Human joint motion data capture and fusion based on wearable sensors
The field of human motion data capture and fusion has a broad range of potential applications and market opportunities. The capture of human motion data for wearable sensors is less costly and more convenient than other methods, but it also suffers from poor data capture accuracy and high latency. C...
Saved in:
Published in | Autonomous intelligent systems Vol. 5; no. 1; p. 12 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2025
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The field of human motion data capture and fusion has a broad range of potential applications and market opportunities. The capture of human motion data for wearable sensors is less costly and more convenient than other methods, but it also suffers from poor data capture accuracy and high latency. Consequently, in order to overcome the limitations of existing wearable sensors in data capture and fusion, the study initially constructed a model of the human joint and bone by combining the quaternion method and root bone human forward kinematics through mathematical modeling. Subsequently, the sensor data calibration was optimized, and the Madgwick algorithm was introduced to address the resulting issues. Finally, a novel human joint motion data capture and fusion model was proposed. The experimental results indicated that the maximum mean error and root mean square error of yaw angle of this new model were 1.21° and 1.17°, respectively. The mean error and root mean square error of pitch angle were maximum 1.24° and 1.19°, respectively. The maximum knee joint and elbow joint data capture errors were 3.8 and 6.1, respectively. The suggested approach, which offers a new path for technological advancement in this area, greatly enhances the precision and dependability of human motion capture, which has a broad variety of application possibilities. |
---|---|
AbstractList | The field of human motion data capture and fusion has a broad range of potential applications and market opportunities. The capture of human motion data for wearable sensors is less costly and more convenient than other methods, but it also suffers from poor data capture accuracy and high latency. Consequently, in order to overcome the limitations of existing wearable sensors in data capture and fusion, the study initially constructed a model of the human joint and bone by combining the quaternion method and root bone human forward kinematics through mathematical modeling. Subsequently, the sensor data calibration was optimized, and the Madgwick algorithm was introduced to address the resulting issues. Finally, a novel human joint motion data capture and fusion model was proposed. The experimental results indicated that the maximum mean error and root mean square error of yaw angle of this new model were 1.21° and 1.17°, respectively. The mean error and root mean square error of pitch angle were maximum 1.24° and 1.19°, respectively. The maximum knee joint and elbow joint data capture errors were 3.8 and 6.1, respectively. The suggested approach, which offers a new path for technological advancement in this area, greatly enhances the precision and dependability of human motion capture, which has a broad variety of application possibilities. Abstract The field of human motion data capture and fusion has a broad range of potential applications and market opportunities. The capture of human motion data for wearable sensors is less costly and more convenient than other methods, but it also suffers from poor data capture accuracy and high latency. Consequently, in order to overcome the limitations of existing wearable sensors in data capture and fusion, the study initially constructed a model of the human joint and bone by combining the quaternion method and root bone human forward kinematics through mathematical modeling. Subsequently, the sensor data calibration was optimized, and the Madgwick algorithm was introduced to address the resulting issues. Finally, a novel human joint motion data capture and fusion model was proposed. The experimental results indicated that the maximum mean error and root mean square error of yaw angle of this new model were 1.21° and 1.17°, respectively. The mean error and root mean square error of pitch angle were maximum 1.24° and 1.19°, respectively. The maximum knee joint and elbow joint data capture errors were 3.8 and 6.1, respectively. The suggested approach, which offers a new path for technological advancement in this area, greatly enhances the precision and dependability of human motion capture, which has a broad variety of application possibilities. |
ArticleNumber | 12 |
Author | Wang, Hua |
Author_xml | – sequence: 1 givenname: Hua surname: Wang fullname: Wang, Hua email: HuaangW@outlook.com organization: Department of Sports, Suzhou University of Science and Technology |
BookMark | eNp9UE1r3TAQFCGFfDR_ICdDz05XH7bkY0nSJhDIJYXexEpeBT_ek14km0f-fZW4pD31sjsMM7PLnLHjmCIxdsnhigPor0XJ3qgWRNcCwGDawxE7FVpC2_P-1_E_-IRdlLKpIqEHqYw6ZTd3yw5js0lTnJtdmqcUmxFnbDzu5yVTg3FswlLeeIeFxqaCA2FGt6WmUCwpl8_sU8BtoYs_-5z9_H77dH3XPjz-uL_-9tB6MehD29GIxDvfDRo9BRLSEyINGjjnYAwaA-BBqjqV7wcugnNcOT0Y7B2gPGf3a-6YcGP3edphfrUJJ_tOpPxsMc-T35JVegQ3ai86EVRQwimOqguoVBi0dqJmfVmz9jm9LFRmu0lLjvV9KwWXAJ0wXVWJVeVzKiVT-LjKwb6Vb9fybS3fvpdvD9UkV1Op4vhM-W_0f1y_AaITiNc |
Cites_doi | 10.3390/s22020573 10.1109/JSEN.2016.2569160 10.1109/JSEN.2022.3148992 10.1007/s10483-021-2797-9 10.1109/TVT.2021.3059755 10.1109/JSEN.2022.3229384 10.1002/int.22689 10.1111/1365-2478.13348 10.1038/s41578-022-00460-x 10.3390/s22020517 10.3390/s22041476 10.1108/CW-01-2021-0002 10.1109/JSEN.2022.3156762 10.3390/s22072507 10.1109/JSEN.2023.3299610 10.1109/JSEN.2023.3270881 10.1177/00405175211044163 10.1017/S026357472100179X |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Dec 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Dec 2025 |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1007/s43684-025-00098-w |
DatabaseName | Open Access Journals from Springer Nature CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Engineering Collection ProQuest Engineering Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2730-616X |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_47d0bd7c252f4f42b41a45fa44f977b2 10_1007_s43684_025_00098_w |
GroupedDBID | 0R~ AAKKN ABEEZ ABJCF ACACY ACULB AFGXO AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ C24 C6C CCPQU EBS GROUPED_DOAJ HCIFZ K7- M7S M~E OK1 PHGZM PHGZT PIMPY PMFND PTHSS SOJ AAYXX CITATION PQGLB 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c297w-5edae15c597acefe23ceaae970111088a8800c03400c4c6912fbb14b798a6b0a3 |
IEDL.DBID | C6C |
ISSN | 2730-616X |
IngestDate | Wed Aug 27 01:30:32 EDT 2025 Fri Jul 25 09:37:00 EDT 2025 Wed Aug 20 07:44:31 EDT 2025 Thu May 29 07:39:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Data capture Madgwick Wearable sensors Joints Fusion Madgwick |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297w-5edae15c597acefe23ceaae970111088a8800c03400c4c6912fbb14b798a6b0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/s43684-025-00098-w |
PQID | 3213005285 |
PQPubID | 5642991 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_47d0bd7c252f4f42b41a45fa44f977b2 proquest_journals_3213005285 crossref_primary_10_1007_s43684_025_00098_w springer_journals_10_1007_s43684_025_00098_w |
PublicationCentury | 2000 |
PublicationDate | 2025-12-01 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Autonomous intelligent systems |
PublicationTitleAbbrev | Auton. Intell. Syst |
PublicationYear | 2025 |
Publisher | Springer Nature Singapore Springer Nature B.V Springer |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: Springer |
References | Y. Chen (98_CR14) 2022; 328 D. Wang (98_CR13) 2021; 70 W. Gao (98_CR5) 2023; 23 S. Zhang (98_CR9) 2022; 22 S. Cai (98_CR15) 2023; 23 Y.N. Chelnokov (98_CR12) 2022; 43 F.J. Abdu (98_CR6) 2022; 22 S. Kumar (98_CR16) 2022; 22 C.J. Lee (98_CR8) 2022; 22 S. Qiu (98_CR19) 2022; 37 G. Bandewad (98_CR20) 2023; 1 X. Hou (98_CR3) 2023; 23 Y. Xue (98_CR7) 2022; 22 H.C. Ates (98_CR2) 2022; 7 M.O.F. Zizi (98_CR11) 2023; 71 R. Jain (98_CR17) 2022; 40 M. Kok (98_CR18) 2016; 16 Q. Yu (98_CR1) 2022; 92 B. Yan (98_CR4) 2023; 49 A. Kristoffersson (98_CR10) 2022; 22 |
References_xml | – volume: 1 start-page: 86 issue: 2 year: 2023 ident: 98_CR20 publication-title: Artif. Intell. Appl. – volume: 22 start-page: 573 issue: 2 year: 2022 ident: 98_CR10 publication-title: Sensors doi: 10.3390/s22020573 – volume: 16 start-page: 5679 issue: 14 year: 2016 ident: 98_CR18 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2569160 – volume: 22 start-page: 6793 issue: 7 year: 2022 ident: 98_CR7 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3148992 – volume: 43 start-page: 21 issue: 1 year: 2022 ident: 98_CR12 publication-title: Appl. Math. Mech. doi: 10.1007/s10483-021-2797-9 – volume: 70 start-page: 2465 issue: 3 year: 2021 ident: 98_CR13 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3059755 – volume: 23 start-page: 2663 issue: 3 year: 2023 ident: 98_CR15 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3229384 – volume: 37 start-page: 1646 issue: 2 year: 2022 ident: 98_CR19 publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22689 – volume: 71 start-page: 792 issue: 5 year: 2023 ident: 98_CR11 publication-title: Geophys. Prospect. doi: 10.1111/1365-2478.13348 – volume: 7 start-page: 887 issue: 11 year: 2022 ident: 98_CR2 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-022-00460-x – volume: 22 start-page: 517 issue: 2 year: 2022 ident: 98_CR16 publication-title: Sensors doi: 10.3390/s22020517 – volume: 22 start-page: 1476 issue: 4 year: 2022 ident: 98_CR9 publication-title: Sensors doi: 10.3390/s22041476 – volume: 49 start-page: 67 issue: 1 year: 2023 ident: 98_CR4 publication-title: Circuit World doi: 10.1108/CW-01-2021-0002 – volume: 22 start-page: 8648 issue: 9 year: 2022 ident: 98_CR6 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3156762 – volume: 22 start-page: 2507 issue: 7 year: 2022 ident: 98_CR8 publication-title: Sensors doi: 10.3390/s22072507 – volume: 23 start-page: 21728 issue: 18 year: 2023 ident: 98_CR3 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3299610 – volume: 23 start-page: 12618 issue: 12 year: 2023 ident: 98_CR5 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3270881 – volume: 328 start-page: 1 issue: 11 year: 2022 ident: 98_CR14 publication-title: Fuel – volume: 92 start-page: 810 issue: 5–6 year: 2022 ident: 98_CR1 publication-title: Tex. Res. J. doi: 10.1177/00405175211044163 – volume: 40 start-page: 2567 issue: 8 year: 2022 ident: 98_CR17 publication-title: Robotica doi: 10.1017/S026357472100179X |
SSID | ssj0002793484 |
Score | 2.310517 |
Snippet | The field of human motion data capture and fusion has a broad range of potential applications and market opportunities. The capture of human motion data for... Abstract The field of human motion data capture and fusion has a broad range of potential applications and market opportunities. The capture of human motion... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 12 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Bones Calibration Control and Systems Theory Data capture Data processing Elbow (anatomy) Engineering Fusion Human mechanics Human motion Joints Joints (anatomy) Kinematics Machine Learning Madgwick Madgwick Wearable sensors Motion capture Neural networks Older people Original Article Pitch (inclination) Robotics and Automation Root-mean-square errors Sensors Sport science Virtual reality Wearable technology |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT6yukoM3LbbJtGmPvpZF0JMLewt5FdxDd9kH_ftO0u66CuLFW2lTCPPIzGRmviHkGlCBVFJAnBY5j8EmOtaFwcCVC24S4CoPAKavb_lwBC_jbLw16svXhLXwwC3h7kDg_1YYlrEKKmAaUgVZpQAqdF10OH3R5m0FU5OQTis5FNB1yYReOQ-1DrGf3poEEM3mmyUKgP3fvMwfidFgbwYHZL9zFOl9u8FDsuPqI7K3BR94TJ7CDTydTD_qJW3H8VBf8UmNmvnEAFW1pdXK34dRb60sxYcGRdu3S9EFBrDT-eKEjAbP74_DuJuKEBtWiibOnFUuzQxGAsq4yjFunFKuFH5qPJ4ZCjUyMQlH5TRg8jJlldYpaFEWKteJ4qekV09rd0ao4lowa8CCsqBTU-aF4I4p342LZryKyM2aQnLWgl_IDcxxoKdEespAT9lE5METcbPSA1eHF8hO2bFT_sXOiPTXLJCdNi0kZz7plrEii8jtmi1fn3_f0vl_bOmC7DIvNqGGpU96y_nKXaInstRXQeg-AYTT150 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFH5ovehBXLFuzMGbBpOZl2RyEqsWERQRBW_DbBE9JLWt9O87M53WBfQWkhDC2-ct3wM4QqdAMuWYZLxgCZpUJYprd3BlJdMpMlkEANPbu-L6CW-e8-eYcBvFtsqZTQyG2rTa58hPGfWFl5zy_GzwnvitUb66GldoLMKSM8Gcd2Cpd3V3_zDPslAnfsgxTsuEmTkPuY6J3-KaBjDNyQ-PFID7f0Sbvwqkwe_012A1BozkfMrhdViwzQasfIMR3ITLkIknb-1rMybTtTzEd34SLQe-QEBkY0j94fNixHstQ9zFxIm4H5siI3eQbYejLXjqXz1eXCdxO0KiaVVOktwaabNcuxOB1La2lGkrpa1Kvz3e2Q7pNDPVKXNKqlEXVUZrpTJUZcVloVLJtqHTtI3dASKZKqnRaFAaVJmuCl4yS6WfynXuvO7C8YxCYjAFwRBzuONAT-HoKQI9xaQLPU_E-ZsewDrcaIcvIuqDwNKJhSk1zWmNNVKFmcS8loi1i0gV7cL-jAUiatVIfMlAF05mbPl6_Pcv7f7_tT1Ypl4gQpfKPnTGww974GKNsTqMAvUJi63QVw priority: 102 providerName: ProQuest |
Title | Human joint motion data capture and fusion based on wearable sensors |
URI | https://link.springer.com/article/10.1007/s43684-025-00098-w https://www.proquest.com/docview/3213005285 https://doaj.org/article/47d0bd7c252f4f42b41a45fa44f977b2 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWBAPEV5VB7YICKxL3EyQmmpkEAIgcRm2Y4jwZBWtKgbv52zm5aHYGCJ8nCk6B65l-87gGMkBdJxjlGSZyLCMjaRyS0FrkIKG6PQWQAwvbnNBo94_ZQ-NTA5vhfmR_3-bOwR0jHyQ1fjgH05XYaVNBHSj2noZt1FPoWToGGOTV_M769-sz0Bov-bX_mjFBosTH8D1hvXkJ3PeLkJS67egrUvgIHbcBly7uxl-FxP2GwAD_N7PJnVI18KYLouWfXmM2DM26eS0cmUhNk3SLExhazD1_EOPPZ7D91B1MxBiCwv5DRKXaldklry_bV1lePCOq1dIf2cePpLaNLB2MaC1NGizYqEV8YkaGSR68zEWuxCqx7Wbg-YFkby0mKJukST2CLLpXBc-_5bMtxVG07mFFKjGdyFWgAbB3oqoqcK9FTTNlx4Ii5WeqjqcIM4qBrJVyhJAEppecorrJAbTDSmlUasyPc0vA2HcxaoRn_GSnBfZkt5nrbhdM6Wz8d_f9L-_5YfwCr3AhL2pxxCa_L65o7Iy5iYDizn_asOrFz0bu_u6arLsRNErhPidjrevPc-AE48zdg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6UMAHOEFEYk9eB4SAsmzp49RKvRm_guCQLLtbRfwpfiMz3mRLkeDWW5RYVvT5G894xjMD8BxJgExaYZJVhUrQpzaxlaODqyqVS1GZIhYwPTouZqf4-Sw_24JfYy4MX6sc98S4UfvOsY_8tZIceMlllb-d_0i4axRHV8cWGmtaHISfPR3Zlm_292h9X0g5_XjyYZYMXQUSJ-uyT_LgTchyR5a0caEJUrlgTKhL7rpOMmeI0alLFZHboSvqTDbWZmjLujKFTY2iea_BdVSkyTkzffpp49ORRHascMjNiRl6XOAdE-4Zm8bSnf0l_RfbBFyybf8Kx0YtN70DtwfzVLxb8-kubIX2Htz6o2jhfdiLfn_xvfvWrsS6CZDge6bCmTmHI4RpvWjO2QsnWEd6QQ89IcdJWmJJx-ZusXwAp1eC2kPYbrs27IAwypbSO_RoPNrM1UVVqiAN5wCT8dBM4OWIkJ6vS27oTXHliKcmPHXEU_cTeM8gbkZyuez4olt81YP0aSyJhL50MpcNNigtZgbzxiA2ZP9aOYHdcQn0IMNLfcG4Cbwal-Xi879_6dH_Z3sGN2YnR4f6cP_44DHclEyOeD9mF7ZXi_PwhKyclX0aqSXgy1Vz-TfVqgxC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYToAfEUCwV8gBNETexJnBwQomxXLYVVhajUm_ErCA7JdneriL_Gr2PsTbYUCW69RYllReNv7BnPzDcAL5AUSKclJllZiARdahJTWnJchRQ2RaGLSGD6aVYcnuKHs_xsC34NtTAhrXLYE-NG7Vob7sj3BA-Bl5yX-V7dp0WcTKZv5-dJ6CAVIq1DO401RI79z47ct-Wbowmt9UvOpwdf3h8mfYeBxPJKdknunfZZbsmq1tbXngvrtfaVDB3YSf80oTu1qSCgW7RFlfHamAyNrEpdmFQLmvcGbMvgFY1ge_9gdvJ5c8PDCfpYYl-pE-v1At07JqGDbBqJPLsrp2FsGnDF0v0rOBvPvOkduN0bq-zdGl13Ycs392DnDwrD-zCJUQD2o_3erNi6JRALWafM6nkITjDdOFZfhDs5Fk5Mx-ihI9mFki22JCe6XSwfwOm1yO0hjJq28Y-AaWEkdxYdaocms1VRSuG5DhXBZErUY3g1SEjN1wQcakO1HOWpSJ4qylN1Y9gPQtyMDOTZ8UW7-KZ6XVQoCZJOWp7zGmvkBjONea0Ra7KGDR_D7rAEqtfopbrE3xheD8ty-fnfv_T4_7M9h5uEY_XxaHb8BG7xgI2YLLMLo9Xiwj8lk2dlnvXYYvD1uuH8G8eFEdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+joint+motion+data+capture+and+fusion+based+on+wearable+sensors&rft.jtitle=Autonomous+intelligent+systems&rft.au=Wang%2C+Hua&rft.date=2025-12-01&rft.pub=Springer+Nature+Singapore&rft.eissn=2730-616X&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1007%2Fs43684-025-00098-w&rft.externalDocID=10_1007_s43684_025_00098_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-616X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-616X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-616X&client=summon |