Method of Similar Operators in the Study of Spectral Properties of Perturbed First-Order Differential Operators

In this paper, we consider first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the segment [0 , ω ] perturbed by Hilbert– Schmidt integral operators. A similarity transformation of the original operator to the operator of the...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 263; no. 5; pp. 599 - 615
Main Authors Baskakov, A. G., Krishtal, I. A., Uskova, N. B.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1072-3374
1573-8795
DOI10.1007/s10958-022-05952-3

Cover

Loading…
Abstract In this paper, we consider first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the segment [0 , ω ] perturbed by Hilbert– Schmidt integral operators. A similarity transformation of the original operator to the operator of the block-diagonal structure is performed; this allows one to study spectral properties of the perturbed operator. The research method is the method of similar operators, which also presented in this work.
AbstractList In this paper, we consider first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the segment [0 , ω ] perturbed by Hilbert– Schmidt integral operators. A similarity transformation of the original operator to the operator of the block-diagonal structure is performed; this allows one to study spectral properties of the perturbed operator. The research method is the method of similar operators, which also presented in this work.
In this paper, we consider first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the segment [0, [omega]] perturbed by Hilbert--Schmidt integral operators. A similarity transformation of the original operator to the operator of the block-diagonal structure is performed; this allows one to study spectral properties of the perturbed operator. The research method is the method of similar operators, which also presented in this work.
In this paper, we consider first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the segment [0, ω] perturbed by Hilbert– Schmidt integral operators. A similarity transformation of the original operator to the operator of the block-diagonal structure is performed; this allows one to study spectral properties of the perturbed operator. The research method is the method of similar operators, which also presented in this work.
In this paper, we consider first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the segment [0, [omega]] perturbed by Hilbert--Schmidt integral operators. A similarity transformation of the original operator to the operator of the block-diagonal structure is performed; this allows one to study spectral properties of the perturbed operator. The research method is the method of similar operators, which also presented in this work. Keywords and phrases: method of similar operators, spectrum, integro-differential operator. AMS Subject Classification: 35L75, 35Q53, 37K10, 37K35
Audience Academic
Author Baskakov, A. G.
Uskova, N. B.
Krishtal, I. A.
Author_xml – sequence: 1
  givenname: A. G.
  surname: Baskakov
  fullname: Baskakov, A. G.
  email: anatbaskakov@yandex.ru
  organization: Voronezh State University, North Ossetian State University
– sequence: 2
  givenname: I. A.
  surname: Krishtal
  fullname: Krishtal, I. A.
  organization: Northern Illinois University
– sequence: 3
  givenname: N. B.
  surname: Uskova
  fullname: Uskova, N. B.
  organization: Voronezh State University
BookMark eNp9kk1rGzEQhkVJoUnaP9CToKcelOpjV9o9hrRpAykOdXsWsnbkKKxXrqSF5N93HJcGgylz0Gh43hEzes_IyZQmIOS94BeCc_OpCN63HeNSMt72rWTqFTkVrVGsM317gjk3WFSmeUPOSnngKNKdOiXpO9T7NNAU6DJu4ugyXWwhu5pyoXGi9R7oss7D0zOxBV-zG-ldTgjVCGVXvsN0zisY6HXMpbJFHiDTzzEEyDDViIJ_Pd-S18GNBd79Pc_Jr-svP6--sdvF15ury1vmZd8pppsgjdCrxisBXmjd-iC8cJy7pnN4E93KaCm0kdJI40HB0Cu50uCl77VS5-TDvu82p98zlGof0pwnfNJK3Ymmbw3vX6i1G8HGKSQcz29i8fYS2wqOIZFiR6g1TDjTiP8QIpYP-IsjPMYAm-iPCj4eCJCp8FjXbi7F3ix_HLJyz_qcSskQ7DbHjctPVnC784Lde8GiF-yzF-xuG2ovKghPa8gv2_iP6g8l8bWE
Cites_doi 10.1007/s00028-016-0332-8
10.13108/2018-10-3-11
10.4213/im4202
10.7153/oam-2018-12-43
10.1002/cpa.3160180308
10.4213/mzm162
10.1007/BF00968792
10.1134/S0374064118020139
10.1007/BF01086768
10.1134/S0374064118090133
10.4213/sm8637
10.4213/mzm8628
10.4213/faa357
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2022 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2022 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-022-05952-3
DatabaseName CrossRef
Science in Context
DatabaseTitle CrossRef
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 615
ExternalDocumentID A727101012
10_1007_s10958_022_05952_3
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c2983-64f2716b4c31ec1665cf1c1a00a48a65c18b76216722727ce3ed932b6ec2c9633
IEDL.DBID AGYKE
ISSN 1072-3374
IngestDate Fri Jul 25 10:52:47 EDT 2025
Tue Jun 17 22:10:06 EDT 2025
Thu Jun 12 23:59:55 EDT 2025
Tue Jun 10 21:04:19 EDT 2025
Fri Jun 27 05:26:25 EDT 2025
Tue Jul 01 01:42:21 EDT 2025
Fri Feb 21 02:46:27 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 37K35
spectrum
35Q53
method of similar operators
37K10
integro-differential operator
35L75
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2983-64f2716b4c31ec1665cf1c1a00a48a65c18b76216722727ce3ed932b6ec2c9633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10958-022-05952-3.pdf
PQID 2681495709
PQPubID 2043545
PageCount 17
ParticipantIDs proquest_journals_2681495709
gale_infotracmisc_A727101012
gale_infotracgeneralonefile_A727101012
gale_infotracacademiconefile_A727101012
gale_incontextgauss_ISR_A727101012
crossref_primary_10_1007_s10958_022_05952_3
springer_journals_10_1007_s10958_022_05952_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220600
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 6
  year: 2022
  text: 20220600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References BaskakovAGHarmonic Analysis of Linear Operators1987VoronezhVoronezh State Univ0621.47001[in Russian]
BaskakovAGKrishtalIARomanovaEYSpectral analysis of a differential operator with an involutionJ. Evolut. Eqs.201717669684366522510.1007/s00028-016-0332-8
BurlutskayaMSKhromovAPClassical solution for a mixed problem with involutionDokl. Ross. Akad. Nauk.2010435215115427905011217.35047
BurlutskayaMSKhromovAPSteinhaus theorem on equiconvergence for functionaldifferential operatorsMat. Zametki20119012233290816510.4213/mzm8628
BurlutskayaMSKurdyumovVPLukoninaASKhromovAPFunctionaldifferential operator with involutionDokl. Ross. Akad. Nauk.200741434434461166.34322
BaskakovAGA theorem on splitting an operator and some related questions in the analytic theory of perturbationsIzv. Akad. Nauk SSSR. Ser. Mat.1986503435457854591
BurlutskayaMSKhromovAPFunctional-differential operators with involution and Dirac operators with periodic boundary conditionsDokl. Ross. Akad. Nauk20144541151732046321307.34104
BaskakovAGUskovaNBSpectral analysis of differential operators with involution and groups of operatorsDiffer. Uravn.20185491287129107002861
BaskakovAGKrylov–Bogolyubov substitution in the perturbation theory of linear operatorsUkr. Math. J.19843645145576437810.1007/BF01086768
BaskakovAGAveraging method in the perturbation theory of linear differential operatorsDiffer. Uravn.19852145555620566.34043
BaskakovAGOn a abstract analog of the Krylov–Bogolyubov transformation in the perturbation theory of linear operatorsFunkts. Anal. Prilozh.1999322768010.4213/faa357
BaskakovAGMethods of abstract harmonic analysis in the perturbation theory of linear operatorsSib. Mat. Zh.1983241213910.1007/BF00968792
BurlutskayaMSOn a mixed problem for a first-order partial differential equation with involution and periodic boundary conditionsZh. Vychisl. Mat. Mat. Fiz.201454131231705531313.35014
RudinWFunctional Analysis1973New YorkMcGraw-Hill0253.46001
TurnerRFLPerturbation of compact spectral operatorsCommun. Pure. Appl. Math.19651851954117836510.1002/cpa.3160180308
BaskakovAGSpectral analysis of perturbed nonquasianalytic and spectral operatorsIzv. Ross. Akad. Nauk. Ser. Mat.19945843320851.47024
BurlutskayaMSKhromovAPFourier method in an initial-boundary-value problem for a first-order partial differential equation with involutionZh. Vychisl. Mat. Mat. Fiz.201151122233224529334051249.35047
GokhbergITKreinMGIntroduction to the Theory of Non-Self-Adjoint Operators in Hilberts Spaces1965MoscowNauka[in Russian]
A. G. Baskakov, I. A. Krishtal, and N. B. Uskova, General Dirac operators as generators of operator groups, arXiv: 1806.10831 [math.SP].
A. G. Baskakov, I. A. Krishtal, and N. B. Uskova, Similarity techniques in the spectral analysis of perturbed operator matrices, arXiv: 1812.10331 [math.SP].
FriedrichsKOLectures on Advanced Ordinary Differential Equations1965New YorkGordon and Breach0191.38202
BaskakovAGUskovaNBGeneralized Fourier method for systems of first-order differential equations and groups of operatorsDiffer. Uravn.201854227628037975321474.35216
BaskakovAGPolyakovDMMethod of similar operators in the spectral analysis of the Hill operator with nonsmooth potentialMat. Sb.20172081347359876310.4213/sm8637
BaskakovAGUskovaNBFourier method for first-order differential equations and groups of operatorsUfim. Math. Zh.20181031134387705410.13108/2018-10-3-11
BaskakovAGDerbushevAVShcherbakovAOMethod of similar operators in the spectral analysis of the Dirac operator with nonsmooth potentialIzv. Ross. Akad. Nauk. Ser. Mat.2011753328284778010.4213/im4202
UskovaNBOn a result of R. TurnerMat. Zametki2004766905917212750110.4213/mzm162
BaskakovAGKrishtalIAUskovaNBLinear differential operator with an involution as a generator of an operator groupJ. Oper. Matr.2018123723756385336410.7153/oam-2018-12-43
A. G. Baskakov, Krylov–Bogolyubov substitution in the perturbation theory of linear operators [in Russian], Keldysh Inst. Appl. Math., Moscow (1980).
BurlutskayaMSKhromovAPMixed problems for first-order hyperbolic equationsDokl. Ross. Akad. Nauk201144121561592953787
AG Baskakov (5952_CR5) 1986; 50
AG Baskakov (5952_CR14) 2017; 208
MS Burlutskaya (5952_CR19) 2010; 435
AG Baskakov (5952_CR2) 1983; 24
AG Baskakov (5952_CR7) 1994; 58
W Rudin (5952_CR27) 1973
IT Gokhberg (5952_CR26) 1965
AG Baskakov (5952_CR15) 2018; 10
AG Baskakov (5952_CR10) 2017; 17
KO Friedrichs (5952_CR25) 1965
AG Baskakov (5952_CR6) 1987
5952_CR1
AG Baskakov (5952_CR17) 2018; 54
MS Burlutskaya (5952_CR21) 2011; 441
MS Burlutskaya (5952_CR23) 2014; 454
AG Baskakov (5952_CR8) 1999; 32
MS Burlutskaya (5952_CR22) 2011; 90
AG Baskakov (5952_CR4) 1985; 21
5952_CR12
5952_CR13
MS Burlutskaya (5952_CR20) 2011; 51
RFL Turner (5952_CR28) 1965; 18
NB Uskova (5952_CR29) 2004; 76
MS Burlutskaya (5952_CR24) 2007; 414
AG Baskakov (5952_CR16) 2018; 54
AG Baskakov (5952_CR3) 1984; 36
AG Baskakov (5952_CR11) 2018; 12
MS Burlutskaya (5952_CR18) 2014; 54
AG Baskakov (5952_CR9) 2011; 75
References_xml – reference: BurlutskayaMSKhromovAPFourier method in an initial-boundary-value problem for a first-order partial differential equation with involutionZh. Vychisl. Mat. Mat. Fiz.201151122233224529334051249.35047
– reference: BaskakovAGUskovaNBFourier method for first-order differential equations and groups of operatorsUfim. Math. Zh.20181031134387705410.13108/2018-10-3-11
– reference: TurnerRFLPerturbation of compact spectral operatorsCommun. Pure. Appl. Math.19651851954117836510.1002/cpa.3160180308
– reference: BaskakovAGA theorem on splitting an operator and some related questions in the analytic theory of perturbationsIzv. Akad. Nauk SSSR. Ser. Mat.1986503435457854591
– reference: BaskakovAGKrishtalIARomanovaEYSpectral analysis of a differential operator with an involutionJ. Evolut. Eqs.201717669684366522510.1007/s00028-016-0332-8
– reference: GokhbergITKreinMGIntroduction to the Theory of Non-Self-Adjoint Operators in Hilberts Spaces1965MoscowNauka[in Russian]
– reference: A. G. Baskakov, I. A. Krishtal, and N. B. Uskova, General Dirac operators as generators of operator groups, arXiv: 1806.10831 [math.SP].
– reference: BurlutskayaMSKhromovAPFunctional-differential operators with involution and Dirac operators with periodic boundary conditionsDokl. Ross. Akad. Nauk20144541151732046321307.34104
– reference: BaskakovAGUskovaNBSpectral analysis of differential operators with involution and groups of operatorsDiffer. Uravn.20185491287129107002861
– reference: RudinWFunctional Analysis1973New YorkMcGraw-Hill0253.46001
– reference: BaskakovAGDerbushevAVShcherbakovAOMethod of similar operators in the spectral analysis of the Dirac operator with nonsmooth potentialIzv. Ross. Akad. Nauk. Ser. Mat.2011753328284778010.4213/im4202
– reference: A. G. Baskakov, I. A. Krishtal, and N. B. Uskova, Similarity techniques in the spectral analysis of perturbed operator matrices, arXiv: 1812.10331 [math.SP].
– reference: A. G. Baskakov, Krylov–Bogolyubov substitution in the perturbation theory of linear operators [in Russian], Keldysh Inst. Appl. Math., Moscow (1980).
– reference: BurlutskayaMSKurdyumovVPLukoninaASKhromovAPFunctionaldifferential operator with involutionDokl. Ross. Akad. Nauk.200741434434461166.34322
– reference: FriedrichsKOLectures on Advanced Ordinary Differential Equations1965New YorkGordon and Breach0191.38202
– reference: BaskakovAGKrylov–Bogolyubov substitution in the perturbation theory of linear operatorsUkr. Math. J.19843645145576437810.1007/BF01086768
– reference: BaskakovAGSpectral analysis of perturbed nonquasianalytic and spectral operatorsIzv. Ross. Akad. Nauk. Ser. Mat.19945843320851.47024
– reference: BurlutskayaMSKhromovAPSteinhaus theorem on equiconvergence for functionaldifferential operatorsMat. Zametki20119012233290816510.4213/mzm8628
– reference: BaskakovAGAveraging method in the perturbation theory of linear differential operatorsDiffer. Uravn.19852145555620566.34043
– reference: BaskakovAGHarmonic Analysis of Linear Operators1987VoronezhVoronezh State Univ0621.47001[in Russian]
– reference: BaskakovAGUskovaNBGeneralized Fourier method for systems of first-order differential equations and groups of operatorsDiffer. Uravn.201854227628037975321474.35216
– reference: BaskakovAGPolyakovDMMethod of similar operators in the spectral analysis of the Hill operator with nonsmooth potentialMat. Sb.20172081347359876310.4213/sm8637
– reference: BurlutskayaMSKhromovAPClassical solution for a mixed problem with involutionDokl. Ross. Akad. Nauk.2010435215115427905011217.35047
– reference: BurlutskayaMSOn a mixed problem for a first-order partial differential equation with involution and periodic boundary conditionsZh. Vychisl. Mat. Mat. Fiz.201454131231705531313.35014
– reference: BaskakovAGOn a abstract analog of the Krylov–Bogolyubov transformation in the perturbation theory of linear operatorsFunkts. Anal. Prilozh.1999322768010.4213/faa357
– reference: BaskakovAGMethods of abstract harmonic analysis in the perturbation theory of linear operatorsSib. Mat. Zh.1983241213910.1007/BF00968792
– reference: UskovaNBOn a result of R. TurnerMat. Zametki2004766905917212750110.4213/mzm162
– reference: BurlutskayaMSKhromovAPMixed problems for first-order hyperbolic equationsDokl. Ross. Akad. Nauk201144121561592953787
– reference: BaskakovAGKrishtalIAUskovaNBLinear differential operator with an involution as a generator of an operator groupJ. Oper. Matr.2018123723756385336410.7153/oam-2018-12-43
– volume: 17
  start-page: 669
  year: 2017
  ident: 5952_CR10
  publication-title: J. Evolut. Eqs.
  doi: 10.1007/s00028-016-0332-8
– volume-title: Introduction to the Theory of Non-Self-Adjoint Operators in Hilberts Spaces
  year: 1965
  ident: 5952_CR26
– volume: 10
  start-page: 11
  issue: 3
  year: 2018
  ident: 5952_CR15
  publication-title: Ufim. Math. Zh.
  doi: 10.13108/2018-10-3-11
– volume: 75
  start-page: 3
  issue: 3
  year: 2011
  ident: 5952_CR9
  publication-title: Izv. Ross. Akad. Nauk. Ser. Mat.
  doi: 10.4213/im4202
– volume: 12
  start-page: 723
  issue: 3
  year: 2018
  ident: 5952_CR11
  publication-title: J. Oper. Matr.
  doi: 10.7153/oam-2018-12-43
– volume: 18
  start-page: 519
  year: 1965
  ident: 5952_CR28
  publication-title: Commun. Pure. Appl. Math.
  doi: 10.1002/cpa.3160180308
– ident: 5952_CR1
– volume: 76
  start-page: 905
  issue: 6
  year: 2004
  ident: 5952_CR29
  publication-title: Mat. Zametki
  doi: 10.4213/mzm162
– ident: 5952_CR13
– volume-title: Functional Analysis
  year: 1973
  ident: 5952_CR27
– volume: 24
  start-page: 21
  issue: 1
  year: 1983
  ident: 5952_CR2
  publication-title: Sib. Mat. Zh.
  doi: 10.1007/BF00968792
– volume: 454
  start-page: 15
  issue: 1
  year: 2014
  ident: 5952_CR23
  publication-title: Dokl. Ross. Akad. Nauk
– volume: 54
  start-page: 276
  issue: 2
  year: 2018
  ident: 5952_CR16
  publication-title: Differ. Uravn.
  doi: 10.1134/S0374064118020139
– volume: 441
  start-page: 156
  issue: 2
  year: 2011
  ident: 5952_CR21
  publication-title: Dokl. Ross. Akad. Nauk
– volume: 36
  start-page: 451
  year: 1984
  ident: 5952_CR3
  publication-title: Ukr. Math. J.
  doi: 10.1007/BF01086768
– volume: 50
  start-page: 435
  issue: 3
  year: 1986
  ident: 5952_CR5
  publication-title: Izv. Akad. Nauk SSSR. Ser. Mat.
– volume: 435
  start-page: 151
  issue: 2
  year: 2010
  ident: 5952_CR19
  publication-title: Dokl. Ross. Akad. Nauk.
– volume: 54
  start-page: 1287
  issue: 9
  year: 2018
  ident: 5952_CR17
  publication-title: Differ. Uravn.
  doi: 10.1134/S0374064118090133
– volume: 208
  start-page: 3
  issue: 1
  year: 2017
  ident: 5952_CR14
  publication-title: Mat. Sb.
  doi: 10.4213/sm8637
– volume: 54
  start-page: 3
  issue: 1
  year: 2014
  ident: 5952_CR18
  publication-title: Zh. Vychisl. Mat. Mat. Fiz.
– volume: 21
  start-page: 555
  issue: 4
  year: 1985
  ident: 5952_CR4
  publication-title: Differ. Uravn.
– volume: 58
  start-page: 3
  issue: 4
  year: 1994
  ident: 5952_CR7
  publication-title: Izv. Ross. Akad. Nauk. Ser. Mat.
– volume: 90
  start-page: 22
  issue: 1
  year: 2011
  ident: 5952_CR22
  publication-title: Mat. Zametki
  doi: 10.4213/mzm8628
– volume: 414
  start-page: 443
  issue: 3
  year: 2007
  ident: 5952_CR24
  publication-title: Dokl. Ross. Akad. Nauk.
– volume-title: Lectures on Advanced Ordinary Differential Equations
  year: 1965
  ident: 5952_CR25
– ident: 5952_CR12
– volume: 32
  start-page: 76
  issue: 2
  year: 1999
  ident: 5952_CR8
  publication-title: Funkts. Anal. Prilozh.
  doi: 10.4213/faa357
– volume-title: Harmonic Analysis of Linear Operators
  year: 1987
  ident: 5952_CR6
– volume: 51
  start-page: 2233
  issue: 12
  year: 2011
  ident: 5952_CR20
  publication-title: Zh. Vychisl. Mat. Mat. Fiz.
SSID ssj0007683
Score 2.246164
Snippet In this paper, we consider first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 599
SubjectTerms Boundary conditions
Differential equations
Hilbert space
Mathematics
Mathematics and Statistics
Operators (mathematics)
Title Method of Similar Operators in the Study of Spectral Properties of Perturbed First-Order Differential Operators
URI https://link.springer.com/article/10.1007/s10958-022-05952-3
https://www.proquest.com/docview/2681495709
Volume 263
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH5i3QUO_EYrjMpCCA7gKbYTJzl2sDJA3SZGpXGyYseeKiCdmvYAfz3PibOSMQ67JfEny362X96z3_sM8NJFKS8jY6mOihgdFB1RXTBGE-EMlmktnc9Gnh7Jw1n86Sw5C0lhdRft3h1JNpr6r2S3PMmojz5HkyDhVGzBdsKyPBvA9vjDt88HlxoYTeg2sD5FlEjjkCxzfS29H9JVtfzP-Wjz25ncg1nX4Dba5PveeqX3zO8rXI437dF9uBvsUDJuJ84DuGWrh3BnekniWj-CxbS5XZosHDmd_5yjC0yOL2xzLF-TeUUQSnwY4q8G4TM2l1jjid_dX3qaVv_5BB_XS21LMpmjnUmPPdMneR9uZUHt8mNT52OYTQ6-vjuk4X4GanieCSpjx9Hd0rERzBomZWIcM6yIcNizAt9YplHXMplyjmaSscKWaC5qaQ03uPDFExhUi8ruAImLPNGWm7JIs9hyp0VWypyV2pUlOknREN50g6QuWhoOtSFc9mJUKEbViFGJIbzw46g8v0XlA2jOi3Vdq4-nX9QYG8I8rx4fwusAcguUjylCPgI2yFNi9ZCvesjzlhD8OuBuD4gr1fSLu3mlgqaoFZeZd1LTKB_C226abIr_38mnN4M_g9u8mWl-A2kXBqvl2j5He2qlR7h8Jvv7R6OwjEawNePjP0oiFx4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB219ND2gPqpLtDWqqpyoJZiO3GS44p2tbQsIGAlblbs2GilNos27IF_z0w2YRtKD70l8ZPljO3xjD3zDPA5RKksI-e5jYoYHRQbcVsIwRMVHJZZqwNlI0-O9Hga_7hILtqksLqLdu-OJBtN_UeyW55knKLP0SRIJFeP4QkaAxndWzCVwzv9iwb0Kqw-RYxK4zZV5uE6esvRfaX81-los-iMXsBmay2y4ap7X8IjX72C55M7qtX6NcwnzR3QbB7Y2ez3DB1Vdnzlm8Pzms0qhlBGwYI3DYLyKhdY4wntwS-ITJU-n-DjcmF9yUYztAb5MfFxsm_t3SmoA36t63wD09H38_0xb29R4E7mmeI6DhKdIhs7JbwTWicuCCeKCDsnK_BNZBY1otCplGjMOK98iUad1d5Jh9NTvYWNal75d8DiIk-sl64s0iz2MliVlToXpQ1lia5MNIC9TpjmakWWYda0yCR6g6I3jeiNGsAnkrchFoqKwlwui2Vdm4OzUzPEhghiv5MD2G1BYY7ycUWbNYANIuKqHvJLD3m5ou1-CLjTA-J8cv3irv9NO59rI3VGrmQa5QP42o2JdfG_f3Lr_-Af4en4fHJoDg-Ofm7DM9mMVNry2YGN68XSv0cL6Np-aAb8Lf7Q-ow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgkxB7mBgDURjMQtN4AGuxnTjJY8WoNli3ilFpb1b8a6rE0qppH_bfc5ek6wLbA29J_Mlyzvb5zr77TMhBiFLhIuuZiYoYHBQTMVNwzhIZLJQZowJmIw_P1ck4_n6VXN3L4q-j3VdHkk1OA7I0lYujmQtH9xLf8iRjGIkO5kEimHxKNkEdcxzpY9G_08VgTDch9ilgZBq3aTMP19FZmv5W0P-clNYL0OAF2W4tR9pvunqHPPHlS7I1vKNdrXbJdFjfB02ngV5ObibgtNKLma8P0is6KSlAKQYO3tYIzLGcQ40j3I-fI7Eqfh7B43JuvKODCViG7AK5Oelxe48K6IPf6zpfkfHg26-vJ6y9UYFZkWeSqTgIcJBMbCX3liuV2MAtLyLoqKyAN54Z0I5cpUKAYWO99A4MPKO8FRamqnxNNspp6d8QGhd5Yrywrkiz2ItgZOZUzp0JzoFbE_XI55Uw9awhztBrimQUvQbR61r0WvbIR5S3RkaKEkNerotlVenTy5-6Dw3hyIQneuRTCwpTkI8t2gwCaBCSWHWQhx3kdUPh_RBwrwOEuWW7xav-1-3crrRQGbqVaZT3yJfVmFgXP_6Tb_8Pvk-ejY4H-uz0_Mc78lzUAxV3f_bIxmK-9O_BGFqYD_V4_wNrff7I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=METHOD+OF+SIMILAR+OPERATORS+IN+THE+STUDY+OF+SPECTRAL+PROPERTIES+OF+PERTURBED+FIRST-ORDER+DIFFERENTIAL+OPERATORS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Baskakov%2C+A.G&rft.au=Krishtal%2C+I.A&rft.au=Uskova%2C+N.B&rft.date=2022-06-01&rft.pub=Springer&rft.issn=1072-3374&rft.volume=263&rft.issue=5&rft.spage=599&rft_id=info:doi/10.1007%2Fs10958-022-05952-3&rft.externalDBID=ISR&rft.externalDocID=A727101012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon