Dynamic optimization for robust path planning of horizontal oil wells
This paper considers the three-dimensional path planning problem for horizontal oil wells. The decision variables in this problem are the curvature, tool-face angle and switching points for each turn segment in the path, and the optimization objective is to minimize the path length and target error....
Saved in:
Published in | Applied mathematics and computation Vol. 274; pp. 711 - 725 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper considers the three-dimensional path planning problem for horizontal oil wells. The decision variables in this problem are the curvature, tool-face angle and switching points for each turn segment in the path, and the optimization objective is to minimize the path length and target error. The optimal curvatures, tool-face angles and switching points can be readily determined using existing gradient-based dynamic optimization techniques. However, in a real drilling process, the actual curvatures and tool-face angles will inevitably deviate from the planned optimal values, thus causing an unexpected increase in the target error. This is a critical challenge that must be overcome for successful practical implementation. Accordingly, this paper introduces a sensitivity function that measures the rate of change in the target error with respect to the curvature and tool-face angle of each turn segment. Based on the sensitivity function, we propose a new optimization problem in which the switching points are adjusted to minimize target error sensitivity subject to continuous state inequality constraints arising from engineering specifications, and an additional constraint specifying the maximum allowable increase in the path length from the optimal value. Our main result shows that the sensitivity function can be evaluated by solving a set of auxiliary dynamic systems. By combining this result with the well-known time-scaling transformation, we obtain an equivalent transformed problem that can be solved using standard nonlinear programming algorithms. Finally, the paper concludes with a numerical example involving a practical path planning problem for a Ci-16-Cp146 well. |
---|---|
AbstractList | This paper considers the three-dimensional path planning problem for horizontal oil wells. The decision variables in this problem are the curvature, tool-face angle and switching points for each turn segment in the path, and the optimization objective is to minimize the path length and target error. The optimal curvatures, tool-face angles and switching points can be readily determined using existing gradient-based dynamic optimization techniques. However, in a real drilling process, the actual curvatures and tool-face angles will inevitably deviate from the planned optimal values, thus causing an unexpected increase in the target error. This is a critical challenge that must be overcome for successful practical implementation. Accordingly, this paper introduces a sensitivity function that measures the rate of change in the target error with respect to the curvature and tool-face angle of each turn segment. Based on the sensitivity function, we propose a new optimization problem in which the switching points are adjusted to minimize target error sensitivity subject to continuous state inequality constraints arising from engineering specifications, and an additional constraint specifying the maximum allowable increase in the path length from the optimal value. Our main result shows that the sensitivity function can be evaluated by solving a set of auxiliary dynamic systems. By combining this result with the well-known time-scaling transformation, we obtain an equivalent transformed problem that can be solved using standard nonlinear programming algorithms. Finally, the paper concludes with a numerical example involving a practical path planning problem for a Ci-16-Cp146 well. |
Author | Gong, Zhaohua Loxton, Ryan Yu, Changjun Teo, Kok Lay |
Author_xml | – sequence: 1 givenname: Zhaohua surname: Gong fullname: Gong, Zhaohua organization: School of Mathematics and Information Science, Shandong Institute of Business and Technology, Yantai, China – sequence: 2 givenname: Ryan surname: Loxton fullname: Loxton, Ryan email: rcloxton@gmail.com, R.Loxton@curtin.edu.au organization: Department of Mathematics and Statistics, Curtin University, Perth, Australia – sequence: 3 givenname: Changjun surname: Yu fullname: Yu, Changjun organization: Department of Mathematics and Statistics, Curtin University, Perth, Australia – sequence: 4 givenname: Kok Lay surname: Teo fullname: Teo, Kok Lay organization: Department of Mathematics and Statistics, Curtin University, Perth, Australia |
BookMark | eNp9kM1KAzEUhYNUsFUfwF1eYMbc-Uk6uJJaf6DgRtfhNpPYlJlkSKLSPr1T68pFVwcOfJd7vhmZOO80ITfAcmDAb7c59iovGNQ5QM7K-RmZwlyUWc2rZkKmjDU8KxkrL8gsxi1jTHCopmT5sHPYW0X9kGxv95isd9T4QINff8ZEB0wbOnTonHUf1Bu68cHuvUvYUW87-q27Ll6Rc4Nd1Nd_eUneH5dvi-ds9fr0srhfZapoRMqMLowoGUdhcM3Hrm6UqArDeQF6rlqoQSsDRrVCVKoSgFi2gOOnDLlRurwkcLyrgo8xaCOHYHsMOwlMHjzIrRw9yIMHCSBHDyMj_jHKpt-ZKaDtTpJ3R1KPk76sDjIqq53SrQ1aJdl6e4L-Aa8Ne2k |
CitedBy_id | crossref_primary_10_1007_s13202_023_01709_z |
Cites_doi | 10.1016/j.cam.2006.12.016 10.1016/j.cam.2008.03.007 10.1016/j.amc.2011.01.039 10.1007/s40305-013-0021-z 10.1016/j.apm.2008.10.011 10.1007/BF02172220 10.1115/1.1386390 10.3934/jimo.2014.10.275 10.1016/j.apm.2014.12.014 10.2118/37709-PA 10.1016/j.amc.2011.05.093 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. |
Copyright_xml | – notice: 2015 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.amc.2015.11.038 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-5649 |
EndPage | 725 |
ExternalDocumentID | 10_1016_j_amc_2015_11_038 S0096300315015283 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- SEW SSH TAE VH1 VOH WUQ |
ID | FETCH-LOGICAL-c297t-fe2f7306a7fab6c2959c742f6621e8cd151ecf1fcd774c471aa3d1a7610a6fce3 |
IEDL.DBID | .~1 |
ISSN | 0096-3003 |
IngestDate | Thu Apr 24 23:13:18 EDT 2025 Tue Jul 01 01:35:59 EDT 2025 Fri Feb 23 02:30:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | System sensitivity Parameter optimization Switched system Horizontal well Time-scaling transformation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-fe2f7306a7fab6c2959c742f6621e8cd151ecf1fcd774c471aa3d1a7610a6fce3 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1016_j_amc_2015_11_038 crossref_citationtrail_10_1016_j_amc_2015_11_038 elsevier_sciencedirect_doi_10_1016_j_amc_2015_11_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 2016-02-00 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied mathematics and computation |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Lin, Loxton, Teo (bib0010) 2013; 1 Yang, Teo, Loxton, Rehbock, Li, Yu, Jennings (bib0019) 2016; 12 Jiang, Feng (bib0006) 2004; 42 Loxton, Teo, Rehbock (bib0013) 2011; 217 Li, Feng, Wang (bib0008) 2009; 223 Lin, Loxton, Teo, Wu (bib0009) 2011; 18 Gong, Liu, Feng (bib0002) 2009; 33 Helmy, Khalf, Darwish (bib0004) 1998; 13 Ahmed (bib0001) 2006 Li, Feng, Sun (bib0007) 2008; 212 Gong, Teo, Liu, Feng (bib0003) 2015; 39 Lin, Loxton, Teo (bib0011) 2014; 10 K.L. Teo, C.J. Goh, K.H. Wong, 1991, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, Essex. Malanowski (bib0014) 2002; 9 Rehbock, Teo, Jennings (bib0016) 1992; 2 Jennings, Fisher, Teo, Goh (bib0005) 2004 McCann, Suryanarayana (bib0015) 2001; 123 Loxton, Lin, Teo (bib0012) 2014; 10 Wei, Teo, Zhan (bib0018) 2011; 218 Ahmed (10.1016/j.amc.2015.11.038_bib0001) 2006 Rehbock (10.1016/j.amc.2015.11.038_bib0016) 1992; 2 Jiang (10.1016/j.amc.2015.11.038_bib0006) 2004; 42 Lin (10.1016/j.amc.2015.11.038_bib0010) 2013; 1 Malanowski (10.1016/j.amc.2015.11.038_bib0014) 2002; 9 Loxton (10.1016/j.amc.2015.11.038_bib0013) 2011; 217 McCann (10.1016/j.amc.2015.11.038_bib0015) 2001; 123 Li (10.1016/j.amc.2015.11.038_bib0007) 2008; 212 Jennings (10.1016/j.amc.2015.11.038_bib0005) 2004 Yang (10.1016/j.amc.2015.11.038_bib0019) 2016; 12 Lin (10.1016/j.amc.2015.11.038_bib0011) 2014; 10 Wei (10.1016/j.amc.2015.11.038_bib0018) 2011; 218 Gong (10.1016/j.amc.2015.11.038_bib0002) 2009; 33 Gong (10.1016/j.amc.2015.11.038_bib0003) 2015; 39 Li (10.1016/j.amc.2015.11.038_bib0008) 2009; 223 Loxton (10.1016/j.amc.2015.11.038_bib0012) 2014; 10 10.1016/j.amc.2015.11.038_bib0017 Helmy (10.1016/j.amc.2015.11.038_bib0004) 1998; 13 Lin (10.1016/j.amc.2015.11.038_bib0009) 2011; 18 |
References_xml | – volume: 10 start-page: 275 year: 2014 end-page: 309 ident: bib0011 article-title: The control parameterization method for nonlinear optimal control: a survey publication-title: J. Ind. Manag. Optim. – reference: K.L. Teo, C.J. Goh, K.H. Wong, 1991, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, Essex. – year: 2004 ident: bib0005 publication-title: MISER 3 Optimal Control Software: Theory and User Manual (Version 3) – volume: 39 start-page: 4022 year: 2015 end-page: 4032 ident: bib0003 article-title: Horizontal wells path planning: an optimal switching control approach publication-title: Appl. Math. Model. – volume: 217 start-page: 6566 year: 2011 end-page: 6576 ident: bib0013 article-title: Robust suboptimal control of nonlinear systems publication-title: Appl. Math. Comput. – volume: 12 start-page: 781 year: 2016 end-page: 810 ident: bib0019 article-title: Visual MISER: an efficient user-friendly visual program for solving optimal control problems publication-title: J. Ind. Manag. Optim. – volume: 212 start-page: 419 year: 2008 end-page: 430 ident: bib0007 article-title: Stochastic optimal control and algorithm of the trajectory of horizontal wells publication-title: J. Comput. Appl. Math. – volume: 2 start-page: 331 year: 1992 end-page: 348 ident: bib0016 article-title: A computational procedure for suboptimal robust controls publication-title: Dyn. Control – volume: 10 start-page: 537 year: 2014 end-page: 560 ident: bib0012 article-title: Switching time optimization for nonlinear switched systems: direct optimization and the time-scaling transformation publication-title: Pac. J. Optim. – volume: 123 start-page: 187 year: 2001 end-page: 193 ident: bib0015 article-title: Horizontal well path planning and correction using optimization techniques publication-title: J. Energy Resour. – volume: 33 start-page: 2992 year: 2009 end-page: 3001 ident: bib0002 article-title: Optimal control and properties of nonlinear multistage dynamical system for planning horizontal well paths publication-title: Appl. Math. Model. – volume: 42 start-page: 261 year: 2004 end-page: 264 ident: bib0006 article-title: Model and algorithm for designing 3d trajectory in sidetracking horizontal wells publication-title: J. Dalian Univ. Technol. – volume: 13 start-page: 42 year: 1998 end-page: 46 ident: bib0004 article-title: Well design using a computer model publication-title: SPE Drill. Complet. – volume: 18 start-page: 59 year: 2011 end-page: 76 ident: bib0009 article-title: A new computational method for optimizing nonlinear impulsive systems publication-title: Dyn. Contin. Discret. Ser. B – volume: 1 start-page: 275 year: 2013 end-page: 311 ident: bib0010 article-title: Optimal control of nonlinear switched systems: computational methods and applications publication-title: J. Oper. Res. Soc. China – year: 2006 ident: bib0001 publication-title: Dynamic Systems and Control with Applications – volume: 218 start-page: 1180 year: 2011 end-page: 1190 ident: bib0018 article-title: A numerical method for an optimal control problem with minimum sensitivity on coefficient variation publication-title: Appl. Math. Comput. – volume: 223 start-page: 893 year: 2009 end-page: 900 ident: bib0008 article-title: Impulsive optimal control model for the trajectory of horizontal wells publication-title: J. Comput. Appl. Math. – volume: 9 start-page: 543 year: 2002 end-page: 561 ident: bib0014 article-title: Sensitivity analysis for parametric optimal control of semilinear parabolic equations publication-title: J. Convex Anal. – volume: 18 start-page: 59 year: 2011 ident: 10.1016/j.amc.2015.11.038_bib0009 article-title: A new computational method for optimizing nonlinear impulsive systems publication-title: Dyn. Contin. Discret. Ser. B – volume: 212 start-page: 419 year: 2008 ident: 10.1016/j.amc.2015.11.038_bib0007 article-title: Stochastic optimal control and algorithm of the trajectory of horizontal wells publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2006.12.016 – volume: 223 start-page: 893 year: 2009 ident: 10.1016/j.amc.2015.11.038_bib0008 article-title: Impulsive optimal control model for the trajectory of horizontal wells publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.03.007 – volume: 10 start-page: 537 year: 2014 ident: 10.1016/j.amc.2015.11.038_bib0012 article-title: Switching time optimization for nonlinear switched systems: direct optimization and the time-scaling transformation publication-title: Pac. J. Optim. – volume: 217 start-page: 6566 year: 2011 ident: 10.1016/j.amc.2015.11.038_bib0013 article-title: Robust suboptimal control of nonlinear systems publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2011.01.039 – volume: 1 start-page: 275 year: 2013 ident: 10.1016/j.amc.2015.11.038_bib0010 article-title: Optimal control of nonlinear switched systems: computational methods and applications publication-title: J. Oper. Res. Soc. China doi: 10.1007/s40305-013-0021-z – year: 2004 ident: 10.1016/j.amc.2015.11.038_bib0005 – volume: 42 start-page: 261 year: 2004 ident: 10.1016/j.amc.2015.11.038_bib0006 article-title: Model and algorithm for designing 3d trajectory in sidetracking horizontal wells publication-title: J. Dalian Univ. Technol. – volume: 12 start-page: 781 year: 2016 ident: 10.1016/j.amc.2015.11.038_bib0019 article-title: Visual MISER: an efficient user-friendly visual program for solving optimal control problems publication-title: J. Ind. Manag. Optim. – volume: 33 start-page: 2992 year: 2009 ident: 10.1016/j.amc.2015.11.038_bib0002 article-title: Optimal control and properties of nonlinear multistage dynamical system for planning horizontal well paths publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2008.10.011 – volume: 2 start-page: 331 year: 1992 ident: 10.1016/j.amc.2015.11.038_bib0016 article-title: A computational procedure for suboptimal robust controls publication-title: Dyn. Control doi: 10.1007/BF02172220 – volume: 123 start-page: 187 year: 2001 ident: 10.1016/j.amc.2015.11.038_bib0015 article-title: Horizontal well path planning and correction using optimization techniques publication-title: J. Energy Resour. doi: 10.1115/1.1386390 – volume: 10 start-page: 275 year: 2014 ident: 10.1016/j.amc.2015.11.038_bib0011 article-title: The control parameterization method for nonlinear optimal control: a survey publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2014.10.275 – year: 2006 ident: 10.1016/j.amc.2015.11.038_bib0001 – ident: 10.1016/j.amc.2015.11.038_bib0017 – volume: 39 start-page: 4022 year: 2015 ident: 10.1016/j.amc.2015.11.038_bib0003 article-title: Horizontal wells path planning: an optimal switching control approach publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.12.014 – volume: 13 start-page: 42 year: 1998 ident: 10.1016/j.amc.2015.11.038_bib0004 article-title: Well design using a computer model publication-title: SPE Drill. Complet. doi: 10.2118/37709-PA – volume: 9 start-page: 543 year: 2002 ident: 10.1016/j.amc.2015.11.038_bib0014 article-title: Sensitivity analysis for parametric optimal control of semilinear parabolic equations publication-title: J. Convex Anal. – volume: 218 start-page: 1180 year: 2011 ident: 10.1016/j.amc.2015.11.038_bib0018 article-title: A numerical method for an optimal control problem with minimum sensitivity on coefficient variation publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2011.05.093 |
SSID | ssj0007614 |
Score | 2.1664186 |
Snippet | This paper considers the three-dimensional path planning problem for horizontal oil wells. The decision variables in this problem are the curvature, tool-face... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 711 |
SubjectTerms | Horizontal well Parameter optimization Switched system System sensitivity Time-scaling transformation |
Title | Dynamic optimization for robust path planning of horizontal oil wells |
URI | https://dx.doi.org/10.1016/j.amc.2015.11.038 |
Volume | 274 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IHvwZFLoY7tljwQhqIGTJNyafUYMUALl4sHf7my7RU3Ug8duOsnm6-w8ujPfIHQLaqII9YXHdUIgQRHS6xClIGu1d24ipLxg2x-N6XBCHqfxtIZ6VS-MLat0tr-06YW1ditth2Z7NZvZHl9m-aIiCGkCS1FiO9hJYrW89f5Z5gFpesnEzGyNlx9VN5tFjRdfWBbDIG5ZIk_bovKTb_ribwZH6NAFirhb7uUY1fTyBB2Mdiyrm1PUvy_HyeMMzv3CNVRiiELxOhPbTY7tuGG8cmOJcGbwS7aevWW2ARJnszm2P-42Z2gy6D_3hp4bi-DJkCW5Z3Ro4FxSnhguKKzFTEKCaygNA92RCny4liYwUkFoJ8H5cB6pgAMQPqdG6ugc1ZfZUl8gTASLJeG-ikRAjJEsYSbmURRIqphUfgP5FSCpdJzhdnTFPK2Kw15TwDC1GEIukQKGDXS3E1mVhBl_vUwqlNNvXz0Fg_672OX_xK7QPjy5mutrVM_XW30DIUUumoXONNFe9-FpOP4Ad4fK-w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQdPJoU-tlv2aBCCCpwg4dbsoxsxQAmUiwd_u7PtFjVRD163nWTzdefVnfkGoVs4JopQVzg8iQgkKEI6TaIUZK3mzk34lOds-_0B7Y7I0zgcV1Cr7IUxZZXW9hc2PbfWdqVh0WwsJhPT48sMX1QAIY1nKEq20DYB9TVjDOrvn3UekKcXVMzMFHm5QXm1mRd58ZmhMfTCumHyND0qPzmnLw6nc4D2baSI74vNHKJKMj9Ce_0NzerqGLUfinnyOAXFn9mOSgxhKF6mYr3KsJk3jBd2LhFONX5Jl5O31HRA4nQyxebP3eoEjTrtYavr2LkIjvRZlDk68TUoJuWR5oLCWsgkZLiaUt9LmlKBE0-k9rRUENtJ8D6cB8rjAITLqZZJcIqq83SenCFMBAsl4a4KhEe0lixiOuRB4EmqmFRuDbklILG0pOFmdsU0LqvDXmPAMDYYQjIRA4Y1dLcRWRSMGX-9TEqU42-fPQaL_rvY-f_EbtBOd9jvxb3HwfMF2oUntgD7ElWz5Tq5gvgiE9f5-fkATpbMiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+optimization+for+robust+path+planning+of+horizontal+oil+wells&rft.jtitle=Applied+mathematics+and+computation&rft.au=Gong%2C+Zhaohua&rft.au=Loxton%2C+Ryan&rft.au=Yu%2C+Changjun&rft.au=Teo%2C+Kok+Lay&rft.date=2016-02-01&rft.issn=0096-3003&rft.volume=274&rft.spage=711&rft.epage=725&rft_id=info:doi/10.1016%2Fj.amc.2015.11.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2015_11_038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |