Human joint motion data capture and fusion based on wearable sensors

The field of human motion data capture and fusion has a broad range of potential applications and market opportunities. The capture of human motion data for wearable sensors is less costly and more convenient than other methods, but it also suffers from poor data capture accuracy and high latency. C...

Full description

Saved in:
Bibliographic Details
Published inAutonomous intelligent systems Vol. 5; no. 1; p. 12
Main Author Wang, Hua
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The field of human motion data capture and fusion has a broad range of potential applications and market opportunities. The capture of human motion data for wearable sensors is less costly and more convenient than other methods, but it also suffers from poor data capture accuracy and high latency. Consequently, in order to overcome the limitations of existing wearable sensors in data capture and fusion, the study initially constructed a model of the human joint and bone by combining the quaternion method and root bone human forward kinematics through mathematical modeling. Subsequently, the sensor data calibration was optimized, and the Madgwick algorithm was introduced to address the resulting issues. Finally, a novel human joint motion data capture and fusion model was proposed. The experimental results indicated that the maximum mean error and root mean square error of yaw angle of this new model were 1.21° and 1.17°, respectively. The mean error and root mean square error of pitch angle were maximum 1.24° and 1.19°, respectively. The maximum knee joint and elbow joint data capture errors were 3.8 and 6.1, respectively. The suggested approach, which offers a new path for technological advancement in this area, greatly enhances the precision and dependability of human motion capture, which has a broad variety of application possibilities.
AbstractList The field of human motion data capture and fusion has a broad range of potential applications and market opportunities. The capture of human motion data for wearable sensors is less costly and more convenient than other methods, but it also suffers from poor data capture accuracy and high latency. Consequently, in order to overcome the limitations of existing wearable sensors in data capture and fusion, the study initially constructed a model of the human joint and bone by combining the quaternion method and root bone human forward kinematics through mathematical modeling. Subsequently, the sensor data calibration was optimized, and the Madgwick algorithm was introduced to address the resulting issues. Finally, a novel human joint motion data capture and fusion model was proposed. The experimental results indicated that the maximum mean error and root mean square error of yaw angle of this new model were 1.21° and 1.17°, respectively. The mean error and root mean square error of pitch angle were maximum 1.24° and 1.19°, respectively. The maximum knee joint and elbow joint data capture errors were 3.8 and 6.1, respectively. The suggested approach, which offers a new path for technological advancement in this area, greatly enhances the precision and dependability of human motion capture, which has a broad variety of application possibilities.
Abstract The field of human motion data capture and fusion has a broad range of potential applications and market opportunities. The capture of human motion data for wearable sensors is less costly and more convenient than other methods, but it also suffers from poor data capture accuracy and high latency. Consequently, in order to overcome the limitations of existing wearable sensors in data capture and fusion, the study initially constructed a model of the human joint and bone by combining the quaternion method and root bone human forward kinematics through mathematical modeling. Subsequently, the sensor data calibration was optimized, and the Madgwick algorithm was introduced to address the resulting issues. Finally, a novel human joint motion data capture and fusion model was proposed. The experimental results indicated that the maximum mean error and root mean square error of yaw angle of this new model were 1.21° and 1.17°, respectively. The mean error and root mean square error of pitch angle were maximum 1.24° and 1.19°, respectively. The maximum knee joint and elbow joint data capture errors were 3.8 and 6.1, respectively. The suggested approach, which offers a new path for technological advancement in this area, greatly enhances the precision and dependability of human motion capture, which has a broad variety of application possibilities.
ArticleNumber 12
Author Wang, Hua
Author_xml – sequence: 1
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  email: HuaangW@outlook.com
  organization: Department of Sports, Suzhou University of Science and Technology
BookMark eNp9UE1r3TAQFCGFfDR_ICdDz05XH7bkY0nSJhDIJYXexEpeBT_ek14km0f-fZW4pD31sjsMM7PLnLHjmCIxdsnhigPor0XJ3qgWRNcCwGDawxE7FVpC2_P-1_E_-IRdlLKpIqEHqYw6ZTd3yw5js0lTnJtdmqcUmxFnbDzu5yVTg3FswlLeeIeFxqaCA2FGt6WmUCwpl8_sU8BtoYs_-5z9_H77dH3XPjz-uL_-9tB6MehD29GIxDvfDRo9BRLSEyINGjjnYAwaA-BBqjqV7wcugnNcOT0Y7B2gPGf3a-6YcGP3edphfrUJJ_tOpPxsMc-T35JVegQ3ai86EVRQwimOqguoVBi0dqJmfVmz9jm9LFRmu0lLjvV9KwWXAJ0wXVWJVeVzKiVT-LjKwb6Vb9fybS3fvpdvD9UkV1Op4vhM-W_0f1y_AaITiNc
Cites_doi 10.3390/s22020573
10.1109/JSEN.2016.2569160
10.1109/JSEN.2022.3148992
10.1007/s10483-021-2797-9
10.1109/TVT.2021.3059755
10.1109/JSEN.2022.3229384
10.1002/int.22689
10.1111/1365-2478.13348
10.1038/s41578-022-00460-x
10.3390/s22020517
10.3390/s22041476
10.1108/CW-01-2021-0002
10.1109/JSEN.2022.3156762
10.3390/s22072507
10.1109/JSEN.2023.3299610
10.1109/JSEN.2023.3270881
10.1177/00405175211044163
10.1017/S026357472100179X
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Dec 2025
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1007/s43684-025-00098-w
DatabaseName Open Access Journals from Springer Nature
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
ProQuest Engineering Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2730-616X
EndPage 12
ExternalDocumentID oai_doaj_org_article_47d0bd7c252f4f42b41a45fa44f977b2
10_1007_s43684_025_00098_w
GroupedDBID 0R~
AAKKN
ABEEZ
ABJCF
ACACY
ACULB
AFGXO
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
C24
C6C
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
K7-
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PMFND
PTHSS
SOJ
AAYXX
CITATION
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c297w-5edae15c597acefe23ceaae970111088a8800c03400c4c6912fbb14b798a6b0a3
IEDL.DBID C6C
ISSN 2730-616X
IngestDate Wed Aug 27 01:30:32 EDT 2025
Fri Jul 25 09:37:00 EDT 2025
Wed Aug 20 07:44:31 EDT 2025
Thu May 29 07:39:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Data capture
Madgwick Wearable sensors
Joints
Fusion
Madgwick
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297w-5edae15c597acefe23ceaae970111088a8800c03400c4c6912fbb14b798a6b0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s43684-025-00098-w
PQID 3213005285
PQPubID 5642991
ParticipantIDs doaj_primary_oai_doaj_org_article_47d0bd7c252f4f42b41a45fa44f977b2
proquest_journals_3213005285
crossref_primary_10_1007_s43684_025_00098_w
springer_journals_10_1007_s43684_025_00098_w
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Autonomous intelligent systems
PublicationTitleAbbrev Auton. Intell. Syst
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
Springer
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: Springer
References Y. Chen (98_CR14) 2022; 328
D. Wang (98_CR13) 2021; 70
W. Gao (98_CR5) 2023; 23
S. Zhang (98_CR9) 2022; 22
S. Cai (98_CR15) 2023; 23
Y.N. Chelnokov (98_CR12) 2022; 43
F.J. Abdu (98_CR6) 2022; 22
S. Kumar (98_CR16) 2022; 22
C.J. Lee (98_CR8) 2022; 22
S. Qiu (98_CR19) 2022; 37
G. Bandewad (98_CR20) 2023; 1
X. Hou (98_CR3) 2023; 23
Y. Xue (98_CR7) 2022; 22
H.C. Ates (98_CR2) 2022; 7
M.O.F. Zizi (98_CR11) 2023; 71
R. Jain (98_CR17) 2022; 40
M. Kok (98_CR18) 2016; 16
Q. Yu (98_CR1) 2022; 92
B. Yan (98_CR4) 2023; 49
A. Kristoffersson (98_CR10) 2022; 22
References_xml – volume: 1
  start-page: 86
  issue: 2
  year: 2023
  ident: 98_CR20
  publication-title: Artif. Intell. Appl.
– volume: 22
  start-page: 573
  issue: 2
  year: 2022
  ident: 98_CR10
  publication-title: Sensors
  doi: 10.3390/s22020573
– volume: 16
  start-page: 5679
  issue: 14
  year: 2016
  ident: 98_CR18
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2569160
– volume: 22
  start-page: 6793
  issue: 7
  year: 2022
  ident: 98_CR7
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3148992
– volume: 43
  start-page: 21
  issue: 1
  year: 2022
  ident: 98_CR12
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-021-2797-9
– volume: 70
  start-page: 2465
  issue: 3
  year: 2021
  ident: 98_CR13
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3059755
– volume: 23
  start-page: 2663
  issue: 3
  year: 2023
  ident: 98_CR15
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3229384
– volume: 37
  start-page: 1646
  issue: 2
  year: 2022
  ident: 98_CR19
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22689
– volume: 71
  start-page: 792
  issue: 5
  year: 2023
  ident: 98_CR11
  publication-title: Geophys. Prospect.
  doi: 10.1111/1365-2478.13348
– volume: 7
  start-page: 887
  issue: 11
  year: 2022
  ident: 98_CR2
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-022-00460-x
– volume: 22
  start-page: 517
  issue: 2
  year: 2022
  ident: 98_CR16
  publication-title: Sensors
  doi: 10.3390/s22020517
– volume: 22
  start-page: 1476
  issue: 4
  year: 2022
  ident: 98_CR9
  publication-title: Sensors
  doi: 10.3390/s22041476
– volume: 49
  start-page: 67
  issue: 1
  year: 2023
  ident: 98_CR4
  publication-title: Circuit World
  doi: 10.1108/CW-01-2021-0002
– volume: 22
  start-page: 8648
  issue: 9
  year: 2022
  ident: 98_CR6
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3156762
– volume: 22
  start-page: 2507
  issue: 7
  year: 2022
  ident: 98_CR8
  publication-title: Sensors
  doi: 10.3390/s22072507
– volume: 23
  start-page: 21728
  issue: 18
  year: 2023
  ident: 98_CR3
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3299610
– volume: 23
  start-page: 12618
  issue: 12
  year: 2023
  ident: 98_CR5
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3270881
– volume: 328
  start-page: 1
  issue: 11
  year: 2022
  ident: 98_CR14
  publication-title: Fuel
– volume: 92
  start-page: 810
  issue: 5–6
  year: 2022
  ident: 98_CR1
  publication-title: Tex. Res. J.
  doi: 10.1177/00405175211044163
– volume: 40
  start-page: 2567
  issue: 8
  year: 2022
  ident: 98_CR17
  publication-title: Robotica
  doi: 10.1017/S026357472100179X
SSID ssj0002793484
Score 2.310517
Snippet The field of human motion data capture and fusion has a broad range of potential applications and market opportunities. The capture of human motion data for...
Abstract The field of human motion data capture and fusion has a broad range of potential applications and market opportunities. The capture of human motion...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 12
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Bones
Calibration
Control and Systems Theory
Data capture
Data processing
Elbow (anatomy)
Engineering
Fusion
Human mechanics
Human motion
Joints
Joints (anatomy)
Kinematics
Machine Learning
Madgwick
Madgwick Wearable sensors
Motion capture
Neural networks
Older people
Original Article
Pitch (inclination)
Robotics and Automation
Root-mean-square errors
Sensors
Sport science
Virtual reality
Wearable technology
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT6yukoM3LbbJtGmPvpZF0JMLewt5FdxDd9kH_ftO0u66CuLFW2lTCPPIzGRmviHkGlCBVFJAnBY5j8EmOtaFwcCVC24S4CoPAKavb_lwBC_jbLw16svXhLXwwC3h7kDg_1YYlrEKKmAaUgVZpQAqdF10OH3R5m0FU5OQTis5FNB1yYReOQ-1DrGf3poEEM3mmyUKgP3fvMwfidFgbwYHZL9zFOl9u8FDsuPqI7K3BR94TJ7CDTydTD_qJW3H8VBf8UmNmvnEAFW1pdXK34dRb60sxYcGRdu3S9EFBrDT-eKEjAbP74_DuJuKEBtWiibOnFUuzQxGAsq4yjFunFKuFH5qPJ4ZCjUyMQlH5TRg8jJlldYpaFEWKteJ4qekV09rd0ao4lowa8CCsqBTU-aF4I4p342LZryKyM2aQnLWgl_IDcxxoKdEespAT9lE5METcbPSA1eHF8hO2bFT_sXOiPTXLJCdNi0kZz7plrEii8jtmi1fn3_f0vl_bOmC7DIvNqGGpU96y_nKXaInstRXQeg-AYTT150
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFH5ovehBXLFuzMGbBpOZl2RyEqsWERQRBW_DbBE9JLWt9O87M53WBfQWkhDC2-ct3wM4QqdAMuWYZLxgCZpUJYprd3BlJdMpMlkEANPbu-L6CW-e8-eYcBvFtsqZTQyG2rTa58hPGfWFl5zy_GzwnvitUb66GldoLMKSM8Gcd2Cpd3V3_zDPslAnfsgxTsuEmTkPuY6J3-KaBjDNyQ-PFID7f0Sbvwqkwe_012A1BozkfMrhdViwzQasfIMR3ITLkIknb-1rMybTtTzEd34SLQe-QEBkY0j94fNixHstQ9zFxIm4H5siI3eQbYejLXjqXz1eXCdxO0KiaVVOktwaabNcuxOB1La2lGkrpa1Kvz3e2Q7pNDPVKXNKqlEXVUZrpTJUZcVloVLJtqHTtI3dASKZKqnRaFAaVJmuCl4yS6WfynXuvO7C8YxCYjAFwRBzuONAT-HoKQI9xaQLPU_E-ZsewDrcaIcvIuqDwNKJhSk1zWmNNVKFmcS8loi1i0gV7cL-jAUiatVIfMlAF05mbPl6_Pcv7f7_tT1Ypl4gQpfKPnTGww974GKNsTqMAvUJi63QVw
  priority: 102
  providerName: ProQuest
Title Human joint motion data capture and fusion based on wearable sensors
URI https://link.springer.com/article/10.1007/s43684-025-00098-w
https://www.proquest.com/docview/3213005285
https://doaj.org/article/47d0bd7c252f4f42b41a45fa44f977b2
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWBAPEV5VB7YICKxL3EyQmmpkEAIgcRm2Y4jwZBWtKgbv52zm5aHYGCJ8nCk6B65l-87gGMkBdJxjlGSZyLCMjaRyS0FrkIKG6PQWQAwvbnNBo94_ZQ-NTA5vhfmR_3-bOwR0jHyQ1fjgH05XYaVNBHSj2noZt1FPoWToGGOTV_M769-sz0Bov-bX_mjFBosTH8D1hvXkJ3PeLkJS67egrUvgIHbcBly7uxl-FxP2GwAD_N7PJnVI18KYLouWfXmM2DM26eS0cmUhNk3SLExhazD1_EOPPZ7D91B1MxBiCwv5DRKXaldklry_bV1lePCOq1dIf2cePpLaNLB2MaC1NGizYqEV8YkaGSR68zEWuxCqx7Wbg-YFkby0mKJukST2CLLpXBc-_5bMtxVG07mFFKjGdyFWgAbB3oqoqcK9FTTNlx4Ii5WeqjqcIM4qBrJVyhJAEppecorrJAbTDSmlUasyPc0vA2HcxaoRn_GSnBfZkt5nrbhdM6Wz8d_f9L-_5YfwCr3AhL2pxxCa_L65o7Iy5iYDizn_asOrFz0bu_u6arLsRNErhPidjrevPc-AE48zdg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6UMAHOEFEYk9eB4SAsmzp49RKvRm_guCQLLtbRfwpfiMz3mRLkeDWW5RYVvT5G894xjMD8BxJgExaYZJVhUrQpzaxlaODqyqVS1GZIhYwPTouZqf4-Sw_24JfYy4MX6sc98S4UfvOsY_8tZIceMlllb-d_0i4axRHV8cWGmtaHISfPR3Zlm_292h9X0g5_XjyYZYMXQUSJ-uyT_LgTchyR5a0caEJUrlgTKhL7rpOMmeI0alLFZHboSvqTDbWZmjLujKFTY2iea_BdVSkyTkzffpp49ORRHascMjNiRl6XOAdE-4Zm8bSnf0l_RfbBFyybf8Kx0YtN70DtwfzVLxb8-kubIX2Htz6o2jhfdiLfn_xvfvWrsS6CZDge6bCmTmHI4RpvWjO2QsnWEd6QQ89IcdJWmJJx-ZusXwAp1eC2kPYbrs27IAwypbSO_RoPNrM1UVVqiAN5wCT8dBM4OWIkJ6vS27oTXHliKcmPHXEU_cTeM8gbkZyuez4olt81YP0aSyJhL50MpcNNigtZgbzxiA2ZP9aOYHdcQn0IMNLfcG4Cbwal-Xi879_6dH_Z3sGN2YnR4f6cP_44DHclEyOeD9mF7ZXi_PwhKyclX0aqSXgy1Vz-TfVqgxC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYToAfEUCwV8gBNETexJnBwQomxXLYVVhajUm_ErCA7JdneriL_Gr2PsTbYUCW69RYllReNv7BnPzDcAL5AUSKclJllZiARdahJTWnJchRQ2RaGLSGD6aVYcnuKHs_xsC34NtTAhrXLYE-NG7Vob7sj3BA-Bl5yX-V7dp0WcTKZv5-dJ6CAVIq1DO401RI79z47ct-Wbowmt9UvOpwdf3h8mfYeBxPJKdknunfZZbsmq1tbXngvrtfaVDB3YSf80oTu1qSCgW7RFlfHamAyNrEpdmFQLmvcGbMvgFY1ge_9gdvJ5c8PDCfpYYl-pE-v1At07JqGDbBqJPLsrp2FsGnDF0v0rOBvPvOkduN0bq-zdGl13Ycs392DnDwrD-zCJUQD2o_3erNi6JRALWafM6nkITjDdOFZfhDs5Fk5Mx-ihI9mFki22JCe6XSwfwOm1yO0hjJq28Y-AaWEkdxYdaocms1VRSuG5DhXBZErUY3g1SEjN1wQcakO1HOWpSJ4qylN1Y9gPQtyMDOTZ8UW7-KZ6XVQoCZJOWp7zGmvkBjONea0Ra7KGDR_D7rAEqtfopbrE3xheD8ty-fnfv_T4_7M9h5uEY_XxaHb8BG7xgI2YLLMLo9Xiwj8lk2dlnvXYYvD1uuH8G8eFEdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+joint+motion+data+capture+and+fusion+based+on+wearable+sensors&rft.jtitle=Autonomous+intelligent+systems&rft.au=Wang%2C+Hua&rft.date=2025-12-01&rft.pub=Springer+Nature+Singapore&rft.eissn=2730-616X&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1007%2Fs43684-025-00098-w&rft.externalDocID=10_1007_s43684_025_00098_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-616X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-616X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-616X&client=summon