Dynamic fracture investigation of concrete by a rate-dependent explicit phase field model integrating viscoelasticity and micro-viscosity

•Propose a rate-dependent phase field model considering both viscoelasticity and micro-viscosity;.•Develop VUEL and VUMAT subroutines to integrate the model through explicit numerical solution schemes;.•Successfully predict dynamic tensile behaviour of quasi-brittle concrete material;.•Elucidate com...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 418; p. 116540
Main Authors Hai, Lu, Wriggers, Peter, Huang, Yu-jie, Zhang, Hui, Xu, Shi-lang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Propose a rate-dependent phase field model considering both viscoelasticity and micro-viscosity;.•Develop VUEL and VUMAT subroutines to integrate the model through explicit numerical solution schemes;.•Successfully predict dynamic tensile behaviour of quasi-brittle concrete material;.•Elucidate complicated dynamic fracture mechanisms using CT image-based real meso‑structures. To investigate dynamic fracture mechanisms of quasi-brittle materials, this work proposes a rate-dependent phase field model that integrates both macroscopic viscoelasticity and micro-viscosity to reflect the rate effects by free water and unhydrated inclusions. Based on the unified phase field theory, the model introduces a linear viscoelastic constitutive relation in effective stress space to consider the macro-viscosity of the bulk material. Additionally, the micro-force balance concept is utilized with the micro-viscosity to derive a parabolic phase field evolution law that accurately describes the dynamic micro-crack development. Explicit numerical solution schemes are established for the governing equations by developing VUEL and VUMAT subroutines in ABAQUS. This eliminates the convergence issue in implicit phase field modelling. Four typical benchmarks are investigated to validate the proposed model for macroscale and mesoscale heterogeneous problems. It is found that the proposed model can well capture the crack branching, delaying characteristic of micro-crack growth, and increase of macroscopic strength under higher strain rates. Using real meso‑structures from CT images, the complicated dynamic behaviour of concrete is investigated which yields deeper insight into stress wave propagation, crack evolution and load-carrying capacities.
AbstractList •Propose a rate-dependent phase field model considering both viscoelasticity and micro-viscosity;.•Develop VUEL and VUMAT subroutines to integrate the model through explicit numerical solution schemes;.•Successfully predict dynamic tensile behaviour of quasi-brittle concrete material;.•Elucidate complicated dynamic fracture mechanisms using CT image-based real meso‑structures. To investigate dynamic fracture mechanisms of quasi-brittle materials, this work proposes a rate-dependent phase field model that integrates both macroscopic viscoelasticity and micro-viscosity to reflect the rate effects by free water and unhydrated inclusions. Based on the unified phase field theory, the model introduces a linear viscoelastic constitutive relation in effective stress space to consider the macro-viscosity of the bulk material. Additionally, the micro-force balance concept is utilized with the micro-viscosity to derive a parabolic phase field evolution law that accurately describes the dynamic micro-crack development. Explicit numerical solution schemes are established for the governing equations by developing VUEL and VUMAT subroutines in ABAQUS. This eliminates the convergence issue in implicit phase field modelling. Four typical benchmarks are investigated to validate the proposed model for macroscale and mesoscale heterogeneous problems. It is found that the proposed model can well capture the crack branching, delaying characteristic of micro-crack growth, and increase of macroscopic strength under higher strain rates. Using real meso‑structures from CT images, the complicated dynamic behaviour of concrete is investigated which yields deeper insight into stress wave propagation, crack evolution and load-carrying capacities.
ArticleNumber 116540
Author Zhang, Hui
Huang, Yu-jie
Wriggers, Peter
Hai, Lu
Xu, Shi-lang
Author_xml – sequence: 1
  givenname: Lu
  orcidid: 0000-0003-4374-0730
  surname: Hai
  fullname: Hai, Lu
  organization: School of Engineering, Ocean University of China, Qingdao, 266100, China
– sequence: 2
  givenname: Peter
  orcidid: 0000-0002-2676-1145
  surname: Wriggers
  fullname: Wriggers, Peter
  organization: Institute for Continuum Mechanics, Leibniz Universität Hannover, Garbsen, 30823, Germany
– sequence: 3
  givenname: Yu-jie
  orcidid: 0000-0001-7349-6711
  surname: Huang
  fullname: Huang, Yu-jie
  email: mpcyujie@nuc.edu.cn
  organization: School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
– sequence: 4
  givenname: Hui
  orcidid: 0000-0002-7740-4068
  surname: Zhang
  fullname: Zhang, Hui
  email: zhangh@nuc.edu.cn
  organization: School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
– sequence: 5
  givenname: Shi-lang
  surname: Xu
  fullname: Xu, Shi-lang
  organization: Institute of Advanced Engineering Structures, Zhejiang University, Hangzhou, 310058, China
BookMark eNp9kM1OAyEURompibX6AO54gakwzDBMXJn6mzRxo2tC4VJpZpgJYGMfwbeWtq5clA0JfOe7uecSTfzgAaEbSuaUUH67metezUtSsjmlvK7IGZpS0bRFSZmYoCkhVV00oqwv0GWMG5KPoOUU_TzsvOqdxjYonb4CYOe3EJNbq-QGjweL9eB1gAR4tcMKB5WgMDCCN-AThu-xc9olPH6qCNg66AzuBwNdLkqwznHn13jroh6gU7k4h3OPzymnw1AcfmJ-u0LnVnURrv_uGfp4enxfvBTLt-fXxf2y0GXbpMIaWnOgoCrBLTemZsKUIFqrKka05boFtmIMFLQ109qa0vBacMZo3UCm2AzRY2-eHmMAK8fgehV2khK5dyk3MruUe5fy6DIzzT8mb3EQlIJy3Uny7khCXmnrIMioHXgNxgXQSZrBnaB_ATBxlSk
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2024_109266
crossref_primary_10_1016_j_cma_2024_117456
crossref_primary_10_1016_j_engstruct_2025_119970
crossref_primary_10_1016_j_ijfatigue_2024_108180
crossref_primary_10_1007_s11043_024_09756_7
crossref_primary_10_1016_j_engfracmech_2025_110805
crossref_primary_10_1016_j_jmps_2025_106036
crossref_primary_10_1016_j_jmps_2024_105971
crossref_primary_10_1002_nme_70012
crossref_primary_10_1016_j_ijmecsci_2025_110131
crossref_primary_10_1016_j_jobe_2025_112006
crossref_primary_10_1016_j_ijmecsci_2023_108907
crossref_primary_10_1016_j_jmps_2024_105687
crossref_primary_10_1016_j_conbuildmat_2023_134273
crossref_primary_10_1016_j_ijplas_2024_104042
crossref_primary_10_1063_5_0214395
crossref_primary_10_1016_j_cma_2024_117416
crossref_primary_10_1016_j_susmat_2024_e01228
crossref_primary_10_1155_stc_6641629
Cites_doi 10.1016/S0022-5096(98)00034-9
10.1016/j.cma.2018.06.013
10.1016/j.ijimpeng.2019.103318
10.1016/j.tafmec.2022.103283
10.1016/j.cma.2023.116050
10.1016/j.engstruct.2022.115477
10.1016/j.ijsolstr.2003.09.020
10.1007/s00466-010-0561-6
10.1016/j.engfracmech.2019.106821
10.1016/j.tafmec.2023.103779
10.1016/j.cma.2018.09.018
10.1016/j.conbuildmat.2013.05.063
10.1007/s10704-022-00634-2
10.1016/j.ijimpeng.2009.04.007
10.1016/j.engfracmech.2021.107847
10.1007/BF02486201
10.1016/j.cma.2023.116044
10.1016/j.cma.2017.09.027
10.1016/j.engfracmech.2018.07.015
10.1002/nme.2861
10.1016/j.engfracmech.2018.04.038
10.1016/j.ijimpeng.2016.06.009
10.1016/j.finel.2005.11.008
10.1016/j.cma.2016.05.015
10.1016/j.engfracmech.2004.01.012
10.1016/j.ijimpeng.2010.10.028
10.1016/j.ijimpeng.2013.12.005
10.1016/bs.aams.2019.04.002
10.1016/j.ijsolstr.2015.05.002
10.1016/j.jmps.2017.03.015
10.1007/s00466-019-01733-z
10.1016/j.ijimpeng.2014.02.005
10.1016/j.engfracmech.2014.07.003
10.1016/j.cma.2019.06.029
10.1002/nme.941
10.1016/j.conbuildmat.2021.122419
10.1007/s00466-014-1045-x
10.1007/s00466-015-1149-y
10.1177/10567895231160811
10.1016/j.ijimpeng.2019.103336
10.1016/j.jmps.2009.04.011
10.1016/j.compstruc.2019.03.005
10.1016/j.engfracmech.2008.02.004
10.1061/JMCEA3.0002111
10.1016/j.cma.2022.115074
10.1016/j.ijimpeng.2018.09.007
10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
10.1016/j.jmps.2018.04.007
10.1023/A:1007647800529
10.1002/nme.5262
10.1016/j.ijimpeng.2011.07.004
10.1016/j.cma.2018.06.015
10.1016/j.mechmat.2005.06.004
10.1016/j.cma.2007.04.011
10.1016/j.cma.2021.113897
10.1016/j.cma.2012.01.008
10.1007/BF00020851
10.1016/j.cma.2022.115559
10.1016/j.ijsolstr.2013.08.030
10.1016/j.cma.2017.09.019
10.1016/j.engfracmech.2015.09.002
10.1061/(ASCE)0733-9399(1987)113:10(1512)
10.1016/j.engfracmech.2017.06.019
10.1061/(ASCE)ST.1943-541X.0002015
10.1016/j.euromechsol.2021.104380
10.1016/S0022-5096(99)00028-9
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cma.2023.116540
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2023_116540
S0045782523006643
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SSH
VH1
VOH
WUQ
ZY4
ID FETCH-LOGICAL-c297t-fd156e1ea486f6dd538d2e89fa430cf6c9e3b33eae953ccfd2d658633157eea43
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Tue Jul 01 04:06:22 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Sat Jul 06 15:31:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic fracture mechanisms
Mesoscale concrete
Rate dependence
Unified phase field theory
Quasi-brittle materials
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-fd156e1ea486f6dd538d2e89fa430cf6c9e3b33eae953ccfd2d658633157eea43
ORCID 0000-0001-7349-6711
0000-0002-7740-4068
0000-0003-4374-0730
0000-0002-2676-1145
ParticipantIDs crossref_primary_10_1016_j_cma_2023_116540
crossref_citationtrail_10_1016_j_cma_2023_116540
elsevier_sciencedirect_doi_10_1016_j_cma_2023_116540
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kong, Fang, Jian (bib0024) 2019; 132
Wang, Poh (bib0026) 2018; 116
Min, Wang, Hu, Zhao, Sun, Zhang, Yao, Bui (bib0059) 2023; 411
Zhang, Ruiz, Yu, Tarifa (bib0070) 2009; 36
Hai, Jie (bib0003) 2022; 118
Simone, Askes, Sluys (bib0025) 2004; 41
Bourdin, Francfort, Marigo (bib0028) 2000; 48
Wu, Zhang, Fang, Yu, Ma (bib0001) 2021; 278
Bažant (bib0016) 1976; 102
Rossi, Toutlemonde (bib0046) 1996; 29
Miehe, Welschinger, Hofacker (bib0029) 2010; 83
Jin, Yu, Du, Yang (bib0041) 2019; 132
Ožbolt, Bošnjak, Sola (bib0039) 2013; 50
Reinhardt, Weerheijm (bib0048) 1991; 51
Kalthoff (bib0068) 2000; 101
Borden, Verhoosel, Scott, Hughes, Landis (bib0031) 2012; 217
Zheng, Li (bib0047) 2004; 71
Shen, Waisman, Guo (bib0064) 2019; 346
Yu, Jin, Du (bib0076) 2023; 32
Zhuang, Ren, Rabczuk (bib0056) 2021; 90
Wu (bib0058) 2018; 328
Zhuang, Ren, Rabczuk (bib0011) 2021; 90
Feng, Wu (bib0034) 2018; 197
Ma, Wriggers, Gao, Chen, Sahraee (bib0010) 2011; 47
Nguyen, Wu (bib0035) 2018; 340
Huang, Yang, Chen, Liu (bib0074) 2016; 97
Hao, Bi, Chen, Pham, Li (bib0008) 2023; 277
Pedersen, Simone, Sluys (bib0050) 2008; 75
Ren, Zhuang, Anitescu, Rabczuk (bib0053) 2019; 217
Hordijk (bib0077) 1992; 37
Kong, Fang, Chen, Wu (bib0023) 2018; 122
Yuan, Tong, Liu, Yang (bib0066) 2022; 57
Huang, Zhang, Zhou, Xu (bib0065) 2022; 400
Pereira, Weerheijm, Sluys (bib0013) 2017; 182
Landis (bib0004) 2018; 200
Natarajan, Ooi, Birk, Song (bib0036) 2022; 236
Pijaudier-Cabot, Bažant (bib0020) 1987; 113
Ross, Tedesco, Kuennen (bib0042) 1995; 92
Wu, Wriggers (bib0006) 2015; 55
Brara, Klepaczko (bib0043) 2006; 38
Wang, Shedbale, Kumar, Poh (bib0060) 2019; 355
(bib0078) 2013
Lu, Li (bib0049) 2011; 38
Du, Jin (bib0002) 2021
Hu, Tan, Xia, Min, Xu, Yao, Sun, Zhang, Bui, Zhuang, Rabczuk (bib0055) 2023
Wriggers, Moftah (bib0005) 2006; 42
Combescure, Gravouil, Grégoire, Réthoré (bib0015) 2008; 197
Budarapu, Zhuang, Rabczuk, Bordas (bib0007) 2019; 52
Belytschko, Chen, Xu, Zi (bib0014) 2003; 58
Wu (bib0033) 2017; 103
Ožbolt, Bede, Sharma, Mayer (bib0040) 2015; 148
Yu, Chen (bib0051) 2021; 383
de Borst, Verhoosel (bib0030) 2016; 312
Cornelissen, Hordijk, Reinhardt (bib0063) 1986; 31
Schlüter, Willenbücher, Kuhn, Müller (bib0032) 2014; 54
Malvar, Ross (bib0038) 1998; 95
Le, Marigo, Maurini, Vidoli (bib0017) 2018; 340
Simo, Hughes (bib0061) 2006
Ožbolt, Sharma, Irhan, Sola (bib0072) 2014; 69
Du, Jin, Ma (bib0044) 2014; 66
Wang, Ye, Liu, Chu, Zhuang (bib0054) 2019; 64
Huang, Yang, Ren, Liu, Zhang (bib0071) 2015; 67
Hai, Wu, Li (bib0009) 2020; 225
Nguyen, Bui, Hirose (bib0022) 2018; 328
Liu, Aldakheel, Aliabadia (bib0067) 2023; 411
Hao, Hao, Li, Chen (bib0045) 2016
Qin, Zhang (bib0073) 2011; 38
Francfort, Marigo (bib0027) 1998; 46
Nguyen (bib0012) 2014; 128
Feng, Ren, Li (bib0019) 2018; 144
Sahin, Ren, Imrak, Rabczuk (bib0057) 2023
Chen, Wu, Zhou (bib0075) 2013; 47
Huang, Yang, Zhang, Natarajan (bib0018) 2022; 396
Zeng, Ni, Zhang, Liu (bib0052) 2023
Amor, Marigo, Maurini (bib0062) 2009; 57
Hai, Li (bib0037) 2021; 252
Peerlings, de Borst, Brekelmans, de Vree J H (bib0021) 1996; 39
Li, Marigo, Guilbaud, Potapov (bib0069) 2016; 108
Kalthoff (10.1016/j.cma.2023.116540_bib0068) 2000; 101
Pereira (10.1016/j.cma.2023.116540_bib0013) 2017; 182
Nguyen (10.1016/j.cma.2023.116540_bib0022) 2018; 328
Huang (10.1016/j.cma.2023.116540_bib0065) 2022; 400
Malvar (10.1016/j.cma.2023.116540_bib0038) 1998; 95
Ross (10.1016/j.cma.2023.116540_bib0042) 1995; 92
Cornelissen (10.1016/j.cma.2023.116540_bib0063) 1986; 31
Bažant (10.1016/j.cma.2023.116540_bib0016) 1976; 102
Hao (10.1016/j.cma.2023.116540_bib0008) 2023; 277
Ma (10.1016/j.cma.2023.116540_bib0010) 2011; 47
Natarajan (10.1016/j.cma.2023.116540_bib0036) 2022; 236
Simo (10.1016/j.cma.2023.116540_bib0061) 2006
Zeng (10.1016/j.cma.2023.116540_bib0052) 2023
Zhang (10.1016/j.cma.2023.116540_bib0070) 2009; 36
Wriggers (10.1016/j.cma.2023.116540_bib0005) 2006; 42
Kong (10.1016/j.cma.2023.116540_bib0023) 2018; 122
Lu (10.1016/j.cma.2023.116540_bib0049) 2011; 38
Ožbolt (10.1016/j.cma.2023.116540_bib0072) 2014; 69
Rossi (10.1016/j.cma.2023.116540_bib0046) 1996; 29
Francfort (10.1016/j.cma.2023.116540_bib0027) 1998; 46
Zheng (10.1016/j.cma.2023.116540_bib0047) 2004; 71
Wu (10.1016/j.cma.2023.116540_bib0033) 2017; 103
de Borst (10.1016/j.cma.2023.116540_bib0030) 2016; 312
Nguyen (10.1016/j.cma.2023.116540_bib0012) 2014; 128
Pijaudier-Cabot (10.1016/j.cma.2023.116540_bib0020) 1987; 113
Kong (10.1016/j.cma.2023.116540_bib0024) 2019; 132
Hai (10.1016/j.cma.2023.116540_bib0003) 2022; 118
Belytschko (10.1016/j.cma.2023.116540_bib0014) 2003; 58
Hai (10.1016/j.cma.2023.116540_bib0037) 2021; 252
Du (10.1016/j.cma.2023.116540_bib0044) 2014; 66
Hordijk (10.1016/j.cma.2023.116540_bib0077) 1992; 37
Brara (10.1016/j.cma.2023.116540_bib0043) 2006; 38
Peerlings (10.1016/j.cma.2023.116540_bib0021) 1996; 39
Du (10.1016/j.cma.2023.116540_bib0002) 2021
Le (10.1016/j.cma.2023.116540_bib0017) 2018; 340
Li (10.1016/j.cma.2023.116540_bib0069) 2016; 108
Pedersen (10.1016/j.cma.2023.116540_bib0050) 2008; 75
Huang (10.1016/j.cma.2023.116540_bib0018) 2022; 396
Feng (10.1016/j.cma.2023.116540_bib0034) 2018; 197
Hai (10.1016/j.cma.2023.116540_bib0009) 2020; 225
Nguyen (10.1016/j.cma.2023.116540_bib0035) 2018; 340
Huang (10.1016/j.cma.2023.116540_bib0071) 2015; 67
Yu (10.1016/j.cma.2023.116540_bib0076) 2023; 32
Ožbolt (10.1016/j.cma.2023.116540_bib0040) 2015; 148
Yu (10.1016/j.cma.2023.116540_bib0051) 2021; 383
Zhuang (10.1016/j.cma.2023.116540_bib0056) 2021; 90
Zhuang (10.1016/j.cma.2023.116540_bib0011) 2021; 90
Ren (10.1016/j.cma.2023.116540_bib0053) 2019; 217
Landis (10.1016/j.cma.2023.116540_bib0004) 2018; 200
Miehe (10.1016/j.cma.2023.116540_bib0029) 2010; 83
Sahin (10.1016/j.cma.2023.116540_bib0057) 2023
Wang (10.1016/j.cma.2023.116540_bib0026) 2018; 116
Liu (10.1016/j.cma.2023.116540_bib0067) 2023; 411
Combescure (10.1016/j.cma.2023.116540_bib0015) 2008; 197
Feng (10.1016/j.cma.2023.116540_bib0019) 2018; 144
Wu (10.1016/j.cma.2023.116540_bib0006) 2015; 55
Wu (10.1016/j.cma.2023.116540_bib0058) 2018; 328
Borden (10.1016/j.cma.2023.116540_bib0031) 2012; 217
Wu (10.1016/j.cma.2023.116540_bib0001) 2021; 278
Schlüter (10.1016/j.cma.2023.116540_bib0032) 2014; 54
Min (10.1016/j.cma.2023.116540_bib0059) 2023; 411
(10.1016/j.cma.2023.116540_bib0078) 2013
Budarapu (10.1016/j.cma.2023.116540_bib0007) 2019; 52
Yuan (10.1016/j.cma.2023.116540_bib0066) 2022; 57
Chen (10.1016/j.cma.2023.116540_bib0075) 2013; 47
Amor (10.1016/j.cma.2023.116540_bib0062) 2009; 57
Simone (10.1016/j.cma.2023.116540_bib0025) 2004; 41
Wang (10.1016/j.cma.2023.116540_bib0060) 2019; 355
Bourdin (10.1016/j.cma.2023.116540_bib0028) 2000; 48
Hu (10.1016/j.cma.2023.116540_bib0055) 2023
Qin (10.1016/j.cma.2023.116540_bib0073) 2011; 38
Ožbolt (10.1016/j.cma.2023.116540_bib0039) 2013; 50
Hao (10.1016/j.cma.2023.116540_bib0045) 2016
Huang (10.1016/j.cma.2023.116540_bib0074) 2016; 97
Jin (10.1016/j.cma.2023.116540_bib0041) 2019; 132
Reinhardt (10.1016/j.cma.2023.116540_bib0048) 1991; 51
Wang (10.1016/j.cma.2023.116540_bib0054) 2019; 64
Shen (10.1016/j.cma.2023.116540_bib0064) 2019; 346
References_xml – volume: 108
  start-page: 1381
  year: 2016
  end-page: 1405
  ident: bib0069
  article-title: Gradient damage modeling of brittle fracture in an explicit dynamics context
  publication-title: Int. J. Numer. Method. Eng.
– volume: 69
  start-page: 55
  year: 2014
  end-page: 68
  ident: bib0072
  article-title: Tensile behavior of concrete under high loading rates
  publication-title: Int. J. Impact Eng.
– volume: 36
  start-page: 1204
  year: 2009
  end-page: 1209
  ident: bib0070
  article-title: Fracture behaviour of high-strength concrete at a wide range of loading rates
  publication-title: Int. J. Impact Eng.
– volume: 52
  start-page: 1
  year: 2019
  end-page: 103
  ident: bib0007
  article-title: Multiscale modeling of material failure: theory and computational methods
  publication-title: Adv. Appl. Mech.
– volume: 132
  year: 2019
  ident: bib0041
  article-title: Dynamic size effect of concrete under tension: a numerical study
  publication-title: Int. J. Impact Eng.
– volume: 32
  start-page: 683
  year: 2023
  end-page: 714
  ident: bib0076
  article-title: Experiment and meso-scale modelling on combined effects of strain rate and specimen size on uniaxial-compressive failures of concrete
  publication-title: Int. J. Damage Mech.
– volume: 225
  year: 2020
  ident: bib0009
  article-title: A phase-field damage model with micro inertia effect for the dynamic fracture of quasi-brittle solids
  publication-title: Eng. Fract. Mech.
– year: 2023
  ident: bib0055
  article-title: An overview of implicit and explicit phase field models for quasi-static failure processes, implementation and computational efficiency
  publication-title: Theor. Appl. Fract. Mech.
– volume: 277
  year: 2023
  ident: bib0008
  article-title: Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures
  publication-title: Eng. Struct.
– volume: 128
  start-page: 37
  year: 2014
  end-page: 68
  ident: bib0012
  article-title: Discontinuous Galerkin/Extrinsic cohesive zone modeling: implementation caveats and applications in computational fracture mechanics
  publication-title: Eng. Fract. Mech.
– volume: 252
  year: 2021
  ident: bib0037
  article-title: A rate-dependent phase-field framework for the dynamic failure of quasi-brittle materials
  publication-title: Eng. Fract. Mech.
– volume: 103
  start-page: 72
  year: 2017
  end-page: 99
  ident: bib0033
  article-title: A unified phase-field theory for the mechanics of damage and quasi-brittle failure
  publication-title: J. Mech. Phys. Solid.
– volume: 278
  year: 2021
  ident: bib0001
  article-title: Mesoscopic modelling of concrete material under static and dynamic loadings: a review
  publication-title: Constr. Build. Mater.
– volume: 38
  start-page: 171
  year: 2011
  end-page: 180
  ident: bib0049
  article-title: About the dynamic uniaxial tensile strength of concrete-like materials
  publication-title: Int. J. Impact Eng.
– volume: 182
  start-page: 689
  year: 2017
  end-page: 707
  ident: bib0013
  article-title: A numerical study on crack branching in quasi-brittle materials with a new effective rate-dependent nonlocal damage model
  publication-title: Eng. Fract. Mech.
– volume: 400
  year: 2022
  ident: bib0065
  article-title: Efficient quasi-brittle fracture simulations of concrete at mesoscale using micro CT images and a localizing gradient damage model
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 46
  start-page: 1319
  year: 1998
  end-page: 1342
  ident: bib0027
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J. Mech. Phys. Solid.
– volume: 67
  start-page: 340
  year: 2015
  end-page: 352
  ident: bib0071
  article-title: 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray Computed Tomography images using damage plasticity model
  publication-title: Int. J. Solid. Struct.
– volume: 95
  start-page: 735
  year: 1998
  end-page: 739
  ident: bib0038
  article-title: Review of strain rate effects for concrete in tension
  publication-title: ACI Mater. J.
– year: 2021
  ident: bib0002
  article-title: Size Effect in Concrete Materials and Structures
– year: 2013
  ident: bib0078
  article-title: Fib Model Code For Concrete Structures 2010
– volume: 396
  year: 2022
  ident: bib0018
  article-title: A phase-field cohesive zone model integrated with cell-based smoothed finite element method for quasi-brittle fracture simulations of concrete at mesoscale
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 92
  start-page: 37
  year: 1995
  end-page: 45
  ident: bib0042
  article-title: Effects of strain rate on concrete strength
  publication-title: ACI Mater. J.
– volume: 144
  year: 2018
  ident: bib0019
  article-title: Softened damage-plasticity model for analysis of cracked reinforced concrete structures
  publication-title: J. Struct. Eng.
– volume: 340
  start-page: 424
  year: 2018
  end-page: 450
  ident: bib0017
  article-title: Strain-gradient vs damage-gradient regularizations of softening damage models
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 411
  year: 2023
  ident: bib0059
  article-title: A chemo-thermo-mechanical coupled phase field framework for failure in thermal barrier coatings
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 122
  start-page: 318
  year: 2018
  end-page: 332
  ident: bib0023
  article-title: Nonlocal formulation of the modified K&C model to resolve mesh-size dependency of concrete structures subjected to intense dynamic loadings
  publication-title: Int. J. Impact Eng.
– volume: 38
  start-page: 1011
  year: 2011
  end-page: 1021
  ident: bib0073
  article-title: Numerical study of dynamic behavior of concrete by meso-scale particle element modeling
  publication-title: Int. J. Impact Eng.
– volume: 42
  start-page: 623
  year: 2006
  end-page: 636
  ident: bib0005
  article-title: Mesoscale models for concrete: homogenisation and damage behaviour
  publication-title: Finite Elem. Anal. Des.
– volume: 312
  start-page: 78
  year: 2016
  end-page: 94
  ident: bib0030
  article-title: Gradient damage vs phase-field approaches for fracture: similarities and differences
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 75
  start-page: 3782
  year: 2008
  end-page: 3805
  ident: bib0050
  article-title: An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage model
  publication-title: Eng. Fract. Mech.
– volume: 90
  year: 2021
  ident: bib0011
  article-title: Nonlocal operator method for dynamic brittle fracture based on an explicit phase field model
  publication-title: Eur. J. Mech./A Solid.
– volume: 41
  start-page: 351
  year: 2004
  end-page: 363
  ident: bib0025
  article-title: Incorrect initiation and propagation of failure in non-local and gradient-enhanced media
  publication-title: Int. J. Solid. Struct.
– volume: 55
  start-page: 999
  year: 2015
  end-page: 1016
  ident: bib0006
  article-title: Multiscale diffusion-thermal-mechanical cohesive zone model for concrete
  publication-title: Comput. Mech.
– volume: 197
  start-page: 309
  year: 2008
  end-page: 318
  ident: bib0015
  article-title: X-FEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation
  publication-title: Comput Method. Appl Mech Eng
– volume: 66
  start-page: 5
  year: 2014
  end-page: 17
  ident: bib0044
  article-title: Numerical simulation of dynamic tensile-failure of concrete at meso-scale
  publication-title: Int. J. Impact Eng.
– volume: 64
  start-page: 1537
  year: 2019
  end-page: 1556
  ident: bib0054
  article-title: Modeling the dynamic and quasi-static compression-shear failure of brittle materials by explicit phase field method
  publication-title: Comput. Mech.
– volume: 217
  start-page: 45
  year: 2019
  end-page: 56
  ident: bib0053
  article-title: An explicit phase field method for brittle dynamic fracture
  publication-title: Comput. Struct.
– volume: 48
  start-page: 797
  year: 2000
  end-page: 826
  ident: bib0028
  article-title: Numerical experiments in revisited brittle fracture
  publication-title: J. Mech. Phys. Solid.
– volume: 328
  start-page: 612
  year: 2018
  end-page: 637
  ident: bib0058
  article-title: A geometrically regularized gradient-damage model with energetic equivalence
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 236
  start-page: 87
  year: 2022
  end-page: 108
  ident: bib0036
  article-title: Adaptive modelling of dynamic brittle fracture - a combined phase field regularized cohesive zone model and scaled boundary finite element approach
  publication-title: Int. J. Fract.
– start-page: 1
  year: 2016
  end-page: 31
  ident: bib0045
  article-title: Review of the current practices in blast-resistant analysis and design of concrete structures
  publication-title: Adv. Struct. Eng.
– volume: 355
  start-page: 492
  year: 2019
  end-page: 512
  ident: bib0060
  article-title: Localizing gradient damage model with micro inertia effect for dynamic fracture
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 71
  start-page: 2319
  year: 2004
  end-page: 2327
  ident: bib0047
  article-title: An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity
  publication-title: Eng. Fract. Mech.
– volume: 116
  start-page: 370
  year: 2018
  end-page: 390
  ident: bib0026
  article-title: A homogenized localizing gradient damage model with micro inertia effect
  publication-title: J. Mech. Phys. Solid.
– volume: 51
  start-page: 31
  year: 1991
  end-page: 42
  ident: bib0048
  article-title: Tensile fracture of concrete at high loading rates taking account of inertia and crack velocity effects
  publication-title: Int. J. Fract.
– volume: 54
  start-page: 1141
  year: 2014
  end-page: 1161
  ident: bib0032
  article-title: Phase field approximation of dynamic brittle fracture
  publication-title: Comput. Mech.
– volume: 132
  year: 2019
  ident: bib0024
  article-title: A new damage-based nonlocal model for dynamic tensile failure of concrete material
  publication-title: Int. J. Impact Eng.
– volume: 47
  start-page: 627
  year: 2011
  end-page: 640
  ident: bib0010
  article-title: Reliability-based optimization of trusses with random parameters under dynamic loads
  publication-title: Comput. Mech.
– volume: 37
  year: 1992
  ident: bib0077
  article-title: Tensile and tensile fatigue behaviour of concrete: experiments, modelling and analyses
  publication-title: Heron
– volume: 50
  start-page: 4270
  year: 2013
  end-page: 4278
  ident: bib0039
  article-title: Dynamic fracture of concrete compact tension specimen: experimental and numerical study
  publication-title: Int. J. Solid. Struct.
– volume: 29
  start-page: 116
  year: 1996
  end-page: 118
  ident: bib0046
  article-title: Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms
  publication-title: Mater. Struct.
– volume: 39
  start-page: 3391
  year: 1996
  end-page: 3403
  ident: bib0021
  article-title: Gradient enhanced damage for quasi-brittle materials
  publication-title: Int. J. Numer. Method. Eng.
– volume: 411
  year: 2023
  ident: bib0067
  article-title: Virtual element method for phase field modeling of dynamic fracture
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 101
  start-page: 1
  year: 2000
  end-page: 31
  ident: bib0068
  article-title: Modes of dynamic shear failure in solids
  publication-title: Int. J. Fract.
– volume: 102
  start-page: 331
  year: 1976
  end-page: 344
  ident: bib0016
  article-title: Instability, ductility, and size effect in strain-softening concrete
  publication-title: J. Eng. Mech. Divis.
– volume: 383
  year: 2021
  ident: bib0051
  article-title: A viscoelastic micropolar peridynamic model for quasi-brittle materials incorporating loading-rate effects
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 328
  start-page: 498
  year: 2018
  end-page: 541
  ident: bib0022
  article-title: Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elements
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 118
  year: 2022
  ident: bib0003
  article-title: Modeling tensile damage and fracture of quasi-brittle materials using stochastic phase-field model
  publication-title: Theor. Appl. Fract. Mech.
– volume: 97
  start-page: 102
  year: 2016
  end-page: 115
  ident: bib0074
  article-title: Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images
  publication-title: Int. J. Impact Eng.
– volume: 58
  start-page: 1873
  year: 2003
  end-page: 1905
  ident: bib0014
  article-title: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment
  publication-title: Int. J. Numer. Method. Eng.
– volume: 57
  year: 2022
  ident: bib0066
  article-title: Explicit double-phase-field formulation and implementation for bending behavior of UHPC-NC composite beams
  publication-title: J. Build. Eng.
– year: 2006
  ident: bib0061
  article-title: Computational Inelasticity
– volume: 200
  start-page: 42
  year: 2018
  end-page: 49
  ident: bib0004
  article-title: Microplanes and microstructure: connecting abstractions and reality
  publication-title: Eng. Fract. Mech.
– volume: 83
  start-page: 1273
  year: 2010
  end-page: 1311
  ident: bib0029
  article-title: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations
  publication-title: Int. J. Numer. Method. Eng.
– volume: 197
  start-page: 66
  year: 2018
  end-page: 79
  ident: bib0034
  article-title: Phase-field regularized cohesive zone model (CZM) and size effect of concrete
  publication-title: Eng. Fract. Mech.
– volume: 38
  start-page: 253
  year: 2006
  end-page: 267
  ident: bib0043
  article-title: Experimental characterization of concrete in dynamic tension
  publication-title: Mech. Mater.
– volume: 217
  start-page: 77
  year: 2012
  end-page: 95
  ident: bib0031
  article-title: A phase-field description of dynamic brittle fracture
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 340
  start-page: 1000
  year: 2018
  end-page: 1022
  ident: bib0035
  article-title: Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 57
  start-page: 1209
  year: 2009
  end-page: 1229
  ident: bib0062
  article-title: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments
  publication-title: J. Mech. Phys. Solid.
– volume: 148
  start-page: 27
  year: 2015
  end-page: 41
  ident: bib0040
  article-title: Dynamic fracture of concrete
  publication-title: Eng. Fract. Mech.
– volume: 47
  start-page: 419
  year: 2013
  end-page: 430
  ident: bib0075
  article-title: Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete
  publication-title: Constr. Build. Mater.
– volume: 113
  start-page: 1512
  year: 1987
  end-page: 1533
  ident: bib0020
  article-title: Nonlocal damage theory
  publication-title: J. Eng. Mech.
– volume: 346
  start-page: 862
  year: 2019
  end-page: 890
  ident: bib0064
  article-title: Fracture of viscoelastic solids modeled with a modified phase field method
  publication-title: Comput. Method. Appl. Mech. Eng.
– start-page: 1
  year: 2023
  end-page: 12
  ident: bib0057
  article-title: Computational modeling of quasi static fracture using the nonlocal operator method and explicit phase field model
  publication-title: Eng. Comput.
– start-page: 1
  year: 2023
  end-page: 29
  ident: bib0052
  article-title: An explicit phase field material point method for modeling dynamic fracture problems
  publication-title: Int. J. Numer. Method. Eng.
– volume: 31
  start-page: 45
  year: 1986
  end-page: 46
  ident: bib0063
  article-title: Experimental determination of crack softening characteristics of normalweight and lightweight
  publication-title: Heron
– volume: 90
  year: 2021
  ident: bib0056
  article-title: Nonlocal operator method for dynamic brittle fracture based on an explicit phase field model
  publication-title: Eur. J. Mech. A. Solid.
– volume: 46
  start-page: 1319
  issue: 8
  year: 1998
  ident: 10.1016/j.cma.2023.116540_bib0027
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/S0022-5096(98)00034-9
– volume: 340
  start-page: 424
  year: 2018
  ident: 10.1016/j.cma.2023.116540_bib0017
  article-title: Strain-gradient vs damage-gradient regularizations of softening damage models
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.06.013
– volume: 132
  year: 2019
  ident: 10.1016/j.cma.2023.116540_bib0041
  article-title: Dynamic size effect of concrete under tension: a numerical study
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2019.103318
– volume: 118
  year: 2022
  ident: 10.1016/j.cma.2023.116540_bib0003
  article-title: Modeling tensile damage and fracture of quasi-brittle materials using stochastic phase-field model
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2022.103283
– volume: 411
  year: 2023
  ident: 10.1016/j.cma.2023.116540_bib0067
  article-title: Virtual element method for phase field modeling of dynamic fracture
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116050
– volume: 277
  year: 2023
  ident: 10.1016/j.cma.2023.116540_bib0008
  article-title: Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.115477
– volume: 37
  issue: 1
  year: 1992
  ident: 10.1016/j.cma.2023.116540_bib0077
  article-title: Tensile and tensile fatigue behaviour of concrete: experiments, modelling and analyses
  publication-title: Heron
– year: 2013
  ident: 10.1016/j.cma.2023.116540_bib0078
– volume: 41
  start-page: 351
  issue: 2
  year: 2004
  ident: 10.1016/j.cma.2023.116540_bib0025
  article-title: Incorrect initiation and propagation of failure in non-local and gradient-enhanced media
  publication-title: Int. J. Solid. Struct.
  doi: 10.1016/j.ijsolstr.2003.09.020
– volume: 47
  start-page: 627
  year: 2011
  ident: 10.1016/j.cma.2023.116540_bib0010
  article-title: Reliability-based optimization of trusses with random parameters under dynamic loads
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-010-0561-6
– volume: 57
  year: 2022
  ident: 10.1016/j.cma.2023.116540_bib0066
  article-title: Explicit double-phase-field formulation and implementation for bending behavior of UHPC-NC composite beams
  publication-title: J. Build. Eng.
– volume: 90
  year: 2021
  ident: 10.1016/j.cma.2023.116540_bib0011
  article-title: Nonlocal operator method for dynamic brittle fracture based on an explicit phase field model
  publication-title: Eur. J. Mech./A Solid.
– volume: 225
  year: 2020
  ident: 10.1016/j.cma.2023.116540_bib0009
  article-title: A phase-field damage model with micro inertia effect for the dynamic fracture of quasi-brittle solids
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2019.106821
– year: 2023
  ident: 10.1016/j.cma.2023.116540_bib0055
  article-title: An overview of implicit and explicit phase field models for quasi-static failure processes, implementation and computational efficiency
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2023.103779
– year: 2006
  ident: 10.1016/j.cma.2023.116540_bib0061
– volume: 346
  start-page: 862
  year: 2019
  ident: 10.1016/j.cma.2023.116540_bib0064
  article-title: Fracture of viscoelastic solids modeled with a modified phase field method
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.09.018
– volume: 47
  start-page: 419
  year: 2013
  ident: 10.1016/j.cma.2023.116540_bib0075
  article-title: Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.05.063
– volume: 236
  start-page: 87
  year: 2022
  ident: 10.1016/j.cma.2023.116540_bib0036
  article-title: Adaptive modelling of dynamic brittle fracture - a combined phase field regularized cohesive zone model and scaled boundary finite element approach
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-022-00634-2
– volume: 36
  start-page: 1204
  issue: 10–11
  year: 2009
  ident: 10.1016/j.cma.2023.116540_bib0070
  article-title: Fracture behaviour of high-strength concrete at a wide range of loading rates
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2009.04.007
– volume: 252
  year: 2021
  ident: 10.1016/j.cma.2023.116540_bib0037
  article-title: A rate-dependent phase-field framework for the dynamic failure of quasi-brittle materials
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2021.107847
– volume: 29
  start-page: 116
  year: 1996
  ident: 10.1016/j.cma.2023.116540_bib0046
  article-title: Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms
  publication-title: Mater. Struct.
  doi: 10.1007/BF02486201
– volume: 411
  year: 2023
  ident: 10.1016/j.cma.2023.116540_bib0059
  article-title: A chemo-thermo-mechanical coupled phase field framework for failure in thermal barrier coatings
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116044
– volume: 328
  start-page: 612
  year: 2018
  ident: 10.1016/j.cma.2023.116540_bib0058
  article-title: A geometrically regularized gradient-damage model with energetic equivalence
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.09.027
– volume: 200
  start-page: 42
  year: 2018
  ident: 10.1016/j.cma.2023.116540_bib0004
  article-title: Microplanes and microstructure: connecting abstractions and reality
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.07.015
– volume: 83
  start-page: 1273
  issue: 10
  year: 2010
  ident: 10.1016/j.cma.2023.116540_bib0029
  article-title: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations
  publication-title: Int. J. Numer. Method. Eng.
  doi: 10.1002/nme.2861
– volume: 197
  start-page: 66
  year: 2018
  ident: 10.1016/j.cma.2023.116540_bib0034
  article-title: Phase-field regularized cohesive zone model (CZM) and size effect of concrete
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.04.038
– volume: 97
  start-page: 102
  year: 2016
  ident: 10.1016/j.cma.2023.116540_bib0074
  article-title: Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2016.06.009
– volume: 42
  start-page: 623
  issue: 7
  year: 2006
  ident: 10.1016/j.cma.2023.116540_bib0005
  article-title: Mesoscale models for concrete: homogenisation and damage behaviour
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2005.11.008
– volume: 312
  start-page: 78
  year: 2016
  ident: 10.1016/j.cma.2023.116540_bib0030
  article-title: Gradient damage vs phase-field approaches for fracture: similarities and differences
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.05.015
– volume: 71
  start-page: 2319
  issue: 16–17
  year: 2004
  ident: 10.1016/j.cma.2023.116540_bib0047
  article-title: An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2004.01.012
– volume: 95
  start-page: 735
  year: 1998
  ident: 10.1016/j.cma.2023.116540_bib0038
  article-title: Review of strain rate effects for concrete in tension
  publication-title: ACI Mater. J.
– volume: 38
  start-page: 171
  issue: 4
  year: 2011
  ident: 10.1016/j.cma.2023.116540_bib0049
  article-title: About the dynamic uniaxial tensile strength of concrete-like materials
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2010.10.028
– volume: 66
  start-page: 5
  year: 2014
  ident: 10.1016/j.cma.2023.116540_bib0044
  article-title: Numerical simulation of dynamic tensile-failure of concrete at meso-scale
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2013.12.005
– volume: 52
  start-page: 1
  year: 2019
  ident: 10.1016/j.cma.2023.116540_bib0007
  article-title: Multiscale modeling of material failure: theory and computational methods
  publication-title: Adv. Appl. Mech.
  doi: 10.1016/bs.aams.2019.04.002
– start-page: 1
  year: 2023
  ident: 10.1016/j.cma.2023.116540_bib0052
  article-title: An explicit phase field material point method for modeling dynamic fracture problems
  publication-title: Int. J. Numer. Method. Eng.
– volume: 67
  start-page: 340
  year: 2015
  ident: 10.1016/j.cma.2023.116540_bib0071
  article-title: 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray Computed Tomography images using damage plasticity model
  publication-title: Int. J. Solid. Struct.
  doi: 10.1016/j.ijsolstr.2015.05.002
– volume: 103
  start-page: 72
  year: 2017
  ident: 10.1016/j.cma.2023.116540_bib0033
  article-title: A unified phase-field theory for the mechanics of damage and quasi-brittle failure
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2017.03.015
– volume: 64
  start-page: 1537
  year: 2019
  ident: 10.1016/j.cma.2023.116540_bib0054
  article-title: Modeling the dynamic and quasi-static compression-shear failure of brittle materials by explicit phase field method
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01733-z
– volume: 31
  start-page: 45
  issue: 2
  year: 1986
  ident: 10.1016/j.cma.2023.116540_bib0063
  article-title: Experimental determination of crack softening characteristics of normalweight and lightweight
  publication-title: Heron
– volume: 69
  start-page: 55
  year: 2014
  ident: 10.1016/j.cma.2023.116540_bib0072
  article-title: Tensile behavior of concrete under high loading rates
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2014.02.005
– volume: 128
  start-page: 37
  year: 2014
  ident: 10.1016/j.cma.2023.116540_bib0012
  article-title: Discontinuous Galerkin/Extrinsic cohesive zone modeling: implementation caveats and applications in computational fracture mechanics
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2014.07.003
– volume: 355
  start-page: 492
  year: 2019
  ident: 10.1016/j.cma.2023.116540_bib0060
  article-title: Localizing gradient damage model with micro inertia effect for dynamic fracture
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.06.029
– volume: 58
  start-page: 1873
  issue: 12
  year: 2003
  ident: 10.1016/j.cma.2023.116540_bib0014
  article-title: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment
  publication-title: Int. J. Numer. Method. Eng.
  doi: 10.1002/nme.941
– volume: 278
  year: 2021
  ident: 10.1016/j.cma.2023.116540_bib0001
  article-title: Mesoscopic modelling of concrete material under static and dynamic loadings: a review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.122419
– volume: 54
  start-page: 1141
  year: 2014
  ident: 10.1016/j.cma.2023.116540_bib0032
  article-title: Phase field approximation of dynamic brittle fracture
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-014-1045-x
– volume: 55
  start-page: 999
  year: 2015
  ident: 10.1016/j.cma.2023.116540_bib0006
  article-title: Multiscale diffusion-thermal-mechanical cohesive zone model for concrete
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-015-1149-y
– start-page: 1
  year: 2023
  ident: 10.1016/j.cma.2023.116540_bib0057
  article-title: Computational modeling of quasi static fracture using the nonlocal operator method and explicit phase field model
  publication-title: Eng. Comput.
– volume: 32
  start-page: 683
  issue: 5
  year: 2023
  ident: 10.1016/j.cma.2023.116540_bib0076
  article-title: Experiment and meso-scale modelling on combined effects of strain rate and specimen size on uniaxial-compressive failures of concrete
  publication-title: Int. J. Damage Mech.
  doi: 10.1177/10567895231160811
– volume: 132
  year: 2019
  ident: 10.1016/j.cma.2023.116540_bib0024
  article-title: A new damage-based nonlocal model for dynamic tensile failure of concrete material
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2019.103336
– volume: 57
  start-page: 1209
  issue: 8
  year: 2009
  ident: 10.1016/j.cma.2023.116540_bib0062
  article-title: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2009.04.011
– volume: 217
  start-page: 45
  year: 2019
  ident: 10.1016/j.cma.2023.116540_bib0053
  article-title: An explicit phase field method for brittle dynamic fracture
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2019.03.005
– volume: 75
  start-page: 3782
  issue: 13
  year: 2008
  ident: 10.1016/j.cma.2023.116540_bib0050
  article-title: An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage model
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2008.02.004
– volume: 102
  start-page: 331
  issue: 2
  year: 1976
  ident: 10.1016/j.cma.2023.116540_bib0016
  article-title: Instability, ductility, and size effect in strain-softening concrete
  publication-title: J. Eng. Mech. Divis.
  doi: 10.1061/JMCEA3.0002111
– volume: 396
  year: 2022
  ident: 10.1016/j.cma.2023.116540_bib0018
  article-title: A phase-field cohesive zone model integrated with cell-based smoothed finite element method for quasi-brittle fracture simulations of concrete at mesoscale
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.115074
– volume: 122
  start-page: 318
  year: 2018
  ident: 10.1016/j.cma.2023.116540_bib0023
  article-title: Nonlocal formulation of the modified K&C model to resolve mesh-size dependency of concrete structures subjected to intense dynamic loadings
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2018.09.007
– volume: 39
  start-page: 3391
  issue: 19
  year: 1996
  ident: 10.1016/j.cma.2023.116540_bib0021
  article-title: Gradient enhanced damage for quasi-brittle materials
  publication-title: Int. J. Numer. Method. Eng.
  doi: 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
– volume: 116
  start-page: 370
  year: 2018
  ident: 10.1016/j.cma.2023.116540_bib0026
  article-title: A homogenized localizing gradient damage model with micro inertia effect
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2018.04.007
– volume: 101
  start-page: 1
  issue: 1–2
  year: 2000
  ident: 10.1016/j.cma.2023.116540_bib0068
  article-title: Modes of dynamic shear failure in solids
  publication-title: Int. J. Fract.
  doi: 10.1023/A:1007647800529
– volume: 108
  start-page: 1381
  issue: 11
  year: 2016
  ident: 10.1016/j.cma.2023.116540_bib0069
  article-title: Gradient damage modeling of brittle fracture in an explicit dynamics context
  publication-title: Int. J. Numer. Method. Eng.
  doi: 10.1002/nme.5262
– volume: 38
  start-page: 1011
  issue: 12
  year: 2011
  ident: 10.1016/j.cma.2023.116540_bib0073
  article-title: Numerical study of dynamic behavior of concrete by meso-scale particle element modeling
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2011.07.004
– volume: 340
  start-page: 1000
  year: 2018
  ident: 10.1016/j.cma.2023.116540_bib0035
  article-title: Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.06.015
– volume: 38
  start-page: 253
  year: 2006
  ident: 10.1016/j.cma.2023.116540_bib0043
  article-title: Experimental characterization of concrete in dynamic tension
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2005.06.004
– volume: 197
  start-page: 309
  issue: 5
  year: 2008
  ident: 10.1016/j.cma.2023.116540_bib0015
  article-title: X-FEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation
  publication-title: Comput Method. Appl Mech Eng
  doi: 10.1016/j.cma.2007.04.011
– volume: 92
  start-page: 37
  issue: 1
  year: 1995
  ident: 10.1016/j.cma.2023.116540_bib0042
  article-title: Effects of strain rate on concrete strength
  publication-title: ACI Mater. J.
– volume: 383
  year: 2021
  ident: 10.1016/j.cma.2023.116540_bib0051
  article-title: A viscoelastic micropolar peridynamic model for quasi-brittle materials incorporating loading-rate effects
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113897
– volume: 217
  start-page: 77
  year: 2012
  ident: 10.1016/j.cma.2023.116540_bib0031
  article-title: A phase-field description of dynamic brittle fracture
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.01.008
– start-page: 1
  year: 2016
  ident: 10.1016/j.cma.2023.116540_bib0045
  article-title: Review of the current practices in blast-resistant analysis and design of concrete structures
  publication-title: Adv. Struct. Eng.
– year: 2021
  ident: 10.1016/j.cma.2023.116540_bib0002
– volume: 51
  start-page: 31
  year: 1991
  ident: 10.1016/j.cma.2023.116540_bib0048
  article-title: Tensile fracture of concrete at high loading rates taking account of inertia and crack velocity effects
  publication-title: Int. J. Fract.
  doi: 10.1007/BF00020851
– volume: 400
  year: 2022
  ident: 10.1016/j.cma.2023.116540_bib0065
  article-title: Efficient quasi-brittle fracture simulations of concrete at mesoscale using micro CT images and a localizing gradient damage model
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.115559
– volume: 50
  start-page: 4270
  issue: 25–26
  year: 2013
  ident: 10.1016/j.cma.2023.116540_bib0039
  article-title: Dynamic fracture of concrete compact tension specimen: experimental and numerical study
  publication-title: Int. J. Solid. Struct.
  doi: 10.1016/j.ijsolstr.2013.08.030
– volume: 328
  start-page: 498
  year: 2018
  ident: 10.1016/j.cma.2023.116540_bib0022
  article-title: Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elements
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.09.019
– volume: 148
  start-page: 27
  year: 2015
  ident: 10.1016/j.cma.2023.116540_bib0040
  article-title: Dynamic fracture of concrete l-specimen: experimental and numerical study
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2015.09.002
– volume: 113
  start-page: 1512
  issue: 10
  year: 1987
  ident: 10.1016/j.cma.2023.116540_bib0020
  article-title: Nonlocal damage theory
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1987)113:10(1512)
– volume: 182
  start-page: 689
  year: 2017
  ident: 10.1016/j.cma.2023.116540_bib0013
  article-title: A numerical study on crack branching in quasi-brittle materials with a new effective rate-dependent nonlocal damage model
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.06.019
– volume: 144
  issue: 6
  year: 2018
  ident: 10.1016/j.cma.2023.116540_bib0019
  article-title: Softened damage-plasticity model for analysis of cracked reinforced concrete structures
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0002015
– volume: 90
  year: 2021
  ident: 10.1016/j.cma.2023.116540_bib0056
  article-title: Nonlocal operator method for dynamic brittle fracture based on an explicit phase field model
  publication-title: Eur. J. Mech. A. Solid.
  doi: 10.1016/j.euromechsol.2021.104380
– volume: 48
  start-page: 797
  issue: 4
  year: 2000
  ident: 10.1016/j.cma.2023.116540_bib0028
  article-title: Numerical experiments in revisited brittle fracture
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/S0022-5096(99)00028-9
SSID ssj0000812
Score 2.5447552
Snippet •Propose a rate-dependent phase field model considering both viscoelasticity and micro-viscosity;.•Develop VUEL and VUMAT subroutines to integrate the model...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116540
SubjectTerms Dynamic fracture mechanisms
Mesoscale concrete
Quasi-brittle materials
Rate dependence
Unified phase field theory
Title Dynamic fracture investigation of concrete by a rate-dependent explicit phase field model integrating viscoelasticity and micro-viscosity
URI https://dx.doi.org/10.1016/j.cma.2023.116540
Volume 418
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGDgUUCUlzwwIblNaztJR8RDBQQTSGyRY59FEEormiJY2PnX3OXBQwIGxiS-JMo597C_-46x_dSlUmkdC2VNJJSMnIilcUJpEwc2jo1VVO98eRWObtT5rb5tsaOmFoZglbXtr2x6aa3rM736a_YmWUY1voq42GlZE_2mIsZPpSKa5d3XT5gHuryKMVxpQaObnc0S42VL6qGB7BIJDa1__OSbvvib0xW2VAeK_LB6l1XWgrzNluugkde_5LTNFr8wCq6xt-Oqwzz3VP00ewSefRJpjHM-9hwTYIwUC-DpCzecmCJE0wm34PBM-9lZwSd36N54iW_jZbcc3hBL4HP4Uza1Y8DAmzDZBd4nx1EE7RPlFcJ5rLOb05Pro5Gouy0IOxhGhfAOUznog1Fx6EPn0BK6AcRDb5QMrA_tEGQqJRgYammtdwOH0UsoZV9HgFJyg83l4xw2GUfHmAaAiYwHUKkOU4tpmMdMXNvA9KOow4LmOye2piKnjhgPSYM5u09QNQmpJqlU02EHHyKTiofjr8GqUV7ybTIl6Cd-F9v6n9g2W8AjVa3L7LC54nEGuxipFOleORX32Pzh2cXo6h3gY-rd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOPAqI8pwDXJDcZmM7yR44IEq1pY9TK_UWHHssglB21U2BXrjze_iDzORBiwQckHqNPU7isedhz3wD8LwKlTbWFsp4lyuj86AK7YIy1hWJLwrnjeQ77x9ksyPz7tger8CPMRdGwioH2d_L9E5aD082h9ncXNS15PgawWKXY03Wm2asYL1LZ1_Yb1u-2tliJr9I0-23h29maigtoHw6zVsVA_stNCFniixmIfC2DykV0-iMTnzM_JR0pTU5mlrtfQxpYFWdaT2xOTGV5nGvwFXDdFI2YePbeVwJ69geotxYJZ83XqV2QWW-wzpK9Yag3siBy5-U4QUFt30bbg6WKb7uf_4OrFCzBrcGKxUHGbBcgxsXIAzvwvetvqQ9Rkm3Oj0hrM-RO-YNziOyx82maUtYnaFDgaZQY-ndFumrXKDXLS4-sD7FLqAOu_I8OCJZ8Hvwc730c2JLX4LAWx6n4V4SS6i6FgksuQdHl8KD-7DazBt6AMiauEqIPadIZCqbVZ79vsiuv_WJm-T5OiTjPJd-wD6XEhyfyjHI7WPJrCmFNWXPmnV4-Ytk0QN__KuzGZlX_rZ6S1ZMfyd7-H9kz-Da7HB_r9zbOdh9BNe5xfSHQo9htT05pSdsJrXV025ZIry_7H3wE87kKAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+fracture+investigation+of+concrete+by+a+rate-dependent+explicit+phase+field+model+integrating+viscoelasticity+and+micro-viscosity&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Hai%2C+Lu&rft.au=Wriggers%2C+Peter&rft.au=Huang%2C+Yu-jie&rft.au=Zhang%2C+Hui&rft.date=2024-01-01&rft.issn=0045-7825&rft.volume=418&rft.spage=116540&rft_id=info:doi/10.1016%2Fj.cma.2023.116540&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2023_116540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon