page: eabe5310 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib109 article-title: MCART1/SLC25A51 is required for mitochondrial NAD transport publication-title: Sci. Adv. doi: 10.1126/sciadv.abe5310 – volume: 4 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib153 article-title: The evolution of distributed sensing and collective computation in animal populations publication-title: eLife doi: 10.7554/eLife.10955 – volume: 27 start-page: 497 year: 2018 ident: 10.1016/j.cmet.2022.10.008_bib118 article-title: The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.01.016 – volume: 4 start-page: 292 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib198 article-title: Mitochondrial movement during its association with chloroplasts in Arabidopsis thaliana publication-title: Commun. Biol. doi: 10.1038/s42003-021-01833-8 – volume: 27 start-page: 433 year: 2008 ident: 10.1016/j.cmet.2022.10.008_bib13 article-title: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy publication-title: EMBO J. doi: 10.1038/sj.emboj.7601963 – volume: 20 start-page: 350 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib100 article-title: α7 nicotinic acetylcholine receptor signaling inhibits inflammasome activation by preventing mitochondrial DNA release publication-title: Mol. Med. doi: 10.2119/molmed.2013.00117 – volume: 401 start-page: 3 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib43 article-title: Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine publication-title: Biol. Chem. doi: 10.1515/hsz-2019-0268 – volume: 51 start-page: 2959 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib122 article-title: Role of mitochondrial ca(2+) in the regulation of cellular energetics publication-title: Biochemistry doi: 10.1021/bi2018909 – volume: 53 start-page: 246 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib99 article-title: Mitochondria express several nicotinic acetylcholine receptor subtypes to control various pathways of apoptosis induction publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2014.05.030 – volume: 299 start-page: C477 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib196 article-title: Biophysical properties of mitochondrial fusion events in pancreatic beta-cells and cardiac cells unravel potential control mechanisms of its selectivity publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00427.2009 – volume: 170 start-page: 59 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib227 article-title: Mitochondria signaling to the epigenome: a novel role for an old organelle publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2020.11.016 – volume: 81 start-page: 3866 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib211 article-title: Oxidative bursts of single mitochondria mediate retrograde signaling toward the ER publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.07.014 – volume: 15 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib317 article-title: Balancing energy and protein homeostasis at ER-mitochondria contact sites publication-title: Sci. Signal. doi: 10.1126/scisignal.abm7524 – volume: 23 start-page: 15 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib232 article-title: Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0556-3 – volume: 302 start-page: C629 year: 2012 ident: 10.1016/j.cmet.2022.10.008_bib374 article-title: Mitochondrial functional specialization in glycolytic and oxidative muscle fibers: tailoring the organelle for optimal function publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00368.2011 – volume: 105 start-page: 391 year: 1984 ident: 10.1016/j.cmet.2022.10.008_bib58 article-title: Purification of the mitochondrial triiodothyronine (T3) receptor from rat liver publication-title: Acta Endocrinol. – volume: 270 start-page: 16347 year: 1995 ident: 10.1016/j.cmet.2022.10.008_bib61 article-title: A 43-kDa protein related to c-Erb A alpha 1 is located in the mitochondrial matrix of rat liver publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.27.16347 – volume: 23 start-page: 1150 year: 2017 ident: 10.1016/j.cmet.2022.10.008_bib335 article-title: GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates publication-title: Nat. Med. doi: 10.1038/nm.4392 – volume: 34 start-page: 1325 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib357 article-title: The mitochondrial calcium uniporter engages UCP1 to form a thermoporter that promotes thermogenesis publication-title: Cell Metab. doi: 10.1016/j.cmet.2022.07.011 – volume: 115 start-page: 1562 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib162 article-title: Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00819.2013 – volume: 18 start-page: 461 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib247 article-title: Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-022-01004-8 – volume: 11 start-page: 102 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib216 article-title: Mitochondrial TCA cycle metabolites control physiology and disease publication-title: Nat. Commun. doi: 10.1038/s41467-019-13668-3 – volume: 290 start-page: 2604 year: 2015 ident: 10.1016/j.cmet.2022.10.008_bib275 article-title: Mitochondria-associated endoplasmic reticulum membrane (MAM) regulates steroidogenic activity via steroidogenic acute regulatory protein (StAR)-voltage-dependent anion channel 2 (VDAC2) interaction publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.605808 – volume: 87 start-page: 2290 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib342 article-title: FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders publication-title: Neurology doi: 10.1212/WNL.0000000000003374 – volume: 118 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib340 article-title: Activation of the hypothalamic-pituitary-adrenal axis by exogenous and endogenous GDF15 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2106868118 – volume: 33 start-page: 1605 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib252 article-title: The use of exogenous melatonin in delayed sleep phase disorder: a meta-analysis publication-title: Sleep doi: 10.1093/sleep/33.12.1605 – volume: 6 year: 2016 ident: 10.1016/j.cmet.2022.10.008_bib83 article-title: Glucocorticoid receptor isoforms direct distinct mitochondrial programs to regulate ATP production publication-title: Sci. Rep. doi: 10.1038/srep26419 – volume: 167 start-page: 661 year: 2004 ident: 10.1016/j.cmet.2022.10.008_bib202 article-title: Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit publication-title: J. Cell Biol. doi: 10.1083/jcb.200406038 – volume: 10 year: 2014 ident: 10.1016/j.cmet.2022.10.008_bib405 article-title: Human social genomics publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004601 – volume: 377 start-page: 621 year: 2022 ident: 10.1016/j.cmet.2022.10.008_bib98 article-title: Mitochondrial remodeling and ischemic protection by G protein-coupled receptor 35 agonists publication-title: Science doi: 10.1126/science.abm1638 – volume: 342 start-page: 1524 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib390 article-title: mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome publication-title: Science doi: 10.1126/science.1244360 – volume: 180 start-page: 1178 year: 2020 ident: 10.1016/j.cmet.2022.10.008_bib32 article-title: Aralar sequesters GABA into hyperactive mitochondria, causing social behavior deficits publication-title: Cell doi: 10.1016/j.cell.2020.02.044 – volume: 116 start-page: 16028 year: 2019 ident: 10.1016/j.cmet.2022.10.008_bib234 article-title: Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1906896116 – volume: 67 start-page: 1113 year: 2021 ident: 10.1016/j.cmet.2022.10.008_bib304 article-title: Circulating cell-free mitochondrial DNA in cerebrospinal fluid as a biomarker for mitochondrial diseases publication-title: Clin. Chem. doi: 10.1093/clinchem/hvab091 – volume: 24 start-page: 1737 year: 2010 ident: 10.1016/j.cmet.2022.10.008_bib71 article-title: Ligand-independent antiapoptotic function of estrogen receptor-beta in lung cancer cells publication-title: Mol. Endocrinol. doi: 10.1210/me.2010-0125 – volume: 213 start-page: 134 year: 1970 ident: 10.1016/j.cmet.2022.10.008_bib79 article-title: A comparative study of RNA synthesis in rat hepatic nuclei and mitochondria under the influence of cortisone publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2787(70)90014-6 – volume: 24 start-page: 97 year: 2009 ident: 10.1016/j.cmet.2022.10.008_bib135 article-title: Regulation of oxygen homeostasis by hypoxia-inducible factor 1 publication-title: Physiology doi: 10.1152/physiol.00045.2008 – volume: 16 start-page: 698 year: 2013 ident: 10.1016/j.cmet.2022.10.008_bib195 article-title: Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance publication-title: Nat. Neurosci. doi: 10.1038/nn.3387 |
SSID | ssj0036393 |
Score | 2.719729 |
SecondaryResourceType | review_article |
Snippet | The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1620 |
SubjectTerms | Cell Communication Cell Nucleus - metabolism Humans Mitochondria - metabolism Signal Transduction |
Title | Mitochondrial signal transduction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36323233 https://www.proquest.com/docview/2731719910 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT8JAFJ4oxqNxF7dA4s2UtNPpdlQCIYblUhJuzWxECBaD5aC_3jedthRFg14aMmk77fvKm--9eQtCd5QwwZSjyjdtbBAqqBFQVRtPCuIKaXKXK4d-r-92huRp5IxWtf_S7JKENfjHxryS_6AKY4CrypL9A7LFTWEAfgO-cASE4bgVxj34O4L6ikXaekOFYqSh47D6CF0Utkw9m8pL9yITQH2W1w1UOhFQ0uHtuqJA4XJ5niwmWbPqwSJVA2UPARiXVuEh0EoNOJoBJrDe_5AbxjJNmLkVM8Stkl6zXH3mN4Wrbf9pg8PzN9TkjTRWzl8tL_mWen8QtYfdbhS2RuEu2sNA69OEy9FjvnLawJZsHQWgny1LctLxeF9nWCcSP1gHKUsID9FBRu9rDxqrI7Qj42O0rxt-vp-g-hpiNY1YrYzYKQrbrbDZMbImFQbHge8YgaCYAe_1qOtTz6NADwXxCcYeHY-pSwPpe9zG0qQBYUw4DJRk4DAvsPgY3tM-Q5V4HssLVBOmzV0ccLAgwGYWmBJfEsEJJkLCHLSKrPyFI54VcFd9RGZRHqk3jZSQIiUkNQZCqqL74ppXXb7k17PruRwj0DJq64jGcr58i4DkWp6KkjOr6FwLuLgfwAa03LYvt7j6SvlFTEt_odeokiyW8gZYXcJu00_hE44jStM |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+signal+transduction&rft.jtitle=Cell+metabolism&rft.au=Picard%2C+Martin&rft.au=Shirihai%2C+Orian+S&rft.date=2022-11-01&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=34&rft.issue=11&rft.spage=1620&rft_id=info:doi/10.1016%2Fj.cmet.2022.10.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |