Dynamic optimization for robust path planning of horizontal oil wells

This paper considers the three-dimensional path planning problem for horizontal oil wells. The decision variables in this problem are the curvature, tool-face angle and switching points for each turn segment in the path, and the optimization objective is to minimize the path length and target error....

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 274; pp. 711 - 725
Main Authors Gong, Zhaohua, Loxton, Ryan, Yu, Changjun, Teo, Kok Lay
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper considers the three-dimensional path planning problem for horizontal oil wells. The decision variables in this problem are the curvature, tool-face angle and switching points for each turn segment in the path, and the optimization objective is to minimize the path length and target error. The optimal curvatures, tool-face angles and switching points can be readily determined using existing gradient-based dynamic optimization techniques. However, in a real drilling process, the actual curvatures and tool-face angles will inevitably deviate from the planned optimal values, thus causing an unexpected increase in the target error. This is a critical challenge that must be overcome for successful practical implementation. Accordingly, this paper introduces a sensitivity function that measures the rate of change in the target error with respect to the curvature and tool-face angle of each turn segment. Based on the sensitivity function, we propose a new optimization problem in which the switching points are adjusted to minimize target error sensitivity subject to continuous state inequality constraints arising from engineering specifications, and an additional constraint specifying the maximum allowable increase in the path length from the optimal value. Our main result shows that the sensitivity function can be evaluated by solving a set of auxiliary dynamic systems. By combining this result with the well-known time-scaling transformation, we obtain an equivalent transformed problem that can be solved using standard nonlinear programming algorithms. Finally, the paper concludes with a numerical example involving a practical path planning problem for a Ci-16-Cp146 well.
AbstractList This paper considers the three-dimensional path planning problem for horizontal oil wells. The decision variables in this problem are the curvature, tool-face angle and switching points for each turn segment in the path, and the optimization objective is to minimize the path length and target error. The optimal curvatures, tool-face angles and switching points can be readily determined using existing gradient-based dynamic optimization techniques. However, in a real drilling process, the actual curvatures and tool-face angles will inevitably deviate from the planned optimal values, thus causing an unexpected increase in the target error. This is a critical challenge that must be overcome for successful practical implementation. Accordingly, this paper introduces a sensitivity function that measures the rate of change in the target error with respect to the curvature and tool-face angle of each turn segment. Based on the sensitivity function, we propose a new optimization problem in which the switching points are adjusted to minimize target error sensitivity subject to continuous state inequality constraints arising from engineering specifications, and an additional constraint specifying the maximum allowable increase in the path length from the optimal value. Our main result shows that the sensitivity function can be evaluated by solving a set of auxiliary dynamic systems. By combining this result with the well-known time-scaling transformation, we obtain an equivalent transformed problem that can be solved using standard nonlinear programming algorithms. Finally, the paper concludes with a numerical example involving a practical path planning problem for a Ci-16-Cp146 well.
Author Gong, Zhaohua
Loxton, Ryan
Yu, Changjun
Teo, Kok Lay
Author_xml – sequence: 1
  givenname: Zhaohua
  surname: Gong
  fullname: Gong, Zhaohua
  organization: School of Mathematics and Information Science, Shandong Institute of Business and Technology, Yantai, China
– sequence: 2
  givenname: Ryan
  surname: Loxton
  fullname: Loxton, Ryan
  email: rcloxton@gmail.com, R.Loxton@curtin.edu.au
  organization: Department of Mathematics and Statistics, Curtin University, Perth, Australia
– sequence: 3
  givenname: Changjun
  surname: Yu
  fullname: Yu, Changjun
  organization: Department of Mathematics and Statistics, Curtin University, Perth, Australia
– sequence: 4
  givenname: Kok Lay
  surname: Teo
  fullname: Teo, Kok Lay
  organization: Department of Mathematics and Statistics, Curtin University, Perth, Australia
BookMark eNp9kM1KAzEUhYNUsFUfwF1eYMbc-Uk6uJJaf6DgRtfhNpPYlJlkSKLSPr1T68pFVwcOfJd7vhmZOO80ITfAcmDAb7c59iovGNQ5QM7K-RmZwlyUWc2rZkKmjDU8KxkrL8gsxi1jTHCopmT5sHPYW0X9kGxv95isd9T4QINff8ZEB0wbOnTonHUf1Bu68cHuvUvYUW87-q27Ll6Rc4Nd1Nd_eUneH5dvi-ds9fr0srhfZapoRMqMLowoGUdhcM3Hrm6UqArDeQF6rlqoQSsDRrVCVKoSgFi2gOOnDLlRurwkcLyrgo8xaCOHYHsMOwlMHjzIrRw9yIMHCSBHDyMj_jHKpt-ZKaDtTpJ3R1KPk76sDjIqq53SrQ1aJdl6e4L-Aa8Ne2k
CitedBy_id crossref_primary_10_1007_s13202_023_01709_z
Cites_doi 10.1016/j.cam.2006.12.016
10.1016/j.cam.2008.03.007
10.1016/j.amc.2011.01.039
10.1007/s40305-013-0021-z
10.1016/j.apm.2008.10.011
10.1007/BF02172220
10.1115/1.1386390
10.3934/jimo.2014.10.275
10.1016/j.apm.2014.12.014
10.2118/37709-PA
10.1016/j.amc.2011.05.093
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2015.11.038
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 725
ExternalDocumentID 10_1016_j_amc_2015_11_038
S0096300315015283
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
SSH
TAE
VH1
VOH
WUQ
ID FETCH-LOGICAL-c297t-fe2f7306a7fab6c2959c742f6621e8cd151ecf1fcd774c471aa3d1a7610a6fce3
IEDL.DBID .~1
ISSN 0096-3003
IngestDate Thu Apr 24 23:13:18 EDT 2025
Tue Jul 01 01:35:59 EDT 2025
Fri Feb 23 02:30:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords System sensitivity
Parameter optimization
Switched system
Horizontal well
Time-scaling transformation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-fe2f7306a7fab6c2959c742f6621e8cd151ecf1fcd774c471aa3d1a7610a6fce3
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_amc_2015_11_038
crossref_citationtrail_10_1016_j_amc_2015_11_038
elsevier_sciencedirect_doi_10_1016_j_amc_2015_11_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
2016-02-00
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lin, Loxton, Teo (bib0010) 2013; 1
Yang, Teo, Loxton, Rehbock, Li, Yu, Jennings (bib0019) 2016; 12
Jiang, Feng (bib0006) 2004; 42
Loxton, Teo, Rehbock (bib0013) 2011; 217
Li, Feng, Wang (bib0008) 2009; 223
Lin, Loxton, Teo, Wu (bib0009) 2011; 18
Gong, Liu, Feng (bib0002) 2009; 33
Helmy, Khalf, Darwish (bib0004) 1998; 13
Ahmed (bib0001) 2006
Li, Feng, Sun (bib0007) 2008; 212
Gong, Teo, Liu, Feng (bib0003) 2015; 39
Lin, Loxton, Teo (bib0011) 2014; 10
K.L. Teo, C.J. Goh, K.H. Wong, 1991, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, Essex.
Malanowski (bib0014) 2002; 9
Rehbock, Teo, Jennings (bib0016) 1992; 2
Jennings, Fisher, Teo, Goh (bib0005) 2004
McCann, Suryanarayana (bib0015) 2001; 123
Loxton, Lin, Teo (bib0012) 2014; 10
Wei, Teo, Zhan (bib0018) 2011; 218
Ahmed (10.1016/j.amc.2015.11.038_bib0001) 2006
Rehbock (10.1016/j.amc.2015.11.038_bib0016) 1992; 2
Jiang (10.1016/j.amc.2015.11.038_bib0006) 2004; 42
Lin (10.1016/j.amc.2015.11.038_bib0010) 2013; 1
Malanowski (10.1016/j.amc.2015.11.038_bib0014) 2002; 9
Loxton (10.1016/j.amc.2015.11.038_bib0013) 2011; 217
McCann (10.1016/j.amc.2015.11.038_bib0015) 2001; 123
Li (10.1016/j.amc.2015.11.038_bib0007) 2008; 212
Jennings (10.1016/j.amc.2015.11.038_bib0005) 2004
Yang (10.1016/j.amc.2015.11.038_bib0019) 2016; 12
Lin (10.1016/j.amc.2015.11.038_bib0011) 2014; 10
Wei (10.1016/j.amc.2015.11.038_bib0018) 2011; 218
Gong (10.1016/j.amc.2015.11.038_bib0002) 2009; 33
Gong (10.1016/j.amc.2015.11.038_bib0003) 2015; 39
Li (10.1016/j.amc.2015.11.038_bib0008) 2009; 223
Loxton (10.1016/j.amc.2015.11.038_bib0012) 2014; 10
10.1016/j.amc.2015.11.038_bib0017
Helmy (10.1016/j.amc.2015.11.038_bib0004) 1998; 13
Lin (10.1016/j.amc.2015.11.038_bib0009) 2011; 18
References_xml – volume: 10
  start-page: 275
  year: 2014
  end-page: 309
  ident: bib0011
  article-title: The control parameterization method for nonlinear optimal control: a survey
  publication-title: J. Ind. Manag. Optim.
– reference: K.L. Teo, C.J. Goh, K.H. Wong, 1991, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, Essex.
– year: 2004
  ident: bib0005
  publication-title: MISER 3 Optimal Control Software: Theory and User Manual (Version 3)
– volume: 39
  start-page: 4022
  year: 2015
  end-page: 4032
  ident: bib0003
  article-title: Horizontal wells path planning: an optimal switching control approach
  publication-title: Appl. Math. Model.
– volume: 217
  start-page: 6566
  year: 2011
  end-page: 6576
  ident: bib0013
  article-title: Robust suboptimal control of nonlinear systems
  publication-title: Appl. Math. Comput.
– volume: 12
  start-page: 781
  year: 2016
  end-page: 810
  ident: bib0019
  article-title: Visual MISER: an efficient user-friendly visual program for solving optimal control problems
  publication-title: J. Ind. Manag. Optim.
– volume: 212
  start-page: 419
  year: 2008
  end-page: 430
  ident: bib0007
  article-title: Stochastic optimal control and algorithm of the trajectory of horizontal wells
  publication-title: J. Comput. Appl. Math.
– volume: 2
  start-page: 331
  year: 1992
  end-page: 348
  ident: bib0016
  article-title: A computational procedure for suboptimal robust controls
  publication-title: Dyn. Control
– volume: 10
  start-page: 537
  year: 2014
  end-page: 560
  ident: bib0012
  article-title: Switching time optimization for nonlinear switched systems: direct optimization and the time-scaling transformation
  publication-title: Pac. J. Optim.
– volume: 123
  start-page: 187
  year: 2001
  end-page: 193
  ident: bib0015
  article-title: Horizontal well path planning and correction using optimization techniques
  publication-title: J. Energy Resour.
– volume: 33
  start-page: 2992
  year: 2009
  end-page: 3001
  ident: bib0002
  article-title: Optimal control and properties of nonlinear multistage dynamical system for planning horizontal well paths
  publication-title: Appl. Math. Model.
– volume: 42
  start-page: 261
  year: 2004
  end-page: 264
  ident: bib0006
  article-title: Model and algorithm for designing 3d trajectory in sidetracking horizontal wells
  publication-title: J. Dalian Univ. Technol.
– volume: 13
  start-page: 42
  year: 1998
  end-page: 46
  ident: bib0004
  article-title: Well design using a computer model
  publication-title: SPE Drill. Complet.
– volume: 18
  start-page: 59
  year: 2011
  end-page: 76
  ident: bib0009
  article-title: A new computational method for optimizing nonlinear impulsive systems
  publication-title: Dyn. Contin. Discret. Ser. B
– volume: 1
  start-page: 275
  year: 2013
  end-page: 311
  ident: bib0010
  article-title: Optimal control of nonlinear switched systems: computational methods and applications
  publication-title: J. Oper. Res. Soc. China
– year: 2006
  ident: bib0001
  publication-title: Dynamic Systems and Control with Applications
– volume: 218
  start-page: 1180
  year: 2011
  end-page: 1190
  ident: bib0018
  article-title: A numerical method for an optimal control problem with minimum sensitivity on coefficient variation
  publication-title: Appl. Math. Comput.
– volume: 223
  start-page: 893
  year: 2009
  end-page: 900
  ident: bib0008
  article-title: Impulsive optimal control model for the trajectory of horizontal wells
  publication-title: J. Comput. Appl. Math.
– volume: 9
  start-page: 543
  year: 2002
  end-page: 561
  ident: bib0014
  article-title: Sensitivity analysis for parametric optimal control of semilinear parabolic equations
  publication-title: J. Convex Anal.
– volume: 18
  start-page: 59
  year: 2011
  ident: 10.1016/j.amc.2015.11.038_bib0009
  article-title: A new computational method for optimizing nonlinear impulsive systems
  publication-title: Dyn. Contin. Discret. Ser. B
– volume: 212
  start-page: 419
  year: 2008
  ident: 10.1016/j.amc.2015.11.038_bib0007
  article-title: Stochastic optimal control and algorithm of the trajectory of horizontal wells
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.12.016
– volume: 223
  start-page: 893
  year: 2009
  ident: 10.1016/j.amc.2015.11.038_bib0008
  article-title: Impulsive optimal control model for the trajectory of horizontal wells
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.03.007
– volume: 10
  start-page: 537
  year: 2014
  ident: 10.1016/j.amc.2015.11.038_bib0012
  article-title: Switching time optimization for nonlinear switched systems: direct optimization and the time-scaling transformation
  publication-title: Pac. J. Optim.
– volume: 217
  start-page: 6566
  year: 2011
  ident: 10.1016/j.amc.2015.11.038_bib0013
  article-title: Robust suboptimal control of nonlinear systems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2011.01.039
– volume: 1
  start-page: 275
  year: 2013
  ident: 10.1016/j.amc.2015.11.038_bib0010
  article-title: Optimal control of nonlinear switched systems: computational methods and applications
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-013-0021-z
– year: 2004
  ident: 10.1016/j.amc.2015.11.038_bib0005
– volume: 42
  start-page: 261
  year: 2004
  ident: 10.1016/j.amc.2015.11.038_bib0006
  article-title: Model and algorithm for designing 3d trajectory in sidetracking horizontal wells
  publication-title: J. Dalian Univ. Technol.
– volume: 12
  start-page: 781
  year: 2016
  ident: 10.1016/j.amc.2015.11.038_bib0019
  article-title: Visual MISER: an efficient user-friendly visual program for solving optimal control problems
  publication-title: J. Ind. Manag. Optim.
– volume: 33
  start-page: 2992
  year: 2009
  ident: 10.1016/j.amc.2015.11.038_bib0002
  article-title: Optimal control and properties of nonlinear multistage dynamical system for planning horizontal well paths
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2008.10.011
– volume: 2
  start-page: 331
  year: 1992
  ident: 10.1016/j.amc.2015.11.038_bib0016
  article-title: A computational procedure for suboptimal robust controls
  publication-title: Dyn. Control
  doi: 10.1007/BF02172220
– volume: 123
  start-page: 187
  year: 2001
  ident: 10.1016/j.amc.2015.11.038_bib0015
  article-title: Horizontal well path planning and correction using optimization techniques
  publication-title: J. Energy Resour.
  doi: 10.1115/1.1386390
– volume: 10
  start-page: 275
  year: 2014
  ident: 10.1016/j.amc.2015.11.038_bib0011
  article-title: The control parameterization method for nonlinear optimal control: a survey
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2014.10.275
– year: 2006
  ident: 10.1016/j.amc.2015.11.038_bib0001
– ident: 10.1016/j.amc.2015.11.038_bib0017
– volume: 39
  start-page: 4022
  year: 2015
  ident: 10.1016/j.amc.2015.11.038_bib0003
  article-title: Horizontal wells path planning: an optimal switching control approach
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2014.12.014
– volume: 13
  start-page: 42
  year: 1998
  ident: 10.1016/j.amc.2015.11.038_bib0004
  article-title: Well design using a computer model
  publication-title: SPE Drill. Complet.
  doi: 10.2118/37709-PA
– volume: 9
  start-page: 543
  year: 2002
  ident: 10.1016/j.amc.2015.11.038_bib0014
  article-title: Sensitivity analysis for parametric optimal control of semilinear parabolic equations
  publication-title: J. Convex Anal.
– volume: 218
  start-page: 1180
  year: 2011
  ident: 10.1016/j.amc.2015.11.038_bib0018
  article-title: A numerical method for an optimal control problem with minimum sensitivity on coefficient variation
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2011.05.093
SSID ssj0007614
Score 2.1664186
Snippet This paper considers the three-dimensional path planning problem for horizontal oil wells. The decision variables in this problem are the curvature, tool-face...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 711
SubjectTerms Horizontal well
Parameter optimization
Switched system
System sensitivity
Time-scaling transformation
Title Dynamic optimization for robust path planning of horizontal oil wells
URI https://dx.doi.org/10.1016/j.amc.2015.11.038
Volume 274
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IHvwZFLoY7tljwQhqIGTJNyafUYMUALl4sHf7my7RU3Ug8duOsnm6-w8ujPfIHQLaqII9YXHdUIgQRHS6xClIGu1d24ipLxg2x-N6XBCHqfxtIZ6VS-MLat0tr-06YW1ditth2Z7NZvZHl9m-aIiCGkCS1FiO9hJYrW89f5Z5gFpesnEzGyNlx9VN5tFjRdfWBbDIG5ZIk_bovKTb_ribwZH6NAFirhb7uUY1fTyBB2Mdiyrm1PUvy_HyeMMzv3CNVRiiELxOhPbTY7tuGG8cmOJcGbwS7aevWW2ARJnszm2P-42Z2gy6D_3hp4bi-DJkCW5Z3Ro4FxSnhguKKzFTEKCaygNA92RCny4liYwUkFoJ8H5cB6pgAMQPqdG6ugc1ZfZUl8gTASLJeG-ikRAjJEsYSbmURRIqphUfgP5FSCpdJzhdnTFPK2Kw15TwDC1GEIukQKGDXS3E1mVhBl_vUwqlNNvXz0Fg_672OX_xK7QPjy5mutrVM_XW30DIUUumoXONNFe9-FpOP4Ad4fK-w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQdPJoU-tlv2aBCCCpwg4dbsoxsxQAmUiwd_u7PtFjVRD163nWTzdefVnfkGoVs4JopQVzg8iQgkKEI6TaIUZK3mzk34lOds-_0B7Y7I0zgcV1Cr7IUxZZXW9hc2PbfWdqVh0WwsJhPT48sMX1QAIY1nKEq20DYB9TVjDOrvn3UekKcXVMzMFHm5QXm1mRd58ZmhMfTCumHyND0qPzmnLw6nc4D2baSI74vNHKJKMj9Ce_0NzerqGLUfinnyOAXFn9mOSgxhKF6mYr3KsJk3jBd2LhFONX5Jl5O31HRA4nQyxebP3eoEjTrtYavr2LkIjvRZlDk68TUoJuWR5oLCWsgkZLiaUt9LmlKBE0-k9rRUENtJ8D6cB8rjAITLqZZJcIqq83SenCFMBAsl4a4KhEe0lixiOuRB4EmqmFRuDbklILG0pOFmdsU0LqvDXmPAMDYYQjIRA4Y1dLcRWRSMGX-9TEqU42-fPQaL_rvY-f_EbtBOd9jvxb3HwfMF2oUntgD7ElWz5Tq5gvgiE9f5-fkATpbMiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+optimization+for+robust+path+planning+of+horizontal+oil+wells&rft.jtitle=Applied+mathematics+and+computation&rft.au=Gong%2C+Zhaohua&rft.au=Loxton%2C+Ryan&rft.au=Yu%2C+Changjun&rft.au=Teo%2C+Kok+Lay&rft.date=2016-02-01&rft.issn=0096-3003&rft.volume=274&rft.spage=711&rft.epage=725&rft_id=info:doi/10.1016%2Fj.amc.2015.11.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2015_11_038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon