CNN-based health model using knowledge mining of influencing factors

In modern society, the number of chronic patients is increasing due to various causes, such as drinking, smoking, unhealthy lifestyles, and stress. Chronic diseases must be managed with constant care, but may get worse from various factors. With the development of information technology, healthcare...

Full description

Saved in:
Bibliographic Details
Published inPersonal and ubiquitous computing Vol. 26; no. 2; pp. 221 - 231
Main Authors Baek, Ji-Won, Chung, Kyungyong
Format Journal Article
LanguageEnglish
Published London Springer London 01.04.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In modern society, the number of chronic patients is increasing due to various causes, such as drinking, smoking, unhealthy lifestyles, and stress. Chronic diseases must be managed with constant care, but may get worse from various factors. With the development of information technology, healthcare technologies using health big data, machine learning, and reinforcement learning are attracting attention. Using these technologies, it is possible to predict potential diseases that may occur in the future by using data learning and clustering of similar data. To predict the potential for disease, we should research various models based on the convolutional neural network (CNN), which can identify knowledge objects from unstructured data such as medical data. However, the fully connected network structure of the CNN generally uses a large amount of memory. Another problem is that complexity increases with the number of layers. This causes the overfitting problem, which increases error. To solve this problem, this paper proposes a CNN-based health model using knowledge mining of influencing factors. The proposed method uses hidden layers of a double-layer structure within the CNN structure. The double-layer structure has the optimal conditions for classification, compared with a single layer that allows the AND/OR operations. First, the amount of data used is reduced by extracting influencing factors through multivariate analysis, and these influencing factors are used as input data. Significant influencing factors are extracted from the first hidden layer using the significance level. This improves accuracy, because it extracts data required for analysis. Common influencing factors appropriate for significance levels are extracted. Common influencing factors refer to correlated factors that can affect each other. In the second hidden layer, the correlations between influencing factors are discovered through a correlation coefficient, and they are classified into positive and negative factors. Furthermore, associated rules are discovered through knowledge mining from among the classified influencing factors. They are subdivided into influencing factors like obesity, high blood pressure, and diabetes through the rules of the discovered influencing factors. For performance evaluation, the root mean square error (RMSE) of the CNN model is evaluated according to the application of knowledge mining to the influencing factors. The evaluation of accuracy, computational load, complexity, and learning rate showed better results, compared with the existing method. Through the proposed health model, knowledge about the associations of various factors is derived.
AbstractList In modern society, the number of chronic patients is increasing due to various causes, such as drinking, smoking, unhealthy lifestyles, and stress. Chronic diseases must be managed with constant care, but may get worse from various factors. With the development of information technology, healthcare technologies using health big data, machine learning, and reinforcement learning are attracting attention. Using these technologies, it is possible to predict potential diseases that may occur in the future by using data learning and clustering of similar data. To predict the potential for disease, we should research various models based on the convolutional neural network (CNN), which can identify knowledge objects from unstructured data such as medical data. However, the fully connected network structure of the CNN generally uses a large amount of memory. Another problem is that complexity increases with the number of layers. This causes the overfitting problem, which increases error. To solve this problem, this paper proposes a CNN-based health model using knowledge mining of influencing factors. The proposed method uses hidden layers of a double-layer structure within the CNN structure. The double-layer structure has the optimal conditions for classification, compared with a single layer that allows the AND/OR operations. First, the amount of data used is reduced by extracting influencing factors through multivariate analysis, and these influencing factors are used as input data. Significant influencing factors are extracted from the first hidden layer using the significance level. This improves accuracy, because it extracts data required for analysis. Common influencing factors appropriate for significance levels are extracted. Common influencing factors refer to correlated factors that can affect each other. In the second hidden layer, the correlations between influencing factors are discovered through a correlation coefficient, and they are classified into positive and negative factors. Furthermore, associated rules are discovered through knowledge mining from among the classified influencing factors. They are subdivided into influencing factors like obesity, high blood pressure, and diabetes through the rules of the discovered influencing factors. For performance evaluation, the root mean square error (RMSE) of the CNN model is evaluated according to the application of knowledge mining to the influencing factors. The evaluation of accuracy, computational load, complexity, and learning rate showed better results, compared with the existing method. Through the proposed health model, knowledge about the associations of various factors is derived.
Author Baek, Ji-Won
Chung, Kyungyong
Author_xml – sequence: 1
  givenname: Ji-Won
  surname: Baek
  fullname: Baek, Ji-Won
  organization: Data Mining Laboratory, Department of Computer Science, Kyonggi University
– sequence: 2
  givenname: Kyungyong
  surname: Chung
  fullname: Chung, Kyungyong
  email: dragonhci@gmail.com
  organization: Division of Computer Science and Engineering, Kyonggi University
BookMark eNp9UMtOwzAQtFCRaAs_wCkS54DXTu3kiMpTqsoFzlZsr9uU1C52I8Tfk1AEtx72qZnZ1UzIyAePhFwCvQZK5U3qk6xyCkNwSnNxQsYgQOZFBXL019PqjExS2lAKUhRiTO7my2Wu64Q2W2Pd7tfZNlhssy41fpW9-_DZol1htm38sAgua7xrO_RmGF1t9iGmc3Lq6jbhxW-dkreH-9f5U754eXye3y5yw6qS50g5AmqpC11ZN9NaAJWlnVEEyRhaQ5kxhktnbSV4_7EAZpmTGkpA0BWfkquD7i6Gjw7TXm1CF31_UjFR0JkQvDyOYqVkwEpe9Ch2QJkYUoro1C422zp-KaBq8FQdPFW9p-rHUyV6Ej-QUg_2K4z_0kdY38BHecQ
CitedBy_id crossref_primary_10_1007_s00779_021_01638_w
crossref_primary_10_3390_app11115072
crossref_primary_10_1109_ACCESS_2020_2980938
Cites_doi 10.1016/j.patcog.2017.12.022
10.1016/j.cogsys.2018.07.014
10.1007/s10586-017-0879-3
10.1007/s11277-017-4645-x
10.1016/j.cviu.2018.09.001
10.1007/s10799-015-0218-4
10.1016/j.jkss.2018.05.004
10.1016/j.ins.2017.08.043
10.1016/j.procs.2016.05.196
10.1007/s12083-018-0631-7
10.1016/j.icte.2018.10.005
10.1007/s11277-018-5722-5
10.1016/j.compeleceng.2016.08.012
10.1016/j.compeleceng.2017.10.008
10.1016/j.asoc.2018.05.038
10.1016/j.eswa.2018.03.048
10.1016/j.ocemod.2013.08.003
10.1007/s11277-016-3715-9
10.1016/j.procs.2018.05.041
10.1016/j.neucom.2018.03.080
10.1016/j.physa.2017.11.050
10.1007/s11277-018-5979-8
10.1016/j.ins.2017.12.059
10.1016/j.jocs.2018.12.003
10.1016/j.neucom.2018.03.012
10.3233/THC-191730
10.1007/s00779-019-01230-3
10.1007/s10799-019-00304-1
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Personal and Ubiquitous Computing is a copyright of Springer, (2019). All Rights Reserved.
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Personal and Ubiquitous Computing is a copyright of Springer, (2019). All Rights Reserved.
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s00779-019-01300-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Computer Science Database

Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1617-4917
EndPage 231
ExternalDocumentID 10_1007_s00779_019_01300_6
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
06D
0VY
123
199
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8AO
8FE
8FG
8FW
8TC
8UJ
8US
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAGAY
AAHNG
AAIAL
AAJKR
AAKMM
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWTV
AAYFA
AAYFX
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABGDV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABQDU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACATF
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVLL
ACVWB
ACWMK
ADHHG
ADHIR
ADHRN
ADINQ
ADKNI
ADKPE
ADL
ADMDM
ADOXG
ADPZR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEBYY
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AENSD
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFJFK
AFKRA
AFLOW
AFNRJ
AFQWF
AFWIH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AIKLT
AILAN
AIMYW
AITGF
AIYWX
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BDXCO
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCLIF
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUFHI
GXS
HCIFZ
HF~
HG5
HG6
HGAVV
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I07
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAS
LLZTM
M0N
M4Y
MA-
MQGED
N2Q
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W7O
WK8
XJE
YLTOR
YZZ
Z45
Z7R
Z7S
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
0R~
AACDK
AAJBT
AALFJ
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AFWXC
AGQEE
AGRTI
AIGIU
CITATION
H13
LHSKQ
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
AAYZH
ID FETCH-LOGICAL-c2983-e03e1eb7b4b9df5bb61078d50e1722edc02ccc37fdd963161612d2f7b181e1b93
IEDL.DBID 8FG
ISSN 1617-4909
IngestDate Mon Nov 04 10:48:57 EST 2024
Thu Oct 10 17:40:02 EDT 2024
Thu Sep 12 19:08:16 EDT 2024
Sat Dec 16 12:07:43 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Mining
CNN
Influencing factors
Knowledge
Health model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2983-e03e1eb7b4b9df5bb61078d50e1722edc02ccc37fdd963161612d2f7b181e1b93
PQID 2287212834
PQPubID 25320
PageCount 11
ParticipantIDs proquest_journals_2640566389
proquest_journals_2287212834
crossref_primary_10_1007_s00779_019_01300_6
springer_journals_10_1007_s00779_019_01300_6
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Personal and ubiquitous computing
PublicationTitleAbbrev Pers Ubiquit Comput
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Kim, Chung (CR21) 2018; 11
Kang, Shin, Park, Bang (CR13) 2018; 47
Xuanxua (CR15) 2018; 52
Swapna, Vinayakumar, Soman (CR4) 2018; 4
CR12
CR34
Fernández (CR14) 2018; 492
CR33
Yoo, Chung (CR2) 2017; 93
CR32
Deshmukh, Bhosle (CR17) 2016; 85
Oh, Chung (CR23) 2018; 98
Chung, Yoo, Choe, Jung (CR25) 2019; 105
Singh, Garg, Mishra (CR19) 2018; 67
Liu, Hou, Qin, Hao (CR11) 2018; 77
Ciocca, Napoletano, Schettini (CR8) 2018; 176-177
CR6
Xu, Zhang, Gu, Pan (CR31) 2019; 328
CR7
CR29
Månsn, Zhang, Fredrik (CR5) 2018; 70
CR28
CR27
CR26
Swapna, Soman, Vinayakumar (CR9) 2018; 132
Xiang, Zhang, Gu, Cai (CR18) 2018; 105
Sajjad, Khan, Muhammad, Wu, Ullah, Baik (CR10) 2018; 30
Yoo, Chung (CR22) 2018; 21
Anya, Tawfik (CR1) 2017; 61
Djenouri, Comuzzi (CR20) 2017; 420
Kim, Chung (CR24) 2019; 105
Mu, Liu, Wang (CR16) 2018; 435
Jung, Chung (CR3) 2016; 17
Mentaschi, Besio, Cassola, Mazzino (CR30) 2013; 72
M Sajjad (1300_CR10) 2018; 30
S Singh (1300_CR19) 2018; 67
Y Mu (1300_CR16) 2018; 435
J Deshmukh (1300_CR17) 2016; 85
1300_CR29
1300_CR28
G Swapna (1300_CR9) 2018; 132
1300_CR27
G Swapna (1300_CR4) 2018; 4
L Månsn (1300_CR5) 2018; 70
1300_CR26
JC Kim (1300_CR24) 2019; 105
H Yoo (1300_CR2) 2017; 93
X Liu (1300_CR11) 2018; 77
K Chung (1300_CR25) 2019; 105
O Anya (1300_CR1) 2017; 61
SY Oh (1300_CR23) 2018; 98
J Fernández (1300_CR14) 2018; 492
J Kang (1300_CR13) 2018; 47
Z Xuanxua (1300_CR15) 2018; 52
H Yoo (1300_CR22) 2018; 21
1300_CR32
H Jung (1300_CR3) 2016; 17
1300_CR12
1300_CR34
1300_CR33
JC Kim (1300_CR21) 2018; 11
Y Djenouri (1300_CR20) 2017; 420
L Mentaschi (1300_CR30) 2013; 72
1300_CR6
Q Xu (1300_CR31) 2019; 328
1300_CR7
G Ciocca (1300_CR8) 2018; 176-177
Y Xiang (1300_CR18) 2018; 105
References_xml – volume: 77
  start-page: 262
  year: 2018
  end-page: 275
  ident: CR11
  article-title: Multi-view multi-scale CNNs for lung nodule type classification from CT images
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.12.022
  contributor:
    fullname: Hao
– volume: 52
  start-page: 312
  year: 2018
  end-page: 316
  ident: CR15
  article-title: Multivariate linear regression analysis on online image study for IoT
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2018.07.014
  contributor:
    fullname: Xuanxua
– volume: 21
  start-page: 1139
  issue: 1
  year: 2018
  end-page: 1149
  ident: CR22
  article-title: Heart rate variability based stress index service model using bio-sensor
  publication-title: Clust Comput
  doi: 10.1007/s10586-017-0879-3
  contributor:
    fullname: Chung
– ident: CR12
– volume: 98
  start-page: 3287
  issue: 4
  year: 2018
  end-page: 3297
  ident: CR23
  article-title: Performance evaluation of silence-feature normalization model using cepstrum features of noise signals
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-017-4645-x
  contributor:
    fullname: Chung
– volume: 176-177
  start-page: 70
  year: 2018
  end-page: 77
  ident: CR8
  article-title: CNN-based features for retrieval and classification of food images
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2018.09.001
  contributor:
    fullname: Schettini
– ident: CR33
– volume: 17
  start-page: 29
  issue: 1
  year: 2016
  end-page: 42
  ident: CR3
  article-title: Knowledge-based dietary nutrition recommendation for obese management
  publication-title: Inf Technol Manag
  doi: 10.1007/s10799-015-0218-4
  contributor:
    fullname: Chung
– volume: 47
  start-page: 471
  issue: 4
  year: 2018
  end-page: 481
  ident: CR13
  article-title: Hierarchically penalized quantile regression with multiple responses
  publication-title: J Korean Stat Soc
  doi: 10.1016/j.jkss.2018.05.004
  contributor:
    fullname: Bang
– volume: 420
  start-page: 1
  year: 2017
  end-page: 15
  ident: CR20
  article-title: Combining Apriori heuristic and bio-inspired algorithms for solving the frequent itemsets mining problem
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.08.043
  contributor:
    fullname: Comuzzi
– ident: CR6
– volume: 85
  start-page: 117
  year: 2016
  end-page: 124
  ident: CR17
  article-title: Image mining using association rule for medical image dataset
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.05.196
  contributor:
    fullname: Bhosle
– volume: 11
  start-page: 1278
  issue: 6
  year: 2018
  end-page: 1287
  ident: CR21
  article-title: Mining health-risk factors using PHR similarity in a hybrid P2P network
  publication-title: Peer-to-Peer Networking and Applications
  doi: 10.1007/s12083-018-0631-7
  contributor:
    fullname: Chung
– ident: CR29
– volume: 4
  start-page: 243
  issue: 4
  year: 2018
  end-page: 246
  ident: CR4
  article-title: Diabetes detection using deep learning algorithms
  publication-title: ICT Express
  doi: 10.1016/j.icte.2018.10.005
  contributor:
    fullname: Soman
– ident: CR27
– volume: 105
  start-page: 691
  issue: 2
  year: 2019
  end-page: 707
  ident: CR24
  article-title: Associative feature information extraction using text mining from health big data
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-018-5722-5
  contributor:
    fullname: Chung
– volume: 61
  start-page: 312
  year: 2017
  end-page: 326
  ident: CR1
  article-title: Designing for practice-based context-awareness in ubiquitous E-health environments
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2016.08.012
  contributor:
    fullname: Tawfik
– volume: 67
  start-page: 348
  year: 2018
  end-page: 364
  ident: CR19
  article-title: Performance optimization of MapReduce-based Apriori algorithm on Hadoop cluster
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2017.10.008
  contributor:
    fullname: Mishra
– volume: 70
  start-page: 465
  year: 2018
  end-page: 471
  ident: CR5
  article-title: Robust abdominal organ segmentation using regional convolutional neural networks
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.05.038
  contributor:
    fullname: Fredrik
– volume: 105
  start-page: 174
  year: 2018
  end-page: 182
  ident: CR18
  article-title: Online multi-layer dictionary pair learning for visual classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.03.048
  contributor:
    fullname: Cai
– volume: 72
  start-page: 53
  year: 2013
  end-page: 58
  ident: CR30
  article-title: Problems in RMSE-based wave model validations
  publication-title: Ocean Model
  doi: 10.1016/j.ocemod.2013.08.003
  contributor:
    fullname: Mazzino
– volume: 93
  start-page: 161
  issue: 1
  year: 2017
  end-page: 174
  ident: CR2
  article-title: PHR based diabetes index service model using life behavior analysis
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-016-3715-9
  contributor:
    fullname: Chung
– volume: 132
  start-page: 1253
  year: 2018
  end-page: 1262
  ident: CR9
  article-title: Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals
  publication-title: Prog Comput Sci
  doi: 10.1016/j.procs.2018.05.041
  contributor:
    fullname: Vinayakumar
– volume: 328
  start-page: 69
  year: 2019
  end-page: 74
  ident: CR31
  article-title: Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.080
  contributor:
    fullname: Pan
– ident: CR32
– ident: CR34
– ident: CR7
– volume: 492
  start-page: 1226
  year: 2018
  end-page: 1238
  ident: CR14
  article-title: Time-localized wavelet multiple regression and correlation
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.11.050
  contributor:
    fullname: Fernández
– ident: CR28
– ident: CR26
– volume: 105
  start-page: 583
  issue: 2
  year: 2019
  end-page: 597
  ident: CR25
  article-title: Blockchain network based topic mining process for cognitive manufacturing
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-018-5979-8
  contributor:
    fullname: Jung
– volume: 435
  start-page: 40
  year: 2018
  end-page: 58
  ident: CR16
  article-title: A Pearson’s correlation coefficient based decision tree and its parallel implementation
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.12.059
  contributor:
    fullname: Wang
– volume: 30
  start-page: 174
  year: 2018
  end-page: 182
  ident: CR10
  article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.12.003
  contributor:
    fullname: Baik
– volume: 85
  start-page: 117
  year: 2016
  ident: 1300_CR17
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.05.196
  contributor:
    fullname: J Deshmukh
– volume: 435
  start-page: 40
  year: 2018
  ident: 1300_CR16
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.12.059
  contributor:
    fullname: Y Mu
– ident: 1300_CR26
– ident: 1300_CR6
– volume: 420
  start-page: 1
  year: 2017
  ident: 1300_CR20
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.08.043
  contributor:
    fullname: Y Djenouri
– volume: 93
  start-page: 161
  issue: 1
  year: 2017
  ident: 1300_CR2
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-016-3715-9
  contributor:
    fullname: H Yoo
– volume: 61
  start-page: 312
  year: 2017
  ident: 1300_CR1
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2016.08.012
  contributor:
    fullname: O Anya
– volume: 132
  start-page: 1253
  year: 2018
  ident: 1300_CR9
  publication-title: Prog Comput Sci
  doi: 10.1016/j.procs.2018.05.041
  contributor:
    fullname: G Swapna
– ident: 1300_CR28
– volume: 77
  start-page: 262
  year: 2018
  ident: 1300_CR11
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.12.022
  contributor:
    fullname: X Liu
– volume: 17
  start-page: 29
  issue: 1
  year: 2016
  ident: 1300_CR3
  publication-title: Inf Technol Manag
  doi: 10.1007/s10799-015-0218-4
  contributor:
    fullname: H Jung
– volume: 492
  start-page: 1226
  year: 2018
  ident: 1300_CR14
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.11.050
  contributor:
    fullname: J Fernández
– volume: 105
  start-page: 691
  issue: 2
  year: 2019
  ident: 1300_CR24
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-018-5722-5
  contributor:
    fullname: JC Kim
– volume: 52
  start-page: 312
  year: 2018
  ident: 1300_CR15
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2018.07.014
  contributor:
    fullname: Z Xuanxua
– volume: 67
  start-page: 348
  year: 2018
  ident: 1300_CR19
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2017.10.008
  contributor:
    fullname: S Singh
– volume: 70
  start-page: 465
  year: 2018
  ident: 1300_CR5
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.05.038
  contributor:
    fullname: L Månsn
– ident: 1300_CR7
  doi: 10.1016/j.neucom.2018.03.012
– volume: 105
  start-page: 174
  year: 2018
  ident: 1300_CR18
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.03.048
  contributor:
    fullname: Y Xiang
– volume: 47
  start-page: 471
  issue: 4
  year: 2018
  ident: 1300_CR13
  publication-title: J Korean Stat Soc
  doi: 10.1016/j.jkss.2018.05.004
  contributor:
    fullname: J Kang
– ident: 1300_CR32
  doi: 10.3233/THC-191730
– volume: 176-177
  start-page: 70
  year: 2018
  ident: 1300_CR8
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2018.09.001
  contributor:
    fullname: G Ciocca
– volume: 105
  start-page: 583
  issue: 2
  year: 2019
  ident: 1300_CR25
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-018-5979-8
  contributor:
    fullname: K Chung
– volume: 328
  start-page: 69
  year: 2019
  ident: 1300_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.080
  contributor:
    fullname: Q Xu
– ident: 1300_CR29
– ident: 1300_CR27
– volume: 21
  start-page: 1139
  issue: 1
  year: 2018
  ident: 1300_CR22
  publication-title: Clust Comput
  doi: 10.1007/s10586-017-0879-3
  contributor:
    fullname: H Yoo
– ident: 1300_CR33
  doi: 10.1007/s00779-019-01230-3
– volume: 30
  start-page: 174
  year: 2018
  ident: 1300_CR10
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.12.003
  contributor:
    fullname: M Sajjad
– volume: 98
  start-page: 3287
  issue: 4
  year: 2018
  ident: 1300_CR23
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-017-4645-x
  contributor:
    fullname: SY Oh
– volume: 72
  start-page: 53
  year: 2013
  ident: 1300_CR30
  publication-title: Ocean Model
  doi: 10.1016/j.ocemod.2013.08.003
  contributor:
    fullname: L Mentaschi
– volume: 11
  start-page: 1278
  issue: 6
  year: 2018
  ident: 1300_CR21
  publication-title: Peer-to-Peer Networking and Applications
  doi: 10.1007/s12083-018-0631-7
  contributor:
    fullname: JC Kim
– volume: 4
  start-page: 243
  issue: 4
  year: 2018
  ident: 1300_CR4
  publication-title: ICT Express
  doi: 10.1016/j.icte.2018.10.005
  contributor:
    fullname: G Swapna
– ident: 1300_CR34
  doi: 10.1007/s10799-019-00304-1
– ident: 1300_CR12
SSID ssj0017646
Score 2.3794482
Snippet In modern society, the number of chronic patients is increasing due to various causes, such as drinking, smoking, unhealthy lifestyles, and stress. Chronic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 221
SubjectTerms Accuracy
Artificial neural networks
Big Data
Clustering
Complexity
Computer Science
Correlation coefficients
Health
Hypertension
Knowledge
Machine learning
Mobile Computing
Multivariate analysis
Original Article
Performance evaluation
Personal Computing
Root-mean-square errors
Traffic flow
Unstructured data
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xWFh4IwoFeWADS47txMlYFaoKiU5U6mbVL8RAi6D8f87OowKVgSFD5CiRPvtyn3333QHccOlC6SzuVEuvqLQ8o2hFJQ3zuaqMclL4eN7xNCnGU_k4y2drHXdKdm8jkulH3WndYuGZmNoTL8Fwz7MNu3ksh4aLeMoHXehAFbWkCF0zlRWrGqXM5nf89EZrivkrKpqczegQ9huWSAb1tB7Bll8cw0HbgYE0BnkC98PJhEZH5EgtaCSpsw2J2ewvpDsvI2-pDQRZBvLaNCWJt02vnVOYjh6eh2Pa9EWglleloJ4Jn3mjjDSVC7kxSIFU6XLmkY1w7yzj1lqhgnNoXggEshjHgzLozX1mKnEGO4vlwp8DKV0WiyIaHlwleSzUY5kVeRCeBWty1oPbFh_9Xpe_0F2h44SmRjR1QlMXPei3EOrGFD41xz0Z-sdSyM3DBVLGIvKmHty1qK-H__7Yxf8ev4Q9HpULKemmDzurjy9_hXxiZa7T-vkGcHTAMA
  priority: 102
  providerName: Springer Nature
Title CNN-based health model using knowledge mining of influencing factors
URI https://link.springer.com/article/10.1007/s00779-019-01300-6
https://www.proquest.com/docview/2287212834
https://www.proquest.com/docview/2640566389
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3DhjRiMKQduENEm7ZKe0Bh7CMSEEJPGqSIvxIFtsPH_cdK0Ewg4VFUTqZWcOp_t2P4QOqWJtkIr8FSF4SRRNCagRYLY52eeSa4TZly8427UHo6Tm0k6CQG3RUirLPdEv1HrmXIx8gsAbsBqh6-X83fiWKPc6Wqg0FhH9Zhy7pwv0R9Upwi8XVQXAUqTJIuyUDTjS-dcHxuXKeQuFoEL9R2YVtbmjwNSjzv9bbQZDEbcKVZ4B62Z6S7aKskYcNDNPXTdHY2IwySNi9pG7ElusEtsf8FV6Ay_eUYIPLP4NfCTuMdAu7OPxv3eY3dIAkUCUTQTjJiImdhILhOZaZtKCdYQFzqNDBgm1GgVUaUU41Zr0DQQBBg0mlouAdhNLDN2gGrT2dQcIix07PojSmp1llDXs0dFiqWWmcgqmUYNdFbKJ58XnTDyquexl2YO0sy9NPN2AzVLEeZBKxY5BfcMoFKw5Pfpaokb6LyU-mr6748d_f-2Y7RBXdGCz7dpotry49OcgCmxlC3_v7RQvTN4uu3B_ao3un-A0THtfAF4Y8fh
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246,74369,74636
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgDLDwjSgU8MAGFontNMmEUKEUaDO1UjcLfyEG2kLL_-fsOKlAwJAhspRIzz6_8_nuHkLnlGubaQUn1cykhCsaE7CijNjn5zSXqebMuHjHoGj3RvxxnIxDwG0e0iqrPdFv1HqqXIz8CogbuNrx6_XsnTjVKHe7GiQ0VtEaZ8DVrlK8e1_fIqTtsroIWJrwPMpD0YwvnXN9bFymkHtYBEeo78S09DZ_XJB63uluo83gMOKbcoZ30IqZ7KKtSowBB9vcQ7edoiCOkzQuaxuxF7nBLrH9BdehM_zmFSHw1OLXoE_iXoPszj4ade-GnR4JEglE0TxjxETMxEamkstc20RK8IbSTCeRAceEGq0iqpRiqdUaLA2AAJA0takEYjexzNkBakymE3OIcKZj1x9RUqtzTl3PHhUpllhmIqtkEjXRRYWPmJWdMETd89ijKQBN4dEU7SZqVRCKYBVzQeF4BlSZMf77cD3FTXRZob4c_vtnR_9_7Qyt94aDvug_FE_HaIO6Agafe9NCjcXHpzkBt2IhT_3a-QK1Y8as
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagSIiFN6JQwAMbWCR2Hs6EUEsor4iBSt2i-oUYaAst_5-z46QCAUOGyFIifb7zd7bv7kPolEbKcCVhp8p1SiJJQwJexIkZjdJMpCpi2p53PBZJfxDdDeOhz3-a-bTKek10C7WaSHtGfgHEDVxt-fXC-LSIp15-OX0nVkHK3rR6OY1ltAKsmFgL5_lNc6OQJlWlETA2ibIg8wU0rozO9rSxWUP2YQFsp76T1CLy_HFZ6jgo30TrPnjEV9Vsb6ElPd5GG7UwA_Z-uoN63aIglp8UruocsRO8wTbJ_QU3x2j4zalD4InBr16rxL56CZ5dNMivn7t94uUSiKQZZ0QHTIdapCISmTKxEBAZpVzFgYYghWolAyqlZKlRCrwOgIDgRlGTCiB5HYqM7aHWeDLW-whzFdpeiYIalUXU9u-RgWSxYTowUsRBG53V-JTTqitG2fQ_dmiWgGbp0CyTNurUEJbeQ2Ylha0a0CZn0e_DzXS30XmN-mL4758d_P-1E7QKZlM-3Bb3h2iN2loGl4bTQa35x6c-gghjLo6d6XwBNEDK6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN-based+health+model+using+knowledge+mining+of+influencing+factors&rft.jtitle=Personal+and+ubiquitous+computing&rft.au=Ji-Won%2C+Baek&rft.au=Chung+Kyungyong&rft.date=2022-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1617-4909&rft.eissn=1617-4917&rft.volume=26&rft.issue=2&rft.spage=221&rft.epage=231&rft_id=info:doi/10.1007%2Fs00779-019-01300-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-4909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-4909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-4909&client=summon