Mitochondrial signal transduction

The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 34; no. 11; pp. 1620 - 1653
Main Authors Picard, Martin, Shirihai, Orian S.
Format Journal Article
LanguageEnglish
Published United States 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
AbstractList The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
Author Shirihai, Orian S.
Picard, Martin
Author_xml – sequence: 1
  givenname: Martin
  surname: Picard
  fullname: Picard, Martin
– sequence: 2
  givenname: Orian S.
  surname: Shirihai
  fullname: Shirihai, Orian S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36323233$$D View this record in MEDLINE/PubMed
BookMark eNp9ULtOxDAQtNAh7gE_QIGgo0nwM45LdOIlHaK53to4DviU2EecFPw9ju6uoUBbzGo0s9qZJZr54C1C1wTnBJPiYZebzg45xZQmIse4PEMLohjNJKd4lnYhcMYJI3O0jHGHMSuYYhdonpCmYQt09-6GYL6Cr3sH7W10nz7B0IOP9WgGF_wlOm-gjfbqiCu0fX7arl-zzcfL2_pxkxmqSpGpGmiFBZdQlCAlEKFqXnJKJTQNFKBsKQ2jFoPiVVWLilOhRCUVMU16ma3Q_eHsvg_fo42D7lw0tm3B2zBGTSUjkihFcJLeHKVj1dla73vXQf-jT6mSoDwITB9i7G2jjRtgCpOCuVYTrKcC9U5PBeqpwIlLBSYr_WM9Xf_H9AtmpnM4
CitedBy_id crossref_primary_10_1016_j_bbadis_2025_167731
crossref_primary_10_2174_0115665240275594231229121030
crossref_primary_10_1016_j_addr_2023_115081
crossref_primary_10_1186_s12964_025_02125_y
crossref_primary_10_1002_advs_202407757
crossref_primary_10_1016_j_cej_2024_149229
crossref_primary_10_1016_j_tox_2023_153678
crossref_primary_10_3390_antiox12091696
crossref_primary_10_1016_j_envpol_2024_125588
crossref_primary_10_3389_fceld_2024_1467272
crossref_primary_10_1016_j_addr_2024_115355
crossref_primary_10_1093_hmg_ddae031
crossref_primary_10_1186_s12862_024_02238_x
crossref_primary_10_3389_fimmu_2024_1503087
crossref_primary_10_1186_s12929_023_00956_w
crossref_primary_10_1016_j_bbadis_2024_167222
crossref_primary_10_1007_s10753_024_02156_6
crossref_primary_10_1371_journal_pone_0306849
crossref_primary_10_33549_physiolres_935269
crossref_primary_10_1016_j_neubiorev_2024_105837
crossref_primary_10_3748_wjg_v30_i23_2934
crossref_primary_10_1016_S0378_4274_23_00783_X
crossref_primary_10_1186_s12964_024_01899_x
crossref_primary_10_15252_embj_2023113743
crossref_primary_10_1016_j_tifs_2023_104319
crossref_primary_10_4102_jmh_v6i1_92
crossref_primary_10_1152_ajpheart_00170_2024
crossref_primary_10_3390_nu16203539
crossref_primary_10_1158_2326_6066_CIR_23_0359
crossref_primary_10_1089_ars_2023_0250
crossref_primary_10_1186_s40779_024_00556_1
crossref_primary_10_1016_j_arr_2024_102486
crossref_primary_10_3390_ijms25136841
crossref_primary_10_1038_s41586_023_06866_z
crossref_primary_10_1038_s12276_024_01211_4
crossref_primary_10_1111_gbb_12840
crossref_primary_10_1097_PSY_0000000000001275
crossref_primary_10_1016_j_tips_2024_12_006
crossref_primary_10_1016_j_mito_2023_04_003
crossref_primary_10_3390_antiox13111343
crossref_primary_10_1021_acs_analchem_4c03799
crossref_primary_10_3390_ijms25137162
crossref_primary_10_3390_ijms24097837
crossref_primary_10_1016_j_jbc_2024_107728
crossref_primary_10_1016_j_neubiorev_2024_105971
crossref_primary_10_3803_EnM_2023_1813
crossref_primary_10_1007_s12272_023_01465_y
crossref_primary_10_15252_embr_202255678
crossref_primary_10_1007_s12015_025_10847_2
crossref_primary_10_1016_j_cmet_2023_12_020
crossref_primary_10_1002_jcp_31441
crossref_primary_10_1007_s00421_024_05515_1
crossref_primary_10_1016_j_jbc_2024_108124
crossref_primary_10_1242_jeb_247432
crossref_primary_10_1016_j_phrs_2023_107054
crossref_primary_10_1016_j_devcel_2023_08_010
crossref_primary_10_1146_annurev_cellbio_111822_114733
crossref_primary_10_1186_s12964_024_01859_5
crossref_primary_10_1126_sciadv_adi4298
crossref_primary_10_3390_toxics12070491
crossref_primary_10_1016_j_tem_2023_11_004
crossref_primary_10_1128_msystems_00887_24
crossref_primary_10_1038_s41598_024_51427_7
crossref_primary_10_1186_s12929_023_00967_7
crossref_primary_10_1038_s41388_024_03058_5
crossref_primary_10_1038_s44318_024_00027_2
crossref_primary_10_1016_j_tips_2024_01_011
crossref_primary_10_1038_s41467_024_49159_3
crossref_primary_10_1016_j_jddst_2023_105286
crossref_primary_10_1038_s41556_024_01410_1
crossref_primary_10_1038_s41556_025_01625_w
crossref_primary_10_1038_s41467_024_45751_9
crossref_primary_10_1038_s41392_024_02081_y
crossref_primary_10_1186_s13062_025_00593_3
crossref_primary_10_1016_j_semcdb_2023_09_005
crossref_primary_10_1016_j_jlr_2024_100563
crossref_primary_10_1111_1348_0421_13206
crossref_primary_10_1016_j_cellsig_2023_110794
crossref_primary_10_1007_s00018_024_05529_0
crossref_primary_10_1186_s12967_024_05054_5
crossref_primary_10_1038_s41588_024_01838_z
crossref_primary_10_1093_bfgp_elae026
crossref_primary_10_3389_fcell_2024_1381417
crossref_primary_10_1371_journal_pbio_3002895
crossref_primary_10_1016_j_bbrc_2023_08_032
crossref_primary_10_1111_apha_13950
crossref_primary_10_1042_BCJ20220378
crossref_primary_10_1016_j_molmet_2024_101983
crossref_primary_10_1038_s41598_024_75324_1
crossref_primary_10_1038_s41556_024_01527_3
crossref_primary_10_3389_fphar_2023_1138566
crossref_primary_10_3390_biomedicines12112539
crossref_primary_10_1016_j_celrep_2023_113147
crossref_primary_10_34133_research_0602
crossref_primary_10_1186_s10020_024_01027_y
crossref_primary_10_1016_j_phrs_2024_107423
crossref_primary_10_1111_all_15672
crossref_primary_10_3390_life13040975
crossref_primary_10_1186_s12964_024_01843_z
crossref_primary_10_1007_s00395_023_01002_4
crossref_primary_10_1016_j_redox_2025_103606
crossref_primary_10_1080_15476286_2023_2293343
crossref_primary_10_1016_j_dyepig_2025_112718
crossref_primary_10_1002_bies_202300246
crossref_primary_10_3389_fcell_2023_1328522
crossref_primary_10_1080_15548627_2023_2274205
crossref_primary_10_1016_j_jbc_2024_107403
crossref_primary_10_1038_s44318_024_00335_7
crossref_primary_10_1042_BCJ20230167
crossref_primary_10_1021_jacs_4c01335
crossref_primary_10_3390_ijms24031969
crossref_primary_10_1016_j_phrs_2024_107555
crossref_primary_10_1016_j_mitoco_2024_09_002
crossref_primary_10_1016_j_jpha_2024_101178
crossref_primary_10_1186_s12967_024_05805_4
crossref_primary_10_1016_j_envres_2024_119930
crossref_primary_10_1016_j_tem_2024_08_006
crossref_primary_10_1016_j_canlet_2025_217527
crossref_primary_10_21926_obm_neurobiol_2404260
crossref_primary_10_3390_v16030345
crossref_primary_10_1007_s12265_024_10514_w
crossref_primary_10_3389_fendo_2023_1151691
crossref_primary_10_1038_s41420_024_02175_0
crossref_primary_10_1039_D3EM00188A
crossref_primary_10_1111_febs_17119
crossref_primary_10_1016_j_psyneuen_2023_106683
crossref_primary_10_1016_j_phrs_2023_107018
crossref_primary_10_1002_acn3_52315
crossref_primary_10_1002_adfm_202402463
crossref_primary_10_1111_tpj_17215
crossref_primary_10_1111_jgs_19246
crossref_primary_10_1016_j_molmet_2023_101816
crossref_primary_10_3390_ijms241210300
crossref_primary_10_1016_j_bbadis_2023_166802
crossref_primary_10_1016_j_micres_2024_127995
crossref_primary_10_1039_D4AY00211C
crossref_primary_10_3390_antiox14010108
crossref_primary_10_1088_1361_648X_ad65ad
crossref_primary_10_1093_humrep_deae052
crossref_primary_10_3390_ijms25137420
crossref_primary_10_3788_AI_2024_20004
crossref_primary_10_7554_eLife_87340
crossref_primary_10_1007_s12033_024_01206_6
crossref_primary_10_1093_burnst_tkad051
crossref_primary_10_1096_fj_202402008R
crossref_primary_10_1038_s41401_023_01225_0
crossref_primary_10_3390_biomedicines13030550
crossref_primary_10_3390_pharmaceutics16050651
crossref_primary_10_1111_boc_202400082
crossref_primary_10_1016_j_bioactmat_2025_02_040
crossref_primary_10_1016_j_arr_2024_102522
crossref_primary_10_1016_j_arr_2023_102145
crossref_primary_10_1016_j_tem_2024_10_009
crossref_primary_10_7717_peerj_17917
crossref_primary_10_1016_j_phrs_2024_107414
crossref_primary_10_4093_dmj_2023_0115
crossref_primary_10_1002_ctm2_1678
crossref_primary_10_1093_glycob_cwae014
crossref_primary_10_1002_slct_202401992
crossref_primary_10_1016_j_isci_2024_110710
crossref_primary_10_3390_biom14060704
crossref_primary_10_1002_smll_202311571
crossref_primary_10_31857_S0320972524020045NDAMJ
crossref_primary_10_1134_S0006297924020044
crossref_primary_10_1038_s41467_025_55825_x
crossref_primary_10_1016_j_jbc_2025_108252
crossref_primary_10_1096_fj_202301644RR
crossref_primary_10_3389_fcell_2023_1252318
crossref_primary_10_3389_fcell_2023_1339385
crossref_primary_10_3390_ijms25126302
crossref_primary_10_5005_jp_journals_11002_0053
crossref_primary_10_1111_apha_14185
crossref_primary_10_1007_s12020_024_03967_1
crossref_primary_10_3390_biology12070988
crossref_primary_10_3390_ijms25115656
crossref_primary_10_1093_genetics_iyad087
crossref_primary_10_1111_acel_13770
crossref_primary_10_1016_j_mito_2024_101848
crossref_primary_10_1016_j_exger_2023_112158
crossref_primary_10_1111_febs_16992
crossref_primary_10_3389_fphys_2023_1236651
crossref_primary_10_3390_bios14010046
crossref_primary_10_1002_jimd_12766
crossref_primary_10_1002_smll_202400413
crossref_primary_10_1038_s41419_025_07504_4
crossref_primary_10_1038_s41576_025_00813_6
crossref_primary_10_1038_s41580_023_00613_y
crossref_primary_10_1016_j_metabol_2023_155709
crossref_primary_10_1007_s44194_024_00032_x
crossref_primary_10_1016_j_mito_2024_101950
crossref_primary_10_1098_rsob_230279
crossref_primary_10_1038_s43587_024_00716_x
crossref_primary_10_1210_endrev_bnad004
crossref_primary_10_1038_s41392_024_01839_8
crossref_primary_10_3390_biomedicines11092514
crossref_primary_10_1016_j_jare_2024_01_036
crossref_primary_10_1038_s41398_023_02696_9
crossref_primary_10_3390_ph16111615
crossref_primary_10_1186_s12915_024_01953_7
crossref_primary_10_1002_1873_3468_14813
crossref_primary_10_1016_j_ab_2025_115840
crossref_primary_10_1016_j_tem_2024_05_005
crossref_primary_10_1186_s12967_024_05047_4
crossref_primary_10_3390_antiox12111983
crossref_primary_10_1038_s44303_024_00043_1
crossref_primary_10_1089_can_2023_0282
crossref_primary_10_1186_s40035_024_00435_8
crossref_primary_10_1038_s41420_023_01710_9
crossref_primary_10_1038_d41586_024_02528_w
crossref_primary_10_1021_acsnano_4c02940
crossref_primary_10_1016_j_neuropharm_2024_110217
crossref_primary_10_3390_ijms242417198
crossref_primary_10_1016_j_arr_2024_102577
crossref_primary_10_1016_j_bbabio_2024_149532
crossref_primary_10_3390_jcdd10040154
crossref_primary_10_1002_mc_23812
crossref_primary_10_1016_j_bbcan_2024_189107
crossref_primary_10_1016_j_isci_2024_108883
crossref_primary_10_1186_s12967_024_05740_4
crossref_primary_10_37349_eemd_2023_00003
crossref_primary_10_1016_j_conb_2023_102720
crossref_primary_10_4236_cm_2024_153006
crossref_primary_10_1016_j_biomaterials_2024_122883
crossref_primary_10_3390_biology13030187
crossref_primary_10_1016_j_bbadis_2023_166795
crossref_primary_10_1094_MPMI_10_23_0168_R
crossref_primary_10_3390_ijms25126299
crossref_primary_10_1038_s44324_024_00008_3
crossref_primary_10_3390_antiox12051072
crossref_primary_10_1177_0271678X251325805
crossref_primary_10_1186_s12967_023_04332_y
crossref_primary_10_1007_s12015_024_10681_y
crossref_primary_10_3168_jds_2024_25076
crossref_primary_10_1016_j_nbd_2025_106822
crossref_primary_10_1371_journal_pbio_3002723
crossref_primary_10_1038_s42003_024_06102_y
crossref_primary_10_1016_j_canlet_2023_216590
crossref_primary_10_1098_rsbl_2023_0375
crossref_primary_10_1016_j_biomaterials_2024_122983
crossref_primary_10_1016_j_jbc_2023_105303
crossref_primary_10_1016_j_heliyon_2023_e13888
crossref_primary_10_7554_eLife_87340_3
crossref_primary_10_3389_fendo_2023_1277866
crossref_primary_10_1016_j_intimp_2024_113104
crossref_primary_10_1002_adma_202308239
crossref_primary_10_1038_s42255_023_00783_1
crossref_primary_10_1038_s43587_024_00672_6
crossref_primary_10_1016_j_dnarep_2025_103814
crossref_primary_10_1016_j_arr_2024_102469
crossref_primary_10_1016_j_ijbiomac_2024_139449
crossref_primary_10_1093_nsr_nwaf022
crossref_primary_10_1063_5_0239482
Cites_doi 10.1093/icb/icx076
10.1038/s41467-017-01859-9
10.1146/annurev-genet-120215-035329
10.1126/science.1164097
10.1083/jcb.201308006
10.1083/jcb.201312066
10.1152/physrev.1984.64.1.1
10.1038/s41586-019-1506-7
10.3389/fphys.2016.00476
10.7554/eLife.10575
10.1126/scisignal.2001147
10.1016/j.cell.2022.05.013
10.1073/pnas.0906039107
10.1146/annurev-biochem-060815-014402
10.1042/CS20160485
10.1038/nature10230
10.1038/nature02555
10.1016/j.mito.2016.07.003
10.2337/db07-1781
10.1016/j.cmet.2013.03.002
10.7554/eLife.11583
10.1161/CIRCULATIONAHA.110.014506
10.1038/s41586-020-2551-y
10.1016/j.cmet.2016.01.019
10.1126/scisignal.2002712
10.1126/sciadv.abe2771
10.1128/MCB.01107-15
10.1016/j.cmet.2019.11.020
10.1016/j.cmet.2016.06.004
10.1111/acel.12848
10.1038/s41586-021-03269-w
10.1073/pnas.0306948101
10.1038/s41467-018-07416-2
10.1038/ncomms1714
10.1038/s41556-018-0124-1
10.1038/s42255-022-00594-w
10.1016/j.cell.2010.12.016
10.1002/glia.23314
10.1126/science.1218099
10.1126/science.aav4011
10.1126/scisignal.aav1439
10.1074/jbc.M401229200
10.1016/0014-5793(96)00782-X
10.1038/331717a0
10.1038/s41467-020-16572-3
10.1242/jcs.226084
10.18632/aging.100943
10.1073/pnas.1706643114
10.1016/j.cell.2018.11.025
10.1016/j.cmet.2020.01.011
10.1093/toxsci/kfu164
10.1038/90116
10.26508/lsa.201800228
10.1016/j.molcel.2016.01.031
10.1038/nature10234
10.3390/ijms21062122
10.1016/j.cmet.2016.08.006
10.1016/j.neuron.2021.02.006
10.1038/nchembio.2307
10.1038/nn.3053
10.1016/j.cell.2021.02.034
10.1038/s41593-019-0479-z
10.1126/science.210507
10.1210/jcem.84.11.6235
10.1038/s41589-020-0517-x
10.1152/japplphysiol.00032.2020
10.1002/pmic.201000173
10.1016/j.cell.2017.04.004
10.1038/nature22082
10.1038/417087a
10.1529/biophysj.103.035097
10.1016/j.ymgme.2013.07.009
10.15252/msb.202110726
10.1038/s42255-021-00389-5
10.1042/bio_2022_119
10.1002/jcb.20985
10.1093/hmg/ddq310
10.1016/j.tibs.2019.11.001
10.1101/cshperspect.a011148
10.1002/ana.25288
10.1016/S0021-9258(19)57193-9
10.12688/f1000research.10397.1
10.1038/s41586-020-2337-2
10.1016/j.cub.2016.06.002
10.1016/j.bpj.2013.09.020
10.1016/j.cmet.2021.11.001
10.1126/sciadv.abc9955
10.1016/j.cmet.2015.05.013
10.1038/s41586-021-03510-6
10.1016/j.celrep.2013.06.040
10.26508/lsa.202000797
10.1126/scitranslmed.abd1869
10.1038/ncomms1003
10.1038/tp.2016.236
10.1210/edrv-9-3-295
10.1073/pnas.101133498
10.1038/ncomms7259
10.1016/j.bbamcr.2011.05.014
10.1038/srep36289
10.1016/j.exger.2019.110796
10.1371/journal.pone.0039183
10.4161/cbt.7.8.6215
10.1128/MCB.19.1.657
10.1101/gad.331272.119
10.15252/embr.201949799
10.1083/jcb.201909154
10.1073/pnas.1515733112
10.1007/s00294-008-0194-x
10.1016/j.devcel.2019.05.033
10.1016/j.celrep.2017.03.063
10.1093/emboj/cdf445
10.1016/j.cmet.2020.11.008
10.1152/ajpcell.00348.2005
10.1073/pnas.1101507108
10.1016/j.cmet.2019.08.019
10.1038/ng.863
10.1038/nri.2017.21
10.7554/eLife.70899
10.1093/humrep/dei267
10.1186/1471-2202-13-118
10.1134/S0026893310030027
10.2337/db12-1203
10.1038/ncb2220
10.1016/j.tcb.2017.04.004
10.1016/j.cell.2008.06.016
10.1038/s41559-022-01833-9
10.1016/0022-2828(83)90261-4
10.1016/j.cmet.2018.07.011
10.7554/eLife.08931
10.1038/s42255-022-00591-z
10.1038/s41398-018-0264-x
10.18632/aging.103534
10.1038/cr.2015.89
10.1073/pnas.2005885117
10.1038/s41586-020-2078-2
10.1152/ajpregu.00584.2012
10.1073/pnas.1705768114
10.1152/ajpendo.00330.2013
10.1016/j.celrep.2022.111198
10.1379/CSC-300.1
10.1093/function/zqab005
10.1371/journal.pcbi.1002066
10.1016/j.cmet.2015.02.009
10.1038/s41591-021-01441-3
10.1007/s00109-020-01967-y
10.1097/PSY.0000000000000544
10.1016/j.tcb.2014.08.005
10.1038/nature17399
10.1007/s00018-015-1863-9
10.1016/j.cmet.2021.08.002
10.1073/pnas.1617788113
10.1126/science.aao6047
10.1038/ng.2299
10.1016/j.cmet.2005.05.001
10.1074/jbc.274.42.29905
10.1007/s00213-014-3655-6
10.1021/acschemneuro.7b00516
10.1016/j.neuron.2015.02.016
10.1016/j.cmet.2021.02.003
10.1016/j.molmet.2015.11.002
10.3389/fcell.2017.00090
10.1371/journal.pcbi.1000657
10.15252/embj.201592862
10.1007/978-1-59745-521-3_11
10.1172/JCI136055
10.1007/s10863-017-9704-1
10.1007/s00125-019-05082-7
10.1073/pnas.1905585116
10.1016/j.psyneuen.2022.105852
10.7554/eLife.01489
10.1016/j.cell.2019.07.033
10.1096/fj.202000959RR
10.1210/er.2018-00084
10.1016/j.tcb.2017.08.009
10.1016/j.mce.2013.04.014
10.1111/j.0269-8463.2004.00841.x
10.1038/191144a0
10.1128/MCB.19.12.7913
10.1016/j.cell.2016.04.011
10.15252/embj.2018101056
10.1038/s42255-019-0150-8
10.1152/ajpendo.00249.2020
10.1016/j.cmet.2012.01.009
10.7554/eLife.49178
10.1126/science.1218530
10.1016/j.cell.2020.03.036
10.1073/pnas.1512653112
10.1083/jcb.37.2.345
10.1186/1741-7007-8-100
10.1038/emboj.2013.124
10.1073/pnas.1617288114
10.1038/nature20165
10.1152/japplphysiol.00873.2014
10.1371/journal.pone.0002501
10.1042/bj20021594
10.1186/s13073-017-0420-6
10.1038/s41467-020-20790-0
10.1038/nature12985
10.1016/j.cell.2012.02.035
10.1096/fj.13-248161
10.1016/S0092-8674(00)80085-9
10.1073/pnas.0401077101
10.1016/j.cmet.2021.01.003
10.1126/science.aax9553
10.1093/biolre/ioy102
10.1038/s41467-017-00043-3
10.1146/annurev-pathmechdis-012419-032711
10.1111/nyas.12956
10.15252/embr.201948804
10.1016/j.cell.2017.02.030
10.1016/j.cmet.2018.06.008
10.1016/j.cub.2006.06.054
10.1146/annurev-genet-102108-134850
10.1038/nrg1606
10.1126/science.aaw8806
10.1073/pnas.1107402108
10.1016/j.celrep.2019.01.010
10.1073/pnas.1414028111
10.1111/acel.13195
10.1111/j.1474-9726.2010.00607.x
10.2337/db06-1601
10.1091/mbc.8.7.1233
10.1002/jcb.20144
10.1016/B978-0-444-53630-3.00008-7
10.1016/j.psyneuen.2019.03.026
10.1126/science.aay5947
10.1016/j.cell.2020.11.034
10.1093/nar/gkaa1011
10.1016/j.cmet.2021.12.017
10.1021/pr500295n
10.1016/j.ceca.2021.102517
10.7554/eLife.63104
10.1210/endrev/bnaa007
10.1101/gr.190470.115
10.1126/sciadv.abq5206
10.1081/ERC-120016800
10.1016/0092-8674(88)90218-8
10.1016/j.tem.2016.11.001
10.1038/318635a0
10.1016/j.celrep.2020.108131
10.1038/nrm.2017.66
10.1038/nature20127
10.1038/srep30610
10.1152/ajpcell.00496.2010
10.1016/j.peptides.2012.09.016
10.1038/s41586-018-0363-0
10.1007/s00439-020-02119-5
10.1073/pnas.89.10.4221
10.1007/s43657-021-00037-8
10.1038/s41586-022-04979-5
10.1038/s41586-018-0052-z
10.1016/j.mad.2017.08.005
10.1038/s41576-020-0270-8
10.1002/path.5146
10.1038/s42255-018-0018-3
10.1126/sciadv.abn7105
10.1126/science.196334
10.1016/j.neubiorev.2020.04.017
10.1016/j.cell.2015.10.001
10.1016/j.celrep.2021.109509
10.1016/S0021-9258(19)70620-6
10.1038/s42255-019-0126-8
10.4049/jimmunol.1101375
10.15252/embr.202050094
10.1016/j.tcb.2018.02.009
10.1016/j.cell.2013.05.021
10.1371/journal.pbio.2005707
10.1016/0022-5193(67)90079-3
10.1083/jcb.107.2.481
10.1038/s41556-018-0133-0
10.1016/j.molcel.2018.01.037
10.1016/j.cmet.2017.07.007
10.1677/jme.0.0260067
10.1016/j.ab.2017.11.008
10.1016/S0076-6879(09)05016-2
10.1126/science.1260384
10.1073/pnas.1300741110
10.1016/j.bpj.2009.11.002
10.1038/s42254-019-0040-8
10.1016/j.biopsych.2018.01.012
10.1016/j.cell.2018.06.029
10.1126/science.1175088
10.1002/acn3.51104
10.1097/01.fjc.0000139449.64337.1b
10.1016/j.cub.2016.07.064
10.1016/j.cell.2014.06.007
10.1038/s41598-019-56587-5
10.1038/nature14156
10.1016/j.celrep.2022.111193
10.1016/j.bbamcr.2005.05.010
10.1016/j.cmet.2014.02.004
10.1016/j.cell.2013.08.032
10.1016/j.cell.2005.08.012
10.1006/bbrc.1997.6787
10.1083/jcb.201702058
10.1016/j.cell.2022.07.025
10.1371/journal.pbio.2003992
10.1016/j.isci.2021.102181
10.1016/j.beem.2012.05.002
10.1093/brain/awq276
10.1096/fj.202101628R
10.1016/j.devcel.2019.07.019
10.1038/nm.3014
10.1073/pnas.0511154103
10.1073/pnas.1910574116
10.1016/j.tins.2015.06.001
10.1002/ana.24506
10.1073/pnas.91.15.7247
10.4155/fmc-2020-0326
10.1038/emboj.2009.255
10.1371/journal.pbio.1001969
10.1038/s41586-020-2076-4
10.1152/ajpregu.00324.2019
10.1152/ajpcell.00139.2004
10.1126/science.1223560
10.1016/j.cell.2022.06.010
10.1038/nrg1272
10.1016/j.cell.2005.02.001
10.1002/bies.202000273
10.1038/nature09486
10.1083/jcb.201607110
10.3389/fpsyt.2019.00882
10.1007/978-1-4939-7902-8_14
10.1016/j.cobeha.2019.04.015
10.1016/j.cmet.2018.05.009
10.1016/0960-0760(95)00159-W
10.1016/j.cmet.2015.09.004
10.1096/fj.201901917RR
10.1038/nrdp.2016.80
10.1093/emboj/20.15.4107
10.1016/j.ceb.2020.01.006
10.1056/NEJMra1215233
10.1016/j.cell.2020.08.031
10.1152/physrev.00001.2015
10.1371/journal.pone.0172344
10.1038/nature18618
10.1073/pnas.77.11.6715
10.1016/j.cell.2010.02.026
10.1016/j.immuni.2022.06.007
10.1038/s41556-021-00798-4
10.1038/s41583-021-00467-3
10.1038/s41586-019-1678-1
10.1016/j.mito.2021.02.006
10.1016/j.cmet.2018.03.003
10.1074/jbc.RA118.006727
10.1016/j.mito.2021.04.002
10.1371/journal.pmed.1001577
10.1038/s41588-021-00868-1
10.1126/sciadv.abe5310
10.7554/eLife.10955
10.1016/j.cmet.2018.01.016
10.1038/s42003-021-01833-8
10.1038/sj.emboj.7601963
10.2119/molmed.2013.00117
10.1515/hsz-2019-0268
10.1021/bi2018909
10.1016/j.biocel.2014.05.030
10.1152/ajpcell.00427.2009
10.1016/j.freeradbiomed.2020.11.016
10.1016/j.molcel.2021.07.014
10.1126/scisignal.abm7524
10.1038/s41593-019-0556-3
10.1152/ajpcell.00368.2011
10.1074/jbc.270.27.16347
10.1038/nm.4392
10.1016/j.cmet.2022.07.011
10.1152/japplphysiol.00819.2013
10.1038/s41589-022-01004-8
10.1038/s41467-019-13668-3
10.1074/jbc.M114.605808
10.1212/WNL.0000000000003374
10.1073/pnas.2106868118
10.1093/sleep/33.12.1605
10.1038/srep26419
10.1083/jcb.200406038
10.1371/journal.pgen.1004601
10.1126/science.abm1638
10.1126/science.1244360
10.1016/j.cell.2020.02.044
10.1073/pnas.1906896116
10.1093/clinchem/hvab091
10.1210/me.2010-0125
10.1016/0005-2787(70)90014-6
10.1152/physiol.00045.2008
10.1038/nn.3387
ContentType Journal Article
Copyright Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmet.2022.10.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 1653
ExternalDocumentID 36323233
10_1016_j_cmet_2022_10_008
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH119336
– fundername: NIA NIH HHS
  grantid: R01 AG066828
– fundername: NIGMS NIH HHS
  grantid: R35 GM119793
– fundername: NIMH NIH HHS
  grantid: R21 MH123927
– fundername: NIMH NIH HHS
  grantid: R01 MH122706
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AAEDT
AAEDW
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
AAYXX
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGKMS
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
HZ~
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
OZT
P2P
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
AACTN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c2985-9da2b0547a68a77a159d484227affa6a9e87c32e0a94bbd5b42595b791cf9323
ISSN 1550-4131
1932-7420
IngestDate Fri Jul 11 07:44:31 EDT 2025
Thu Apr 03 07:08:41 EDT 2025
Tue Jul 01 03:58:20 EDT 2025
Thu Apr 24 23:08:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords metabokines
receptors
signal transduction
tissue-specific
health
evolution
stress responses
amplification
mito-nuclear signaling
mitochondrial networks
mitotypes
membrane potential
mitokines
steroid hormones
communication
energy
Language English
License Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2985-9da2b0547a68a77a159d484227affa6a9e87c32e0a94bbd5b42595b791cf9323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9692202
PMID 36323233
PQID 2731719910
PQPubID 23479
PageCount 34
ParticipantIDs proquest_miscellaneous_2731719910
pubmed_primary_36323233
crossref_citationtrail_10_1016_j_cmet_2022_10_008
crossref_primary_10_1016_j_cmet_2022_10_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-00
2022-11-01
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2022
References Belous (10.1016/j.cmet.2022.10.008_bib89) 2006; 99
Keidar Haran (10.1016/j.cmet.2022.10.008_bib151) 2022; 18
Chretien (10.1016/j.cmet.2022.10.008_bib360) 2018; 16
Goodman (10.1016/j.cmet.2022.10.008_bib114) 2020; 583
Ji (10.1016/j.cmet.2022.10.008_bib172) 2021; 109
Bakeeva (10.1016/j.cmet.2022.10.008_bib160) 1983; 15
Reynolds (10.1016/j.cmet.2022.10.008_bib344) 2020; 139
Lehtonen (10.1016/j.cmet.2022.10.008_bib342) 2016; 87
Picard (10.1016/j.cmet.2022.10.008_bib42) 2018; 84
Shadel (10.1016/j.cmet.2022.10.008_bib215) 2015; 163
Murphy (10.1016/j.cmet.2022.10.008_bib247) 2022; 18
Sebastian (10.1016/j.cmet.2022.10.008_bib224) 2017; 28
Huang (10.1016/j.cmet.2022.10.008_bib233) 2021; 7
Hill (10.1016/j.cmet.2022.10.008_bib43) 2019; 401
Lundberg (10.1016/j.cmet.2022.10.008_bib131) 2022; 185
Hackenbrock (10.1016/j.cmet.2022.10.008_bib104) 1968; 37
Cimino (10.1016/j.cmet.2022.10.008_bib340) 2021; 118
Lambert (10.1016/j.cmet.2022.10.008_bib254) 2009; 554
Wrutniak (10.1016/j.cmet.2022.10.008_bib61) 1995; 270
Lu (10.1016/j.cmet.2022.10.008_bib100) 2014; 20
Semenza (10.1016/j.cmet.2022.10.008_bib135) 2009; 24
Kang (10.1016/j.cmet.2022.10.008_bib328) 2021; 24
Riley (10.1016/j.cmet.2022.10.008_bib280) 2020; 21
Yang (10.1016/j.cmet.2022.10.008_bib69) 2004; 101
Cushen (10.1016/j.cmet.2022.10.008_bib306) 2020; 318
Mosselman (10.1016/j.cmet.2022.10.008_bib67) 1996; 392
Gomes (10.1016/j.cmet.2022.10.008_bib188) 2011; 13
Suofu (10.1016/j.cmet.2022.10.008_bib87) 2017; 114
Mills (10.1016/j.cmet.2022.10.008_bib248) 2021; 3
Twig (10.1016/j.cmet.2022.10.008_bib177) 2006; 291
Sterling (10.1016/j.cmet.2022.10.008_bib60) 1977; 197
Yu (10.1016/j.cmet.2022.10.008_bib184) 2006; 103
Kasahara (10.1016/j.cmet.2022.10.008_bib213) 2014; 24
Chen (10.1016/j.cmet.2022.10.008_bib12) 2010; 141
Twig (10.1016/j.cmet.2022.10.008_bib13) 2008; 27
Funai (10.1016/j.cmet.2022.10.008_bib244) 2020; 63
Caicedo (10.1016/j.cmet.2022.10.008_bib315) 2021; 58
Trumpff (10.1016/j.cmet.2022.10.008_bib301) 2021; 59
Colvin (10.1016/j.cmet.2022.10.008_bib242) 2016; 6
Al Amir Dache (10.1016/j.cmet.2022.10.008_bib314) 2020; 34
Nikkanen (10.1016/j.cmet.2022.10.008_bib116) 2016; 23
Faitg (10.1016/j.cmet.2022.10.008_bib385) 2021; 36
Gottschling (10.1016/j.cmet.2022.10.008_bib47) 2017; 169
Csordas (10.1016/j.cmet.2022.10.008_bib207) 2018; 28
Nunnari (10.1016/j.cmet.2022.10.008_bib8) 1997; 8
Cheng (10.1016/j.cmet.2022.10.008_bib297) 2010; 9
Xian (10.1016/j.cmet.2022.10.008_bib287) 2022; 55
Picard (10.1016/j.cmet.2022.10.008_bib391) 2016; 30
Kerr (10.1016/j.cmet.2022.10.008_bib52) 2019; 9
Liu (10.1016/j.cmet.2022.10.008_bib9) 1996; 86
Mitchell (10.1016/j.cmet.2022.10.008_bib2) 1961; 191
Barabasi (10.1016/j.cmet.2022.10.008_bib155) 2004; 5
Forsstrom (10.1016/j.cmet.2022.10.008_bib18) 2019; 30
López-Otín (10.1016/j.cmet.2022.10.008_bib394) 2021; 184
Oikawa (10.1016/j.cmet.2022.10.008_bib198) 2021; 4
Fernandez-Vizarra (10.1016/j.cmet.2022.10.008_bib64) 2008; 54
Lane (10.1016/j.cmet.2022.10.008_bib112) 2022
Picard (10.1016/j.cmet.2022.10.008_bib192) 2015; 118
Martinez-Reyes (10.1016/j.cmet.2022.10.008_bib216) 2020; 11
Latorre-Pellicer (10.1016/j.cmet.2022.10.008_bib145) 2016; 535
Carreras-Sureda (10.1016/j.cmet.2022.10.008_bib317) 2022; 15
Maresca (10.1016/j.cmet.2022.10.008_bib305) 2020; 98
Rausser (10.1016/j.cmet.2022.10.008_bib375) 2021; 10
Picard (10.1016/j.cmet.2022.10.008_bib361) 2015; 38
Koval (10.1016/j.cmet.2022.10.008_bib124) 2019; 12
Yen (10.1016/j.cmet.2022.10.008_bib346) 2020; 12
Guzy (10.1016/j.cmet.2022.10.008_bib134) 2005; 1
Rubalcava-Gracia (10.1016/j.cmet.2022.10.008_bib56) 2022
Kanellopoulos (10.1016/j.cmet.2022.10.008_bib32) 2020; 180
Nita (10.1016/j.cmet.2022.10.008_bib126) 2014; 28
Altman (10.1016/j.cmet.2022.10.008_bib1) 1890
Wang (10.1016/j.cmet.2022.10.008_bib220) 2009; 43
Enríquez (10.1016/j.cmet.2022.10.008_bib399) 2019; 1
Stauch (10.1016/j.cmet.2022.10.008_bib381) 2014; 13
Nunnari (10.1016/j.cmet.2022.10.008_bib15) 2012; 148
Santo-Domingo (10.1016/j.cmet.2022.10.008_bib165) 2013; 32
Gustafsson (10.1016/j.cmet.2022.10.008_bib136) 2016; 85
Ferreira (10.1016/j.cmet.2022.10.008_bib382) 2010; 10
Tian (10.1016/j.cmet.2022.10.008_bib24) 2016; 165
Cox (10.1016/j.cmet.2022.10.008_bib262) 2018; 28
Taylor (10.1016/j.cmet.2022.10.008_bib105) 2017; 27
Pagliarini (10.1016/j.cmet.2022.10.008_bib372) 2008; 134
Bajpai (10.1016/j.cmet.2022.10.008_bib73) 2019; 294
Chakrabarty (10.1016/j.cmet.2022.10.008_bib45) 2022; 44
Abadir (10.1016/j.cmet.2022.10.008_bib91) 2012; 38
Taylor (10.1016/j.cmet.2022.10.008_bib141) 2005; 6
Murley (10.1016/j.cmet.2022.10.008_bib206) 2016; 61
Hein (10.1016/j.cmet.2022.10.008_bib153) 2015; 4
Berry (10.1016/j.cmet.2022.10.008_bib388) 2022
Wong (10.1016/j.cmet.2022.10.008_bib204) 2019; 50
Nakahira (10.1016/j.cmet.2022.10.008_bib311) 2013; 10
Vincent (10.1016/j.cmet.2022.10.008_bib167) 2017; 27
Gaziev (10.1016/j.cmet.2022.10.008_bib292) 2010; 44
Zhang (10.1016/j.cmet.2022.10.008_bib71) 2010; 24
Rosa (10.1016/j.cmet.2022.10.008_bib302) 2020; 34
Reiter (10.1016/j.cmet.2022.10.008_bib92) 2021; 13
Solakidi (10.1016/j.cmet.2022.10.008_bib74) 2005; 20
Rossignol (10.1016/j.cmet.2022.10.008_bib300) 2003; 370
Quiros (10.1016/j.cmet.2022.10.008_bib320) 2017; 216
Rosenberg (10.1016/j.cmet.2022.10.008_bib377) 2021
Zhou (10.1016/j.cmet.2022.10.008_bib175) 2010; 6
Klaus (10.1016/j.cmet.2022.10.008_bib337) 2020; 130
Trifunov (10.1016/j.cmet.2022.10.008_bib304) 2021; 67
Glancy (10.1016/j.cmet.2022.10.008_bib166) 2017; 19
Reynolds (10.1016/j.cmet.2022.10.008_bib350) 2021; 12
Black (10.1016/j.cmet.2022.10.008_bib278) 1994; 91
Shum (10.1016/j.cmet.2022.10.008_bib258) 2021; 13
Chouchani (10.1016/j.cmet.2022.10.008_bib257) 2016; 532
Courchet (10.1016/j.cmet.2022.10.008_bib365) 2013; 153
Lindqvist (10.1016/j.cmet.2022.10.008_bib309) 2016; 6
Giles (10.1016/j.cmet.2022.10.008_bib5) 1980; 77
Buck (10.1016/j.cmet.2022.10.008_bib38) 2017; 169
Solakidi (10.1016/j.cmet.2022.10.008_bib70) 2005; 1745
McArthur (10.1016/j.cmet.2022.10.008_bib288) 2018; 359
Hollis (10.1016/j.cmet.2022.10.008_bib39) 2015; 112
Jiang (10.1016/j.cmet.2022.10.008_bib217) 1999; 274
Nicolas-Avila (10.1016/j.cmet.2022.10.008_bib30) 2020; 183
Benard (10.1016/j.cmet.2022.10.008_bib88) 2012; 15
Mentch (10.1016/j.cmet.2022.10.008_bib228) 2016; 1363
Yonova-Doing (10.1016/j.cmet.2022.10.008_bib146) 2021; 53
Gutierrez-Rodriguez (10.1016/j.cmet.2022.10.008_bib94) 2018; 66
Picard (10.1016/j.cmet.2022.10.008_bib407) 2022; 2
Schavemaker (10.1016/j.cmet.2022.10.008_bib402) 2022; 6
Hummel (10.1016/j.cmet.2022.10.008_bib307) 2018; 8
Bar-Ziv (10.1016/j.cmet.2022.10.008_bib27) 2020; 21
Mendizabal-Zubiaga (10.1016/j.cmet.2022.10.008_bib95) 2016; 7
Meimaridou (10.1016/j.cmet.2022.10.008_bib279) 2012; 44
Gorman (10.1016/j.cmet.2022.10.008_bib140) 2016; 2
Kafkia (10.1016/j.cmet.2022.10.008_bib238) 2022; 8
Dudek (10.1016/j.cmet.2022.10.008_bib245) 2017; 5
Srinivasainagendra (10.1016/j.cmet.2022.10.008_bib294) 2017; 9
Murphy (10.1016/j.cmet.2022.10.008_bib256) 2022; 4
Kang (10.1016/j.cmet.2022.10.008_bib349) 2021; 33
Picard (10.1016/j.cmet.2022.10.008_bib218) 2013; 304
Okabe (10.1016/j.cmet.2022.10.008_bib358) 2012; 3
Lewis (10.1016/j.cmet.2022.10.008_bib386) 2016; 26
Nicholls (10.1016/j.cmet.2022.10.008_bib356) 1984; 64
Paltauf-Doburzynska (10.1016/j.cmet.2022.10.008_bib182) 2004; 44
Kasai (10.1016/j.cmet.2022.10.008_bib212) 2021; 22
Han (10.1016/j.cmet.2022.10.008_bib173) 2004; 430
Durieux (10.1016/j.cmet.2022.10.008_bib17) 2011; 144
Kopinski (10.1016/j.cmet.2022.10.008_bib234) 2019; 116
Pekkurnaz (10.1016/j.cmet.2022.10.008_bib203) 2014; 158
Papadopoulos (10.1016/j.cmet.2022.10.008_bib277) 2012; 26
Fecher (10.1016/j.cmet.2022.10.008_bib373) 2019; 22
Sarti (10.1016/j.cmet.2022.10.008_bib97) 2021; 2
Suomalainen (10.1016/j.cmet.2022.10.008_bib392) 2018; 19
Ayres (10.1016/j.cmet.2022.10.008_bib403) 2020; 181
Sassone-Corsi (10.1016/j.cmet.2022.10.008_bib149) 2012; 4
Sung (10.1016/j.cmet.2022.10.008_bib400) 2010; 1
Gandhi (10.1016/j.cmet.2022.10.008_bib251) 2015; 85
Kim (10.1016/j.cmet.2022.10.008_bib325) 2013; 19
Desai (10.1016/j.cmet.2022.10.008_bib255) 2020; 6
Levoux (10.1016/j.cmet.2022.10.008_bib29) 2021; 33
Sturm (10.1016/j.cmet.2022.10.008_bib237) 2022
Glancy (10.1016/j.cmet.2022.10.008_bib376) 2011; 300
Morgenstern (10.1016/j.cmet.2022.10.008_bib36) 2021; 33
Woodhead (10.1016/j.cmet.2022.10.008_bib351) 2020; 128
Lozoya (10.1016/j.cmet.2022.10.008_bib25) 2018; 16
Wu (10.1016/j.cmet.2022.10.008_bib147) 2019; 1
Bernardi (10.1016/j.cmet.2022.10.008_bib219) 2015; 95
Tsiriyotis (10.1016/j.cmet.2022.10.008_bib81) 1997; 235
Intlekofer (10.1016/j.cmet.2022.10.008_bib241) 2017; 13
Baughman (10.1016/j.cmet.2022.10.008_bib120) 2011; 476
Nargund (10.1016/j.cmet.2022.10.008_bib19) 2012; 337
Amchenkova (10.1016/j.cmet.2022.10.008_bib161) 1988; 107
Sterling (10.1016/j.cmet.2022.10.008_bib59) 1978; 201
Eisner (10.1016/j.cmet.2022.10.008_bib180) 2014; 205
Fessler (10.1016/j.cmet.2022.10.008_bib318) 2020; 579
Wallace (10.1016/j.cmet.2022.10.008_bib7) 1988; 55
Chaung (10.1016/j.cmet.2022.10.008_bib354) 2012; 30
Crivello (10.1016/j.cmet.2022.10.008_bib272) 1980; 255
Lane (10.1016/j.cmet.2022.10.008_bib401) 2010; 467
Simoes (10.1016/j.cmet.2022.10.008_bib85) 2012; 7
Sturm (10.1016/j.cmet.2022.10.008_bib236) 2021
Cole (10.1016/j.cmet.2022.10.008_bib405) 2014; 10
Enriquez (10.1016/j.cmet.2022.10.008_bib63) 1999; 19
Wikstrom (10.1016/j.cmet.2022.10.008_bib194) 2014; 33
Lynn (10.1016/j.cmet.2022.10.008_bib48) 2019; 1
Lee (10.1016/j.cmet.2022.10.008_bib348) 2015; 21
Spinelli (10.1016/j.cmet.2022.10.008_bib119) 2018; 20
Moon (10.1016/j.cmet.2022.10.008_bib336) 2020; 19
Herzig (10.1016/j.cmet.2022.10.008_bib108) 2012; 337
da Silva (10.1016/j.cmet.2022.10.008_bib266) 2019; 18
Kandel (10.1016/j.cmet.2022.10.008_bib150) 2021
Dogan (10.1016/j.cmet.2022.10.008_bib324) 2014; 19
Vernay (10.1016/j.cmet.2022.10.008_bib164) 2017; 114
Rivers (10.1016/j.cmet.2022.10.008_bib78) 1999; 84
Picard (10.1016/j.cmet.2022.10.008_bib187) 2013; 62
Birch (10.1016/j.cmet.2022.10.008_bib50) 2017
Sosna (10.1016/j.cmet.2022.10.008_bib154) 2019; 116
Ruprecht (10.1016/j.cmet.2022.10.008_bib102) 2019; 176
Abadir (10.1016/j.cmet.2022.10.008_bib86) 2011; 108
Chernet (10.1016/j
References_xml – volume: 57
  start-page: 171
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib54
  article-title: Systems biology of phenotypic robustness and plasticity
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/icx076
– volume: 9
  start-page: 70
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib378
  article-title: Loss of mtDNA activates astrocytes and leads to spongiotic encephalopathy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01859-9
– volume: 51
  start-page: 1
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib295
  article-title: Witnessing genome evolution: experimental reconstruction of endosymbiotic and horizontal gene transfer
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-120215-035329
– volume: 324
  start-page: 1076
  year: 2009
  ident: 10.1016/j.cmet.2022.10.008_bib117
  article-title: ATP-citrate lyase links cellular metabolism to histone acetylation
  publication-title: Science
  doi: 10.1126/science.1164097
– volume: 204
  start-page: 919
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib296
  article-title: The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201308006
– year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib377
  article-title: Mouse brain-wide mitochondrial connectivity anchored in gene, brain and behavior
  publication-title: Preprint at bioRxiv
– volume: 205
  start-page: 179
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib180
  article-title: Mitochondrial fusion is frequent in skeletal muscle and supports excitation-contraction coupling
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201312066
– year: 1957
  ident: 10.1016/j.cmet.2022.10.008_bib4
– volume: 64
  start-page: 1
  year: 1984
  ident: 10.1016/j.cmet.2022.10.008_bib356
  article-title: Thermogenic mechanisms in brown fat
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1984.64.1.1
– volume: 573
  start-page: 61
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib397
  article-title: Conserved cell types with divergent features in human versus mouse cortex
  publication-title: Nature
  doi: 10.1038/s41586-019-1506-7
– year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib156
– volume: 7
  start-page: 476
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib95
  article-title: Cannabinoid CB1 receptors are localized in striated muscle mitochondria and regulate mitochondrial respiration
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2016.00476
– volume: 5
  start-page: e10575
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib229
  article-title: Mitochondrial dysfunction remodels one-carbon metabolism in human cells
  publication-title: eLife
  doi: 10.7554/eLife.10575
– volume: 4
  start-page: ra7
  year: 2011
  ident: 10.1016/j.cmet.2022.10.008_bib284
  article-title: Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2001147
– volume: 185
  start-page: 2559
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib323
  article-title: Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq
  publication-title: Cell
  doi: 10.1016/j.cell.2022.05.013
– volume: 107
  start-page: 1571
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib142
  article-title: A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0906039107
– volume: 85
  start-page: 133
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib136
  article-title: Maintenance and expression of mammalian mitochondrial DNA
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060815-014402
– volume: 131
  start-page: 803
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib75
  article-title: Mitochondria: a central target for sex differences in pathologies
  publication-title: Clin. Sci. (Lond.)
  doi: 10.1042/CS20160485
– volume: 476
  start-page: 336
  year: 2011
  ident: 10.1016/j.cmet.2022.10.008_bib121
  article-title: A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter
  publication-title: Nature
  doi: 10.1038/nature10230
– volume: 430
  start-page: 88
  year: 2004
  ident: 10.1016/j.cmet.2022.10.008_bib173
  article-title: Evidence for dynamically organized modularity in the yeast protein-protein interaction network
  publication-title: Nature
  doi: 10.1038/nature02555
– volume: 30
  start-page: 105
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib391
  article-title: The rise of mitochondria in medicine
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2016.07.003
– volume: 58
  start-page: 2303
  year: 2009
  ident: 10.1016/j.cmet.2022.10.008_bib191
  article-title: Mitochondrial networking protects beta-cells from nutrient-induced apoptosis
  publication-title: Diabetes
  doi: 10.2337/db07-1781
– volume: Suppl 1
  start-page: S1
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib393
  article-title: endogenous voltage potentials and the microenvironment: bioelectric signals that reveal, induce and normalize cancer.
  publication-title: J. Clin. Exp. Oncol.
– volume: 17
  start-page: 491
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib186
  article-title: Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.03.002
– volume: 5
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib366
  article-title: Dendritic mitochondria reach stable positions during circuit development
  publication-title: eLife
  doi: 10.7554/eLife.11583
– volume: 124
  start-page: 444
  year: 2011
  ident: 10.1016/j.cmet.2022.10.008_bib183
  article-title: Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.014506
– volume: 586
  start-page: 287
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib129
  article-title: Na(+) controls hypoxic signalling by the mitochondrial respiratory chain
  publication-title: Nature
  doi: 10.1038/s41586-020-2551-y
– volume: 23
  start-page: 635
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib116
  article-title: Mitochondrial DNA replication defects disturb cellular dNTP pools and remodel one-carbon metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.01.019
– volume: 5
  start-page: ra47
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib197
  article-title: Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2002712
– volume: 7
  start-page: eabe2771
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib233
  article-title: The regulatory enzymes and protein substrates for the lysine beta-hydroxybutyrylation pathway
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abe2771
– volume: 36
  start-page: 1032
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib276
  article-title: An outer mitochondrial translocase, Tom22, is crucial for inner mitochondrial steroidogenic regulation in adrenal and gonadal tissues
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01107-15
– volume: 33
  start-page: 418
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib194
  article-title: Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure
  publication-title: EMBO J.
– volume: 31
  start-page: 267
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib110
  article-title: A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.11.020
– volume: 24
  start-page: 158
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib239
  article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.004
– volume: 18
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib266
  article-title: The bystander effect contributes to the accumulation of senescent cells in vivo
  publication-title: Aging Cell
  doi: 10.1111/acel.12848
– volume: 591
  start-page: 477
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib289
  article-title: Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance
  publication-title: Nature
  doi: 10.1038/s41586-021-03269-w
– volume: 101
  start-page: 4130
  year: 2004
  ident: 10.1016/j.cmet.2022.10.008_bib69
  article-title: Mitochondrial localization of estrogen receptor β
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0306948101
– volume: 9
  start-page: 5008
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib367
  article-title: MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07416-2
– volume: 3
  start-page: 705
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib358
  article-title: Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1714
– volume: 20
  start-page: 745
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib119
  article-title: The multifaceted contributions of mitochondria to cellular metabolism
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0124-1
– volume: 4
  start-page: 802
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib201
  article-title: Mitochondrial heterogeneity and homeostasis through the lens of a neuron
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-022-00594-w
– volume: 144
  start-page: 79
  year: 2011
  ident: 10.1016/j.cmet.2022.10.008_bib17
  article-title: The cell-non-autonomous nature of electron transport chain-mediated longevity
  publication-title: Cell
  doi: 10.1016/j.cell.2010.12.016
– volume: 66
  start-page: 1417
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib94
  article-title: Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus
  publication-title: Glia
  doi: 10.1002/glia.23314
– volume: 337
  start-page: 96
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib107
  article-title: A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
  publication-title: Science
  doi: 10.1126/science.1218099
– volume: 366
  start-page: 1531
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib286
  article-title: VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease
  publication-title: Science
  doi: 10.1126/science.aav4011
– volume: 12
  start-page: eaav1439
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib124
  article-title: Loss of MCU prevents mitochondrial fusion in G1-S phase and blocks cell cycle progression and proliferation
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aav1439
– volume: 279
  start-page: 25234
  year: 2004
  ident: 10.1016/j.cmet.2022.10.008_bib125
  article-title: Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M401229200
– volume: 392
  start-page: 49
  year: 1996
  ident: 10.1016/j.cmet.2022.10.008_bib67
  article-title: ERβ: identification and characterization of a novel human estrogen receptor
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(96)00782-X
– year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib236
  article-title: OxPhos dysfunction causes hypermetabolism and reduces lifespan in cells and in patients with mitochondrial diseases
  publication-title: Preprint at bioRxiv
– volume: 331
  start-page: 717
  year: 1988
  ident: 10.1016/j.cmet.2022.10.008_bib6
  article-title: Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies
  publication-title: Nature
  doi: 10.1038/331717a0
– volume: 11
  start-page: 3347
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib128
  article-title: NCLX prevents cell death during adrenergic activation of the brown adipose tissue
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16572-3
– volume: 134
  start-page: jcs226084
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib200
  article-title: Motor proteins at the mitochondria-cytoskeleton interface
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.226084
– volume: 8
  start-page: 796
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib347
  article-title: Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100943
– volume: 114
  start-page: 8277
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib164
  article-title: MitoNEET-dependent formation of intermitochondrial junctions
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1706643114
– volume: 176
  start-page: 435
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib102
  article-title: The molecular mechanism of transport by the mitochondrial ADP/ATP carrier
  publication-title: Cell
  doi: 10.1016/j.cell.2018.11.025
– volume: 31
  start-page: 549
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib322
  article-title: A conserved mito-cytosolic translational balance links two longevity pathways
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.01.011
– volume: 142
  start-page: 182
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib93
  article-title: Melatonin improves mitochondrial function by promoting MT1/SIRT1/PGC-1 alpha-dependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfu164
– volume: 28
  start-page: 272
  year: 2001
  ident: 10.1016/j.cmet.2022.10.008_bib11
  article-title: Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria
  publication-title: Nat. Genet.
  doi: 10.1038/90116
– volume: 2
  start-page: e201800228
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib235
  article-title: Mitochondrial acetyl-CoA reversibly regulates locus-specific histone acetylation and gene expression
  publication-title: Life Sci. Alliance
  doi: 10.26508/lsa.201800228
– volume: 61
  start-page: 648
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib206
  article-title: The emerging network of mitochondria-organelle contacts
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.01.031
– volume: 476
  start-page: 341
  year: 2011
  ident: 10.1016/j.cmet.2022.10.008_bib120
  article-title: Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter
  publication-title: Nature
  doi: 10.1038/nature10234
– year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib339
  article-title: Mitochondrial stress-induced GDF15-GFRAL axis promotes anxiety-like behavior and CRH-dependent anorexia
  publication-title: bioRxiv
– volume: 21
  start-page: 2122
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib313
  article-title: Existence of circulating mitochondria in human and animal peripheral blood
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21062122
– volume: 24
  start-page: 348
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib398
  article-title: Never waste a good crisis: confronting reproducibility in translational research
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.08.006
– volume: 109
  start-page: 1168
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib172
  article-title: Brain microvasculature has a common topology with local differences in geometry that match metabolic load
  publication-title: Neuron
  doi: 10.1016/j.neuron.2021.02.006
– volume: 13
  start-page: 494
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib241
  article-title: L-2-hydroxyglutarate production arises from noncanonical enzyme function at acidic pH
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2307
– volume: 15
  start-page: 558
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib88
  article-title: Mitochondrial CB(1) receptors regulate neuronal energy metabolism
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3053
– year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib150
– volume: 184
  start-page: 1971
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib51
  article-title: Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.034
– volume: 22
  start-page: 1731
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib373
  article-title: Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0479-z
– volume: 269
  start-page: 4985
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib303
  article-title: Circulating cell-free mtDNA release is associated with the activation of cGAS-STING pathway and inflammation in mitochondrial diseases
  publication-title: J. Neurol.
– volume: 201
  start-page: 1126
  year: 1978
  ident: 10.1016/j.cmet.2022.10.008_bib59
  article-title: Mitochondrial thyroid hormone receptor: localization and physiological significance
  publication-title: Science
  doi: 10.1126/science.210507
– volume: 84
  start-page: 4283
  year: 1999
  ident: 10.1016/j.cmet.2022.10.008_bib78
  article-title: Insertion of an amino acid in the DNA-binding domain of the glucocorticoid receptor as a result of alternative splicing
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jcem.84.11.6235
– volume: 16
  start-page: 620
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib225
  article-title: Chromatin as a key consumer in the metabolite economy
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0517-x
– volume: 128
  start-page: 1346
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib351
  article-title: High-intensity interval exercise increases humanin, a mitochondrial encoded peptide, in the plasma and muscle of men
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00032.2020
– volume: 10
  start-page: 3142
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib382
  article-title: Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle
  publication-title: Proteomics
  doi: 10.1002/pmic.201000173
– volume: 169
  start-page: 570
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib38
  article-title: Metabolic instruction of immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.004
– volume: 545
  start-page: 93
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib127
  article-title: The mitochondrial Na(+)/Ca(2+) exchanger is essential for Ca(2+) homeostasis and viability
  publication-title: Nature
  doi: 10.1038/nature22082
– volume: 417
  start-page: 87
  year: 2002
  ident: 10.1016/j.cmet.2022.10.008_bib274
  article-title: Rapid regulation of steroidogenesis by mitochondrial protein import
  publication-title: Nature
  doi: 10.1038/417087a
– volume: 87
  start-page: 2022
  year: 2004
  ident: 10.1016/j.cmet.2022.10.008_bib174
  article-title: Coordinated behavior of mitochondria in both space and time: a reactive oxygen species-activated wave of mitochondrial depolarization
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.103.035097
– volume: 110
  start-page: 153
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib148
  article-title: Molecular and clinical characterization of the myopathic form of mitochondrial DNA depletion syndrome caused by mutations in the thymidine kinase (TK2) gene
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2013.07.009
– volume: 18
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib151
  article-title: From genes to modules, from cells to ecosystems
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.202110726
– year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib388
  article-title: Optogenetic rejuvenation of mitochondrial membrane potential extends C. elegans lifespan
  publication-title: Preprint at bioRxiv
– volume: 3
  start-page: 604
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib248
  article-title: UCP1 governs liver extracellular succinate and inflammatory pathogenesis
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-021-00389-5
– volume: 44
  start-page: 2
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib45
  article-title: Beyond ATP, new roles of mitochondria
  publication-title: Biochemist
  doi: 10.1042/bio_2022_119
– volume: 99
  start-page: 1165
  year: 2006
  ident: 10.1016/j.cmet.2022.10.008_bib89
  article-title: Mitochondrial calcium transport is regulated by P2Y1- and P2Y2-like mitochondrial receptors
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.20985
– volume: 19
  start-page: 3948
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib16
  article-title: Mitochondrial myopathy induces a starvation-like response
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq310
– volume: 45
  start-page: 244
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib106
  article-title: The SLC25 mitochondrial carrier family: structure and mechanism
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2019.11.001
– volume: 4
  start-page: a011148
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib149
  article-title: The cyclic AMP pathway
  publication-title: Cold Spring Harbor Perspect. Biol.
  doi: 10.1101/cshperspect.a011148
– volume: 84
  start-page: 289
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib143
  article-title: Subcellular origin of mitochondrial DNA deletions in human skeletal muscle
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25288
– volume: 217
  start-page: 439
  year: 1955
  ident: 10.1016/j.cmet.2022.10.008_bib3
  article-title: Respiratory enzymes in oxidative phosphorylation. V. A mechanism for oxidative phosphorylation
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)57193-9
– volume: 6
  start-page: 169
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib312
  article-title: Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases
  publication-title: F1000Res.
  doi: 10.12688/f1000research.10397.1
– volume: 583
  start-page: 122
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib114
  article-title: Hepatic NADH reductive stress underlies common variation in metabolic traits
  publication-title: Nature
  doi: 10.1038/s41586-020-2337-2
– volume: 26
  start-page: 2037
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib321
  article-title: The transcription factor ATF5 mediates a mammalian mitochondrial UPR
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.06.002
– volume: 105
  start-page: 2130
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib363
  article-title: Molecular and subcellular-scale modeling of nucleotide diffusion in the cardiac myofilament lattice
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.09.020
– volume: 33
  start-page: 2464
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib36
  article-title: Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2021.11.001
– volume: 6
  start-page: eabc9955
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib255
  article-title: Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc9955
– volume: 22
  start-page: 204
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib14
  article-title: Evolution of mitochondria as signaling organelles
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.05.013
– volume: 593
  start-page: 435
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib185
  article-title: Distinct fission signatures predict mitochondrial degradation or biogenesis
  publication-title: Nature
  doi: 10.1038/s41586-021-03510-6
– volume: 4
  start-page: 413
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib31
  article-title: Motile axonal mitochondria contribute to the variability of presynaptic strength
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.06.040
– volume: 3
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib389
  article-title: Mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect
  publication-title: Life Sci. Alliance
  doi: 10.26508/lsa.202000797
– volume: 13
  start-page: eabd1869
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib258
  article-title: ABCB10 exports mitochondrial biliverdin, driving metabolic maladaptation in obesity
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abd1869
– volume: 1
  start-page: 5
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib400
  article-title: Mitochondrial respiration protects against oxygen-associated DNA damage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1003
– volume: 6
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib309
  article-title: Increased plasma levels of circulating cell-free mitochondrial DNA in suicide attempters: associations with HPA-axis hyperactivity
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2016.236
– volume: 9
  start-page: 295
  year: 1988
  ident: 10.1016/j.cmet.2022.10.008_bib270
  article-title: Molecular biology of steroid hormone synthesis
  publication-title: Endocr. Rev.
  doi: 10.1210/edrv-9-3-295
– volume: 98
  start-page: 6336
  year: 2001
  ident: 10.1016/j.cmet.2022.10.008_bib345
  article-title: A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Aβ
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.101133498
– volume: 6
  start-page: 6259
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib163
  article-title: Trans-mitochondrial coordination of cristae at regulated membrane junctions
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7259
– volume: 1813
  start-page: 1814
  year: 2011
  ident: 10.1016/j.cmet.2022.10.008_bib84
  article-title: Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2011.05.014
– volume: 6
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib242
  article-title: Oncometabolite D-2-hydroxyglurate directly induces epithelial-mesenchymal transition and is associated with distant metastasis in colorectal cancer
  publication-title: Sci. Rep.
  doi: 10.1038/srep36289
– volume: 130
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib337
  article-title: Mitochondrial uncoupling and longevity - A role for mitokines?
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2019.110796
– volume: 7
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib85
  article-title: Glucocorticoid and estrogen receptors are reduced in mitochondria of lung epithelial cells in asthma
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039183
– volume: 7
  start-page: 1182
  year: 2008
  ident: 10.1016/j.cmet.2022.10.008_bib26
  article-title: A novel role for mitochondria in regulating epigenetic modifications in the nucleus
  publication-title: Cancer Biol. Ther.
  doi: 10.4161/cbt.7.8.6215
– volume: 19
  start-page: 657
  year: 1999
  ident: 10.1016/j.cmet.2022.10.008_bib63
  article-title: Direct regulation of mitochondrial RNA synthesis by thyroid hormone
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.19.1.657
– volume: 34
  start-page: 428
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib260
  article-title: Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence
  publication-title: Genes Dev.
  doi: 10.1101/gad.331272.119
– volume: 21
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib280
  article-title: Mitochondrial DNA in inflammation and immunity
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201949799
– volume: 219
  start-page: e201909154
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib269
  article-title: Mitochondrial fragmentation enables localized signaling required for cell repair
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201909154
– volume: 112
  start-page: E6614
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib40
  article-title: Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1515733112
– volume: 54
  start-page: 13
  year: 2008
  ident: 10.1016/j.cmet.2022.10.008_bib64
  article-title: Mitochondrial gene expression is regulated at multiple levels and differentially in the heart and liver by thyroid hormones
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-008-0194-x
– volume: 50
  start-page: 339
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib204
  article-title: Lysosomal regulation of inter-mitochondrial contact fate and motility in Charcot-Marie-Tooth type 2
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.05.033
– volume: 19
  start-page: 487
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib166
  article-title: Power grid protection of the muscle mitochondrial reticulum
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.03.063
– volume: 21
  start-page: 4411
  year: 2002
  ident: 10.1016/j.cmet.2022.10.008_bib316
  article-title: A mitochondrial specific stress response in mammalian cells
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf445
– volume: 33
  start-page: 270
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib369
  article-title: Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.11.008
– volume: 291
  start-page: C176
  year: 2006
  ident: 10.1016/j.cmet.2022.10.008_bib177
  article-title: Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00348.2005
– volume: 108
  start-page: 14849
  year: 2011
  ident: 10.1016/j.cmet.2022.10.008_bib86
  article-title: Identification and characterization of a functional mitochondrial angiotensin system
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1101507108
– volume: 30
  start-page: 1040
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib18
  article-title: Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.08.019
– volume: 43
  start-page: 806
  year: 2011
  ident: 10.1016/j.cmet.2022.10.008_bib139
  article-title: Mitochondrial aging is accelerated by anti-retroviral therapy through the clonal expansion of mtDNA mutations
  publication-title: Nat. Genet.
  doi: 10.1038/ng.863
– volume: 17
  start-page: 363
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib281
  article-title: Mitochondrial DNA in innate immune responses and inflammatory pathology
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.21
– volume: 10
  start-page: e70899
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib375
  article-title: Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures
  publication-title: eLife
  doi: 10.7554/eLife.70899
– volume: 20
  start-page: 3481
  year: 2005
  ident: 10.1016/j.cmet.2022.10.008_bib74
  article-title: Estrogen receptors α and β (ERα and ERβ) and androgen receptor (AR) in human sperm: localization of ERβ and AR in mitochondria of the midpiece
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/dei267
– volume: 13
  start-page: 118
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib82
  article-title: A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-13-118
– volume: 44
  start-page: 358
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib292
  article-title: [Nuclear mitochondrial pseudogenes]
  publication-title: Mol. Biol. (Mosk).
  doi: 10.1134/S0026893310030027
– volume: 62
  start-page: 672
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib187
  article-title: Linking the metabolic state and mitochondrial DNA in chronic disease, health, and aging
  publication-title: Diabetes
  doi: 10.2337/db12-1203
– volume: 13
  start-page: 589
  year: 2011
  ident: 10.1016/j.cmet.2022.10.008_bib188
  article-title: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2220
– volume: 27
  start-page: 633
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib105
  article-title: Functional properties of the mitochondrial carrier system
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2017.04.004
– volume: 134
  start-page: 112
  year: 2008
  ident: 10.1016/j.cmet.2022.10.008_bib372
  article-title: A mitochondrial protein compendium elucidates complex I disease biology
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.016
– volume: 6
  start-page: 1307
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib402
  article-title: The role of mitochondrial energetics in the origin and diversification of eukaryotes
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-022-01833-9
– volume: 15
  start-page: 413
  year: 1983
  ident: 10.1016/j.cmet.2022.10.008_bib160
  article-title: Intermitochondrial contacts in myocardiocytes
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/0022-2828(83)90261-4
– volume: 28
  start-page: 776
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib262
  article-title: Mitohormesis in mice via sustained basal activation of mitochondrial and antioxidant signaling
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.07.011
– volume: 4
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib46
  article-title: Digital signaling decouples activation probability and population heterogeneity
  publication-title: eLife
  doi: 10.7554/eLife.08931
– volume: 4
  start-page: 651
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib256
  article-title: Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-022-00591-z
– volume: 8
  start-page: 236
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib307
  article-title: Cell-free DNA release under psychosocial and physical stress conditions
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-018-0264-x
– volume: 12
  start-page: 11185
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib346
  article-title: The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.103534
– volume: 25
  start-page: 1108
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib169
  article-title: Dynamic tubulation of mitochondria drives mitochondrial network formation
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.89
– volume: 117
  start-page: 24778
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib41
  article-title: Childhood maltreatment is associated with changes in mitochondrial bioenergetics in maternal, but not in neonatal immune cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2005885117
– volume: 579
  start-page: 427
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib319
  article-title: Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway
  publication-title: Nature
  doi: 10.1038/s41586-020-2078-2
– volume: 304
  start-page: R393
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib218
  article-title: Mitochondrial morphology transitions and functions: implications for retrograde signaling?
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00584.2012
– volume: 114
  start-page: E7997
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib87
  article-title: Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1705768114
– volume: 306
  start-page: E469
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib326
  article-title: Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00330.2013
– volume: 40
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib111
  article-title: Mitochondrial hyperfusion via metabolic sensing of regulatory amino acids
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111198
– volume: 12
  start-page: 384
  year: 2007
  ident: 10.1016/j.cmet.2022.10.008_bib352
  article-title: Plasma heat shock protein 60 and cardiovascular disease risk: the role of psychosocial, genetic, and biological factors
  publication-title: Cell Stress Chaperones
  doi: 10.1379/CSC-300.1
– volume: 2
  start-page: zqab005
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib97
  article-title: Mitochondrial P2X7 receptor localization modulates energy metabolism enhancing physical performance
  publication-title: Function (Oxf).
  doi: 10.1093/function/zqab005
– volume: 7
  year: 2011
  ident: 10.1016/j.cmet.2022.10.008_bib364
  article-title: A new view of the bacterial cytosol environment
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002066
– volume: 21
  start-page: 443
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib348
  article-title: The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.02.009
– volume: 27
  start-page: 1564
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib144
  article-title: Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01441-3
– year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib285
  article-title: Mitochondrial control of inflammation
  publication-title: Nat. Rev. Immunol.
– volume: 98
  start-page: 1467
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib305
  article-title: Expanding and validating the biomarkers for mitochondrial diseases
  publication-title: J. Mol. Med. (Berl.)
  doi: 10.1007/s00109-020-01967-y
– volume: 80
  start-page: 126
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib404
  article-title: Psychological stress and mitochondria: a conceptual framework
  publication-title: Psychosom. Med.
  doi: 10.1097/PSY.0000000000000544
– volume: 24
  start-page: 761
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib213
  article-title: Mitochondria: from cell death executioners to regulators of cell differentiation
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2014.08.005
– volume: 532
  start-page: 112
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib257
  article-title: Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1
  publication-title: Nature
  doi: 10.1038/nature17399
– volume: 72
  start-page: 2585
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib159
  article-title: Mitochondrial fusion provides an 'initial metabolic complementation' controlled by mtDNA
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-015-1863-9
– volume: 33
  start-page: 1853
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib370
  article-title: Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2021.08.002
– volume: 114
  start-page: E849
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib171
  article-title: Increased mitochondrial nanotunneling activity, induced by calcium imbalance, affects intermitochondrial matrix exchanges
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1617788113
– volume: 359
  start-page: eaao6047
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib288
  article-title: BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis
  publication-title: Science
  doi: 10.1126/science.aao6047
– volume: 44
  start-page: 740
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib279
  article-title: Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2299
– volume: 1
  start-page: 401
  year: 2005
  ident: 10.1016/j.cmet.2022.10.008_bib134
  article-title: Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.05.001
– volume: 274
  start-page: 29905
  year: 1999
  ident: 10.1016/j.cmet.2022.10.008_bib217
  article-title: Cytochrome c-mediated apoptosis in cells lacking mitochondrial DNA
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.42.29905
– volume: 232
  start-page: 245
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib130
  article-title: Lithium increases leukocyte mitochondrial complex I activity in bipolar disorder during depressive episodes
  publication-title: Psychopharmacology (Berl)
  doi: 10.1007/s00213-014-3655-6
– volume: 9
  start-page: 2162
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib90
  article-title: Intracellular GPCRs play key roles in synaptic plasticity
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/acschemneuro.7b00516
– volume: 85
  start-page: 1193
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib251
  article-title: Melatonin is required for the circadian regulation of sleep
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.02.016
– volume: 33
  start-page: 688
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib29
  article-title: Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2021.02.003
– volume: 5
  start-page: 79
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib329
  article-title: Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action
  publication-title: Mol. Metabol.
  doi: 10.1016/j.molmet.2015.11.002
– year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib56
  article-title: No role for nuclear transcription regulators in mammalian mitochondria?
  publication-title: Mol. Cell
– volume: 5
  start-page: 90
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib245
  article-title: Role of cardiolipin in mitochondrial signaling pathways
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2017.00090
– volume: 6
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib175
  article-title: A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000657
– volume: 35
  start-page: 724
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib265
  article-title: Mitochondria are required for pro-ageing features of the senescent phenotype
  publication-title: EMBO J.
  doi: 10.15252/embj.201592862
– volume: 30
  start-page: 199
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib354
  article-title: Mitochondrial transcription factor A is a proinflammatory mediator in hemorrhagic shock
  publication-title: Int. J. Mol. Med.
– volume: 554
  start-page: 165
  year: 2009
  ident: 10.1016/j.cmet.2022.10.008_bib254
  article-title: Reactive oxygen species production by mitochondria
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-521-3_11
– volume: 131
  start-page: 136055
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib113
  article-title: Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI136055
– volume: 49
  start-page: 307
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib68
  article-title: Estrogens regulate life and death in mitochondria
  publication-title: J. Bioenerg. Biomembr.
  doi: 10.1007/s10863-017-9704-1
– volume: 63
  start-page: 837
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib333
  article-title: An adipocyte-specific defect in oxidative phosphorylation increases systemic energy expenditure and protects against diet-induced obesity in mouse models
  publication-title: Diabetologia
  doi: 10.1007/s00125-019-05082-7
– volume: 116
  start-page: 20556
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib154
  article-title: Individual and collective encoding of risk in animal groups
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1905585116
– volume: 143
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib310
  article-title: Dynamic behavior of cell-free mitochondrial DNA in human saliva
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2022.105852
– volume: 3
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib282
  article-title: Structural basis for the prion-like MAVS filaments in antiviral innate immunity
  publication-title: eLife
  doi: 10.7554/eLife.01489
– volume: 178
  start-page: 1231
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib332
  article-title: GDF15 is an inflammation-induced central mediator of tissue tolerance
  publication-title: Cell
  doi: 10.1016/j.cell.2019.07.033
– volume: 34
  start-page: 12278
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib302
  article-title: A case for measuring both cellular and cell-free mitochondrial DNA as a disease biomarker in human blood
  publication-title: FASEB J.
  doi: 10.1096/fj.202000959RR
– volume: 39
  start-page: 990
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib253
  article-title: Melatonin as a hormone: new physiological and clinical insights
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2018-00084
– volume: 27
  start-page: 787
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib167
  article-title: Mitochondrial nanotunnels
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2017.08.009
– volume: 379
  start-page: 62
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib33
  article-title: Steroid hormone synthesis in mitochondria
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2013.04.014
– year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib55
– volume: 18
  start-page: 243
  year: 2004
  ident: 10.1016/j.cmet.2022.10.008_bib355
  article-title: Why does metabolism scale with temperature?
  publication-title: Funct. Ecol.
  doi: 10.1111/j.0269-8463.2004.00841.x
– volume: 191
  start-page: 144
  year: 1961
  ident: 10.1016/j.cmet.2022.10.008_bib2
  article-title: Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism
  publication-title: Nature
  doi: 10.1038/191144a0
– volume: 19
  start-page: 7913
  year: 1999
  ident: 10.1016/j.cmet.2022.10.008_bib62
  article-title: A variant form of the nuclear triiodothyronine receptor c-ErbAα1 plays a direct role in regulation of mitochondrial RNA synthesis
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.19.12.7913
– volume: 165
  start-page: 1197
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib24
  article-title: Mitochondrial stress induces chromatin reorganization to promote longevity and UPR(mt)
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.011
– volume: 38
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib387
  article-title: Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent
  publication-title: EMBO J.
  doi: 10.15252/embj.2018101056
– volume: 1
  start-page: 1209
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib147
  article-title: Mitochondrial DNA stress signalling protects the nuclear genome
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-019-0150-8
– volume: 319
  start-page: E659
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib137
  article-title: Mitochondrial-derived peptides in energy metabolism
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00249.2020
– volume: 15
  start-page: 186
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib190
  article-title: Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.01.009
– volume: 9
  start-page: e49178
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib327
  article-title: Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell
  publication-title: eLife
  doi: 10.7554/eLife.49178
– volume: 337
  start-page: 93
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib108
  article-title: Identification and functional expression of the mitochondrial pyruvate carrier
  publication-title: Science
  doi: 10.1126/science.1218530
– volume: 181
  start-page: 250
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib403
  article-title: The biology of physiological health
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.036
– volume: 112
  start-page: 15486
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib39
  article-title: Mitochondrial function in the brain links anxiety with social subordination
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1512653112
– volume: 37
  start-page: 345
  year: 1968
  ident: 10.1016/j.cmet.2022.10.008_bib104
  article-title: Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.37.2.345
– volume: 8
  start-page: 100
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib181
  article-title: A novel cell-free mitochondrial fusion assay amenable for high-throughput screenings of fusion modulators
  publication-title: BMC Biol.
  doi: 10.1186/1741-7007-8-100
– volume: 32
  start-page: 1927
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib165
  article-title: OPA1 promotes pH flashes that spread between contiguous mitochondria without matrix protein exchange
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.124
– volume: 114
  start-page: E859
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib178
  article-title: Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1617288114
– volume: 540
  start-page: 236
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib243
  article-title: S-2-hydroxyglutarate regulates CD8(+) T-lymphocyte fate
  publication-title: Nature
  doi: 10.1038/nature20165
– year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib112
– volume: 118
  start-page: 1161
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib192
  article-title: Mechanical ventilation triggers abnormal mitochondrial dynamics and morphology in the diaphragm
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00873.2014
– volume: 3
  year: 2008
  ident: 10.1016/j.cmet.2022.10.008_bib65
  article-title: Overexpression of the mitochondrial T3 receptor p43 induces a shift in skeletal muscle fiber types
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002501
– volume: 370
  start-page: 751
  year: 2003
  ident: 10.1016/j.cmet.2022.10.008_bib300
  article-title: Mitochondrial threshold effects
  publication-title: Biochem. J.
  doi: 10.1042/bj20021594
– volume: 9
  start-page: 31
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib294
  article-title: Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma
  publication-title: Genome Med.
  doi: 10.1186/s13073-017-0420-6
– volume: 12
  start-page: 470
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib350
  article-title: MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20790-0
– volume: 505
  start-page: 335
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib176
  article-title: Mitochondrial form and function
  publication-title: Nature
  doi: 10.1038/nature12985
– volume: 148
  start-page: 1145
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib15
  article-title: Mitochondria: in sickness and in health
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.035
– volume: 28
  start-page: 3301
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib126
  article-title: Pancreatic beta-cell Na+ channels control global Ca2+ signaling and oxidative metabolism by inducing Na+ and Ca2+ responses that are propagated into mitochondria
  publication-title: FASEB J.
  doi: 10.1096/fj.13-248161
– volume: 86
  start-page: 147
  year: 1996
  ident: 10.1016/j.cmet.2022.10.008_bib9
  article-title: Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80085-9
– volume: 101
  start-page: 7805
  year: 2004
  ident: 10.1016/j.cmet.2022.10.008_bib157
  article-title: Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0401077101
– volume: 33
  start-page: 334
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib349
  article-title: Mitohormesis in hypothalamic POMC neurons mediates regular exercise-induced high-turnover metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2021.01.003
– volume: 368
  start-page: eaax9553
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib406
  article-title: Social determinants of health and survival in humans and other animals
  publication-title: Science
  doi: 10.1126/science.aax9553
– volume: 99
  start-page: 13
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib208
  article-title: Current knowledge on the acute regulation of steroidogenesis
  publication-title: Biol. Reprod.
  doi: 10.1093/biolre/ioy102
– volume: 8
  start-page: 31
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib268
  article-title: Dendritic mitoflash as a putative signal for stabilizing long-term synaptic plasticity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00043-3
– volume: 15
  start-page: 235
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib395
  article-title: Mitochondrial dynamics and its involvement in disease
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathmechdis-012419-032711
– volume: 1363
  start-page: 91
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib228
  article-title: One-carbon metabolism and epigenetics: understanding the specificity
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.12956
– volume: 21
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib334
  article-title: Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201948804
– volume: 169
  start-page: 24
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib47
  article-title: The upsides and downsides of organelle interconnectivity
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.030
– volume: 28
  start-page: 516
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib21
  article-title: The mitochondrial-encoded peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response to metabolic stress
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.06.008
– volume: 16
  start-page: R551
  year: 2006
  ident: 10.1016/j.cmet.2022.10.008_bib44
  article-title: Mitochondria: more than just a powerhouse
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.06.054
– volume: 43
  start-page: 95
  year: 2009
  ident: 10.1016/j.cmet.2022.10.008_bib220
  article-title: The role of mitochondria in apoptosis
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-102108-134850
– volume: 6
  start-page: 389
  year: 2005
  ident: 10.1016/j.cmet.2022.10.008_bib141
  article-title: Mitochondrial DNA mutations in human disease
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1606
– volume: 368
  start-page: 197
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib231
  article-title: Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking
  publication-title: Science
  doi: 10.1126/science.aaw8806
– volume: 108
  start-page: 10190
  year: 2011
  ident: 10.1016/j.cmet.2022.10.008_bib189
  article-title: Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1107402108
– volume: 26
  start-page: 996
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib170
  article-title: Quantitative 3D mapping of the human skeletal muscle mitochondrial network
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.01.010
– volume: 111
  start-page: E4033
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib23
  article-title: Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1414028111
– volume: 19
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib336
  article-title: Growth differentiation factor 15 protects against the aging-mediated systemic inflammatory response in humans and mice
  publication-title: Aging Cell
  doi: 10.1111/acel.13195
– volume: 9
  start-page: 919
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib297
  article-title: The migration of mitochondrial DNA fragments to the nucleus affects the chronological aging process of Saccharomyces cerevisiae
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2010.00607.x
– volume: 56
  start-page: 1783
  year: 2007
  ident: 10.1016/j.cmet.2022.10.008_bib259
  article-title: Reactive oxygen species as a signal in glucose-stimulated insulin secretion
  publication-title: Diabetes
  doi: 10.2337/db06-1601
– volume: 8
  start-page: 1233
  year: 1997
  ident: 10.1016/j.cmet.2022.10.008_bib8
  article-title: Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.8.7.1233
– volume: 92
  start-page: 1062
  year: 2004
  ident: 10.1016/j.cmet.2022.10.008_bib96
  article-title: Mitochondrial P2Y-like receptors link cytosolic adenosine nucleotides to mitochondrial calcium uptake
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.20144
– volume: 186
  start-page: 113
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib271
  article-title: Neurosteroids: endogenous role in the human brain and therapeutic potentials
  publication-title: Prog. Brain Res.
  doi: 10.1016/B978-0-444-53630-3.00008-7
– volume: 106
  start-page: 268
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib308
  article-title: Acute psychological stress increases serum circulating cell-free mitochondrial DNA
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2019.03.026
– volume: 367
  start-page: eaay5947
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib384
  article-title: An atlas of the protein-coding genes in the human, pig, and mouse brain
  publication-title: Science
  doi: 10.1126/science.aay5947
– volume: 184
  start-page: 33
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib394
  article-title: Hallmarks of health
  publication-title: Cell
  doi: 10.1016/j.cell.2020.11.034
– volume: 49
  start-page: D1541
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib35
  article-title: MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1011
– volume: 34
  start-page: 197
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib380
  article-title: Mosaic dysfunction of mitophagy in mitochondrial muscle disease
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2021.12.017
– volume: 13
  start-page: 2620
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib381
  article-title: Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability
  publication-title: J. Proteome Res.
  doi: 10.1021/pr500295n
– volume: 101
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib222
  article-title: Cristae junction as a fundamental switchboard for mitochondrial ion signaling and bioenergetics
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2021.102517
– volume: 10
  start-page: e63104
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib103
  article-title: Intrinsic OXPHOS limitations underlie cellular bioenergetics in leukemia
  publication-title: eLife
  doi: 10.7554/eLife.63104
– volume: 41
  start-page: bnaa007
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib338
  article-title: GDF15: a hormone conveying somatic distress to the brain
  publication-title: Endocr. Rev.
  doi: 10.1210/endrev/bnaa007
– volume: 25
  start-page: 814
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib299
  article-title: Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells
  publication-title: Genome Res.
  doi: 10.1101/gr.190470.115
– volume: 8
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib238
  article-title: Operation of a TCA cycle subnetwork in the mammalian nucleus
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abq5206
– volume: 28
  start-page: 295
  year: 2002
  ident: 10.1016/j.cmet.2022.10.008_bib273
  article-title: The steroidogenic acute regulatory protein, StAR, works only at the outer mitochondrial membrane
  publication-title: Endocr. Res.
  doi: 10.1081/ERC-120016800
– volume: 55
  start-page: 601
  year: 1988
  ident: 10.1016/j.cmet.2022.10.008_bib7
  article-title: Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease
  publication-title: Cell
  doi: 10.1016/0092-8674(88)90218-8
– volume: 28
  start-page: 85
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib224
  article-title: The various metabolic sources of histone acetylation
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2016.11.001
– volume: 318
  start-page: 635
  year: 1985
  ident: 10.1016/j.cmet.2022.10.008_bib77
  article-title: Primary structure and expression of a functional human glucocorticoid receptor cDNA
  publication-title: Nature
  doi: 10.1038/318635a0
– volume: 32
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib263
  article-title: Single nucleotide resolution analysis reveals pervasive, long-lasting DNA methylation changes by developmental exposure to a mitochondrial toxicant
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.108131
– volume: 19
  start-page: 77
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib392
  article-title: Mitochondrial diseases: the contribution of organelle stress responses to pathology
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.66
– volume: 539
  start-page: 555
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib34
  article-title: A cannabinoid link between mitochondria and memory
  publication-title: Nature
  doi: 10.1038/nature20127
– volume: 6
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib291
  article-title: The spectrum of mitochondrial ultrastructural defects in mitochondrial myopathy
  publication-title: Sci. Rep.
  doi: 10.1038/srep30610
– volume: 300
  start-page: C1280
  year: 2011
  ident: 10.1016/j.cmet.2022.10.008_bib376
  article-title: Protein composition and function of red and white skeletal muscle mitochondria
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00496.2010
– volume: 38
  start-page: 437
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib91
  article-title: Subcellular characteristics of functional intracellular renin-angiotensin systems
  publication-title: Peptides
  doi: 10.1016/j.peptides.2012.09.016
– volume: 560
  start-page: 238
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib290
  article-title: Mitochondrial double-stranded RNA triggers antiviral signalling in humans
  publication-title: Nature
  doi: 10.1038/s41586-018-0363-0
– volume: 139
  start-page: 381
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib344
  article-title: Mitonuclear genomics and aging
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-020-02119-5
– volume: 89
  start-page: 4221
  year: 1992
  ident: 10.1016/j.cmet.2022.10.008_bib138
  article-title: MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.89.10.4221
– volume: 2
  start-page: 145
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib407
  article-title: Why do we care more about disease than health?
  publication-title: Phenomics
  doi: 10.1007/s43657-021-00037-8
– volume: 607
  start-page: 756
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib371
  article-title: Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I
  publication-title: Nature
  doi: 10.1038/s41586-022-04979-5
– volume: 556
  start-page: 501
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib240
  article-title: Electrophilic properties of itaconate and derivatives regulate the IκBζ–ATF3 inflammatory axis
  publication-title: Nature
  doi: 10.1038/s41586-018-0052-z
– volume: 170
  start-page: 30
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib264
  article-title: The senescent bystander effect is caused by ROS-activated NF-κB signalling
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2017.08.005
– volume: 21
  start-page: 737
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib226
  article-title: The evolving metabolic landscape of chromatin biology and epigenetics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-020-0270-8
– volume: 246
  start-page: 261
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib379
  article-title: Multilevel heterogeneity of mitochondrial respiratory chain deficiency
  publication-title: J. Pathol.
  doi: 10.1002/path.5146
– volume: 1
  start-page: 5
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib399
  article-title: Mind your mouse strain
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-018-0018-3
– volume: 8
  start-page: eabn7105
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib331
  article-title: FGF21 modulates mitochondrial stress response in cardiomyocytes only under mild mitochondrial dysfunction
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abn7105
– volume: 9
  start-page: 31
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib298
  article-title: Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma
  publication-title: Genome Med.
  doi: 10.1186/s13073-017-0420-6
– volume: 197
  start-page: 996
  year: 1977
  ident: 10.1016/j.cmet.2022.10.008_bib60
  article-title: Thyroid hormone action: the mitochondrial pathway
  publication-title: Science
  doi: 10.1126/science.196334
– volume: 120
  start-page: 595
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib152
  article-title: The social nature of mitochondria: implications for human health
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2020.04.017
– volume: 163
  start-page: 560
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib215
  article-title: Mitochondrial ROS signaling in organismal homeostasis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.001
– volume: 36
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib385
  article-title: 3D neuronal mitochondrial morphology in axons, dendrites, and somata of the aging mouse hippocampus
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109509
– volume: 255
  start-page: 8144
  year: 1980
  ident: 10.1016/j.cmet.2022.10.008_bib272
  article-title: Intracellular movement of cholesterol in rat adrenal cells. Kinetics and effects of inhibitors
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)70620-6
– volume: 1
  start-page: 975
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib123
  article-title: Voltage-energized calcium-sensitive ATP production by mitochondria
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-019-0126-8
– volume: 189
  start-page: 433
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib353
  article-title: Mitochondrial transcription factor A serves as a danger signal by augmenting plasmacytoid dendritic cell responses to DNA
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1101375
– volume: 21
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib27
  article-title: Systemic effects of mitochondrial stress
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202050094
– volume: 28
  start-page: 523
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib207
  article-title: Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2018.02.009
– volume: 153
  start-page: 1510
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib365
  article-title: Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.021
– year: 1890
  ident: 10.1016/j.cmet.2022.10.008_bib1
– year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib101
– volume: 16
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib25
  article-title: Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2005707
– volume: 14
  start-page: 225
  year: 1967
  ident: 10.1016/j.cmet.2022.10.008_bib49
  article-title: On the origin of mitosing cells
  publication-title: J. Theor. Biol.
  doi: 10.1016/0022-5193(67)90079-3
– volume: 107
  start-page: 481
  year: 1988
  ident: 10.1016/j.cmet.2022.10.008_bib161
  article-title: Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.107.2.481
– volume: 20
  start-page: 755
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib199
  article-title: Mitochondrial dynamics in adaptive and maladaptive cellular stress responses
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0133-0
– volume: 69
  start-page: 757
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib20
  article-title: Mitochondrial retrograde signaling in mammals is mediated by the transcriptional cofactor GPS2 via direct mitochondria-to-nucleus translocation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.01.037
– volume: 26
  start-page: 419
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib115
  article-title: mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.07.007
– volume: 26
  start-page: 67
  year: 2001
  ident: 10.1016/j.cmet.2022.10.008_bib57
  article-title: Thyroid hormone action in mitochondria
  publication-title: J. Mol. Endocrinol.
  doi: 10.1677/jme.0.0260067
– volume: 552
  start-page: 75
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib28
  article-title: Mitochondrial transfer between cells: methodological constraints in cell culture and animal models
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2017.11.008
– volume: 457
  start-page: 289
  year: 2009
  ident: 10.1016/j.cmet.2022.10.008_bib179
  article-title: Monitoring mitochondrial dynamics with photoactivatable [corrected] green fluorescent protein.
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(09)05016-2
– volume: 348
  start-page: 340
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib53
  article-title: Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness
  publication-title: Science
  doi: 10.1126/science.1260384
– volume: 110
  start-page: 2846
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib168
  article-title: Kissing and nanotunneling mediate intermitochondrial communication in the heart
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1300741110
– volume: 98
  start-page: 552
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib362
  article-title: Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.11.002
– volume: 1
  start-page: 318
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib48
  article-title: The physics of brain network structure, function and control
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0040-8
– volume: 84
  start-page: 9
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib42
  article-title: A mitochondrial health index sensitive to mood and caregiving stress
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2018.01.012
– volume: 174
  start-page: 870
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib267
  article-title: The mitochondrial unfolded protein response is mediated cell-non-autonomously by retromer-dependent Wnt signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.029
– volume: 325
  start-page: 477
  year: 2009
  ident: 10.1016/j.cmet.2022.10.008_bib209
  article-title: An ER-mitochondria tethering complex revealed by a synthetic biology screen
  publication-title: Science
  doi: 10.1126/science.1175088
– volume: 7
  start-page: 1204
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib343
  article-title: Accuracy of FGF-21 and GDF-15 for the diagnosis of mitochondrial disorders: a meta-analysis
  publication-title: Ann. Clin. Transl. Neurol.
  doi: 10.1002/acn3.51104
– volume: 44
  start-page: 423
  year: 2004
  ident: 10.1016/j.cmet.2022.10.008_bib182
  article-title: Hyperglycemic conditions affect shape and Ca2+ homeostasis of mitochondria in endothelial cells
  publication-title: J. Cardiovasc. Pharmacol.
  doi: 10.1097/01.fjc.0000139449.64337.1b
– volume: 26
  start-page: 2602
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib386
  article-title: Progressive decrease of mitochondrial motility during maturation of cortical axons in vitro and in vivo
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.07.064
– volume: 158
  start-page: 54
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib203
  article-title: Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase
  publication-title: Cell
  doi: 10.1016/j.cell.2014.06.007
– volume: 9
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib52
  article-title: Intracellular energy variability modulates cellular decision-making capacity
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56587-5
– volume: 520
  start-page: 553
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib22
  article-title: Mitochondrial DNA stress primes the antiviral innate immune response
  publication-title: Nature
  doi: 10.1038/nature14156
– volume: 40
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib249
  article-title: Succinate uptake by T cells suppresses their effector function via inhibition of mitochondrial glucose oxidation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111193
– volume: 1745
  start-page: 382
  year: 2005
  ident: 10.1016/j.cmet.2022.10.008_bib70
  article-title: Differential subcellular distribution of estrogen receptor isoforms: localization of ERα in the nucleoli and ERβ in the mitochondria of human osteosarcoma SaOS-2 and hepatocarcinoma HepG2 cell lines
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2005.05.010
– volume: 19
  start-page: 458
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib324
  article-title: Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.02.004
– volume: 155
  start-page: 160
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib193
  article-title: Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.032
– volume: 122
  start-page: 669
  year: 2005
  ident: 10.1016/j.cmet.2022.10.008_bib283
  article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.012
– volume: 235
  start-page: 349
  year: 1997
  ident: 10.1016/j.cmet.2022.10.008_bib81
  article-title: The mitochondrion as a primary site of action of glucocorticoids: mitochondrial nucleotide sequences, showing similarity to hormone response elements, confer dexamethasone inducibility to chimaeric genes transfected in LATK- cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.6787
– volume: 216
  start-page: 2027
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib320
  article-title: Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201702058
– volume: 185
  start-page: 3356
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib221
  article-title: Sublethal cytochrome c release generates drug-tolerant persister cells
  publication-title: Cell
  doi: 10.1016/j.cell.2022.07.025
– volume: 16
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib360
  article-title: Mitochondria are physiologically maintained at close to 50 °C
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2003992
– volume: 24
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib328
  article-title: Differential roles of GDF15 and FGF21 in systemic metabolic adaptation to the mitochondrial integrated stress response
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102181
– volume: 26
  start-page: 771
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib277
  article-title: Role of mitochondria in steroidogenesis
  publication-title: Best Pract. Res. Clin. Endocrinol. Metab.
  doi: 10.1016/j.beem.2012.05.002
– volume: 134
  start-page: 220
  year: 2011
  ident: 10.1016/j.cmet.2022.10.008_bib72
  article-title: Oestrogens ameliorate mitochondrial dysfunction in Leber's hereditary optic neuropathy
  publication-title: Brain
  doi: 10.1093/brain/awq276
– volume: 36
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib76
  article-title: Human studies of mitochondrial biology demonstrate an overall lack of binary sex differences: a multivariate meta-analysis
  publication-title: FASEB J.
  doi: 10.1096/fj.202101628R
– volume: 50
  start-page: 259
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib205
  article-title: Knowing when to let go: lysosomes regulate inter-mitochondrial tethering
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.07.019
– volume: 19
  start-page: 83
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib325
  article-title: Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
  publication-title: Nat. Med.
  doi: 10.1038/nm.3014
– volume: 103
  start-page: 2653
  year: 2006
  ident: 10.1016/j.cmet.2022.10.008_bib184
  article-title: Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0511154103
– volume: 116
  start-page: 18435
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib261
  article-title: Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1910574116
– volume: 38
  start-page: 468
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib361
  article-title: Mitochondrial synapses: intracellular communication and signal integration
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2015.06.001
– volume: 78
  start-page: 814
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib341
  article-title: Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24506
– volume: 91
  start-page: 7247
  year: 1994
  ident: 10.1016/j.cmet.2022.10.008_bib278
  article-title: The mitochondrial environment is required for activity of the cholesterol side-chain cleavage enzyme, cytochrome P450scc
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.15.7247
– volume: 13
  start-page: 335
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib92
  article-title: Melatonin synthesis in and uptake by mitochondria: implications for diseased cells with dysfunctional mitochondria
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc-2020-0326
– volume: 28
  start-page: 3074
  year: 2009
  ident: 10.1016/j.cmet.2022.10.008_bib158
  article-title: Mitochondrial 'kiss-and-run': interplay between mitochondrial motility and fusion-fission dynamics
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.255
– volume: 12
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib210
  article-title: A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001969
– volume: 579
  start-page: 433
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib318
  article-title: A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol
  publication-title: Nature
  doi: 10.1038/s41586-020-2076-4
– year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib237
  article-title: A multi-omics and bioenergetics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations
  publication-title: Preprint at bioRxiv
– volume: 318
  start-page: R445
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib306
  article-title: Cell-free mitochondrial DNA increases in maternal circulation during healthy pregnancy: a prospective, longitudinal study
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00324.2019
– volume: 287
  start-page: C817
  year: 2004
  ident: 10.1016/j.cmet.2022.10.008_bib223
  article-title: Calcium, ATP, and ROS: a mitochondrial love-hate triangle
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00139.2004
– volume: 337
  start-page: 587
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib19
  article-title: Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation
  publication-title: Science
  doi: 10.1126/science.1223560
– volume: 185
  start-page: 2853
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib131
  article-title: Nitric oxide signaling in health and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2022.06.010
– volume: 5
  start-page: 101
  year: 2004
  ident: 10.1016/j.cmet.2022.10.008_bib155
  article-title: Network biology: understanding the cell's functional organization
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1272
– volume: 120
  start-page: 483
  year: 2005
  ident: 10.1016/j.cmet.2022.10.008_bib214
  article-title: Mitochondria, oxidants, and aging
  publication-title: Cell
  doi: 10.1016/j.cell.2005.02.001
– volume: 43
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib246
  article-title: Metabolism and chromatin: a dynamic duo that regulates development and ageing
  publication-title: Bioessays
  doi: 10.1002/bies.202000273
– volume: 467
  start-page: 929
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib401
  article-title: The energetics of genome complexity
  publication-title: Nature
  doi: 10.1038/nature09486
– volume: 216
  start-page: 149
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib330
  article-title: Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201607110
– volume: 10
  start-page: 882
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib250
  article-title: Blunted nocturnal salivary melatonin secretion profiles in military-related posttraumatic stress disorder
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2019.00882
– volume: 1801
  start-page: 163
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib66
  article-title: Thyroid hormone action: the p43 mitochondrial pathway
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7902-8_14
– volume: 28
  start-page: 142
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib37
  article-title: Mitochondrial psychobiology: foundations and applications
  publication-title: Curr. Opin. Behav. Sci.
  doi: 10.1016/j.cobeha.2019.04.015
– volume: 28
  start-page: 145
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib132
  article-title: Acute O2 sensing: role of coenzyme QH2/Q ratio and mitochondrial ROS compartmentalization
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.05.009
– volume: 55
  start-page: 43
  year: 1995
  ident: 10.1016/j.cmet.2022.10.008_bib80
  article-title: The mitochondrion as a primary site of action of glucocorticoids: the interaction of the glucocorticoid receptor with mitochondrial DNA sequences showing partial similarity to the nuclear glucocorticoid responsive elements
  publication-title: J. Steroid Biochem. Mol. Biol.
  doi: 10.1016/0960-0760(95)00159-W
– volume: 22
  start-page: 825
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib133
  article-title: Oxygen sensing by arterial chemoreceptors depends on mitochondrial complex I signaling
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.09.004
– volume: 34
  start-page: 3616
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib314
  article-title: Blood contains circulating cell-free respiratory competent mitochondria
  publication-title: FASEB J.
  doi: 10.1096/fj.201901917RR
– volume: 2
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib140
  article-title: Mitochondrial diseases
  publication-title: Nat. Rev. Dis. Primers
  doi: 10.1038/nrdp.2016.80
– volume: 20
  start-page: 4107
  year: 2001
  ident: 10.1016/j.cmet.2022.10.008_bib10
  article-title: Propagation of the apoptotic signal by mitochondrial waves
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.15.4107
– volume: 63
  start-page: 162
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib244
  article-title: Reign in the membrane: how common lipids govern mitochondrial function
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2020.01.006
– volume: 369
  start-page: 2236
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib396
  article-title: Mitochondrial dynamics--mitochondrial fission and fusion in human diseases
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1215233
– volume: 183
  start-page: 94
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib30
  article-title: A network of macrophages supports mitochondrial homeostasis in the heart
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.031
– volume: 95
  start-page: 1111
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib219
  article-title: The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00001.2015
– volume: 12
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib359
  article-title: Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0172344
– volume: 535
  start-page: 561
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib145
  article-title: Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing
  publication-title: Nature
  doi: 10.1038/nature18618
– volume: 77
  start-page: 6715
  year: 1980
  ident: 10.1016/j.cmet.2022.10.008_bib5
  article-title: Maternal inheritance of human mitochondrial DNA
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.77.11.6715
– volume: 141
  start-page: 280
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib12
  article-title: Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.026
– volume: 55
  start-page: 1370
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib287
  article-title: Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.06.007
– volume: 23
  start-page: 1271
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib368
  article-title: MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-021-00798-4
– year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib293
– volume: 22
  start-page: 407
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib212
  article-title: Spine dynamics in the brain, mental disorders and artificial neural networks
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-021-00467-3
– volume: 574
  start-page: 575
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib230
  article-title: Metabolic regulation of gene expression by histone lactylation
  publication-title: Nature
  doi: 10.1038/s41586-019-1678-1
– volume: 58
  start-page: 255
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib315
  article-title: Extracellular mitochondria in the cerebrospinal fluid (CSF): potential types and key roles in central nervous system (CNS) physiology and pathogenesis
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2021.02.006
– volume: 27
  start-page: 869
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib383
  article-title: Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.03.003
– volume: 294
  start-page: 6621
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib73
  article-title: Mitochondrial localization, import, and mitochondrial function of the androgen receptor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.006727
– volume: 59
  start-page: 225
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib301
  article-title: Stress and circulating cell-free mitochondrial DNA: a systematic review of human studies, physiological considerations, and technical recommendations
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2021.04.002
– volume: 10
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib311
  article-title: Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001577
– start-page: 165
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib50
  article-title: The multicellular organism as a social phenomenon
– volume: 53
  start-page: 982
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib146
  article-title: An atlas of mitochondrial DNA genotype-phenotype associations in the UK Biobank
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00868-1
– volume: 6
  start-page: eabe5310
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib109
  article-title: MCART1/SLC25A51 is required for mitochondrial NAD transport
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abe5310
– volume: 4
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib153
  article-title: The evolution of distributed sensing and collective computation in animal populations
  publication-title: eLife
  doi: 10.7554/eLife.10955
– volume: 27
  start-page: 497
  year: 2018
  ident: 10.1016/j.cmet.2022.10.008_bib118
  article-title: The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.01.016
– volume: 4
  start-page: 292
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib198
  article-title: Mitochondrial movement during its association with chloroplasts in Arabidopsis thaliana
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-01833-8
– volume: 27
  start-page: 433
  year: 2008
  ident: 10.1016/j.cmet.2022.10.008_bib13
  article-title: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601963
– volume: 20
  start-page: 350
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib100
  article-title: α7 nicotinic acetylcholine receptor signaling inhibits inflammasome activation by preventing mitochondrial DNA release
  publication-title: Mol. Med.
  doi: 10.2119/molmed.2013.00117
– volume: 401
  start-page: 3
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib43
  article-title: Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2019-0268
– volume: 51
  start-page: 2959
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib122
  article-title: Role of mitochondrial ca(2+) in the regulation of cellular energetics
  publication-title: Biochemistry
  doi: 10.1021/bi2018909
– volume: 53
  start-page: 246
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib99
  article-title: Mitochondria express several nicotinic acetylcholine receptor subtypes to control various pathways of apoptosis induction
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2014.05.030
– volume: 299
  start-page: C477
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib196
  article-title: Biophysical properties of mitochondrial fusion events in pancreatic beta-cells and cardiac cells unravel potential control mechanisms of its selectivity
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00427.2009
– volume: 170
  start-page: 59
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib227
  article-title: Mitochondria signaling to the epigenome: a novel role for an old organelle
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2020.11.016
– volume: 81
  start-page: 3866
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib211
  article-title: Oxidative bursts of single mitochondria mediate retrograde signaling toward the ER
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.07.014
– volume: 15
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib317
  article-title: Balancing energy and protein homeostasis at ER-mitochondria contact sites
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.abm7524
– volume: 23
  start-page: 15
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib232
  article-title: Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0556-3
– volume: 302
  start-page: C629
  year: 2012
  ident: 10.1016/j.cmet.2022.10.008_bib374
  article-title: Mitochondrial functional specialization in glycolytic and oxidative muscle fibers: tailoring the organelle for optimal function
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00368.2011
– volume: 105
  start-page: 391
  year: 1984
  ident: 10.1016/j.cmet.2022.10.008_bib58
  article-title: Purification of the mitochondrial triiodothyronine (T3) receptor from rat liver
  publication-title: Acta Endocrinol.
– volume: 270
  start-page: 16347
  year: 1995
  ident: 10.1016/j.cmet.2022.10.008_bib61
  article-title: A 43-kDa protein related to c-Erb A alpha 1 is located in the mitochondrial matrix of rat liver
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.27.16347
– volume: 23
  start-page: 1150
  year: 2017
  ident: 10.1016/j.cmet.2022.10.008_bib335
  article-title: GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates
  publication-title: Nat. Med.
  doi: 10.1038/nm.4392
– volume: 34
  start-page: 1325
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib357
  article-title: The mitochondrial calcium uniporter engages UCP1 to form a thermoporter that promotes thermogenesis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2022.07.011
– volume: 115
  start-page: 1562
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib162
  article-title: Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00819.2013
– volume: 18
  start-page: 461
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib247
  article-title: Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-022-01004-8
– volume: 11
  start-page: 102
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib216
  article-title: Mitochondrial TCA cycle metabolites control physiology and disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13668-3
– volume: 290
  start-page: 2604
  year: 2015
  ident: 10.1016/j.cmet.2022.10.008_bib275
  article-title: Mitochondria-associated endoplasmic reticulum membrane (MAM) regulates steroidogenic activity via steroidogenic acute regulatory protein (StAR)-voltage-dependent anion channel 2 (VDAC2) interaction
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.605808
– volume: 87
  start-page: 2290
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib342
  article-title: FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003374
– volume: 118
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib340
  article-title: Activation of the hypothalamic-pituitary-adrenal axis by exogenous and endogenous GDF15
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2106868118
– volume: 33
  start-page: 1605
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib252
  article-title: The use of exogenous melatonin in delayed sleep phase disorder: a meta-analysis
  publication-title: Sleep
  doi: 10.1093/sleep/33.12.1605
– volume: 6
  year: 2016
  ident: 10.1016/j.cmet.2022.10.008_bib83
  article-title: Glucocorticoid receptor isoforms direct distinct mitochondrial programs to regulate ATP production
  publication-title: Sci. Rep.
  doi: 10.1038/srep26419
– volume: 167
  start-page: 661
  year: 2004
  ident: 10.1016/j.cmet.2022.10.008_bib202
  article-title: Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200406038
– volume: 10
  year: 2014
  ident: 10.1016/j.cmet.2022.10.008_bib405
  article-title: Human social genomics
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004601
– volume: 377
  start-page: 621
  year: 2022
  ident: 10.1016/j.cmet.2022.10.008_bib98
  article-title: Mitochondrial remodeling and ischemic protection by G protein-coupled receptor 35 agonists
  publication-title: Science
  doi: 10.1126/science.abm1638
– volume: 342
  start-page: 1524
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib390
  article-title: mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome
  publication-title: Science
  doi: 10.1126/science.1244360
– volume: 180
  start-page: 1178
  year: 2020
  ident: 10.1016/j.cmet.2022.10.008_bib32
  article-title: Aralar sequesters GABA into hyperactive mitochondria, causing social behavior deficits
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.044
– volume: 116
  start-page: 16028
  year: 2019
  ident: 10.1016/j.cmet.2022.10.008_bib234
  article-title: Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1906896116
– volume: 67
  start-page: 1113
  year: 2021
  ident: 10.1016/j.cmet.2022.10.008_bib304
  article-title: Circulating cell-free mitochondrial DNA in cerebrospinal fluid as a biomarker for mitochondrial diseases
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/hvab091
– volume: 24
  start-page: 1737
  year: 2010
  ident: 10.1016/j.cmet.2022.10.008_bib71
  article-title: Ligand-independent antiapoptotic function of estrogen receptor-beta in lung cancer cells
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2010-0125
– volume: 213
  start-page: 134
  year: 1970
  ident: 10.1016/j.cmet.2022.10.008_bib79
  article-title: A comparative study of RNA synthesis in rat hepatic nuclei and mitochondria under the influence of cortisone
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2787(70)90014-6
– volume: 24
  start-page: 97
  year: 2009
  ident: 10.1016/j.cmet.2022.10.008_bib135
  article-title: Regulation of oxygen homeostasis by hypoxia-inducible factor 1
  publication-title: Physiology
  doi: 10.1152/physiol.00045.2008
– volume: 16
  start-page: 698
  year: 2013
  ident: 10.1016/j.cmet.2022.10.008_bib195
  article-title: Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3387
SSID ssj0036393
Score 2.719729
SecondaryResourceType review_article
Snippet The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1620
SubjectTerms Cell Communication
Cell Nucleus - metabolism
Humans
Mitochondria - metabolism
Signal Transduction
Title Mitochondrial signal transduction
URI https://www.ncbi.nlm.nih.gov/pubmed/36323233
https://www.proquest.com/docview/2731719910
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT8JAFJ4oxqNxF7dA4s2UtNPpdlQCIYblUhJuzWxECBaD5aC_3jedthRFg14aMmk77fvKm--9eQtCd5QwwZSjyjdtbBAqqBFQVRtPCuIKaXKXK4d-r-92huRp5IxWtf_S7JKENfjHxryS_6AKY4CrypL9A7LFTWEAfgO-cASE4bgVxj34O4L6ikXaekOFYqSh47D6CF0Utkw9m8pL9yITQH2W1w1UOhFQ0uHtuqJA4XJ5niwmWbPqwSJVA2UPARiXVuEh0EoNOJoBJrDe_5AbxjJNmLkVM8Stkl6zXH3mN4Wrbf9pg8PzN9TkjTRWzl8tL_mWen8QtYfdbhS2RuEu2sNA69OEy9FjvnLawJZsHQWgny1LctLxeF9nWCcSP1gHKUsID9FBRu9rDxqrI7Qj42O0rxt-vp-g-hpiNY1YrYzYKQrbrbDZMbImFQbHge8YgaCYAe_1qOtTz6NADwXxCcYeHY-pSwPpe9zG0qQBYUw4DJRk4DAvsPgY3tM-Q5V4HssLVBOmzV0ccLAgwGYWmBJfEsEJJkLCHLSKrPyFI54VcFd9RGZRHqk3jZSQIiUkNQZCqqL74ppXXb7k17PruRwj0DJq64jGcr58i4DkWp6KkjOr6FwLuLgfwAa03LYvt7j6SvlFTEt_odeokiyW8gZYXcJu00_hE44jStM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+signal+transduction&rft.jtitle=Cell+metabolism&rft.au=Picard%2C+Martin&rft.au=Shirihai%2C+Orian+S&rft.date=2022-11-01&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=34&rft.issue=11&rft.spage=1620&rft_id=info:doi/10.1016%2Fj.cmet.2022.10.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon