Research on façade design for cold-region buildings based on artificial neural networks and parametric modeling techniques

This work aims to use deep learning techniques to model the thermal performance of walls in buildings located in cold regions. Upon completion of the data processing and collection steps, we theoretically train the prediction model using a neural network. In the first phases of residential building...

Full description

Saved in:
Bibliographic Details
Published inNonlinear engineering Vol. 14; no. 1; pp. 111776 - 10
Main Author Huan, Youxiang
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 18.08.2025
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN2192-8029
2192-8010
2192-8029
DOI10.1515/nleng-2025-0136

Cover

Loading…
Abstract This work aims to use deep learning techniques to model the thermal performance of walls in buildings located in cold regions. Upon completion of the data processing and collection steps, we theoretically train the prediction model using a neural network. In the first phases of residential building design in cold regions, decision-makers may execute performance forecasts across diverse parameter combinations. The creation of an expedited predictive model for the energy efficiency of residences in frigid areas makes this feasible. This facilitates the exclusion of building types characterized by elevated energy usage and expenses. The strategy may lower decision-making expenses and enhance decision-making efficiency during the first design phases by filtering out high-energy-consuming building kinds. This research concludes that the machine learning model enhances the building’s performance. The optimum design variable values identified in this research may serve as a reference for architects and designers aiming to meet their economic and environmental objectives in passive structures. The construction cost, thermal index, and load intensity of the building may be calculated with more accuracy by following the right procedures.
AbstractList This work aims to use deep learning techniques to model the thermal performance of walls in buildings located in cold regions. Upon completion of the data processing and collection steps, we theoretically train the prediction model using a neural network. In the first phases of residential building design in cold regions, decision-makers may execute performance forecasts across diverse parameter combinations. The creation of an expedited predictive model for the energy efficiency of residences in frigid areas makes this feasible. This facilitates the exclusion of building types characterized by elevated energy usage and expenses. The strategy may lower decision-making expenses and enhance decision-making efficiency during the first design phases by filtering out high-energy-consuming building kinds. This research concludes that the machine learning model enhances the building’s performance. The optimum design variable values identified in this research may serve as a reference for architects and designers aiming to meet their economic and environmental objectives in passive structures. The construction cost, thermal index, and load intensity of the building may be calculated with more accuracy by following the right procedures.
Author Huan, Youxiang
Author_xml – sequence: 1
  givenname: Youxiang
  surname: Huan
  fullname: Huan, Youxiang
  email: youxianghuan@outlook.com
  organization: Department of Architectural Engineering, School of Civil Engineering, Yangzhou Polytechnic College, Yangzhou, 225000, China
BookMark eNp1kc1O3DAUhS1EJX7Kmq2lrlP8l4nTXYXagoSEhGBt3dg3wUPGntqJEOKB-iB9sTozVcuG1T227_ns63NCDkMMSMg5Z595zeuLMGIYKsFEXTEuVwfkWPBWVJqJ9vCNPiJnOa8ZW3q4YvqYvN5hRkj2kcZAe_j9CxxSh9kPZRkTtXF0VcLBl-Nu9qPzYci0g4xucUCafO-th5EGnNOuTM8xPWUKwdEtJNjglLylm-hwLGY6oX0M_ueM-SP50MOY8exvPSUP37_dX15VN7c_ri-_3lRWtJpXDXCuW2DYCSca0TS1qrUUcoUOFZcolawXbbnS0DHm6pXTTArbSGu16uUpud5zXYS12Sa_gfRiIniz24hpMMscdkQDK9H2TPSd5YUmm07wjivRFKhVUjSF9WnP2qa4zDCZdZxTKM83UiimuJZtXbou9l02xZwT9v9u5cwsgZldYGYJzCxhFMeXveMZxgmTwyHNL0X8x7_j5OUL_gD12Z-W
Cites_doi 10.1016/j.rser.2017.06.010
10.1016/j.enbuild.2012.04.011
10.1016/j.rinp.2024.107369
10.1155/2021/2522155
10.1016/j.enbuild.2021.111776
10.1016/j.enbuild.2014.02.043
10.1016/j.neucom.2020.01.124
10.1016/j.apenergy.2014.04.061
10.1109/CEC.2017.7969477
10.1155/2022/1086847
10.1007/978-981-10-6451-7_9
10.3390/en16010058
10.1016/j.jksuci.2024.102068
10.3390/s17122848
10.1111/ina.12046
10.30785/mbud.1038768
10.1109/CIASG.2011.5953344
10.1016/j.apenergy.2013.12.008
10.1016/j.enbuild.2015.11.003
10.1142/S0217984924501082
10.1016/j.neunet.2017.03.002
ContentType Journal Article
Copyright This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOA
DOI 10.1515/nleng-2025-0136
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList

CrossRef
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-8029
EndPage 10
ExternalDocumentID oai_doaj_org_article_a629f02fbc114837b21b14270d5c4327
10_1515_nleng_2025_0136
10_1515_nleng_2025_0136141
GroupedDBID 0R~
0~D
4.4
AAFPC
AAFWJ
AAQCX
AASOL
AASQH
AAWFC
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ACGFS
ACIWK
ACZBO
ADBBV
ADGQD
ADGYE
ADJVZ
ADMLS
ADOZN
AEJTT
AEQDQ
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGSO
AIERV
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
BAKPI
BBCWN
BCNDV
BFBNB
BGLVJ
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
O9-
OK1
QD8
SA.
AAYXX
CITATION
7TB
8FD
8FE
8FG
BENPR
FR3
KR7
L6V
M48
SLJYH
ID FETCH-LOGICAL-c2981-7a1189a0eb2d2727754583236ede413e34356edec148ab00d56d8032c73cc84f3
IEDL.DBID DOA
ISSN 2192-8029
2192-8010
IngestDate Mon Sep 01 19:40:12 EDT 2025
Tue Aug 19 04:11:38 EDT 2025
Thu Aug 21 00:36:34 EDT 2025
Tue Aug 19 02:10:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2981-7a1189a0eb2d2727754583236ede413e34356edec148ab00d56d8032c73cc84f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/a629f02fbc114837b21b14270d5c4327
PQID 3240418395
PQPubID 2038883
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_a629f02fbc114837b21b14270d5c4327
proquest_journals_3240418395
crossref_primary_10_1515_nleng_2025_0136
walterdegruyter_journals_10_1515_nleng_2025_0136141
PublicationCentury 2000
PublicationDate 2025-08-18
PublicationDateYYYYMMDD 2025-08-18
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-18
  day: 18
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Nonlinear engineering
PublicationYear 2025
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2025081810160674587_j_nleng-2025-0136_ref_017
2025081810160674587_j_nleng-2025-0136_ref_016
2025081810160674587_j_nleng-2025-0136_ref_015
2025081810160674587_j_nleng-2025-0136_ref_014
2025081810160674587_j_nleng-2025-0136_ref_013
2025081810160674587_j_nleng-2025-0136_ref_012
2025081810160674587_j_nleng-2025-0136_ref_011
2025081810160674587_j_nleng-2025-0136_ref_010
2025081810160674587_j_nleng-2025-0136_ref_019
2025081810160674587_j_nleng-2025-0136_ref_018
2025081810160674587_j_nleng-2025-0136_ref_006
2025081810160674587_j_nleng-2025-0136_ref_005
2025081810160674587_j_nleng-2025-0136_ref_027
2025081810160674587_j_nleng-2025-0136_ref_004
2025081810160674587_j_nleng-2025-0136_ref_026
2025081810160674587_j_nleng-2025-0136_ref_003
2025081810160674587_j_nleng-2025-0136_ref_025
2025081810160674587_j_nleng-2025-0136_ref_002
2025081810160674587_j_nleng-2025-0136_ref_024
2025081810160674587_j_nleng-2025-0136_ref_001
2025081810160674587_j_nleng-2025-0136_ref_023
2025081810160674587_j_nleng-2025-0136_ref_022
2025081810160674587_j_nleng-2025-0136_ref_021
2025081810160674587_j_nleng-2025-0136_ref_009
2025081810160674587_j_nleng-2025-0136_ref_008
2025081810160674587_j_nleng-2025-0136_ref_007
2025081810160674587_j_nleng-2025-0136_ref_020
References_xml – ident: 2025081810160674587_j_nleng-2025-0136_ref_007
– ident: 2025081810160674587_j_nleng-2025-0136_ref_017
  doi: 10.1016/j.rser.2017.06.010
– ident: 2025081810160674587_j_nleng-2025-0136_ref_004
  doi: 10.1016/j.enbuild.2012.04.011
– ident: 2025081810160674587_j_nleng-2025-0136_ref_013
  doi: 10.1016/j.rinp.2024.107369
– ident: 2025081810160674587_j_nleng-2025-0136_ref_015
  doi: 10.1155/2021/2522155
– ident: 2025081810160674587_j_nleng-2025-0136_ref_018
– ident: 2025081810160674587_j_nleng-2025-0136_ref_001
  doi: 10.1016/j.enbuild.2021.111776
– ident: 2025081810160674587_j_nleng-2025-0136_ref_002
– ident: 2025081810160674587_j_nleng-2025-0136_ref_025
– ident: 2025081810160674587_j_nleng-2025-0136_ref_006
  doi: 10.1016/j.enbuild.2014.02.043
– ident: 2025081810160674587_j_nleng-2025-0136_ref_020
  doi: 10.1016/j.neucom.2020.01.124
– ident: 2025081810160674587_j_nleng-2025-0136_ref_008
  doi: 10.1016/j.apenergy.2014.04.061
– ident: 2025081810160674587_j_nleng-2025-0136_ref_024
  doi: 10.1109/CEC.2017.7969477
– ident: 2025081810160674587_j_nleng-2025-0136_ref_012
  doi: 10.1155/2022/1086847
– ident: 2025081810160674587_j_nleng-2025-0136_ref_023
  doi: 10.1007/978-981-10-6451-7_9
– ident: 2025081810160674587_j_nleng-2025-0136_ref_014
  doi: 10.3390/en16010058
– ident: 2025081810160674587_j_nleng-2025-0136_ref_026
  doi: 10.1016/j.jksuci.2024.102068
– ident: 2025081810160674587_j_nleng-2025-0136_ref_010
  doi: 10.3390/s17122848
– ident: 2025081810160674587_j_nleng-2025-0136_ref_019
– ident: 2025081810160674587_j_nleng-2025-0136_ref_005
  doi: 10.1111/ina.12046
– ident: 2025081810160674587_j_nleng-2025-0136_ref_027
  doi: 10.30785/mbud.1038768
– ident: 2025081810160674587_j_nleng-2025-0136_ref_022
  doi: 10.1109/CIASG.2011.5953344
– ident: 2025081810160674587_j_nleng-2025-0136_ref_003
– ident: 2025081810160674587_j_nleng-2025-0136_ref_009
  doi: 10.1016/j.apenergy.2013.12.008
– ident: 2025081810160674587_j_nleng-2025-0136_ref_011
  doi: 10.1016/j.enbuild.2015.11.003
– ident: 2025081810160674587_j_nleng-2025-0136_ref_016
  doi: 10.1142/S0217984924501082
– ident: 2025081810160674587_j_nleng-2025-0136_ref_021
  doi: 10.1016/j.neunet.2017.03.002
SSID ssj0001361408
Score 2.3073518
Snippet This work aims to use deep learning techniques to model the thermal performance of walls in buildings located in cold regions. Upon completion of the data...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 111776
SubjectTerms Artificial neural networks
Building design
Cold regions
Construction costs
cost of structure
Data processing
Decision making
Deep learning
Design
Energy consumption
façade design
Green buildings
load intensity
Machine learning
Neural networks
neural networks and parametric modeling
Prediction models
Residential buildings
thermal index
Title Research on façade design for cold-region buildings based on artificial neural networks and parametric modeling techniques
URI https://www.degruyter.com/doi/10.1515/nleng-2025-0136
https://www.proquest.com/docview/3240418395
https://doaj.org/article/a629f02fbc114837b21b14270d5c4327
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsQwEA7iSQ-Lv7i6Sg4evJRtkzRNjyoui6AnBW8hzaSe7MruiogP5IP4Ys6kXV0F8eKppU0gnZkw30ym3zB2rCpvHDq6ROelSRSENCnREyYADgrplM5rykNeXevxrbq8y--WWn1RTVhLD9wKbui0KOtU1JUn5C6LSmSUtyhSyL2SIv5Hjj5vKZiK2RWJbic1HZcP-uxhQ41J0CYE1apFQuYvNxTZ-r9BzN5zPKyGcD99epkvDkejzxltsF4HFvlpu8hNthKaLba-RCG4zV4XpXN80vDavb85CBxiWQZHPMpRz5BQ9wV8XXUtsGecfBfQDPr-lkOCE7NlvMS68Bl3DXAiBn-gnluex5Y5OJl_sr7Odtjt6OLmfJx0DRUSL0qTJYXDcKJ0KUbTIBC4FHRqJoXUAYKidChiJ7r3KGmH-xFyDSaVwhfSe6NquctWm0kT9hhHVCWCdq40JWE-MLmvtSggDUKZTLs-O1nI1z62vBmW4g1UhY2qsKQKS6roszOS_-cwIryOD9AMbGcG9i8z6LPBQnu224UzS2SDiiBg3mfyh0a_Rv2yrExl-_-xsgO21lodRutmwFbn06dwiEBmXh1Fm_0AdxjwzQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLQcUOlD3ZYWHzhwiTaxHcc5UlS65dUDIHGzHI8Dh5JF-1BV9Qf1h_SPdSbJLlC1F06Jkoxk-bM134wn3wDs6CpYT44uMXlpE40xTUryhAmix0J5bfKa85Anp2Z0oQ8v88sV2F_8C8NllRivJvMfs04hdYjjMOdE2VJrgDzwsOE2I4Sw5MozZYbXs5tvT2DNEP2nCGxtb_T57OtdqkWRD0ptL-zzD_MHPqmV7n_ANze-tyfXy2Hdc0AHz2GjZ45ir4N6E1Zi8wLW7-kJvoSfizo6MW5E7X__8hgFtjUagsipINAx4VYM9Lrq-2FPBTsyZAteRZ2ghGCZy_bSFolPhW9QsEr4DTfgCqLtn0PGYikBO30FFwefzvdHSd9dIQmytFlSeIotSp9SaI2SWEzBR2hKKhMxas6NEpHi-0ABk6fNiblBmyoZChWC1bV6DavNuIlvQBDFktF4X9qSCSDaPNRGFphGqW1m_AB2F_PrbjsRDcfBB0HhWigcQ-EYigF85Plffsbq1-2D8eTK9ZvJeSPLOpV1FTiaU0UlM85lFTTGoJUsBrC1QM_1W3LqWHlQMx_MB6D-QvTuq_8MK9PZ20dZbcPT0fnJsTv-cnr0Dp51S47idrsFq7PJPL4nSjOrPvRL9g924PWx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrYTgUPFUtxTwgQOXaBPbcZxjeSzbAgUJKvVmOR5nT81W-xCq-EH8EP4YM0l2u0Vw6SlRkpEsf7bmm_HkG4BXugrWk6NLTF7aRGNMk5I8YYLosVBem7zmPOTnUzM50yfn-fnWvzBcVolxOl9dLTuF1BHOwooTZRutAfLAo4bbjBDCkivPlBldYn0Hdo2h8HwAu0eTD9--XGdaFLmg1Pa6Pv-wvuGSWuX-G3Rz70d7cL0Z1Zb_GT-AvZ44iqMO6YewE5tHcH9LTvAx_FyX0YlZI2r_-5fHKLAt0RDETQVhjgl3YqDXVd8OeyHYjyFb8CLq9CQEq1y2l7ZGfCF8g4JFwi-4_1YQbfscMhYbBdjFEzgbv__-dpL0zRWSIEubJYWn0KL0KUXWKInEFHyCpqQyEaPm1CjxKL4PFC952puYG7SpkqFQIVhdq6cwaGZN3AdBDEtG431pS-Z_aPNQG1lgGqW2mfFDeL2eX3fZaWg4jj0ICtdC4RgKx1AM4Q3P_-YzFr9uH8zmU9fvJeeNLOtU1lXgYE4Vlcw4lVXQGINWshjC4Ro91-_IhWPhQc10MB-C-gvR66_-M6xMZwe3snoJd7--G7tPx6cfn8G9bsVR1G4PYbCcr-JzIjTL6kW_Yv8A_Nz01w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+fa%C3%A7ade+design+for+cold-region+buildings+based+on+artificial+neural+networks+and+parametric+modeling+techniques&rft.jtitle=Nonlinear+engineering&rft.date=2025-08-18&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=2192-8010&rft.eissn=2192-8029&rft.issue=1&rft_id=info:doi/10.1515%2Fnleng-2025-0136&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8029&client=summon