CNN-based health model using knowledge mining of influencing factors
In modern society, the number of chronic patients is increasing due to various causes, such as drinking, smoking, unhealthy lifestyles, and stress. Chronic diseases must be managed with constant care, but may get worse from various factors. With the development of information technology, healthcare...
Saved in:
Published in | Personal and ubiquitous computing Vol. 26; no. 2; pp. 221 - 231 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.04.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In modern society, the number of chronic patients is increasing due to various causes, such as drinking, smoking, unhealthy lifestyles, and stress. Chronic diseases must be managed with constant care, but may get worse from various factors. With the development of information technology, healthcare technologies using health big data, machine learning, and reinforcement learning are attracting attention. Using these technologies, it is possible to predict potential diseases that may occur in the future by using data learning and clustering of similar data. To predict the potential for disease, we should research various models based on the convolutional neural network (CNN), which can identify knowledge objects from unstructured data such as medical data. However, the fully connected network structure of the CNN generally uses a large amount of memory. Another problem is that complexity increases with the number of layers. This causes the overfitting problem, which increases error. To solve this problem, this paper proposes a CNN-based health model using knowledge mining of influencing factors. The proposed method uses hidden layers of a double-layer structure within the CNN structure. The double-layer structure has the optimal conditions for classification, compared with a single layer that allows the AND/OR operations. First, the amount of data used is reduced by extracting influencing factors through multivariate analysis, and these influencing factors are used as input data. Significant influencing factors are extracted from the first hidden layer using the significance level. This improves accuracy, because it extracts data required for analysis. Common influencing factors appropriate for significance levels are extracted. Common influencing factors refer to correlated factors that can affect each other. In the second hidden layer, the correlations between influencing factors are discovered through a correlation coefficient, and they are classified into positive and negative factors. Furthermore, associated rules are discovered through knowledge mining from among the classified influencing factors. They are subdivided into influencing factors like obesity, high blood pressure, and diabetes through the rules of the discovered influencing factors. For performance evaluation, the root mean square error (RMSE) of the CNN model is evaluated according to the application of knowledge mining to the influencing factors. The evaluation of accuracy, computational load, complexity, and learning rate showed better results, compared with the existing method. Through the proposed health model, knowledge about the associations of various factors is derived. |
---|---|
AbstractList | In modern society, the number of chronic patients is increasing due to various causes, such as drinking, smoking, unhealthy lifestyles, and stress. Chronic diseases must be managed with constant care, but may get worse from various factors. With the development of information technology, healthcare technologies using health big data, machine learning, and reinforcement learning are attracting attention. Using these technologies, it is possible to predict potential diseases that may occur in the future by using data learning and clustering of similar data. To predict the potential for disease, we should research various models based on the convolutional neural network (CNN), which can identify knowledge objects from unstructured data such as medical data. However, the fully connected network structure of the CNN generally uses a large amount of memory. Another problem is that complexity increases with the number of layers. This causes the overfitting problem, which increases error. To solve this problem, this paper proposes a CNN-based health model using knowledge mining of influencing factors. The proposed method uses hidden layers of a double-layer structure within the CNN structure. The double-layer structure has the optimal conditions for classification, compared with a single layer that allows the AND/OR operations. First, the amount of data used is reduced by extracting influencing factors through multivariate analysis, and these influencing factors are used as input data. Significant influencing factors are extracted from the first hidden layer using the significance level. This improves accuracy, because it extracts data required for analysis. Common influencing factors appropriate for significance levels are extracted. Common influencing factors refer to correlated factors that can affect each other. In the second hidden layer, the correlations between influencing factors are discovered through a correlation coefficient, and they are classified into positive and negative factors. Furthermore, associated rules are discovered through knowledge mining from among the classified influencing factors. They are subdivided into influencing factors like obesity, high blood pressure, and diabetes through the rules of the discovered influencing factors. For performance evaluation, the root mean square error (RMSE) of the CNN model is evaluated according to the application of knowledge mining to the influencing factors. The evaluation of accuracy, computational load, complexity, and learning rate showed better results, compared with the existing method. Through the proposed health model, knowledge about the associations of various factors is derived. |
Author | Baek, Ji-Won Chung, Kyungyong |
Author_xml | – sequence: 1 givenname: Ji-Won surname: Baek fullname: Baek, Ji-Won organization: Data Mining Laboratory, Department of Computer Science, Kyonggi University – sequence: 2 givenname: Kyungyong surname: Chung fullname: Chung, Kyungyong email: dragonhci@gmail.com organization: Division of Computer Science and Engineering, Kyonggi University |
BookMark | eNp9UMtOwzAQtFCRaAs_wCkS54DXTu3kiMpTqsoFzlZsr9uU1C52I8Tfk1AEtx72qZnZ1UzIyAePhFwCvQZK5U3qk6xyCkNwSnNxQsYgQOZFBXL019PqjExS2lAKUhRiTO7my2Wu64Q2W2Pd7tfZNlhssy41fpW9-_DZol1htm38sAgua7xrO_RmGF1t9iGmc3Lq6jbhxW-dkreH-9f5U754eXye3y5yw6qS50g5AmqpC11ZN9NaAJWlnVEEyRhaQ5kxhktnbSV4_7EAZpmTGkpA0BWfkquD7i6Gjw7TXm1CF31_UjFR0JkQvDyOYqVkwEpe9Ch2QJkYUoro1C422zp-KaBq8FQdPFW9p-rHUyV6Ej-QUg_2K4z_0kdY38BHecQ |
CitedBy_id | crossref_primary_10_1007_s00779_021_01638_w crossref_primary_10_3390_app11115072 crossref_primary_10_1109_ACCESS_2020_2980938 |
Cites_doi | 10.1016/j.patcog.2017.12.022 10.1016/j.cogsys.2018.07.014 10.1007/s10586-017-0879-3 10.1007/s11277-017-4645-x 10.1016/j.cviu.2018.09.001 10.1007/s10799-015-0218-4 10.1016/j.jkss.2018.05.004 10.1016/j.ins.2017.08.043 10.1016/j.procs.2016.05.196 10.1007/s12083-018-0631-7 10.1016/j.icte.2018.10.005 10.1007/s11277-018-5722-5 10.1016/j.compeleceng.2016.08.012 10.1016/j.compeleceng.2017.10.008 10.1016/j.asoc.2018.05.038 10.1016/j.eswa.2018.03.048 10.1016/j.ocemod.2013.08.003 10.1007/s11277-016-3715-9 10.1016/j.procs.2018.05.041 10.1016/j.neucom.2018.03.080 10.1016/j.physa.2017.11.050 10.1007/s11277-018-5979-8 10.1016/j.ins.2017.12.059 10.1016/j.jocs.2018.12.003 10.1016/j.neucom.2018.03.012 10.3233/THC-191730 10.1007/s00779-019-01230-3 10.1007/s10799-019-00304-1 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Personal and Ubiquitous Computing is a copyright of Springer, (2019). All Rights Reserved. Springer-Verlag London Ltd., part of Springer Nature 2019. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Personal and Ubiquitous Computing is a copyright of Springer, (2019). All Rights Reserved. – notice: Springer-Verlag London Ltd., part of Springer Nature 2019. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s00779-019-01300-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Central Korea Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Computer Science Database Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1617-4917 |
EndPage | 231 |
ExternalDocumentID | 10_1007_s00779_019_01300_6 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC 06D 0VY 123 199 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8AO 8FE 8FG 8FW 8TC 8UJ 8US 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAGAY AAHNG AAIAL AAJKR AAKMM AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAWTV AAYFA AAYFX AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABGDV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABQDU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACATF ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACM ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVLL ACVWB ACWMK ADHHG ADHIR ADHRN ADINQ ADKNI ADKPE ADL ADMDM ADOXG ADPZR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEBYY AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AENSD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFJFK AFKRA AFLOW AFNRJ AFQWF AFWIH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AIKLT AILAN AIMYW AITGF AIYWX AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BDXCO BENPR BGLVJ BGNMA BPHCQ CAG CCLIF CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUFHI GXS HCIFZ HF~ HG5 HG6 HGAVV HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F I07 I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAS LLZTM M0N M4Y MA- MQGED N2Q NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P62 P9O PF0 PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RIG RNI RNS ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W7O WK8 XJE YLTOR YZZ Z45 Z7R Z7S Z7X Z7Z Z81 Z83 Z88 ZMTXR ~A9 0R~ AACDK AAJBT AALFJ AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AFWXC AGQEE AGRTI AIGIU CITATION H13 LHSKQ 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PQEST PQUKI PRINS Q9U AAYZH |
ID | FETCH-LOGICAL-c2983-e03e1eb7b4b9df5bb61078d50e1722edc02ccc37fdd963161612d2f7b181e1b93 |
IEDL.DBID | 8FG |
ISSN | 1617-4909 |
IngestDate | Mon Nov 04 10:48:57 EST 2024 Thu Oct 10 17:40:02 EDT 2024 Thu Sep 12 19:08:16 EDT 2024 Sat Dec 16 12:07:43 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Mining CNN Influencing factors Knowledge Health model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2983-e03e1eb7b4b9df5bb61078d50e1722edc02ccc37fdd963161612d2f7b181e1b93 |
PQID | 2287212834 |
PQPubID | 25320 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2640566389 proquest_journals_2287212834 crossref_primary_10_1007_s00779_019_01300_6 springer_journals_10_1007_s00779_019_01300_6 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Personal and ubiquitous computing |
PublicationTitleAbbrev | Pers Ubiquit Comput |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Kim, Chung (CR21) 2018; 11 Kang, Shin, Park, Bang (CR13) 2018; 47 Xuanxua (CR15) 2018; 52 Swapna, Vinayakumar, Soman (CR4) 2018; 4 CR12 CR34 Fernández (CR14) 2018; 492 CR33 Yoo, Chung (CR2) 2017; 93 CR32 Deshmukh, Bhosle (CR17) 2016; 85 Oh, Chung (CR23) 2018; 98 Chung, Yoo, Choe, Jung (CR25) 2019; 105 Singh, Garg, Mishra (CR19) 2018; 67 Liu, Hou, Qin, Hao (CR11) 2018; 77 Ciocca, Napoletano, Schettini (CR8) 2018; 176-177 CR6 Xu, Zhang, Gu, Pan (CR31) 2019; 328 CR7 CR29 Månsn, Zhang, Fredrik (CR5) 2018; 70 CR28 CR27 CR26 Swapna, Soman, Vinayakumar (CR9) 2018; 132 Xiang, Zhang, Gu, Cai (CR18) 2018; 105 Sajjad, Khan, Muhammad, Wu, Ullah, Baik (CR10) 2018; 30 Yoo, Chung (CR22) 2018; 21 Anya, Tawfik (CR1) 2017; 61 Djenouri, Comuzzi (CR20) 2017; 420 Kim, Chung (CR24) 2019; 105 Mu, Liu, Wang (CR16) 2018; 435 Jung, Chung (CR3) 2016; 17 Mentaschi, Besio, Cassola, Mazzino (CR30) 2013; 72 M Sajjad (1300_CR10) 2018; 30 S Singh (1300_CR19) 2018; 67 Y Mu (1300_CR16) 2018; 435 J Deshmukh (1300_CR17) 2016; 85 1300_CR29 1300_CR28 G Swapna (1300_CR9) 2018; 132 1300_CR27 G Swapna (1300_CR4) 2018; 4 L Månsn (1300_CR5) 2018; 70 1300_CR26 JC Kim (1300_CR24) 2019; 105 H Yoo (1300_CR2) 2017; 93 X Liu (1300_CR11) 2018; 77 K Chung (1300_CR25) 2019; 105 O Anya (1300_CR1) 2017; 61 SY Oh (1300_CR23) 2018; 98 J Fernández (1300_CR14) 2018; 492 J Kang (1300_CR13) 2018; 47 Z Xuanxua (1300_CR15) 2018; 52 H Yoo (1300_CR22) 2018; 21 1300_CR32 H Jung (1300_CR3) 2016; 17 1300_CR12 1300_CR34 1300_CR33 JC Kim (1300_CR21) 2018; 11 Y Djenouri (1300_CR20) 2017; 420 L Mentaschi (1300_CR30) 2013; 72 1300_CR6 Q Xu (1300_CR31) 2019; 328 1300_CR7 G Ciocca (1300_CR8) 2018; 176-177 Y Xiang (1300_CR18) 2018; 105 |
References_xml | – volume: 77 start-page: 262 year: 2018 end-page: 275 ident: CR11 article-title: Multi-view multi-scale CNNs for lung nodule type classification from CT images publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.12.022 contributor: fullname: Hao – volume: 52 start-page: 312 year: 2018 end-page: 316 ident: CR15 article-title: Multivariate linear regression analysis on online image study for IoT publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2018.07.014 contributor: fullname: Xuanxua – volume: 21 start-page: 1139 issue: 1 year: 2018 end-page: 1149 ident: CR22 article-title: Heart rate variability based stress index service model using bio-sensor publication-title: Clust Comput doi: 10.1007/s10586-017-0879-3 contributor: fullname: Chung – ident: CR12 – volume: 98 start-page: 3287 issue: 4 year: 2018 end-page: 3297 ident: CR23 article-title: Performance evaluation of silence-feature normalization model using cepstrum features of noise signals publication-title: Wirel Pers Commun doi: 10.1007/s11277-017-4645-x contributor: fullname: Chung – volume: 176-177 start-page: 70 year: 2018 end-page: 77 ident: CR8 article-title: CNN-based features for retrieval and classification of food images publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2018.09.001 contributor: fullname: Schettini – ident: CR33 – volume: 17 start-page: 29 issue: 1 year: 2016 end-page: 42 ident: CR3 article-title: Knowledge-based dietary nutrition recommendation for obese management publication-title: Inf Technol Manag doi: 10.1007/s10799-015-0218-4 contributor: fullname: Chung – volume: 47 start-page: 471 issue: 4 year: 2018 end-page: 481 ident: CR13 article-title: Hierarchically penalized quantile regression with multiple responses publication-title: J Korean Stat Soc doi: 10.1016/j.jkss.2018.05.004 contributor: fullname: Bang – volume: 420 start-page: 1 year: 2017 end-page: 15 ident: CR20 article-title: Combining Apriori heuristic and bio-inspired algorithms for solving the frequent itemsets mining problem publication-title: Inf Sci doi: 10.1016/j.ins.2017.08.043 contributor: fullname: Comuzzi – ident: CR6 – volume: 85 start-page: 117 year: 2016 end-page: 124 ident: CR17 article-title: Image mining using association rule for medical image dataset publication-title: Procedia Computer Science doi: 10.1016/j.procs.2016.05.196 contributor: fullname: Bhosle – volume: 11 start-page: 1278 issue: 6 year: 2018 end-page: 1287 ident: CR21 article-title: Mining health-risk factors using PHR similarity in a hybrid P2P network publication-title: Peer-to-Peer Networking and Applications doi: 10.1007/s12083-018-0631-7 contributor: fullname: Chung – ident: CR29 – volume: 4 start-page: 243 issue: 4 year: 2018 end-page: 246 ident: CR4 article-title: Diabetes detection using deep learning algorithms publication-title: ICT Express doi: 10.1016/j.icte.2018.10.005 contributor: fullname: Soman – ident: CR27 – volume: 105 start-page: 691 issue: 2 year: 2019 end-page: 707 ident: CR24 article-title: Associative feature information extraction using text mining from health big data publication-title: Wirel Pers Commun doi: 10.1007/s11277-018-5722-5 contributor: fullname: Chung – volume: 61 start-page: 312 year: 2017 end-page: 326 ident: CR1 article-title: Designing for practice-based context-awareness in ubiquitous E-health environments publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2016.08.012 contributor: fullname: Tawfik – volume: 67 start-page: 348 year: 2018 end-page: 364 ident: CR19 article-title: Performance optimization of MapReduce-based Apriori algorithm on Hadoop cluster publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2017.10.008 contributor: fullname: Mishra – volume: 70 start-page: 465 year: 2018 end-page: 471 ident: CR5 article-title: Robust abdominal organ segmentation using regional convolutional neural networks publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.05.038 contributor: fullname: Fredrik – volume: 105 start-page: 174 year: 2018 end-page: 182 ident: CR18 article-title: Online multi-layer dictionary pair learning for visual classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.03.048 contributor: fullname: Cai – volume: 72 start-page: 53 year: 2013 end-page: 58 ident: CR30 article-title: Problems in RMSE-based wave model validations publication-title: Ocean Model doi: 10.1016/j.ocemod.2013.08.003 contributor: fullname: Mazzino – volume: 93 start-page: 161 issue: 1 year: 2017 end-page: 174 ident: CR2 article-title: PHR based diabetes index service model using life behavior analysis publication-title: Wirel Pers Commun doi: 10.1007/s11277-016-3715-9 contributor: fullname: Chung – volume: 132 start-page: 1253 year: 2018 end-page: 1262 ident: CR9 article-title: Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals publication-title: Prog Comput Sci doi: 10.1016/j.procs.2018.05.041 contributor: fullname: Vinayakumar – volume: 328 start-page: 69 year: 2019 end-page: 74 ident: CR31 article-title: Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.080 contributor: fullname: Pan – ident: CR32 – ident: CR34 – ident: CR7 – volume: 492 start-page: 1226 year: 2018 end-page: 1238 ident: CR14 article-title: Time-localized wavelet multiple regression and correlation publication-title: Physica A doi: 10.1016/j.physa.2017.11.050 contributor: fullname: Fernández – ident: CR28 – ident: CR26 – volume: 105 start-page: 583 issue: 2 year: 2019 end-page: 597 ident: CR25 article-title: Blockchain network based topic mining process for cognitive manufacturing publication-title: Wirel Pers Commun doi: 10.1007/s11277-018-5979-8 contributor: fullname: Jung – volume: 435 start-page: 40 year: 2018 end-page: 58 ident: CR16 article-title: A Pearson’s correlation coefficient based decision tree and its parallel implementation publication-title: Inf Sci doi: 10.1016/j.ins.2017.12.059 contributor: fullname: Wang – volume: 30 start-page: 174 year: 2018 end-page: 182 ident: CR10 article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.12.003 contributor: fullname: Baik – volume: 85 start-page: 117 year: 2016 ident: 1300_CR17 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2016.05.196 contributor: fullname: J Deshmukh – volume: 435 start-page: 40 year: 2018 ident: 1300_CR16 publication-title: Inf Sci doi: 10.1016/j.ins.2017.12.059 contributor: fullname: Y Mu – ident: 1300_CR26 – ident: 1300_CR6 – volume: 420 start-page: 1 year: 2017 ident: 1300_CR20 publication-title: Inf Sci doi: 10.1016/j.ins.2017.08.043 contributor: fullname: Y Djenouri – volume: 93 start-page: 161 issue: 1 year: 2017 ident: 1300_CR2 publication-title: Wirel Pers Commun doi: 10.1007/s11277-016-3715-9 contributor: fullname: H Yoo – volume: 61 start-page: 312 year: 2017 ident: 1300_CR1 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2016.08.012 contributor: fullname: O Anya – volume: 132 start-page: 1253 year: 2018 ident: 1300_CR9 publication-title: Prog Comput Sci doi: 10.1016/j.procs.2018.05.041 contributor: fullname: G Swapna – ident: 1300_CR28 – volume: 77 start-page: 262 year: 2018 ident: 1300_CR11 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.12.022 contributor: fullname: X Liu – volume: 17 start-page: 29 issue: 1 year: 2016 ident: 1300_CR3 publication-title: Inf Technol Manag doi: 10.1007/s10799-015-0218-4 contributor: fullname: H Jung – volume: 492 start-page: 1226 year: 2018 ident: 1300_CR14 publication-title: Physica A doi: 10.1016/j.physa.2017.11.050 contributor: fullname: J Fernández – volume: 105 start-page: 691 issue: 2 year: 2019 ident: 1300_CR24 publication-title: Wirel Pers Commun doi: 10.1007/s11277-018-5722-5 contributor: fullname: JC Kim – volume: 52 start-page: 312 year: 2018 ident: 1300_CR15 publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2018.07.014 contributor: fullname: Z Xuanxua – volume: 67 start-page: 348 year: 2018 ident: 1300_CR19 publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2017.10.008 contributor: fullname: S Singh – volume: 70 start-page: 465 year: 2018 ident: 1300_CR5 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.05.038 contributor: fullname: L Månsn – ident: 1300_CR7 doi: 10.1016/j.neucom.2018.03.012 – volume: 105 start-page: 174 year: 2018 ident: 1300_CR18 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.03.048 contributor: fullname: Y Xiang – volume: 47 start-page: 471 issue: 4 year: 2018 ident: 1300_CR13 publication-title: J Korean Stat Soc doi: 10.1016/j.jkss.2018.05.004 contributor: fullname: J Kang – ident: 1300_CR32 doi: 10.3233/THC-191730 – volume: 176-177 start-page: 70 year: 2018 ident: 1300_CR8 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2018.09.001 contributor: fullname: G Ciocca – volume: 105 start-page: 583 issue: 2 year: 2019 ident: 1300_CR25 publication-title: Wirel Pers Commun doi: 10.1007/s11277-018-5979-8 contributor: fullname: K Chung – volume: 328 start-page: 69 year: 2019 ident: 1300_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.080 contributor: fullname: Q Xu – ident: 1300_CR29 – ident: 1300_CR27 – volume: 21 start-page: 1139 issue: 1 year: 2018 ident: 1300_CR22 publication-title: Clust Comput doi: 10.1007/s10586-017-0879-3 contributor: fullname: H Yoo – ident: 1300_CR33 doi: 10.1007/s00779-019-01230-3 – volume: 30 start-page: 174 year: 2018 ident: 1300_CR10 publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.12.003 contributor: fullname: M Sajjad – volume: 98 start-page: 3287 issue: 4 year: 2018 ident: 1300_CR23 publication-title: Wirel Pers Commun doi: 10.1007/s11277-017-4645-x contributor: fullname: SY Oh – volume: 72 start-page: 53 year: 2013 ident: 1300_CR30 publication-title: Ocean Model doi: 10.1016/j.ocemod.2013.08.003 contributor: fullname: L Mentaschi – volume: 11 start-page: 1278 issue: 6 year: 2018 ident: 1300_CR21 publication-title: Peer-to-Peer Networking and Applications doi: 10.1007/s12083-018-0631-7 contributor: fullname: JC Kim – volume: 4 start-page: 243 issue: 4 year: 2018 ident: 1300_CR4 publication-title: ICT Express doi: 10.1016/j.icte.2018.10.005 contributor: fullname: G Swapna – ident: 1300_CR34 doi: 10.1007/s10799-019-00304-1 – ident: 1300_CR12 |
SSID | ssj0017646 |
Score | 2.3794482 |
Snippet | In modern society, the number of chronic patients is increasing due to various causes, such as drinking, smoking, unhealthy lifestyles, and stress. Chronic... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 221 |
SubjectTerms | Accuracy Artificial neural networks Big Data Clustering Complexity Computer Science Correlation coefficients Health Hypertension Knowledge Machine learning Mobile Computing Multivariate analysis Original Article Performance evaluation Personal Computing Root-mean-square errors Traffic flow Unstructured data User Interfaces and Human Computer Interaction |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xWFh4IwoFeWADS47txMlYFaoKiU5U6mbVL8RAi6D8f87OowKVgSFD5CiRPvtyn3333QHccOlC6SzuVEuvqLQ8o2hFJQ3zuaqMclL4eN7xNCnGU_k4y2drHXdKdm8jkulH3WndYuGZmNoTL8Fwz7MNu3ksh4aLeMoHXehAFbWkCF0zlRWrGqXM5nf89EZrivkrKpqczegQ9huWSAb1tB7Bll8cw0HbgYE0BnkC98PJhEZH5EgtaCSpsw2J2ewvpDsvI2-pDQRZBvLaNCWJt02vnVOYjh6eh2Pa9EWglleloJ4Jn3mjjDSVC7kxSIFU6XLmkY1w7yzj1lqhgnNoXggEshjHgzLozX1mKnEGO4vlwp8DKV0WiyIaHlwleSzUY5kVeRCeBWty1oPbFh_9Xpe_0F2h44SmRjR1QlMXPei3EOrGFD41xz0Z-sdSyM3DBVLGIvKmHty1qK-H__7Yxf8ev4Q9HpULKemmDzurjy9_hXxiZa7T-vkGcHTAMA priority: 102 providerName: Springer Nature |
Title | CNN-based health model using knowledge mining of influencing factors |
URI | https://link.springer.com/article/10.1007/s00779-019-01300-6 https://www.proquest.com/docview/2287212834 https://www.proquest.com/docview/2640566389 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3DhjRiMKQduENEm7ZKe0Bh7CMSEEJPGqSIvxIFtsPH_cdK0Ewg4VFUTqZWcOp_t2P4QOqWJtkIr8FSF4SRRNCagRYLY52eeSa4TZly8427UHo6Tm0k6CQG3RUirLPdEv1HrmXIx8gsAbsBqh6-X83fiWKPc6Wqg0FhH9Zhy7pwv0R9Upwi8XVQXAUqTJIuyUDTjS-dcHxuXKeQuFoEL9R2YVtbmjwNSjzv9bbQZDEbcKVZ4B62Z6S7aKskYcNDNPXTdHY2IwySNi9pG7ElusEtsf8FV6Ay_eUYIPLP4NfCTuMdAu7OPxv3eY3dIAkUCUTQTjJiImdhILhOZaZtKCdYQFzqNDBgm1GgVUaUU41Zr0DQQBBg0mlouAdhNLDN2gGrT2dQcIix07PojSmp1llDXs0dFiqWWmcgqmUYNdFbKJ58XnTDyquexl2YO0sy9NPN2AzVLEeZBKxY5BfcMoFKw5Pfpaokb6LyU-mr6748d_f-2Y7RBXdGCz7dpotry49OcgCmxlC3_v7RQvTN4uu3B_ao3un-A0THtfAF4Y8fh |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246,74369,74636 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgDLDwjSgU8MAGFontNMmEUKEUaDO1UjcLfyEG2kLL_-fsOKlAwJAhspRIzz6_8_nuHkLnlGubaQUn1cykhCsaE7CijNjn5zSXqebMuHjHoGj3RvxxnIxDwG0e0iqrPdFv1HqqXIz8CogbuNrx6_XsnTjVKHe7GiQ0VtEaZ8DVrlK8e1_fIqTtsroIWJrwPMpD0YwvnXN9bFymkHtYBEeo78S09DZ_XJB63uluo83gMOKbcoZ30IqZ7KKtSowBB9vcQ7edoiCOkzQuaxuxF7nBLrH9BdehM_zmFSHw1OLXoE_iXoPszj4ade-GnR4JEglE0TxjxETMxEamkstc20RK8IbSTCeRAceEGq0iqpRiqdUaLA2AAJA0takEYjexzNkBakymE3OIcKZj1x9RUqtzTl3PHhUpllhmIqtkEjXRRYWPmJWdMETd89ijKQBN4dEU7SZqVRCKYBVzQeF4BlSZMf77cD3FTXRZob4c_vtnR_9_7Qyt94aDvug_FE_HaIO6Agafe9NCjcXHpzkBt2IhT_3a-QK1Y8as |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagSIiFN6JQwAMbWCR2Hs6EUEsor4iBSt2i-oUYaAst_5-z46QCAUOGyFIifb7zd7bv7kPolEbKcCVhp8p1SiJJQwJexIkZjdJMpCpi2p53PBZJfxDdDeOhz3-a-bTKek10C7WaSHtGfgHEDVxt-fXC-LSIp15-OX0nVkHK3rR6OY1ltAKsmFgL5_lNc6OQJlWlETA2ibIg8wU0rozO9rSxWUP2YQFsp76T1CLy_HFZ6jgo30TrPnjEV9Vsb6ElPd5GG7UwA_Z-uoN63aIglp8UruocsRO8wTbJ_QU3x2j4zalD4InBr16rxL56CZ5dNMivn7t94uUSiKQZZ0QHTIdapCISmTKxEBAZpVzFgYYghWolAyqlZKlRCrwOgIDgRlGTCiB5HYqM7aHWeDLW-whzFdpeiYIalUXU9u-RgWSxYTowUsRBG53V-JTTqitG2fQ_dmiWgGbp0CyTNurUEJbeQ2Ylha0a0CZn0e_DzXS30XmN-mL4758d_P-1E7QKZlM-3Bb3h2iN2loGl4bTQa35x6c-gghjLo6d6XwBNEDK6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN-based+health+model+using+knowledge+mining+of+influencing+factors&rft.jtitle=Personal+and+ubiquitous+computing&rft.au=Ji-Won%2C+Baek&rft.au=Chung+Kyungyong&rft.date=2022-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1617-4909&rft.eissn=1617-4917&rft.volume=26&rft.issue=2&rft.spage=221&rft.epage=231&rft_id=info:doi/10.1007%2Fs00779-019-01300-6&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-4909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-4909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-4909&client=summon |