Dynamic fracture investigation of concrete by a rate-dependent explicit phase field model integrating viscoelasticity and micro-viscosity
•Propose a rate-dependent phase field model considering both viscoelasticity and micro-viscosity;.•Develop VUEL and VUMAT subroutines to integrate the model through explicit numerical solution schemes;.•Successfully predict dynamic tensile behaviour of quasi-brittle concrete material;.•Elucidate com...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 418; p. 116540 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Propose a rate-dependent phase field model considering both viscoelasticity and micro-viscosity;.•Develop VUEL and VUMAT subroutines to integrate the model through explicit numerical solution schemes;.•Successfully predict dynamic tensile behaviour of quasi-brittle concrete material;.•Elucidate complicated dynamic fracture mechanisms using CT image-based real meso‑structures.
To investigate dynamic fracture mechanisms of quasi-brittle materials, this work proposes a rate-dependent phase field model that integrates both macroscopic viscoelasticity and micro-viscosity to reflect the rate effects by free water and unhydrated inclusions. Based on the unified phase field theory, the model introduces a linear viscoelastic constitutive relation in effective stress space to consider the macro-viscosity of the bulk material. Additionally, the micro-force balance concept is utilized with the micro-viscosity to derive a parabolic phase field evolution law that accurately describes the dynamic micro-crack development. Explicit numerical solution schemes are established for the governing equations by developing VUEL and VUMAT subroutines in ABAQUS. This eliminates the convergence issue in implicit phase field modelling. Four typical benchmarks are investigated to validate the proposed model for macroscale and mesoscale heterogeneous problems. It is found that the proposed model can well capture the crack branching, delaying characteristic of micro-crack growth, and increase of macroscopic strength under higher strain rates. Using real meso‑structures from CT images, the complicated dynamic behaviour of concrete is investigated which yields deeper insight into stress wave propagation, crack evolution and load-carrying capacities. |
---|---|
AbstractList | •Propose a rate-dependent phase field model considering both viscoelasticity and micro-viscosity;.•Develop VUEL and VUMAT subroutines to integrate the model through explicit numerical solution schemes;.•Successfully predict dynamic tensile behaviour of quasi-brittle concrete material;.•Elucidate complicated dynamic fracture mechanisms using CT image-based real meso‑structures.
To investigate dynamic fracture mechanisms of quasi-brittle materials, this work proposes a rate-dependent phase field model that integrates both macroscopic viscoelasticity and micro-viscosity to reflect the rate effects by free water and unhydrated inclusions. Based on the unified phase field theory, the model introduces a linear viscoelastic constitutive relation in effective stress space to consider the macro-viscosity of the bulk material. Additionally, the micro-force balance concept is utilized with the micro-viscosity to derive a parabolic phase field evolution law that accurately describes the dynamic micro-crack development. Explicit numerical solution schemes are established for the governing equations by developing VUEL and VUMAT subroutines in ABAQUS. This eliminates the convergence issue in implicit phase field modelling. Four typical benchmarks are investigated to validate the proposed model for macroscale and mesoscale heterogeneous problems. It is found that the proposed model can well capture the crack branching, delaying characteristic of micro-crack growth, and increase of macroscopic strength under higher strain rates. Using real meso‑structures from CT images, the complicated dynamic behaviour of concrete is investigated which yields deeper insight into stress wave propagation, crack evolution and load-carrying capacities. |
ArticleNumber | 116540 |
Author | Zhang, Hui Huang, Yu-jie Wriggers, Peter Hai, Lu Xu, Shi-lang |
Author_xml | – sequence: 1 givenname: Lu orcidid: 0000-0003-4374-0730 surname: Hai fullname: Hai, Lu organization: School of Engineering, Ocean University of China, Qingdao, 266100, China – sequence: 2 givenname: Peter orcidid: 0000-0002-2676-1145 surname: Wriggers fullname: Wriggers, Peter organization: Institute for Continuum Mechanics, Leibniz Universität Hannover, Garbsen, 30823, Germany – sequence: 3 givenname: Yu-jie orcidid: 0000-0001-7349-6711 surname: Huang fullname: Huang, Yu-jie email: mpcyujie@nuc.edu.cn organization: School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China – sequence: 4 givenname: Hui orcidid: 0000-0002-7740-4068 surname: Zhang fullname: Zhang, Hui email: zhangh@nuc.edu.cn organization: School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China – sequence: 5 givenname: Shi-lang surname: Xu fullname: Xu, Shi-lang organization: Institute of Advanced Engineering Structures, Zhejiang University, Hangzhou, 310058, China |
BookMark | eNp9kM1OAyEURompibX6AO54gakwzDBMXJn6mzRxo2tC4VJpZpgJYGMfwbeWtq5clA0JfOe7uecSTfzgAaEbSuaUUH67metezUtSsjmlvK7IGZpS0bRFSZmYoCkhVV00oqwv0GWMG5KPoOUU_TzsvOqdxjYonb4CYOe3EJNbq-QGjweL9eB1gAR4tcMKB5WgMDCCN-AThu-xc9olPH6qCNg66AzuBwNdLkqwznHn13jroh6gU7k4h3OPzymnw1AcfmJ-u0LnVnURrv_uGfp4enxfvBTLt-fXxf2y0GXbpMIaWnOgoCrBLTemZsKUIFqrKka05boFtmIMFLQ109qa0vBacMZo3UCm2AzRY2-eHmMAK8fgehV2khK5dyk3MruUe5fy6DIzzT8mb3EQlIJy3Uny7khCXmnrIMioHXgNxgXQSZrBnaB_ATBxlSk |
CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2024_109266 crossref_primary_10_1016_j_cma_2024_117456 crossref_primary_10_1016_j_engstruct_2025_119970 crossref_primary_10_1016_j_ijfatigue_2024_108180 crossref_primary_10_1007_s11043_024_09756_7 crossref_primary_10_1016_j_engfracmech_2025_110805 crossref_primary_10_1016_j_jmps_2025_106036 crossref_primary_10_1016_j_jmps_2024_105971 crossref_primary_10_1002_nme_70012 crossref_primary_10_1016_j_ijmecsci_2025_110131 crossref_primary_10_1016_j_jobe_2025_112006 crossref_primary_10_1016_j_ijmecsci_2023_108907 crossref_primary_10_1016_j_jmps_2024_105687 crossref_primary_10_1016_j_conbuildmat_2023_134273 crossref_primary_10_1016_j_ijplas_2024_104042 crossref_primary_10_1063_5_0214395 crossref_primary_10_1016_j_cma_2024_117416 crossref_primary_10_1016_j_susmat_2024_e01228 crossref_primary_10_1155_stc_6641629 |
Cites_doi | 10.1016/S0022-5096(98)00034-9 10.1016/j.cma.2018.06.013 10.1016/j.ijimpeng.2019.103318 10.1016/j.tafmec.2022.103283 10.1016/j.cma.2023.116050 10.1016/j.engstruct.2022.115477 10.1016/j.ijsolstr.2003.09.020 10.1007/s00466-010-0561-6 10.1016/j.engfracmech.2019.106821 10.1016/j.tafmec.2023.103779 10.1016/j.cma.2018.09.018 10.1016/j.conbuildmat.2013.05.063 10.1007/s10704-022-00634-2 10.1016/j.ijimpeng.2009.04.007 10.1016/j.engfracmech.2021.107847 10.1007/BF02486201 10.1016/j.cma.2023.116044 10.1016/j.cma.2017.09.027 10.1016/j.engfracmech.2018.07.015 10.1002/nme.2861 10.1016/j.engfracmech.2018.04.038 10.1016/j.ijimpeng.2016.06.009 10.1016/j.finel.2005.11.008 10.1016/j.cma.2016.05.015 10.1016/j.engfracmech.2004.01.012 10.1016/j.ijimpeng.2010.10.028 10.1016/j.ijimpeng.2013.12.005 10.1016/bs.aams.2019.04.002 10.1016/j.ijsolstr.2015.05.002 10.1016/j.jmps.2017.03.015 10.1007/s00466-019-01733-z 10.1016/j.ijimpeng.2014.02.005 10.1016/j.engfracmech.2014.07.003 10.1016/j.cma.2019.06.029 10.1002/nme.941 10.1016/j.conbuildmat.2021.122419 10.1007/s00466-014-1045-x 10.1007/s00466-015-1149-y 10.1177/10567895231160811 10.1016/j.ijimpeng.2019.103336 10.1016/j.jmps.2009.04.011 10.1016/j.compstruc.2019.03.005 10.1016/j.engfracmech.2008.02.004 10.1061/JMCEA3.0002111 10.1016/j.cma.2022.115074 10.1016/j.ijimpeng.2018.09.007 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D 10.1016/j.jmps.2018.04.007 10.1023/A:1007647800529 10.1002/nme.5262 10.1016/j.ijimpeng.2011.07.004 10.1016/j.cma.2018.06.015 10.1016/j.mechmat.2005.06.004 10.1016/j.cma.2007.04.011 10.1016/j.cma.2021.113897 10.1016/j.cma.2012.01.008 10.1007/BF00020851 10.1016/j.cma.2022.115559 10.1016/j.ijsolstr.2013.08.030 10.1016/j.cma.2017.09.019 10.1016/j.engfracmech.2015.09.002 10.1061/(ASCE)0733-9399(1987)113:10(1512) 10.1016/j.engfracmech.2017.06.019 10.1061/(ASCE)ST.1943-541X.0002015 10.1016/j.euromechsol.2021.104380 10.1016/S0022-5096(99)00028-9 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cma.2023.116540 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2138 |
ExternalDocumentID | 10_1016_j_cma_2023_116540 S0045782523006643 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SSH VH1 VOH WUQ ZY4 |
ID | FETCH-LOGICAL-c297t-fd156e1ea486f6dd538d2e89fa430cf6c9e3b33eae953ccfd2d658633157eea43 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Tue Jul 01 04:06:22 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Sat Jul 06 15:31:22 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dynamic fracture mechanisms Mesoscale concrete Rate dependence Unified phase field theory Quasi-brittle materials |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-fd156e1ea486f6dd538d2e89fa430cf6c9e3b33eae953ccfd2d658633157eea43 |
ORCID | 0000-0001-7349-6711 0000-0002-7740-4068 0000-0003-4374-0730 0000-0002-2676-1145 |
ParticipantIDs | crossref_primary_10_1016_j_cma_2023_116540 crossref_citationtrail_10_1016_j_cma_2023_116540 elsevier_sciencedirect_doi_10_1016_j_cma_2023_116540 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 2024-01-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kong, Fang, Jian (bib0024) 2019; 132 Wang, Poh (bib0026) 2018; 116 Min, Wang, Hu, Zhao, Sun, Zhang, Yao, Bui (bib0059) 2023; 411 Zhang, Ruiz, Yu, Tarifa (bib0070) 2009; 36 Hai, Jie (bib0003) 2022; 118 Simone, Askes, Sluys (bib0025) 2004; 41 Bourdin, Francfort, Marigo (bib0028) 2000; 48 Wu, Zhang, Fang, Yu, Ma (bib0001) 2021; 278 Bažant (bib0016) 1976; 102 Rossi, Toutlemonde (bib0046) 1996; 29 Miehe, Welschinger, Hofacker (bib0029) 2010; 83 Jin, Yu, Du, Yang (bib0041) 2019; 132 Ožbolt, Bošnjak, Sola (bib0039) 2013; 50 Reinhardt, Weerheijm (bib0048) 1991; 51 Kalthoff (bib0068) 2000; 101 Borden, Verhoosel, Scott, Hughes, Landis (bib0031) 2012; 217 Zheng, Li (bib0047) 2004; 71 Shen, Waisman, Guo (bib0064) 2019; 346 Yu, Jin, Du (bib0076) 2023; 32 Zhuang, Ren, Rabczuk (bib0056) 2021; 90 Wu (bib0058) 2018; 328 Zhuang, Ren, Rabczuk (bib0011) 2021; 90 Feng, Wu (bib0034) 2018; 197 Ma, Wriggers, Gao, Chen, Sahraee (bib0010) 2011; 47 Nguyen, Wu (bib0035) 2018; 340 Huang, Yang, Chen, Liu (bib0074) 2016; 97 Hao, Bi, Chen, Pham, Li (bib0008) 2023; 277 Pedersen, Simone, Sluys (bib0050) 2008; 75 Ren, Zhuang, Anitescu, Rabczuk (bib0053) 2019; 217 Hordijk (bib0077) 1992; 37 Kong, Fang, Chen, Wu (bib0023) 2018; 122 Yuan, Tong, Liu, Yang (bib0066) 2022; 57 Huang, Zhang, Zhou, Xu (bib0065) 2022; 400 Pereira, Weerheijm, Sluys (bib0013) 2017; 182 Landis (bib0004) 2018; 200 Natarajan, Ooi, Birk, Song (bib0036) 2022; 236 Pijaudier-Cabot, Bažant (bib0020) 1987; 113 Ross, Tedesco, Kuennen (bib0042) 1995; 92 Wu, Wriggers (bib0006) 2015; 55 Brara, Klepaczko (bib0043) 2006; 38 Wang, Shedbale, Kumar, Poh (bib0060) 2019; 355 (bib0078) 2013 Lu, Li (bib0049) 2011; 38 Du, Jin (bib0002) 2021 Hu, Tan, Xia, Min, Xu, Yao, Sun, Zhang, Bui, Zhuang, Rabczuk (bib0055) 2023 Wriggers, Moftah (bib0005) 2006; 42 Combescure, Gravouil, Grégoire, Réthoré (bib0015) 2008; 197 Budarapu, Zhuang, Rabczuk, Bordas (bib0007) 2019; 52 Belytschko, Chen, Xu, Zi (bib0014) 2003; 58 Wu (bib0033) 2017; 103 Ožbolt, Bede, Sharma, Mayer (bib0040) 2015; 148 Yu, Chen (bib0051) 2021; 383 de Borst, Verhoosel (bib0030) 2016; 312 Cornelissen, Hordijk, Reinhardt (bib0063) 1986; 31 Schlüter, Willenbücher, Kuhn, Müller (bib0032) 2014; 54 Malvar, Ross (bib0038) 1998; 95 Le, Marigo, Maurini, Vidoli (bib0017) 2018; 340 Simo, Hughes (bib0061) 2006 Ožbolt, Sharma, Irhan, Sola (bib0072) 2014; 69 Du, Jin, Ma (bib0044) 2014; 66 Wang, Ye, Liu, Chu, Zhuang (bib0054) 2019; 64 Huang, Yang, Ren, Liu, Zhang (bib0071) 2015; 67 Hai, Wu, Li (bib0009) 2020; 225 Nguyen, Bui, Hirose (bib0022) 2018; 328 Liu, Aldakheel, Aliabadia (bib0067) 2023; 411 Hao, Hao, Li, Chen (bib0045) 2016 Qin, Zhang (bib0073) 2011; 38 Francfort, Marigo (bib0027) 1998; 46 Nguyen (bib0012) 2014; 128 Feng, Ren, Li (bib0019) 2018; 144 Sahin, Ren, Imrak, Rabczuk (bib0057) 2023 Chen, Wu, Zhou (bib0075) 2013; 47 Huang, Yang, Zhang, Natarajan (bib0018) 2022; 396 Zeng, Ni, Zhang, Liu (bib0052) 2023 Amor, Marigo, Maurini (bib0062) 2009; 57 Hai, Li (bib0037) 2021; 252 Peerlings, de Borst, Brekelmans, de Vree J H (bib0021) 1996; 39 Li, Marigo, Guilbaud, Potapov (bib0069) 2016; 108 Kalthoff (10.1016/j.cma.2023.116540_bib0068) 2000; 101 Pereira (10.1016/j.cma.2023.116540_bib0013) 2017; 182 Nguyen (10.1016/j.cma.2023.116540_bib0022) 2018; 328 Huang (10.1016/j.cma.2023.116540_bib0065) 2022; 400 Malvar (10.1016/j.cma.2023.116540_bib0038) 1998; 95 Ross (10.1016/j.cma.2023.116540_bib0042) 1995; 92 Cornelissen (10.1016/j.cma.2023.116540_bib0063) 1986; 31 Bažant (10.1016/j.cma.2023.116540_bib0016) 1976; 102 Hao (10.1016/j.cma.2023.116540_bib0008) 2023; 277 Ma (10.1016/j.cma.2023.116540_bib0010) 2011; 47 Natarajan (10.1016/j.cma.2023.116540_bib0036) 2022; 236 Simo (10.1016/j.cma.2023.116540_bib0061) 2006 Zeng (10.1016/j.cma.2023.116540_bib0052) 2023 Zhang (10.1016/j.cma.2023.116540_bib0070) 2009; 36 Wriggers (10.1016/j.cma.2023.116540_bib0005) 2006; 42 Kong (10.1016/j.cma.2023.116540_bib0023) 2018; 122 Lu (10.1016/j.cma.2023.116540_bib0049) 2011; 38 Ožbolt (10.1016/j.cma.2023.116540_bib0072) 2014; 69 Rossi (10.1016/j.cma.2023.116540_bib0046) 1996; 29 Francfort (10.1016/j.cma.2023.116540_bib0027) 1998; 46 Zheng (10.1016/j.cma.2023.116540_bib0047) 2004; 71 Wu (10.1016/j.cma.2023.116540_bib0033) 2017; 103 de Borst (10.1016/j.cma.2023.116540_bib0030) 2016; 312 Nguyen (10.1016/j.cma.2023.116540_bib0012) 2014; 128 Pijaudier-Cabot (10.1016/j.cma.2023.116540_bib0020) 1987; 113 Kong (10.1016/j.cma.2023.116540_bib0024) 2019; 132 Hai (10.1016/j.cma.2023.116540_bib0003) 2022; 118 Belytschko (10.1016/j.cma.2023.116540_bib0014) 2003; 58 Hai (10.1016/j.cma.2023.116540_bib0037) 2021; 252 Du (10.1016/j.cma.2023.116540_bib0044) 2014; 66 Hordijk (10.1016/j.cma.2023.116540_bib0077) 1992; 37 Brara (10.1016/j.cma.2023.116540_bib0043) 2006; 38 Peerlings (10.1016/j.cma.2023.116540_bib0021) 1996; 39 Du (10.1016/j.cma.2023.116540_bib0002) 2021 Le (10.1016/j.cma.2023.116540_bib0017) 2018; 340 Li (10.1016/j.cma.2023.116540_bib0069) 2016; 108 Pedersen (10.1016/j.cma.2023.116540_bib0050) 2008; 75 Huang (10.1016/j.cma.2023.116540_bib0018) 2022; 396 Feng (10.1016/j.cma.2023.116540_bib0034) 2018; 197 Hai (10.1016/j.cma.2023.116540_bib0009) 2020; 225 Nguyen (10.1016/j.cma.2023.116540_bib0035) 2018; 340 Huang (10.1016/j.cma.2023.116540_bib0071) 2015; 67 Yu (10.1016/j.cma.2023.116540_bib0076) 2023; 32 Ožbolt (10.1016/j.cma.2023.116540_bib0040) 2015; 148 Yu (10.1016/j.cma.2023.116540_bib0051) 2021; 383 Zhuang (10.1016/j.cma.2023.116540_bib0056) 2021; 90 Zhuang (10.1016/j.cma.2023.116540_bib0011) 2021; 90 Ren (10.1016/j.cma.2023.116540_bib0053) 2019; 217 Landis (10.1016/j.cma.2023.116540_bib0004) 2018; 200 Miehe (10.1016/j.cma.2023.116540_bib0029) 2010; 83 Sahin (10.1016/j.cma.2023.116540_bib0057) 2023 Wang (10.1016/j.cma.2023.116540_bib0026) 2018; 116 Liu (10.1016/j.cma.2023.116540_bib0067) 2023; 411 Combescure (10.1016/j.cma.2023.116540_bib0015) 2008; 197 Feng (10.1016/j.cma.2023.116540_bib0019) 2018; 144 Wu (10.1016/j.cma.2023.116540_bib0006) 2015; 55 Wu (10.1016/j.cma.2023.116540_bib0058) 2018; 328 Borden (10.1016/j.cma.2023.116540_bib0031) 2012; 217 Wu (10.1016/j.cma.2023.116540_bib0001) 2021; 278 Schlüter (10.1016/j.cma.2023.116540_bib0032) 2014; 54 Min (10.1016/j.cma.2023.116540_bib0059) 2023; 411 (10.1016/j.cma.2023.116540_bib0078) 2013 Budarapu (10.1016/j.cma.2023.116540_bib0007) 2019; 52 Yuan (10.1016/j.cma.2023.116540_bib0066) 2022; 57 Chen (10.1016/j.cma.2023.116540_bib0075) 2013; 47 Amor (10.1016/j.cma.2023.116540_bib0062) 2009; 57 Simone (10.1016/j.cma.2023.116540_bib0025) 2004; 41 Wang (10.1016/j.cma.2023.116540_bib0060) 2019; 355 Bourdin (10.1016/j.cma.2023.116540_bib0028) 2000; 48 Hu (10.1016/j.cma.2023.116540_bib0055) 2023 Qin (10.1016/j.cma.2023.116540_bib0073) 2011; 38 Ožbolt (10.1016/j.cma.2023.116540_bib0039) 2013; 50 Hao (10.1016/j.cma.2023.116540_bib0045) 2016 Huang (10.1016/j.cma.2023.116540_bib0074) 2016; 97 Jin (10.1016/j.cma.2023.116540_bib0041) 2019; 132 Reinhardt (10.1016/j.cma.2023.116540_bib0048) 1991; 51 Wang (10.1016/j.cma.2023.116540_bib0054) 2019; 64 Shen (10.1016/j.cma.2023.116540_bib0064) 2019; 346 |
References_xml | – volume: 108 start-page: 1381 year: 2016 end-page: 1405 ident: bib0069 article-title: Gradient damage modeling of brittle fracture in an explicit dynamics context publication-title: Int. J. Numer. Method. Eng. – volume: 69 start-page: 55 year: 2014 end-page: 68 ident: bib0072 article-title: Tensile behavior of concrete under high loading rates publication-title: Int. J. Impact Eng. – volume: 36 start-page: 1204 year: 2009 end-page: 1209 ident: bib0070 article-title: Fracture behaviour of high-strength concrete at a wide range of loading rates publication-title: Int. J. Impact Eng. – volume: 52 start-page: 1 year: 2019 end-page: 103 ident: bib0007 article-title: Multiscale modeling of material failure: theory and computational methods publication-title: Adv. Appl. Mech. – volume: 132 year: 2019 ident: bib0041 article-title: Dynamic size effect of concrete under tension: a numerical study publication-title: Int. J. Impact Eng. – volume: 32 start-page: 683 year: 2023 end-page: 714 ident: bib0076 article-title: Experiment and meso-scale modelling on combined effects of strain rate and specimen size on uniaxial-compressive failures of concrete publication-title: Int. J. Damage Mech. – volume: 225 year: 2020 ident: bib0009 article-title: A phase-field damage model with micro inertia effect for the dynamic fracture of quasi-brittle solids publication-title: Eng. Fract. Mech. – year: 2023 ident: bib0055 article-title: An overview of implicit and explicit phase field models for quasi-static failure processes, implementation and computational efficiency publication-title: Theor. Appl. Fract. Mech. – volume: 277 year: 2023 ident: bib0008 article-title: Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures publication-title: Eng. Struct. – volume: 128 start-page: 37 year: 2014 end-page: 68 ident: bib0012 article-title: Discontinuous Galerkin/Extrinsic cohesive zone modeling: implementation caveats and applications in computational fracture mechanics publication-title: Eng. Fract. Mech. – volume: 252 year: 2021 ident: bib0037 article-title: A rate-dependent phase-field framework for the dynamic failure of quasi-brittle materials publication-title: Eng. Fract. Mech. – volume: 103 start-page: 72 year: 2017 end-page: 99 ident: bib0033 article-title: A unified phase-field theory for the mechanics of damage and quasi-brittle failure publication-title: J. Mech. Phys. Solid. – volume: 278 year: 2021 ident: bib0001 article-title: Mesoscopic modelling of concrete material under static and dynamic loadings: a review publication-title: Constr. Build. Mater. – volume: 38 start-page: 171 year: 2011 end-page: 180 ident: bib0049 article-title: About the dynamic uniaxial tensile strength of concrete-like materials publication-title: Int. J. Impact Eng. – volume: 182 start-page: 689 year: 2017 end-page: 707 ident: bib0013 article-title: A numerical study on crack branching in quasi-brittle materials with a new effective rate-dependent nonlocal damage model publication-title: Eng. Fract. Mech. – volume: 400 year: 2022 ident: bib0065 article-title: Efficient quasi-brittle fracture simulations of concrete at mesoscale using micro CT images and a localizing gradient damage model publication-title: Comput. Method. Appl. Mech. Eng. – volume: 46 start-page: 1319 year: 1998 end-page: 1342 ident: bib0027 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J. Mech. Phys. Solid. – volume: 67 start-page: 340 year: 2015 end-page: 352 ident: bib0071 article-title: 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray Computed Tomography images using damage plasticity model publication-title: Int. J. Solid. Struct. – volume: 95 start-page: 735 year: 1998 end-page: 739 ident: bib0038 article-title: Review of strain rate effects for concrete in tension publication-title: ACI Mater. J. – year: 2021 ident: bib0002 article-title: Size Effect in Concrete Materials and Structures – year: 2013 ident: bib0078 article-title: Fib Model Code For Concrete Structures 2010 – volume: 396 year: 2022 ident: bib0018 article-title: A phase-field cohesive zone model integrated with cell-based smoothed finite element method for quasi-brittle fracture simulations of concrete at mesoscale publication-title: Comput. Method. Appl. Mech. Eng. – volume: 92 start-page: 37 year: 1995 end-page: 45 ident: bib0042 article-title: Effects of strain rate on concrete strength publication-title: ACI Mater. J. – volume: 144 year: 2018 ident: bib0019 article-title: Softened damage-plasticity model for analysis of cracked reinforced concrete structures publication-title: J. Struct. Eng. – volume: 340 start-page: 424 year: 2018 end-page: 450 ident: bib0017 article-title: Strain-gradient vs damage-gradient regularizations of softening damage models publication-title: Comput. Method. Appl. Mech. Eng. – volume: 411 year: 2023 ident: bib0059 article-title: A chemo-thermo-mechanical coupled phase field framework for failure in thermal barrier coatings publication-title: Comput. Method. Appl. Mech. Eng. – volume: 122 start-page: 318 year: 2018 end-page: 332 ident: bib0023 article-title: Nonlocal formulation of the modified K&C model to resolve mesh-size dependency of concrete structures subjected to intense dynamic loadings publication-title: Int. J. Impact Eng. – volume: 38 start-page: 1011 year: 2011 end-page: 1021 ident: bib0073 article-title: Numerical study of dynamic behavior of concrete by meso-scale particle element modeling publication-title: Int. J. Impact Eng. – volume: 42 start-page: 623 year: 2006 end-page: 636 ident: bib0005 article-title: Mesoscale models for concrete: homogenisation and damage behaviour publication-title: Finite Elem. Anal. Des. – volume: 312 start-page: 78 year: 2016 end-page: 94 ident: bib0030 article-title: Gradient damage vs phase-field approaches for fracture: similarities and differences publication-title: Comput. Method. Appl. Mech. Eng. – volume: 75 start-page: 3782 year: 2008 end-page: 3805 ident: bib0050 article-title: An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage model publication-title: Eng. Fract. Mech. – volume: 90 year: 2021 ident: bib0011 article-title: Nonlocal operator method for dynamic brittle fracture based on an explicit phase field model publication-title: Eur. J. Mech./A Solid. – volume: 41 start-page: 351 year: 2004 end-page: 363 ident: bib0025 article-title: Incorrect initiation and propagation of failure in non-local and gradient-enhanced media publication-title: Int. J. Solid. Struct. – volume: 55 start-page: 999 year: 2015 end-page: 1016 ident: bib0006 article-title: Multiscale diffusion-thermal-mechanical cohesive zone model for concrete publication-title: Comput. Mech. – volume: 197 start-page: 309 year: 2008 end-page: 318 ident: bib0015 article-title: X-FEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation publication-title: Comput Method. Appl Mech Eng – volume: 66 start-page: 5 year: 2014 end-page: 17 ident: bib0044 article-title: Numerical simulation of dynamic tensile-failure of concrete at meso-scale publication-title: Int. J. Impact Eng. – volume: 64 start-page: 1537 year: 2019 end-page: 1556 ident: bib0054 article-title: Modeling the dynamic and quasi-static compression-shear failure of brittle materials by explicit phase field method publication-title: Comput. Mech. – volume: 217 start-page: 45 year: 2019 end-page: 56 ident: bib0053 article-title: An explicit phase field method for brittle dynamic fracture publication-title: Comput. Struct. – volume: 48 start-page: 797 year: 2000 end-page: 826 ident: bib0028 article-title: Numerical experiments in revisited brittle fracture publication-title: J. Mech. Phys. Solid. – volume: 328 start-page: 612 year: 2018 end-page: 637 ident: bib0058 article-title: A geometrically regularized gradient-damage model with energetic equivalence publication-title: Comput. Method. Appl. Mech. Eng. – volume: 236 start-page: 87 year: 2022 end-page: 108 ident: bib0036 article-title: Adaptive modelling of dynamic brittle fracture - a combined phase field regularized cohesive zone model and scaled boundary finite element approach publication-title: Int. J. Fract. – start-page: 1 year: 2016 end-page: 31 ident: bib0045 article-title: Review of the current practices in blast-resistant analysis and design of concrete structures publication-title: Adv. Struct. Eng. – volume: 355 start-page: 492 year: 2019 end-page: 512 ident: bib0060 article-title: Localizing gradient damage model with micro inertia effect for dynamic fracture publication-title: Comput. Method. Appl. Mech. Eng. – volume: 71 start-page: 2319 year: 2004 end-page: 2327 ident: bib0047 article-title: An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity publication-title: Eng. Fract. Mech. – volume: 116 start-page: 370 year: 2018 end-page: 390 ident: bib0026 article-title: A homogenized localizing gradient damage model with micro inertia effect publication-title: J. Mech. Phys. Solid. – volume: 51 start-page: 31 year: 1991 end-page: 42 ident: bib0048 article-title: Tensile fracture of concrete at high loading rates taking account of inertia and crack velocity effects publication-title: Int. J. Fract. – volume: 54 start-page: 1141 year: 2014 end-page: 1161 ident: bib0032 article-title: Phase field approximation of dynamic brittle fracture publication-title: Comput. Mech. – volume: 132 year: 2019 ident: bib0024 article-title: A new damage-based nonlocal model for dynamic tensile failure of concrete material publication-title: Int. J. Impact Eng. – volume: 47 start-page: 627 year: 2011 end-page: 640 ident: bib0010 article-title: Reliability-based optimization of trusses with random parameters under dynamic loads publication-title: Comput. Mech. – volume: 37 year: 1992 ident: bib0077 article-title: Tensile and tensile fatigue behaviour of concrete: experiments, modelling and analyses publication-title: Heron – volume: 50 start-page: 4270 year: 2013 end-page: 4278 ident: bib0039 article-title: Dynamic fracture of concrete compact tension specimen: experimental and numerical study publication-title: Int. J. Solid. Struct. – volume: 29 start-page: 116 year: 1996 end-page: 118 ident: bib0046 article-title: Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms publication-title: Mater. Struct. – volume: 39 start-page: 3391 year: 1996 end-page: 3403 ident: bib0021 article-title: Gradient enhanced damage for quasi-brittle materials publication-title: Int. J. Numer. Method. Eng. – volume: 411 year: 2023 ident: bib0067 article-title: Virtual element method for phase field modeling of dynamic fracture publication-title: Comput. Method. Appl. Mech. Eng. – volume: 101 start-page: 1 year: 2000 end-page: 31 ident: bib0068 article-title: Modes of dynamic shear failure in solids publication-title: Int. J. Fract. – volume: 102 start-page: 331 year: 1976 end-page: 344 ident: bib0016 article-title: Instability, ductility, and size effect in strain-softening concrete publication-title: J. Eng. Mech. Divis. – volume: 383 year: 2021 ident: bib0051 article-title: A viscoelastic micropolar peridynamic model for quasi-brittle materials incorporating loading-rate effects publication-title: Comput. Method. Appl. Mech. Eng. – volume: 328 start-page: 498 year: 2018 end-page: 541 ident: bib0022 article-title: Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elements publication-title: Comput. Method. Appl. Mech. Eng. – volume: 118 year: 2022 ident: bib0003 article-title: Modeling tensile damage and fracture of quasi-brittle materials using stochastic phase-field model publication-title: Theor. Appl. Fract. Mech. – volume: 97 start-page: 102 year: 2016 end-page: 115 ident: bib0074 article-title: Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images publication-title: Int. J. Impact Eng. – volume: 58 start-page: 1873 year: 2003 end-page: 1905 ident: bib0014 article-title: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment publication-title: Int. J. Numer. Method. Eng. – volume: 57 year: 2022 ident: bib0066 article-title: Explicit double-phase-field formulation and implementation for bending behavior of UHPC-NC composite beams publication-title: J. Build. Eng. – year: 2006 ident: bib0061 article-title: Computational Inelasticity – volume: 200 start-page: 42 year: 2018 end-page: 49 ident: bib0004 article-title: Microplanes and microstructure: connecting abstractions and reality publication-title: Eng. Fract. Mech. – volume: 83 start-page: 1273 year: 2010 end-page: 1311 ident: bib0029 article-title: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations publication-title: Int. J. Numer. Method. Eng. – volume: 197 start-page: 66 year: 2018 end-page: 79 ident: bib0034 article-title: Phase-field regularized cohesive zone model (CZM) and size effect of concrete publication-title: Eng. Fract. Mech. – volume: 38 start-page: 253 year: 2006 end-page: 267 ident: bib0043 article-title: Experimental characterization of concrete in dynamic tension publication-title: Mech. Mater. – volume: 217 start-page: 77 year: 2012 end-page: 95 ident: bib0031 article-title: A phase-field description of dynamic brittle fracture publication-title: Comput. Method. Appl. Mech. Eng. – volume: 340 start-page: 1000 year: 2018 end-page: 1022 ident: bib0035 article-title: Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model publication-title: Comput. Method. Appl. Mech. Eng. – volume: 57 start-page: 1209 year: 2009 end-page: 1229 ident: bib0062 article-title: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments publication-title: J. Mech. Phys. Solid. – volume: 148 start-page: 27 year: 2015 end-page: 41 ident: bib0040 article-title: Dynamic fracture of concrete publication-title: Eng. Fract. Mech. – volume: 47 start-page: 419 year: 2013 end-page: 430 ident: bib0075 article-title: Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete publication-title: Constr. Build. Mater. – volume: 113 start-page: 1512 year: 1987 end-page: 1533 ident: bib0020 article-title: Nonlocal damage theory publication-title: J. Eng. Mech. – volume: 346 start-page: 862 year: 2019 end-page: 890 ident: bib0064 article-title: Fracture of viscoelastic solids modeled with a modified phase field method publication-title: Comput. Method. Appl. Mech. Eng. – start-page: 1 year: 2023 end-page: 12 ident: bib0057 article-title: Computational modeling of quasi static fracture using the nonlocal operator method and explicit phase field model publication-title: Eng. Comput. – start-page: 1 year: 2023 end-page: 29 ident: bib0052 article-title: An explicit phase field material point method for modeling dynamic fracture problems publication-title: Int. J. Numer. Method. Eng. – volume: 31 start-page: 45 year: 1986 end-page: 46 ident: bib0063 article-title: Experimental determination of crack softening characteristics of normalweight and lightweight publication-title: Heron – volume: 90 year: 2021 ident: bib0056 article-title: Nonlocal operator method for dynamic brittle fracture based on an explicit phase field model publication-title: Eur. J. Mech. A. Solid. – volume: 46 start-page: 1319 issue: 8 year: 1998 ident: 10.1016/j.cma.2023.116540_bib0027 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J. Mech. Phys. Solid. doi: 10.1016/S0022-5096(98)00034-9 – volume: 340 start-page: 424 year: 2018 ident: 10.1016/j.cma.2023.116540_bib0017 article-title: Strain-gradient vs damage-gradient regularizations of softening damage models publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2018.06.013 – volume: 132 year: 2019 ident: 10.1016/j.cma.2023.116540_bib0041 article-title: Dynamic size effect of concrete under tension: a numerical study publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2019.103318 – volume: 118 year: 2022 ident: 10.1016/j.cma.2023.116540_bib0003 article-title: Modeling tensile damage and fracture of quasi-brittle materials using stochastic phase-field model publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2022.103283 – volume: 411 year: 2023 ident: 10.1016/j.cma.2023.116540_bib0067 article-title: Virtual element method for phase field modeling of dynamic fracture publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116050 – volume: 277 year: 2023 ident: 10.1016/j.cma.2023.116540_bib0008 article-title: Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.115477 – volume: 37 issue: 1 year: 1992 ident: 10.1016/j.cma.2023.116540_bib0077 article-title: Tensile and tensile fatigue behaviour of concrete: experiments, modelling and analyses publication-title: Heron – year: 2013 ident: 10.1016/j.cma.2023.116540_bib0078 – volume: 41 start-page: 351 issue: 2 year: 2004 ident: 10.1016/j.cma.2023.116540_bib0025 article-title: Incorrect initiation and propagation of failure in non-local and gradient-enhanced media publication-title: Int. J. Solid. Struct. doi: 10.1016/j.ijsolstr.2003.09.020 – volume: 47 start-page: 627 year: 2011 ident: 10.1016/j.cma.2023.116540_bib0010 article-title: Reliability-based optimization of trusses with random parameters under dynamic loads publication-title: Comput. Mech. doi: 10.1007/s00466-010-0561-6 – volume: 57 year: 2022 ident: 10.1016/j.cma.2023.116540_bib0066 article-title: Explicit double-phase-field formulation and implementation for bending behavior of UHPC-NC composite beams publication-title: J. Build. Eng. – volume: 90 year: 2021 ident: 10.1016/j.cma.2023.116540_bib0011 article-title: Nonlocal operator method for dynamic brittle fracture based on an explicit phase field model publication-title: Eur. J. Mech./A Solid. – volume: 225 year: 2020 ident: 10.1016/j.cma.2023.116540_bib0009 article-title: A phase-field damage model with micro inertia effect for the dynamic fracture of quasi-brittle solids publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2019.106821 – year: 2023 ident: 10.1016/j.cma.2023.116540_bib0055 article-title: An overview of implicit and explicit phase field models for quasi-static failure processes, implementation and computational efficiency publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2023.103779 – year: 2006 ident: 10.1016/j.cma.2023.116540_bib0061 – volume: 346 start-page: 862 year: 2019 ident: 10.1016/j.cma.2023.116540_bib0064 article-title: Fracture of viscoelastic solids modeled with a modified phase field method publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2018.09.018 – volume: 47 start-page: 419 year: 2013 ident: 10.1016/j.cma.2023.116540_bib0075 article-title: Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.05.063 – volume: 236 start-page: 87 year: 2022 ident: 10.1016/j.cma.2023.116540_bib0036 article-title: Adaptive modelling of dynamic brittle fracture - a combined phase field regularized cohesive zone model and scaled boundary finite element approach publication-title: Int. J. Fract. doi: 10.1007/s10704-022-00634-2 – volume: 36 start-page: 1204 issue: 10–11 year: 2009 ident: 10.1016/j.cma.2023.116540_bib0070 article-title: Fracture behaviour of high-strength concrete at a wide range of loading rates publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2009.04.007 – volume: 252 year: 2021 ident: 10.1016/j.cma.2023.116540_bib0037 article-title: A rate-dependent phase-field framework for the dynamic failure of quasi-brittle materials publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2021.107847 – volume: 29 start-page: 116 year: 1996 ident: 10.1016/j.cma.2023.116540_bib0046 article-title: Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms publication-title: Mater. Struct. doi: 10.1007/BF02486201 – volume: 411 year: 2023 ident: 10.1016/j.cma.2023.116540_bib0059 article-title: A chemo-thermo-mechanical coupled phase field framework for failure in thermal barrier coatings publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116044 – volume: 328 start-page: 612 year: 2018 ident: 10.1016/j.cma.2023.116540_bib0058 article-title: A geometrically regularized gradient-damage model with energetic equivalence publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2017.09.027 – volume: 200 start-page: 42 year: 2018 ident: 10.1016/j.cma.2023.116540_bib0004 article-title: Microplanes and microstructure: connecting abstractions and reality publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2018.07.015 – volume: 83 start-page: 1273 issue: 10 year: 2010 ident: 10.1016/j.cma.2023.116540_bib0029 article-title: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations publication-title: Int. J. Numer. Method. Eng. doi: 10.1002/nme.2861 – volume: 197 start-page: 66 year: 2018 ident: 10.1016/j.cma.2023.116540_bib0034 article-title: Phase-field regularized cohesive zone model (CZM) and size effect of concrete publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2018.04.038 – volume: 97 start-page: 102 year: 2016 ident: 10.1016/j.cma.2023.116540_bib0074 article-title: Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2016.06.009 – volume: 42 start-page: 623 issue: 7 year: 2006 ident: 10.1016/j.cma.2023.116540_bib0005 article-title: Mesoscale models for concrete: homogenisation and damage behaviour publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2005.11.008 – volume: 312 start-page: 78 year: 2016 ident: 10.1016/j.cma.2023.116540_bib0030 article-title: Gradient damage vs phase-field approaches for fracture: similarities and differences publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2016.05.015 – volume: 71 start-page: 2319 issue: 16–17 year: 2004 ident: 10.1016/j.cma.2023.116540_bib0047 article-title: An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2004.01.012 – volume: 95 start-page: 735 year: 1998 ident: 10.1016/j.cma.2023.116540_bib0038 article-title: Review of strain rate effects for concrete in tension publication-title: ACI Mater. J. – volume: 38 start-page: 171 issue: 4 year: 2011 ident: 10.1016/j.cma.2023.116540_bib0049 article-title: About the dynamic uniaxial tensile strength of concrete-like materials publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2010.10.028 – volume: 66 start-page: 5 year: 2014 ident: 10.1016/j.cma.2023.116540_bib0044 article-title: Numerical simulation of dynamic tensile-failure of concrete at meso-scale publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2013.12.005 – volume: 52 start-page: 1 year: 2019 ident: 10.1016/j.cma.2023.116540_bib0007 article-title: Multiscale modeling of material failure: theory and computational methods publication-title: Adv. Appl. Mech. doi: 10.1016/bs.aams.2019.04.002 – start-page: 1 year: 2023 ident: 10.1016/j.cma.2023.116540_bib0052 article-title: An explicit phase field material point method for modeling dynamic fracture problems publication-title: Int. J. Numer. Method. Eng. – volume: 67 start-page: 340 year: 2015 ident: 10.1016/j.cma.2023.116540_bib0071 article-title: 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray Computed Tomography images using damage plasticity model publication-title: Int. J. Solid. Struct. doi: 10.1016/j.ijsolstr.2015.05.002 – volume: 103 start-page: 72 year: 2017 ident: 10.1016/j.cma.2023.116540_bib0033 article-title: A unified phase-field theory for the mechanics of damage and quasi-brittle failure publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2017.03.015 – volume: 64 start-page: 1537 year: 2019 ident: 10.1016/j.cma.2023.116540_bib0054 article-title: Modeling the dynamic and quasi-static compression-shear failure of brittle materials by explicit phase field method publication-title: Comput. Mech. doi: 10.1007/s00466-019-01733-z – volume: 31 start-page: 45 issue: 2 year: 1986 ident: 10.1016/j.cma.2023.116540_bib0063 article-title: Experimental determination of crack softening characteristics of normalweight and lightweight publication-title: Heron – volume: 69 start-page: 55 year: 2014 ident: 10.1016/j.cma.2023.116540_bib0072 article-title: Tensile behavior of concrete under high loading rates publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2014.02.005 – volume: 128 start-page: 37 year: 2014 ident: 10.1016/j.cma.2023.116540_bib0012 article-title: Discontinuous Galerkin/Extrinsic cohesive zone modeling: implementation caveats and applications in computational fracture mechanics publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2014.07.003 – volume: 355 start-page: 492 year: 2019 ident: 10.1016/j.cma.2023.116540_bib0060 article-title: Localizing gradient damage model with micro inertia effect for dynamic fracture publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2019.06.029 – volume: 58 start-page: 1873 issue: 12 year: 2003 ident: 10.1016/j.cma.2023.116540_bib0014 article-title: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment publication-title: Int. J. Numer. Method. Eng. doi: 10.1002/nme.941 – volume: 278 year: 2021 ident: 10.1016/j.cma.2023.116540_bib0001 article-title: Mesoscopic modelling of concrete material under static and dynamic loadings: a review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.122419 – volume: 54 start-page: 1141 year: 2014 ident: 10.1016/j.cma.2023.116540_bib0032 article-title: Phase field approximation of dynamic brittle fracture publication-title: Comput. Mech. doi: 10.1007/s00466-014-1045-x – volume: 55 start-page: 999 year: 2015 ident: 10.1016/j.cma.2023.116540_bib0006 article-title: Multiscale diffusion-thermal-mechanical cohesive zone model for concrete publication-title: Comput. Mech. doi: 10.1007/s00466-015-1149-y – start-page: 1 year: 2023 ident: 10.1016/j.cma.2023.116540_bib0057 article-title: Computational modeling of quasi static fracture using the nonlocal operator method and explicit phase field model publication-title: Eng. Comput. – volume: 32 start-page: 683 issue: 5 year: 2023 ident: 10.1016/j.cma.2023.116540_bib0076 article-title: Experiment and meso-scale modelling on combined effects of strain rate and specimen size on uniaxial-compressive failures of concrete publication-title: Int. J. Damage Mech. doi: 10.1177/10567895231160811 – volume: 132 year: 2019 ident: 10.1016/j.cma.2023.116540_bib0024 article-title: A new damage-based nonlocal model for dynamic tensile failure of concrete material publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2019.103336 – volume: 57 start-page: 1209 issue: 8 year: 2009 ident: 10.1016/j.cma.2023.116540_bib0062 article-title: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2009.04.011 – volume: 217 start-page: 45 year: 2019 ident: 10.1016/j.cma.2023.116540_bib0053 article-title: An explicit phase field method for brittle dynamic fracture publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2019.03.005 – volume: 75 start-page: 3782 issue: 13 year: 2008 ident: 10.1016/j.cma.2023.116540_bib0050 article-title: An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage model publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2008.02.004 – volume: 102 start-page: 331 issue: 2 year: 1976 ident: 10.1016/j.cma.2023.116540_bib0016 article-title: Instability, ductility, and size effect in strain-softening concrete publication-title: J. Eng. Mech. Divis. doi: 10.1061/JMCEA3.0002111 – volume: 396 year: 2022 ident: 10.1016/j.cma.2023.116540_bib0018 article-title: A phase-field cohesive zone model integrated with cell-based smoothed finite element method for quasi-brittle fracture simulations of concrete at mesoscale publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2022.115074 – volume: 122 start-page: 318 year: 2018 ident: 10.1016/j.cma.2023.116540_bib0023 article-title: Nonlocal formulation of the modified K&C model to resolve mesh-size dependency of concrete structures subjected to intense dynamic loadings publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2018.09.007 – volume: 39 start-page: 3391 issue: 19 year: 1996 ident: 10.1016/j.cma.2023.116540_bib0021 article-title: Gradient enhanced damage for quasi-brittle materials publication-title: Int. J. Numer. Method. Eng. doi: 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D – volume: 116 start-page: 370 year: 2018 ident: 10.1016/j.cma.2023.116540_bib0026 article-title: A homogenized localizing gradient damage model with micro inertia effect publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2018.04.007 – volume: 101 start-page: 1 issue: 1–2 year: 2000 ident: 10.1016/j.cma.2023.116540_bib0068 article-title: Modes of dynamic shear failure in solids publication-title: Int. J. Fract. doi: 10.1023/A:1007647800529 – volume: 108 start-page: 1381 issue: 11 year: 2016 ident: 10.1016/j.cma.2023.116540_bib0069 article-title: Gradient damage modeling of brittle fracture in an explicit dynamics context publication-title: Int. J. Numer. Method. Eng. doi: 10.1002/nme.5262 – volume: 38 start-page: 1011 issue: 12 year: 2011 ident: 10.1016/j.cma.2023.116540_bib0073 article-title: Numerical study of dynamic behavior of concrete by meso-scale particle element modeling publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2011.07.004 – volume: 340 start-page: 1000 year: 2018 ident: 10.1016/j.cma.2023.116540_bib0035 article-title: Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2018.06.015 – volume: 38 start-page: 253 year: 2006 ident: 10.1016/j.cma.2023.116540_bib0043 article-title: Experimental characterization of concrete in dynamic tension publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2005.06.004 – volume: 197 start-page: 309 issue: 5 year: 2008 ident: 10.1016/j.cma.2023.116540_bib0015 article-title: X-FEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation publication-title: Comput Method. Appl Mech Eng doi: 10.1016/j.cma.2007.04.011 – volume: 92 start-page: 37 issue: 1 year: 1995 ident: 10.1016/j.cma.2023.116540_bib0042 article-title: Effects of strain rate on concrete strength publication-title: ACI Mater. J. – volume: 383 year: 2021 ident: 10.1016/j.cma.2023.116540_bib0051 article-title: A viscoelastic micropolar peridynamic model for quasi-brittle materials incorporating loading-rate effects publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113897 – volume: 217 start-page: 77 year: 2012 ident: 10.1016/j.cma.2023.116540_bib0031 article-title: A phase-field description of dynamic brittle fracture publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2012.01.008 – start-page: 1 year: 2016 ident: 10.1016/j.cma.2023.116540_bib0045 article-title: Review of the current practices in blast-resistant analysis and design of concrete structures publication-title: Adv. Struct. Eng. – year: 2021 ident: 10.1016/j.cma.2023.116540_bib0002 – volume: 51 start-page: 31 year: 1991 ident: 10.1016/j.cma.2023.116540_bib0048 article-title: Tensile fracture of concrete at high loading rates taking account of inertia and crack velocity effects publication-title: Int. J. Fract. doi: 10.1007/BF00020851 – volume: 400 year: 2022 ident: 10.1016/j.cma.2023.116540_bib0065 article-title: Efficient quasi-brittle fracture simulations of concrete at mesoscale using micro CT images and a localizing gradient damage model publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2022.115559 – volume: 50 start-page: 4270 issue: 25–26 year: 2013 ident: 10.1016/j.cma.2023.116540_bib0039 article-title: Dynamic fracture of concrete compact tension specimen: experimental and numerical study publication-title: Int. J. Solid. Struct. doi: 10.1016/j.ijsolstr.2013.08.030 – volume: 328 start-page: 498 year: 2018 ident: 10.1016/j.cma.2023.116540_bib0022 article-title: Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elements publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2017.09.019 – volume: 148 start-page: 27 year: 2015 ident: 10.1016/j.cma.2023.116540_bib0040 article-title: Dynamic fracture of concrete l-specimen: experimental and numerical study publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2015.09.002 – volume: 113 start-page: 1512 issue: 10 year: 1987 ident: 10.1016/j.cma.2023.116540_bib0020 article-title: Nonlocal damage theory publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1987)113:10(1512) – volume: 182 start-page: 689 year: 2017 ident: 10.1016/j.cma.2023.116540_bib0013 article-title: A numerical study on crack branching in quasi-brittle materials with a new effective rate-dependent nonlocal damage model publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2017.06.019 – volume: 144 issue: 6 year: 2018 ident: 10.1016/j.cma.2023.116540_bib0019 article-title: Softened damage-plasticity model for analysis of cracked reinforced concrete structures publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0002015 – volume: 90 year: 2021 ident: 10.1016/j.cma.2023.116540_bib0056 article-title: Nonlocal operator method for dynamic brittle fracture based on an explicit phase field model publication-title: Eur. J. Mech. A. Solid. doi: 10.1016/j.euromechsol.2021.104380 – volume: 48 start-page: 797 issue: 4 year: 2000 ident: 10.1016/j.cma.2023.116540_bib0028 article-title: Numerical experiments in revisited brittle fracture publication-title: J. Mech. Phys. Solid. doi: 10.1016/S0022-5096(99)00028-9 |
SSID | ssj0000812 |
Score | 2.5447552 |
Snippet | •Propose a rate-dependent phase field model considering both viscoelasticity and micro-viscosity;.•Develop VUEL and VUMAT subroutines to integrate the model... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 116540 |
SubjectTerms | Dynamic fracture mechanisms Mesoscale concrete Quasi-brittle materials Rate dependence Unified phase field theory |
Title | Dynamic fracture investigation of concrete by a rate-dependent explicit phase field model integrating viscoelasticity and micro-viscosity |
URI | https://dx.doi.org/10.1016/j.cma.2023.116540 |
Volume | 418 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGDgUUCUlzwwIblNaztJR8RDBQQTSGyRY59FEEormiJY2PnX3OXBQwIGxiS-JMo597C_-46x_dSlUmkdC2VNJJSMnIilcUJpEwc2jo1VVO98eRWObtT5rb5tsaOmFoZglbXtr2x6aa3rM736a_YmWUY1voq42GlZE_2mIsZPpSKa5d3XT5gHuryKMVxpQaObnc0S42VL6qGB7BIJDa1__OSbvvib0xW2VAeK_LB6l1XWgrzNluugkde_5LTNFr8wCq6xt-Oqwzz3VP00ewSefRJpjHM-9hwTYIwUC-DpCzecmCJE0wm34PBM-9lZwSd36N54iW_jZbcc3hBL4HP4Uza1Y8DAmzDZBd4nx1EE7RPlFcJ5rLOb05Pro5Gouy0IOxhGhfAOUznog1Fx6EPn0BK6AcRDb5QMrA_tEGQqJRgYammtdwOH0UsoZV9HgFJyg83l4xw2GUfHmAaAiYwHUKkOU4tpmMdMXNvA9KOow4LmOye2piKnjhgPSYM5u09QNQmpJqlU02EHHyKTiofjr8GqUV7ybTIl6Cd-F9v6n9g2W8AjVa3L7LC54nEGuxipFOleORX32Pzh2cXo6h3gY-rd |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOPAqI8pwDXJDcZmM7yR44IEq1pY9TK_UWHHssglB21U2BXrjze_iDzORBiwQckHqNPU7isedhz3wD8LwKlTbWFsp4lyuj86AK7YIy1hWJLwrnjeQ77x9ksyPz7tger8CPMRdGwioH2d_L9E5aD082h9ncXNS15PgawWKXY03Wm2asYL1LZ1_Yb1u-2tliJr9I0-23h29maigtoHw6zVsVA_stNCFniixmIfC2DykV0-iMTnzM_JR0pTU5mlrtfQxpYFWdaT2xOTGV5nGvwFXDdFI2YePbeVwJ69geotxYJZ83XqV2QWW-wzpK9Yag3siBy5-U4QUFt30bbg6WKb7uf_4OrFCzBrcGKxUHGbBcgxsXIAzvwvetvqQ9Rkm3Oj0hrM-RO-YNziOyx82maUtYnaFDgaZQY-ndFumrXKDXLS4-sD7FLqAOu_I8OCJZ8Hvwc730c2JLX4LAWx6n4V4SS6i6FgksuQdHl8KD-7DazBt6AMiauEqIPadIZCqbVZ79vsiuv_WJm-T5OiTjPJd-wD6XEhyfyjHI7WPJrCmFNWXPmnV4-Ytk0QN__KuzGZlX_rZ6S1ZMfyd7-H9kz-Da7HB_r9zbOdh9BNe5xfSHQo9htT05pSdsJrXV025ZIry_7H3wE87kKAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+fracture+investigation+of+concrete+by+a+rate-dependent+explicit+phase+field+model+integrating+viscoelasticity+and+micro-viscosity&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Hai%2C+Lu&rft.au=Wriggers%2C+Peter&rft.au=Huang%2C+Yu-jie&rft.au=Zhang%2C+Hui&rft.date=2024-01-01&rft.issn=0045-7825&rft.volume=418&rft.spage=116540&rft_id=info:doi/10.1016%2Fj.cma.2023.116540&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2023_116540 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |