Method of Similar Operators in the Study of Spectral Properties of Perturbed First-Order Differential Operators
In this paper, we consider first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the segment [0 , ω ] perturbed by Hilbert– Schmidt integral operators. A similarity transformation of the original operator to the operator of the...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 263; no. 5; pp. 599 - 615 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1072-3374 1573-8795 |
DOI | 10.1007/s10958-022-05952-3 |
Cover
Loading…
Abstract | In this paper, we consider first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the segment [0
, ω
] perturbed by Hilbert– Schmidt integral operators. A similarity transformation of the original operator to the operator of the block-diagonal structure is performed; this allows one to study spectral properties of the perturbed operator. The research method is the method of similar operators, which also presented in this work. |
---|---|
AbstractList | In this paper, we consider first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the segment [0
, ω
] perturbed by Hilbert– Schmidt integral operators. A similarity transformation of the original operator to the operator of the block-diagonal structure is performed; this allows one to study spectral properties of the perturbed operator. The research method is the method of similar operators, which also presented in this work. In this paper, we consider first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the segment [0, [omega]] perturbed by Hilbert--Schmidt integral operators. A similarity transformation of the original operator to the operator of the block-diagonal structure is performed; this allows one to study spectral properties of the perturbed operator. The research method is the method of similar operators, which also presented in this work. In this paper, we consider first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the segment [0, ω] perturbed by Hilbert– Schmidt integral operators. A similarity transformation of the original operator to the operator of the block-diagonal structure is performed; this allows one to study spectral properties of the perturbed operator. The research method is the method of similar operators, which also presented in this work. In this paper, we consider first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the segment [0, [omega]] perturbed by Hilbert--Schmidt integral operators. A similarity transformation of the original operator to the operator of the block-diagonal structure is performed; this allows one to study spectral properties of the perturbed operator. The research method is the method of similar operators, which also presented in this work. Keywords and phrases: method of similar operators, spectrum, integro-differential operator. AMS Subject Classification: 35L75, 35Q53, 37K10, 37K35 |
Audience | Academic |
Author | Baskakov, A. G. Uskova, N. B. Krishtal, I. A. |
Author_xml | – sequence: 1 givenname: A. G. surname: Baskakov fullname: Baskakov, A. G. email: anatbaskakov@yandex.ru organization: Voronezh State University, North Ossetian State University – sequence: 2 givenname: I. A. surname: Krishtal fullname: Krishtal, I. A. organization: Northern Illinois University – sequence: 3 givenname: N. B. surname: Uskova fullname: Uskova, N. B. organization: Voronezh State University |
BookMark | eNp9kk1rGzEQhkVJoUnaP9CToKcelOpjV9o9hrRpAykOdXsWsnbkKKxXrqSF5N93HJcGgylz0Gh43hEzes_IyZQmIOS94BeCc_OpCN63HeNSMt72rWTqFTkVrVGsM317gjk3WFSmeUPOSnngKNKdOiXpO9T7NNAU6DJu4ugyXWwhu5pyoXGi9R7oss7D0zOxBV-zG-ldTgjVCGVXvsN0zisY6HXMpbJFHiDTzzEEyDDViIJ_Pd-S18GNBd79Pc_Jr-svP6--sdvF15ury1vmZd8pppsgjdCrxisBXmjd-iC8cJy7pnN4E93KaCm0kdJI40HB0Cu50uCl77VS5-TDvu82p98zlGof0pwnfNJK3Ymmbw3vX6i1G8HGKSQcz29i8fYS2wqOIZFiR6g1TDjTiP8QIpYP-IsjPMYAm-iPCj4eCJCp8FjXbi7F3ix_HLJyz_qcSskQ7DbHjctPVnC784Lde8GiF-yzF-xuG2ovKghPa8gv2_iP6g8l8bWE |
Cites_doi | 10.1007/s00028-016-0332-8 10.13108/2018-10-3-11 10.4213/im4202 10.7153/oam-2018-12-43 10.1002/cpa.3160180308 10.4213/mzm162 10.1007/BF00968792 10.1134/S0374064118020139 10.1007/BF01086768 10.1134/S0374064118090133 10.4213/sm8637 10.4213/mzm8628 10.4213/faa357 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2022 COPYRIGHT 2022 Springer Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: COPYRIGHT 2022 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10958-022-05952-3 |
DatabaseName | CrossRef Science in Context |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 615 |
ExternalDocumentID | A727101012 10_1007_s10958_022_05952_3 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c2983-64f2716b4c31ec1665cf1c1a00a48a65c18b76216722727ce3ed932b6ec2c9633 |
IEDL.DBID | AGYKE |
ISSN | 1072-3374 |
IngestDate | Fri Jul 25 10:52:47 EDT 2025 Tue Jun 17 22:10:06 EDT 2025 Thu Jun 12 23:59:55 EDT 2025 Tue Jun 10 21:04:19 EDT 2025 Fri Jun 27 05:26:25 EDT 2025 Tue Jul 01 01:42:21 EDT 2025 Fri Feb 21 02:46:27 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 37K35 spectrum 35Q53 method of similar operators 37K10 integro-differential operator 35L75 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2983-64f2716b4c31ec1665cf1c1a00a48a65c18b76216722727ce3ed932b6ec2c9633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10958-022-05952-3.pdf |
PQID | 2681495709 |
PQPubID | 2043545 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2681495709 gale_infotracmisc_A727101012 gale_infotracgeneralonefile_A727101012 gale_infotracacademiconefile_A727101012 gale_incontextgauss_ISR_A727101012 crossref_primary_10_1007_s10958_022_05952_3 springer_journals_10_1007_s10958_022_05952_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220600 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 6 year: 2022 text: 20220600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2022 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | BaskakovAGHarmonic Analysis of Linear Operators1987VoronezhVoronezh State Univ0621.47001[in Russian] BaskakovAGKrishtalIARomanovaEYSpectral analysis of a differential operator with an involutionJ. Evolut. Eqs.201717669684366522510.1007/s00028-016-0332-8 BurlutskayaMSKhromovAPClassical solution for a mixed problem with involutionDokl. Ross. Akad. Nauk.2010435215115427905011217.35047 BurlutskayaMSKhromovAPSteinhaus theorem on equiconvergence for functionaldifferential operatorsMat. Zametki20119012233290816510.4213/mzm8628 BurlutskayaMSKurdyumovVPLukoninaASKhromovAPFunctionaldifferential operator with involutionDokl. Ross. Akad. Nauk.200741434434461166.34322 BaskakovAGA theorem on splitting an operator and some related questions in the analytic theory of perturbationsIzv. Akad. Nauk SSSR. Ser. Mat.1986503435457854591 BurlutskayaMSKhromovAPFunctional-differential operators with involution and Dirac operators with periodic boundary conditionsDokl. Ross. Akad. Nauk20144541151732046321307.34104 BaskakovAGUskovaNBSpectral analysis of differential operators with involution and groups of operatorsDiffer. Uravn.20185491287129107002861 BaskakovAGKrylov–Bogolyubov substitution in the perturbation theory of linear operatorsUkr. Math. J.19843645145576437810.1007/BF01086768 BaskakovAGAveraging method in the perturbation theory of linear differential operatorsDiffer. Uravn.19852145555620566.34043 BaskakovAGOn a abstract analog of the Krylov–Bogolyubov transformation in the perturbation theory of linear operatorsFunkts. Anal. Prilozh.1999322768010.4213/faa357 BaskakovAGMethods of abstract harmonic analysis in the perturbation theory of linear operatorsSib. Mat. Zh.1983241213910.1007/BF00968792 BurlutskayaMSOn a mixed problem for a first-order partial differential equation with involution and periodic boundary conditionsZh. Vychisl. Mat. Mat. Fiz.201454131231705531313.35014 RudinWFunctional Analysis1973New YorkMcGraw-Hill0253.46001 TurnerRFLPerturbation of compact spectral operatorsCommun. Pure. Appl. Math.19651851954117836510.1002/cpa.3160180308 BaskakovAGSpectral analysis of perturbed nonquasianalytic and spectral operatorsIzv. Ross. Akad. Nauk. Ser. Mat.19945843320851.47024 BurlutskayaMSKhromovAPFourier method in an initial-boundary-value problem for a first-order partial differential equation with involutionZh. Vychisl. Mat. Mat. Fiz.201151122233224529334051249.35047 GokhbergITKreinMGIntroduction to the Theory of Non-Self-Adjoint Operators in Hilberts Spaces1965MoscowNauka[in Russian] A. G. Baskakov, I. A. Krishtal, and N. B. Uskova, General Dirac operators as generators of operator groups, arXiv: 1806.10831 [math.SP]. A. G. Baskakov, I. A. Krishtal, and N. B. Uskova, Similarity techniques in the spectral analysis of perturbed operator matrices, arXiv: 1812.10331 [math.SP]. FriedrichsKOLectures on Advanced Ordinary Differential Equations1965New YorkGordon and Breach0191.38202 BaskakovAGUskovaNBGeneralized Fourier method for systems of first-order differential equations and groups of operatorsDiffer. Uravn.201854227628037975321474.35216 BaskakovAGPolyakovDMMethod of similar operators in the spectral analysis of the Hill operator with nonsmooth potentialMat. Sb.20172081347359876310.4213/sm8637 BaskakovAGUskovaNBFourier method for first-order differential equations and groups of operatorsUfim. Math. Zh.20181031134387705410.13108/2018-10-3-11 BaskakovAGDerbushevAVShcherbakovAOMethod of similar operators in the spectral analysis of the Dirac operator with nonsmooth potentialIzv. Ross. Akad. Nauk. Ser. Mat.2011753328284778010.4213/im4202 UskovaNBOn a result of R. TurnerMat. Zametki2004766905917212750110.4213/mzm162 BaskakovAGKrishtalIAUskovaNBLinear differential operator with an involution as a generator of an operator groupJ. Oper. Matr.2018123723756385336410.7153/oam-2018-12-43 A. G. Baskakov, Krylov–Bogolyubov substitution in the perturbation theory of linear operators [in Russian], Keldysh Inst. Appl. Math., Moscow (1980). BurlutskayaMSKhromovAPMixed problems for first-order hyperbolic equationsDokl. Ross. Akad. Nauk201144121561592953787 AG Baskakov (5952_CR5) 1986; 50 AG Baskakov (5952_CR14) 2017; 208 MS Burlutskaya (5952_CR19) 2010; 435 AG Baskakov (5952_CR2) 1983; 24 AG Baskakov (5952_CR7) 1994; 58 W Rudin (5952_CR27) 1973 IT Gokhberg (5952_CR26) 1965 AG Baskakov (5952_CR15) 2018; 10 AG Baskakov (5952_CR10) 2017; 17 KO Friedrichs (5952_CR25) 1965 AG Baskakov (5952_CR6) 1987 5952_CR1 AG Baskakov (5952_CR17) 2018; 54 MS Burlutskaya (5952_CR21) 2011; 441 MS Burlutskaya (5952_CR23) 2014; 454 AG Baskakov (5952_CR8) 1999; 32 MS Burlutskaya (5952_CR22) 2011; 90 AG Baskakov (5952_CR4) 1985; 21 5952_CR12 5952_CR13 MS Burlutskaya (5952_CR20) 2011; 51 RFL Turner (5952_CR28) 1965; 18 NB Uskova (5952_CR29) 2004; 76 MS Burlutskaya (5952_CR24) 2007; 414 AG Baskakov (5952_CR16) 2018; 54 AG Baskakov (5952_CR3) 1984; 36 AG Baskakov (5952_CR11) 2018; 12 MS Burlutskaya (5952_CR18) 2014; 54 AG Baskakov (5952_CR9) 2011; 75 |
References_xml | – reference: BurlutskayaMSKhromovAPFourier method in an initial-boundary-value problem for a first-order partial differential equation with involutionZh. Vychisl. Mat. Mat. Fiz.201151122233224529334051249.35047 – reference: BaskakovAGUskovaNBFourier method for first-order differential equations and groups of operatorsUfim. Math. Zh.20181031134387705410.13108/2018-10-3-11 – reference: TurnerRFLPerturbation of compact spectral operatorsCommun. Pure. Appl. Math.19651851954117836510.1002/cpa.3160180308 – reference: BaskakovAGA theorem on splitting an operator and some related questions in the analytic theory of perturbationsIzv. Akad. Nauk SSSR. Ser. Mat.1986503435457854591 – reference: BaskakovAGKrishtalIARomanovaEYSpectral analysis of a differential operator with an involutionJ. Evolut. Eqs.201717669684366522510.1007/s00028-016-0332-8 – reference: GokhbergITKreinMGIntroduction to the Theory of Non-Self-Adjoint Operators in Hilberts Spaces1965MoscowNauka[in Russian] – reference: A. G. Baskakov, I. A. Krishtal, and N. B. Uskova, General Dirac operators as generators of operator groups, arXiv: 1806.10831 [math.SP]. – reference: BurlutskayaMSKhromovAPFunctional-differential operators with involution and Dirac operators with periodic boundary conditionsDokl. Ross. Akad. Nauk20144541151732046321307.34104 – reference: BaskakovAGUskovaNBSpectral analysis of differential operators with involution and groups of operatorsDiffer. Uravn.20185491287129107002861 – reference: RudinWFunctional Analysis1973New YorkMcGraw-Hill0253.46001 – reference: BaskakovAGDerbushevAVShcherbakovAOMethod of similar operators in the spectral analysis of the Dirac operator with nonsmooth potentialIzv. Ross. Akad. Nauk. Ser. Mat.2011753328284778010.4213/im4202 – reference: A. G. Baskakov, I. A. Krishtal, and N. B. Uskova, Similarity techniques in the spectral analysis of perturbed operator matrices, arXiv: 1812.10331 [math.SP]. – reference: A. G. Baskakov, Krylov–Bogolyubov substitution in the perturbation theory of linear operators [in Russian], Keldysh Inst. Appl. Math., Moscow (1980). – reference: BurlutskayaMSKurdyumovVPLukoninaASKhromovAPFunctionaldifferential operator with involutionDokl. Ross. Akad. Nauk.200741434434461166.34322 – reference: FriedrichsKOLectures on Advanced Ordinary Differential Equations1965New YorkGordon and Breach0191.38202 – reference: BaskakovAGKrylov–Bogolyubov substitution in the perturbation theory of linear operatorsUkr. Math. J.19843645145576437810.1007/BF01086768 – reference: BaskakovAGSpectral analysis of perturbed nonquasianalytic and spectral operatorsIzv. Ross. Akad. Nauk. Ser. Mat.19945843320851.47024 – reference: BurlutskayaMSKhromovAPSteinhaus theorem on equiconvergence for functionaldifferential operatorsMat. Zametki20119012233290816510.4213/mzm8628 – reference: BaskakovAGAveraging method in the perturbation theory of linear differential operatorsDiffer. Uravn.19852145555620566.34043 – reference: BaskakovAGHarmonic Analysis of Linear Operators1987VoronezhVoronezh State Univ0621.47001[in Russian] – reference: BaskakovAGUskovaNBGeneralized Fourier method for systems of first-order differential equations and groups of operatorsDiffer. Uravn.201854227628037975321474.35216 – reference: BaskakovAGPolyakovDMMethod of similar operators in the spectral analysis of the Hill operator with nonsmooth potentialMat. Sb.20172081347359876310.4213/sm8637 – reference: BurlutskayaMSKhromovAPClassical solution for a mixed problem with involutionDokl. Ross. Akad. Nauk.2010435215115427905011217.35047 – reference: BurlutskayaMSOn a mixed problem for a first-order partial differential equation with involution and periodic boundary conditionsZh. Vychisl. Mat. Mat. Fiz.201454131231705531313.35014 – reference: BaskakovAGOn a abstract analog of the Krylov–Bogolyubov transformation in the perturbation theory of linear operatorsFunkts. Anal. Prilozh.1999322768010.4213/faa357 – reference: BaskakovAGMethods of abstract harmonic analysis in the perturbation theory of linear operatorsSib. Mat. Zh.1983241213910.1007/BF00968792 – reference: UskovaNBOn a result of R. TurnerMat. Zametki2004766905917212750110.4213/mzm162 – reference: BurlutskayaMSKhromovAPMixed problems for first-order hyperbolic equationsDokl. Ross. Akad. Nauk201144121561592953787 – reference: BaskakovAGKrishtalIAUskovaNBLinear differential operator with an involution as a generator of an operator groupJ. Oper. Matr.2018123723756385336410.7153/oam-2018-12-43 – volume: 17 start-page: 669 year: 2017 ident: 5952_CR10 publication-title: J. Evolut. Eqs. doi: 10.1007/s00028-016-0332-8 – volume-title: Introduction to the Theory of Non-Self-Adjoint Operators in Hilberts Spaces year: 1965 ident: 5952_CR26 – volume: 10 start-page: 11 issue: 3 year: 2018 ident: 5952_CR15 publication-title: Ufim. Math. Zh. doi: 10.13108/2018-10-3-11 – volume: 75 start-page: 3 issue: 3 year: 2011 ident: 5952_CR9 publication-title: Izv. Ross. Akad. Nauk. Ser. Mat. doi: 10.4213/im4202 – volume: 12 start-page: 723 issue: 3 year: 2018 ident: 5952_CR11 publication-title: J. Oper. Matr. doi: 10.7153/oam-2018-12-43 – volume: 18 start-page: 519 year: 1965 ident: 5952_CR28 publication-title: Commun. Pure. Appl. Math. doi: 10.1002/cpa.3160180308 – ident: 5952_CR1 – volume: 76 start-page: 905 issue: 6 year: 2004 ident: 5952_CR29 publication-title: Mat. Zametki doi: 10.4213/mzm162 – ident: 5952_CR13 – volume-title: Functional Analysis year: 1973 ident: 5952_CR27 – volume: 24 start-page: 21 issue: 1 year: 1983 ident: 5952_CR2 publication-title: Sib. Mat. Zh. doi: 10.1007/BF00968792 – volume: 454 start-page: 15 issue: 1 year: 2014 ident: 5952_CR23 publication-title: Dokl. Ross. Akad. Nauk – volume: 54 start-page: 276 issue: 2 year: 2018 ident: 5952_CR16 publication-title: Differ. Uravn. doi: 10.1134/S0374064118020139 – volume: 441 start-page: 156 issue: 2 year: 2011 ident: 5952_CR21 publication-title: Dokl. Ross. Akad. Nauk – volume: 36 start-page: 451 year: 1984 ident: 5952_CR3 publication-title: Ukr. Math. J. doi: 10.1007/BF01086768 – volume: 50 start-page: 435 issue: 3 year: 1986 ident: 5952_CR5 publication-title: Izv. Akad. Nauk SSSR. Ser. Mat. – volume: 435 start-page: 151 issue: 2 year: 2010 ident: 5952_CR19 publication-title: Dokl. Ross. Akad. Nauk. – volume: 54 start-page: 1287 issue: 9 year: 2018 ident: 5952_CR17 publication-title: Differ. Uravn. doi: 10.1134/S0374064118090133 – volume: 208 start-page: 3 issue: 1 year: 2017 ident: 5952_CR14 publication-title: Mat. Sb. doi: 10.4213/sm8637 – volume: 54 start-page: 3 issue: 1 year: 2014 ident: 5952_CR18 publication-title: Zh. Vychisl. Mat. Mat. Fiz. – volume: 21 start-page: 555 issue: 4 year: 1985 ident: 5952_CR4 publication-title: Differ. Uravn. – volume: 58 start-page: 3 issue: 4 year: 1994 ident: 5952_CR7 publication-title: Izv. Ross. Akad. Nauk. Ser. Mat. – volume: 90 start-page: 22 issue: 1 year: 2011 ident: 5952_CR22 publication-title: Mat. Zametki doi: 10.4213/mzm8628 – volume: 414 start-page: 443 issue: 3 year: 2007 ident: 5952_CR24 publication-title: Dokl. Ross. Akad. Nauk. – volume-title: Lectures on Advanced Ordinary Differential Equations year: 1965 ident: 5952_CR25 – ident: 5952_CR12 – volume: 32 start-page: 76 issue: 2 year: 1999 ident: 5952_CR8 publication-title: Funkts. Anal. Prilozh. doi: 10.4213/faa357 – volume-title: Harmonic Analysis of Linear Operators year: 1987 ident: 5952_CR6 – volume: 51 start-page: 2233 issue: 12 year: 2011 ident: 5952_CR20 publication-title: Zh. Vychisl. Mat. Mat. Fiz. |
SSID | ssj0007683 |
Score | 2.246164 |
Snippet | In this paper, we consider first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 599 |
SubjectTerms | Boundary conditions Differential equations Hilbert space Mathematics Mathematics and Statistics Operators (mathematics) |
Title | Method of Similar Operators in the Study of Spectral Properties of Perturbed First-Order Differential Operators |
URI | https://link.springer.com/article/10.1007/s10958-022-05952-3 https://www.proquest.com/docview/2681495709 |
Volume | 263 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH5i3QUO_EYrjMpCCA7gKbYTJzl2sDJA3SZGpXGyYseeKiCdmvYAfz3PibOSMQ67JfEny362X96z3_sM8NJFKS8jY6mOihgdFB1RXTBGE-EMlmktnc9Gnh7Jw1n86Sw5C0lhdRft3h1JNpr6r2S3PMmojz5HkyDhVGzBdsKyPBvA9vjDt88HlxoYTeg2sD5FlEjjkCxzfS29H9JVtfzP-Wjz25ncg1nX4Dba5PveeqX3zO8rXI437dF9uBvsUDJuJ84DuGWrh3BnekniWj-CxbS5XZosHDmd_5yjC0yOL2xzLF-TeUUQSnwY4q8G4TM2l1jjid_dX3qaVv_5BB_XS21LMpmjnUmPPdMneR9uZUHt8mNT52OYTQ6-vjuk4X4GanieCSpjx9Hd0rERzBomZWIcM6yIcNizAt9YplHXMplyjmaSscKWaC5qaQ03uPDFExhUi8ruAImLPNGWm7JIs9hyp0VWypyV2pUlOknREN50g6QuWhoOtSFc9mJUKEbViFGJIbzw46g8v0XlA2jOi3Vdq4-nX9QYG8I8rx4fwusAcguUjylCPgI2yFNi9ZCvesjzlhD8OuBuD4gr1fSLu3mlgqaoFZeZd1LTKB_C226abIr_38mnN4M_g9u8mWl-A2kXBqvl2j5He2qlR7h8Jvv7R6OwjEawNePjP0oiFx4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB219ND2gPqpLtDWqqpyoJZiO3GS44p2tbQsIGAlblbs2GilNos27IF_z0w2YRtKD70l8ZPljO3xjD3zDPA5RKksI-e5jYoYHRQbcVsIwRMVHJZZqwNlI0-O9Hga_7hILtqksLqLdu-OJBtN_UeyW55knKLP0SRIJFeP4QkaAxndWzCVwzv9iwb0Kqw-RYxK4zZV5uE6esvRfaX81-los-iMXsBmay2y4ap7X8IjX72C55M7qtX6NcwnzR3QbB7Y2ez3DB1Vdnzlm8Pzms0qhlBGwYI3DYLyKhdY4wntwS-ITJU-n-DjcmF9yUYztAb5MfFxsm_t3SmoA36t63wD09H38_0xb29R4E7mmeI6DhKdIhs7JbwTWicuCCeKCDsnK_BNZBY1otCplGjMOK98iUad1d5Jh9NTvYWNal75d8DiIk-sl64s0iz2MliVlToXpQ1lia5MNIC9TpjmakWWYda0yCR6g6I3jeiNGsAnkrchFoqKwlwui2Vdm4OzUzPEhghiv5MD2G1BYY7ycUWbNYANIuKqHvJLD3m5ou1-CLjTA-J8cv3irv9NO59rI3VGrmQa5QP42o2JdfG_f3Lr_-Af4en4fHJoDg-Ofm7DM9mMVNry2YGN68XSv0cL6Np-aAb8Lf7Q-ow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgkxB7mBgDURjMQtN4AGuxnTjJY8WoNli3ilFpb1b8a6rE0qppH_bfc5ek6wLbA29J_Mlyzvb5zr77TMhBiFLhIuuZiYoYHBQTMVNwzhIZLJQZowJmIw_P1ck4_n6VXN3L4q-j3VdHkk1OA7I0lYujmQtH9xLf8iRjGIkO5kEimHxKNkEdcxzpY9G_08VgTDch9ilgZBq3aTMP19FZmv5W0P-clNYL0OAF2W4tR9pvunqHPPHlS7I1vKNdrXbJdFjfB02ngV5ObibgtNKLma8P0is6KSlAKQYO3tYIzLGcQ40j3I-fI7Eqfh7B43JuvKODCViG7AK5Oelxe48K6IPf6zpfkfHg26-vJ6y9UYFZkWeSqTgIcJBMbCX3liuV2MAtLyLoqKyAN54Z0I5cpUKAYWO99A4MPKO8FRamqnxNNspp6d8QGhd5Yrywrkiz2ItgZOZUzp0JzoFbE_XI55Uw9awhztBrimQUvQbR61r0WvbIR5S3RkaKEkNerotlVenTy5-6Dw3hyIQneuRTCwpTkI8t2gwCaBCSWHWQhx3kdUPh_RBwrwOEuWW7xav-1-3crrRQGbqVaZT3yJfVmFgXP_6Tb_8Pvk-ejY4H-uz0_Mc78lzUAxV3f_bIxmK-9O_BGFqYD_V4_wNrff7I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=METHOD+OF+SIMILAR+OPERATORS+IN+THE+STUDY+OF+SPECTRAL+PROPERTIES+OF+PERTURBED+FIRST-ORDER+DIFFERENTIAL+OPERATORS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Baskakov%2C+A.G&rft.au=Krishtal%2C+I.A&rft.au=Uskova%2C+N.B&rft.date=2022-06-01&rft.pub=Springer&rft.issn=1072-3374&rft.volume=263&rft.issue=5&rft.spage=599&rft_id=info:doi/10.1007%2Fs10958-022-05952-3&rft.externalDBID=ISR&rft.externalDocID=A727101012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |