Research on façade design for cold-region buildings based on artificial neural networks and parametric modeling techniques
This work aims to use deep learning techniques to model the thermal performance of walls in buildings located in cold regions. Upon completion of the data processing and collection steps, we theoretically train the prediction model using a neural network. In the first phases of residential building...
Saved in:
Published in | Nonlinear engineering Vol. 14; no. 1; pp. 111776 - 10 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
18.08.2025
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 2192-8029 2192-8010 2192-8029 |
DOI | 10.1515/nleng-2025-0136 |
Cover
Loading…
Abstract | This work aims to use deep learning techniques to model the thermal performance of walls in buildings located in cold regions. Upon completion of the data processing and collection steps, we theoretically train the prediction model using a neural network. In the first phases of residential building design in cold regions, decision-makers may execute performance forecasts across diverse parameter combinations. The creation of an expedited predictive model for the energy efficiency of residences in frigid areas makes this feasible. This facilitates the exclusion of building types characterized by elevated energy usage and expenses. The strategy may lower decision-making expenses and enhance decision-making efficiency during the first design phases by filtering out high-energy-consuming building kinds. This research concludes that the machine learning model enhances the building’s performance. The optimum design variable values identified in this research may serve as a reference for architects and designers aiming to meet their economic and environmental objectives in passive structures. The construction cost, thermal index, and load intensity of the building may be calculated with more accuracy by following the right procedures. |
---|---|
AbstractList | This work aims to use deep learning techniques to model the thermal performance of walls in buildings located in cold regions. Upon completion of the data processing and collection steps, we theoretically train the prediction model using a neural network. In the first phases of residential building design in cold regions, decision-makers may execute performance forecasts across diverse parameter combinations. The creation of an expedited predictive model for the energy efficiency of residences in frigid areas makes this feasible. This facilitates the exclusion of building types characterized by elevated energy usage and expenses. The strategy may lower decision-making expenses and enhance decision-making efficiency during the first design phases by filtering out high-energy-consuming building kinds. This research concludes that the machine learning model enhances the building’s performance. The optimum design variable values identified in this research may serve as a reference for architects and designers aiming to meet their economic and environmental objectives in passive structures. The construction cost, thermal index, and load intensity of the building may be calculated with more accuracy by following the right procedures. |
Author | Huan, Youxiang |
Author_xml | – sequence: 1 givenname: Youxiang surname: Huan fullname: Huan, Youxiang email: youxianghuan@outlook.com organization: Department of Architectural Engineering, School of Civil Engineering, Yangzhou Polytechnic College, Yangzhou, 225000, China |
BookMark | eNp1kc1O3DAUhS1EJX7Kmq2lrlP8l4nTXYXagoSEhGBt3dg3wUPGntqJEOKB-iB9sTozVcuG1T227_ns63NCDkMMSMg5Z595zeuLMGIYKsFEXTEuVwfkWPBWVJqJ9vCNPiJnOa8ZW3q4YvqYvN5hRkj2kcZAe_j9CxxSh9kPZRkTtXF0VcLBl-Nu9qPzYci0g4xucUCafO-th5EGnNOuTM8xPWUKwdEtJNjglLylm-hwLGY6oX0M_ueM-SP50MOY8exvPSUP37_dX15VN7c_ri-_3lRWtJpXDXCuW2DYCSca0TS1qrUUcoUOFZcolawXbbnS0DHm6pXTTArbSGu16uUpud5zXYS12Sa_gfRiIniz24hpMMscdkQDK9H2TPSd5YUmm07wjivRFKhVUjSF9WnP2qa4zDCZdZxTKM83UiimuJZtXbou9l02xZwT9v9u5cwsgZldYGYJzCxhFMeXveMZxgmTwyHNL0X8x7_j5OUL_gD12Z-W |
Cites_doi | 10.1016/j.rser.2017.06.010 10.1016/j.enbuild.2012.04.011 10.1016/j.rinp.2024.107369 10.1155/2021/2522155 10.1016/j.enbuild.2021.111776 10.1016/j.enbuild.2014.02.043 10.1016/j.neucom.2020.01.124 10.1016/j.apenergy.2014.04.061 10.1109/CEC.2017.7969477 10.1155/2022/1086847 10.1007/978-981-10-6451-7_9 10.3390/en16010058 10.1016/j.jksuci.2024.102068 10.3390/s17122848 10.1111/ina.12046 10.30785/mbud.1038768 10.1109/CIASG.2011.5953344 10.1016/j.apenergy.2013.12.008 10.1016/j.enbuild.2015.11.003 10.1142/S0217984924501082 10.1016/j.neunet.2017.03.002 |
ContentType | Journal Article |
Copyright | This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 DOA |
DOI | 10.1515/nleng-2025-0136 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2192-8029 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_a629f02fbc114837b21b14270d5c4327 10_1515_nleng_2025_0136 10_1515_nleng_2025_0136141 |
GroupedDBID | 0R~ 0~D 4.4 AAFPC AAFWJ AAQCX AASOL AASQH AAWFC ABAOT ABAQN ABFKT ABIQR ABSOE ABUVI ABXMZ ACGFS ACIWK ACZBO ADBBV ADGQD ADGYE ADJVZ ADMLS ADOZN AEJTT AEQDQ AEXIE AFBAA AFBDD AFCXV AFPKN AFQUK AHGSO AIERV AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS BAKPI BBCWN BCNDV BFBNB BGLVJ CFGNV EBS GROUPED_DOAJ HZ~ IY9 O9- OK1 QD8 SA. AAYXX CITATION 7TB 8FD 8FE 8FG BENPR FR3 KR7 L6V M48 SLJYH |
ID | FETCH-LOGICAL-c2981-7a1189a0eb2d2727754583236ede413e34356edec148ab00d56d8032c73cc84f3 |
IEDL.DBID | DOA |
ISSN | 2192-8029 2192-8010 |
IngestDate | Mon Sep 01 19:40:12 EDT 2025 Tue Aug 19 04:11:38 EDT 2025 Thu Aug 21 00:36:34 EDT 2025 Tue Aug 19 02:10:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2981-7a1189a0eb2d2727754583236ede413e34356edec148ab00d56d8032c73cc84f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/a629f02fbc114837b21b14270d5c4327 |
PQID | 3240418395 |
PQPubID | 2038883 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a629f02fbc114837b21b14270d5c4327 proquest_journals_3240418395 crossref_primary_10_1515_nleng_2025_0136 walterdegruyter_journals_10_1515_nleng_2025_0136141 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-18 |
PublicationDateYYYYMMDD | 2025-08-18 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Nonlinear engineering |
PublicationYear | 2025 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2025081810160674587_j_nleng-2025-0136_ref_017 2025081810160674587_j_nleng-2025-0136_ref_016 2025081810160674587_j_nleng-2025-0136_ref_015 2025081810160674587_j_nleng-2025-0136_ref_014 2025081810160674587_j_nleng-2025-0136_ref_013 2025081810160674587_j_nleng-2025-0136_ref_012 2025081810160674587_j_nleng-2025-0136_ref_011 2025081810160674587_j_nleng-2025-0136_ref_010 2025081810160674587_j_nleng-2025-0136_ref_019 2025081810160674587_j_nleng-2025-0136_ref_018 2025081810160674587_j_nleng-2025-0136_ref_006 2025081810160674587_j_nleng-2025-0136_ref_005 2025081810160674587_j_nleng-2025-0136_ref_027 2025081810160674587_j_nleng-2025-0136_ref_004 2025081810160674587_j_nleng-2025-0136_ref_026 2025081810160674587_j_nleng-2025-0136_ref_003 2025081810160674587_j_nleng-2025-0136_ref_025 2025081810160674587_j_nleng-2025-0136_ref_002 2025081810160674587_j_nleng-2025-0136_ref_024 2025081810160674587_j_nleng-2025-0136_ref_001 2025081810160674587_j_nleng-2025-0136_ref_023 2025081810160674587_j_nleng-2025-0136_ref_022 2025081810160674587_j_nleng-2025-0136_ref_021 2025081810160674587_j_nleng-2025-0136_ref_009 2025081810160674587_j_nleng-2025-0136_ref_008 2025081810160674587_j_nleng-2025-0136_ref_007 2025081810160674587_j_nleng-2025-0136_ref_020 |
References_xml | – ident: 2025081810160674587_j_nleng-2025-0136_ref_007 – ident: 2025081810160674587_j_nleng-2025-0136_ref_017 doi: 10.1016/j.rser.2017.06.010 – ident: 2025081810160674587_j_nleng-2025-0136_ref_004 doi: 10.1016/j.enbuild.2012.04.011 – ident: 2025081810160674587_j_nleng-2025-0136_ref_013 doi: 10.1016/j.rinp.2024.107369 – ident: 2025081810160674587_j_nleng-2025-0136_ref_015 doi: 10.1155/2021/2522155 – ident: 2025081810160674587_j_nleng-2025-0136_ref_018 – ident: 2025081810160674587_j_nleng-2025-0136_ref_001 doi: 10.1016/j.enbuild.2021.111776 – ident: 2025081810160674587_j_nleng-2025-0136_ref_002 – ident: 2025081810160674587_j_nleng-2025-0136_ref_025 – ident: 2025081810160674587_j_nleng-2025-0136_ref_006 doi: 10.1016/j.enbuild.2014.02.043 – ident: 2025081810160674587_j_nleng-2025-0136_ref_020 doi: 10.1016/j.neucom.2020.01.124 – ident: 2025081810160674587_j_nleng-2025-0136_ref_008 doi: 10.1016/j.apenergy.2014.04.061 – ident: 2025081810160674587_j_nleng-2025-0136_ref_024 doi: 10.1109/CEC.2017.7969477 – ident: 2025081810160674587_j_nleng-2025-0136_ref_012 doi: 10.1155/2022/1086847 – ident: 2025081810160674587_j_nleng-2025-0136_ref_023 doi: 10.1007/978-981-10-6451-7_9 – ident: 2025081810160674587_j_nleng-2025-0136_ref_014 doi: 10.3390/en16010058 – ident: 2025081810160674587_j_nleng-2025-0136_ref_026 doi: 10.1016/j.jksuci.2024.102068 – ident: 2025081810160674587_j_nleng-2025-0136_ref_010 doi: 10.3390/s17122848 – ident: 2025081810160674587_j_nleng-2025-0136_ref_019 – ident: 2025081810160674587_j_nleng-2025-0136_ref_005 doi: 10.1111/ina.12046 – ident: 2025081810160674587_j_nleng-2025-0136_ref_027 doi: 10.30785/mbud.1038768 – ident: 2025081810160674587_j_nleng-2025-0136_ref_022 doi: 10.1109/CIASG.2011.5953344 – ident: 2025081810160674587_j_nleng-2025-0136_ref_003 – ident: 2025081810160674587_j_nleng-2025-0136_ref_009 doi: 10.1016/j.apenergy.2013.12.008 – ident: 2025081810160674587_j_nleng-2025-0136_ref_011 doi: 10.1016/j.enbuild.2015.11.003 – ident: 2025081810160674587_j_nleng-2025-0136_ref_016 doi: 10.1142/S0217984924501082 – ident: 2025081810160674587_j_nleng-2025-0136_ref_021 doi: 10.1016/j.neunet.2017.03.002 |
SSID | ssj0001361408 |
Score | 2.3073518 |
Snippet | This work aims to use deep learning techniques to model the thermal performance of walls in buildings located in cold regions. Upon completion of the data... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 111776 |
SubjectTerms | Artificial neural networks Building design Cold regions Construction costs cost of structure Data processing Decision making Deep learning Design Energy consumption façade design Green buildings load intensity Machine learning Neural networks neural networks and parametric modeling Prediction models Residential buildings thermal index |
Title | Research on façade design for cold-region buildings based on artificial neural networks and parametric modeling techniques |
URI | https://www.degruyter.com/doi/10.1515/nleng-2025-0136 https://www.proquest.com/docview/3240418395 https://doaj.org/article/a629f02fbc114837b21b14270d5c4327 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsQwEA7iSQ-Lv7i6Sg4evJRtkzRNjyoui6AnBW8hzaSe7MruiogP5IP4Ys6kXV0F8eKppU0gnZkw30ym3zB2rCpvHDq6ROelSRSENCnREyYADgrplM5rykNeXevxrbq8y--WWn1RTVhLD9wKbui0KOtU1JUn5C6LSmSUtyhSyL2SIv5Hjj5vKZiK2RWJbic1HZcP-uxhQ41J0CYE1apFQuYvNxTZ-r9BzN5zPKyGcD99epkvDkejzxltsF4HFvlpu8hNthKaLba-RCG4zV4XpXN80vDavb85CBxiWQZHPMpRz5BQ9wV8XXUtsGecfBfQDPr-lkOCE7NlvMS68Bl3DXAiBn-gnluex5Y5OJl_sr7Odtjt6OLmfJx0DRUSL0qTJYXDcKJ0KUbTIBC4FHRqJoXUAYKidChiJ7r3KGmH-xFyDSaVwhfSe6NquctWm0kT9hhHVCWCdq40JWE-MLmvtSggDUKZTLs-O1nI1z62vBmW4g1UhY2qsKQKS6roszOS_-cwIryOD9AMbGcG9i8z6LPBQnu224UzS2SDiiBg3mfyh0a_Rv2yrExl-_-xsgO21lodRutmwFbn06dwiEBmXh1Fm_0AdxjwzQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLQcUOlD3ZYWHzhwiTaxHcc5UlS65dUDIHGzHI8Dh5JF-1BV9Qf1h_SPdSbJLlC1F06Jkoxk-bM134wn3wDs6CpYT44uMXlpE40xTUryhAmix0J5bfKa85Anp2Z0oQ8v88sV2F_8C8NllRivJvMfs04hdYjjMOdE2VJrgDzwsOE2I4Sw5MozZYbXs5tvT2DNEP2nCGxtb_T57OtdqkWRD0ptL-zzD_MHPqmV7n_ANze-tyfXy2Hdc0AHz2GjZ45ir4N6E1Zi8wLW7-kJvoSfizo6MW5E7X__8hgFtjUagsipINAx4VYM9Lrq-2FPBTsyZAteRZ2ghGCZy_bSFolPhW9QsEr4DTfgCqLtn0PGYikBO30FFwefzvdHSd9dIQmytFlSeIotSp9SaI2SWEzBR2hKKhMxas6NEpHi-0ABk6fNiblBmyoZChWC1bV6DavNuIlvQBDFktF4X9qSCSDaPNRGFphGqW1m_AB2F_PrbjsRDcfBB0HhWigcQ-EYigF85Plffsbq1-2D8eTK9ZvJeSPLOpV1FTiaU0UlM85lFTTGoJUsBrC1QM_1W3LqWHlQMx_MB6D-QvTuq_8MK9PZ20dZbcPT0fnJsTv-cnr0Dp51S47idrsFq7PJPL4nSjOrPvRL9g924PWx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrYTgUPFUtxTwgQOXaBPbcZxjeSzbAgUJKvVmOR5nT81W-xCq-EH8EP4YM0l2u0Vw6SlRkpEsf7bmm_HkG4BXugrWk6NLTF7aRGNMk5I8YYLosVBem7zmPOTnUzM50yfn-fnWvzBcVolxOl9dLTuF1BHOwooTZRutAfLAo4bbjBDCkivPlBldYn0Hdo2h8HwAu0eTD9--XGdaFLmg1Pa6Pv-wvuGSWuX-G3Rz70d7cL0Z1Zb_GT-AvZ44iqMO6YewE5tHcH9LTvAx_FyX0YlZI2r_-5fHKLAt0RDETQVhjgl3YqDXVd8OeyHYjyFb8CLq9CQEq1y2l7ZGfCF8g4JFwi-4_1YQbfscMhYbBdjFEzgbv__-dpL0zRWSIEubJYWn0KL0KUXWKInEFHyCpqQyEaPm1CjxKL4PFC952puYG7SpkqFQIVhdq6cwaGZN3AdBDEtG431pS-Z_aPNQG1lgGqW2mfFDeL2eX3fZaWg4jj0ICtdC4RgKx1AM4Q3P_-YzFr9uH8zmU9fvJeeNLOtU1lXgYE4Vlcw4lVXQGINWshjC4Ro91-_IhWPhQc10MB-C-gvR66_-M6xMZwe3snoJd7--G7tPx6cfn8G9bsVR1G4PYbCcr-JzIjTL6kW_Yv8A_Nz01w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+fa%C3%A7ade+design+for+cold-region+buildings+based+on+artificial+neural+networks+and+parametric+modeling+techniques&rft.jtitle=Nonlinear+engineering&rft.date=2025-08-18&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=2192-8010&rft.eissn=2192-8029&rft.issue=1&rft_id=info:doi/10.1515%2Fnleng-2025-0136&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8029&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8029&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8029&client=summon |