A review on developments of deployable membrane-based reflector antennas
The gossamer space structures are very large and ultra-lightweight structures. A large aperture-based space structure is highly efficient in capturing signals from a wide coverage area. However, their deployment in space has been a critical challenge to date. Extensive research has been carried out...
Saved in:
Published in | Advances in space research Vol. 68; no. 9; pp. 3749 - 3764 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The gossamer space structures are very large and ultra-lightweight structures. A large aperture-based space structure is highly efficient in capturing signals from a wide coverage area. However, their deployment in space has been a critical challenge to date. Extensive research has been carried out on various types of gossamer structures used for earth exploration and deep space applications. Space antenna, in general, should have a large electrical aperture, be light in weight with small stowage volume, be easily deployable in space, and thermally stable. The antenna consists mainly of a reflector as a major part and a torus for supporting the reflector, electronic control unit, and struts. This paper covers an extensive review of gossamer space structure considering different categories of large deployable antennas. More attention has been given to a large membrane-based antenna having a parabolic reflector. This work includes the study of designs, analyses, and development of prototypes and successful deployment of space structures in orbit. We emphasize understanding the behaviour of thin membrane, their static and dynamic characteristics, wrinkling control, shape control of thin membrane reflector, and recent advances in deployment techniques of large deployable antenna structures. |
---|---|
AbstractList | The gossamer space structures are very large and ultra-lightweight structures. A large aperture-based space structure is highly efficient in capturing signals from a wide coverage area. However, their deployment in space has been a critical challenge to date. Extensive research has been carried out on various types of gossamer structures used for earth exploration and deep space applications. Space antenna, in general, should have a large electrical aperture, be light in weight with small stowage volume, be easily deployable in space, and thermally stable. The antenna consists mainly of a reflector as a major part and a torus for supporting the reflector, electronic control unit, and struts. This paper covers an extensive review of gossamer space structure considering different categories of large deployable antennas. More attention has been given to a large membrane-based antenna having a parabolic reflector. This work includes the study of designs, analyses, and development of prototypes and successful deployment of space structures in orbit. We emphasize understanding the behaviour of thin membrane, their static and dynamic characteristics, wrinkling control, shape control of thin membrane reflector, and recent advances in deployment techniques of large deployable antenna structures. |
Author | Chandra, Mukesh Chatterjee, Sayan Kumar, Prakash Kumar, Satish Chattopadhyaya, Somnath |
Author_xml | – sequence: 1 givenname: Mukesh orcidid: 0000-0002-2269-5152 surname: Chandra fullname: Chandra, Mukesh email: mchandra018@gmail.com organization: Department of Production Engineering, Birsa Institute of Technology, Sindri, Dhanbad 828123, Jharkhand, India – sequence: 2 givenname: Satish surname: Kumar fullname: Kumar, Satish email: satistme@mnnit.ac.in organization: Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004 Uttar Pradesh, India – sequence: 3 givenname: Somnath surname: Chattopadhyaya fullname: Chattopadhyaya, Somnath organization: Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India – sequence: 4 givenname: Sayan surname: Chatterjee fullname: Chatterjee, Sayan organization: Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata 700032, West Bengal, India – sequence: 5 givenname: Prakash surname: Kumar fullname: Kumar, Prakash organization: Department of Production Engineering, Birsa Institute of Technology, Sindri, Dhanbad 828123, Jharkhand, India |
BookMark | eNp9kLFqwzAURUVJoWnaD-jmH7D7ZNmWRacQ2qYQ6NLOQpaeQMGWgmRS8vdVSKcOmS53OI93zz1Z-OCRkCcKFQXaPe8rlWJVQ00r6Cpo6Q1Z0p6LkoqmX5Al1JyVlHJ-R-5T2gPQmnNYku26iHh0-FMEXxg84hgOE_o5FcHmfhjDSQ0jFhNOQ1Qey0ElNJmxI-o5xEL5Gb1X6YHcWjUmfPzLFfl-e_3abMvd5_vHZr0rdS34XFptGRcN9IMwXUtZbcAgYw23WliwFrqBNgNnte16gYYyJbqGCtbqVlsFDVsRermrY0gp_yEP0U0qniQFeVYh9zKrkGcVEjqZVWSG_2O0m9Xsgp-jcuNV8uVCYp6UNUWZtEOv0biY90sT3BX6F3rae6c |
CitedBy_id | crossref_primary_10_1016_j_advengsoft_2024_103685 crossref_primary_10_1007_s41870_023_01618_8 crossref_primary_10_2478_amns_2022_2_0185 crossref_primary_10_3390_coatings13091612 crossref_primary_10_1016_j_mechmachtheory_2022_105174 crossref_primary_10_1016_j_asr_2024_03_082 crossref_primary_10_1016_j_tws_2023_110861 crossref_primary_10_1016_j_mechmachtheory_2024_105893 crossref_primary_10_1016_j_ast_2022_107817 crossref_primary_10_57062_ijpem_st_2024_00199 crossref_primary_10_1016_j_tws_2024_112644 crossref_primary_10_1016_j_tws_2024_112486 crossref_primary_10_1088_1361_665X_ac58d2 crossref_primary_10_3390_mi15091147 crossref_primary_10_1016_j_actaastro_2023_02_002 crossref_primary_10_1016_j_eng_2023_01_005 crossref_primary_10_1016_j_ijmecsci_2023_108590 crossref_primary_10_1115_1_4066901 crossref_primary_10_1016_j_matdes_2023_112557 crossref_primary_10_1016_j_apm_2022_04_027 crossref_primary_10_1016_j_tws_2023_110869 crossref_primary_10_1140_epjs_s11734_024_01347_4 crossref_primary_10_3390_aerospace11110925 crossref_primary_10_1016_j_ijsolstr_2022_111902 crossref_primary_10_1016_j_asr_2022_10_027 crossref_primary_10_1016_j_mechmachtheory_2023_105365 crossref_primary_10_1007_s12567_022_00428_1 crossref_primary_10_1080_15397734_2022_2095646 crossref_primary_10_1007_s11071_024_09571_2 crossref_primary_10_1016_j_asr_2024_01_004 crossref_primary_10_1016_j_applthermaleng_2024_124502 crossref_primary_10_1016_j_paerosci_2024_100985 crossref_primary_10_1115_1_4066072 crossref_primary_10_1016_j_compstruct_2023_117163 crossref_primary_10_2514_1_A36107 crossref_primary_10_1002_nme_7198 crossref_primary_10_1080_13467581_2023_2267645 crossref_primary_10_2514_1_J061439 crossref_primary_10_1016_j_tws_2024_112591 crossref_primary_10_1016_j_asr_2022_11_053 crossref_primary_10_1016_j_ijmecsci_2022_108082 crossref_primary_10_1007_s11340_024_01072_y crossref_primary_10_1007_s40430_024_04831_z crossref_primary_10_1016_j_paerosci_2024_101047 crossref_primary_10_1016_j_tws_2024_112229 crossref_primary_10_2514_1_J062376 crossref_primary_10_3390_aerospace10030239 crossref_primary_10_5194_ms_13_519_2022 crossref_primary_10_1007_s42405_023_00659_4 crossref_primary_10_1016_j_istruc_2024_108000 crossref_primary_10_1016_j_actaastro_2023_04_039 crossref_primary_10_1016_j_advengsoft_2024_103789 crossref_primary_10_1016_j_istruc_2024_107150 crossref_primary_10_1016_j_ijmecsci_2024_109780 crossref_primary_10_1016_j_mechmachtheory_2024_105718 crossref_primary_10_1186_s10033_024_01140_3 crossref_primary_10_1016_j_ast_2023_108330 crossref_primary_10_1108_EC_11_2022_0667 crossref_primary_10_23919_cje_2022_00_328 crossref_primary_10_1016_j_ast_2024_108959 crossref_primary_10_1016_j_tws_2024_112608 crossref_primary_10_1016_j_apm_2023_07_017 crossref_primary_10_1016_j_istruc_2023_105104 crossref_primary_10_1017_aer_2024_6 crossref_primary_10_1016_j_tws_2023_111061 crossref_primary_10_1016_j_ijmecsci_2023_108444 crossref_primary_10_1177_09544062231206951 crossref_primary_10_1016_j_mechmachtheory_2023_105509 |
Cites_doi | 10.1016/j.actaastro.2020.10.039 10.1115/1.4004029 10.1142/S0219455413500557 10.1016/j.actaastro.2018.11.042 10.1002/(SICI)1098-2760(19990120)20:2<97::AID-MOP4>3.0.CO;2-K 10.2514/6.2006-1600 10.1002/0470052783.ch8 10.2514/2.3888 10.1088/0964-1726/11/1/317 10.1007/s12567-013-0046-5 10.1016/S1369-7021(07)70047-0 10.1177/1045389X9600700212 10.1016/j.actaastro.2017.07.047 10.2514/6.2010-8855 10.2514/6.2012-3601 10.1177/1077546316687924 10.1049/cp:20030023 10.1115/1.1636199 10.1177/1077546319862445 10.1007/s11012-018-0872-9 10.1016/j.ijsolstr.2008.11.018 10.1016/j.mechmachtheory.2008.04.004 10.2514/1.J052342 10.1115/1.3111074 10.1002/adma.200904447 10.1016/j.ijsolstr.2018.03.001 10.1177/1045389X10381659 10.1177/1077546315599302 10.1177/0583102403035003001 10.1155/2009/634362 10.2514/1.A32021 10.1016/j.actaastro.2018.02.037 10.1016/j.eml.2019.100579 10.1016/j.ast.2016.09.014 10.1155/2010/561364 10.1106/104538902022725 10.1016/j.jmps.2019.103679 10.2514/2.2107 10.1016/j.actaastro.2005.03.026 10.1115/1.2888134 10.1117/12.2057182 10.1016/j.asr.2019.05.042 10.1016/j.ijsolstr.2010.05.005 10.2514/1.11949 10.1016/j.ymssp.2004.01.003 10.1016/j.actaastro.2014.10.019 10.1108/02602280110388315 10.1016/0045-7949(85)90111-7 10.1016/j.tws.2020.107201 10.2514/1.16509 10.1016/j.asr.2013.09.040 10.2514/5.9781600866616.0257.0279 10.1016/S0094-5765(98)00057-5 10.1007/s12567-013-0037-6 10.1016/0094-5765(93)90098-H 10.1088/1361-665X/aad936 10.1016/j.finel.2006.01.004 10.2514/1.25109 10.1016/j.actaastro.2010.02.006 10.1109/JPROC.2010.2043918 10.1016/0094-5765(96)00030-6 10.1007/s12567-013-0048-3 10.1016/j.ast.2015.01.002 10.1016/j.jsv.2003.10.026 10.1016/j.ijnonlinmec.2020.103466 10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N 10.2514/6.2001-1258 10.1016/j.actaastro.2004.05.014 10.1016/j.actaastro.2010.02.021 10.2514/2.3934 10.1177/1461348419825685 10.4271/1999-01-5520 10.2495/978-1-85312-941-4/10 10.1117/12.2218713 10.1007/s12567-013-0044-7 10.1016/j.jsv.2005.01.013 10.1177/1077546312472927 10.1007/978-1-4471-4141-9_69 10.1016/j.actaastro.2009.03.052 10.1177/1077546313493456 10.2514/6.2012-1838 10.1016/j.actaastro.2014.07.018 10.1155/2012/375463 10.9790/1684-11634853 10.1109/PROC.1966.4784 10.1088/1361-665X/aa7468 10.1016/j.actaastro.2012.02.005 10.1088/0964-1726/19/10/105004 10.1007/s10338-019-00103-9 10.1016/j.ijsolstr.2007.02.036 10.1016/j.ijsolstr.2014.05.001 10.1557/mrs2009.235 10.1007/s12567-013-0036-7 10.2514/1.3227 |
ContentType | Journal Article |
Copyright | 2021 COSPAR |
Copyright_xml | – notice: 2021 COSPAR |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asr.2021.06.051 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Astronomy & Astrophysics Physics |
EISSN | 1879-1948 |
EndPage | 3764 |
ExternalDocumentID | 10_1016_j_asr_2021_06_051 S0273117721005378 |
GroupedDBID | --K --M -~X .~1 0R~ 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNEU ABQEM ABQYD ABYKQ ACDAQ ACFVG ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IMUCA J1W KOM LY3 LZ4 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 ROL SDF SDG SEP SES SPC SPCBC SSE SSQ SSZ T5K ZMT ~02 ~G- 1B1 AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HME HVGLF HX~ HZ~ IHE R2- RIG RPZ SEW SHN SSH T9H UHS VH1 VOH WUQ ZY4 |
ID | FETCH-LOGICAL-c297t-fcf379408b9d65132d0de3347fc9f0ff06b14b732f689ed13a9641935c5cfa043 |
IEDL.DBID | .~1 |
ISSN | 0273-1177 |
IngestDate | Thu Apr 24 22:58:46 EDT 2025 Tue Jul 01 03:24:50 EDT 2025 Fri Feb 23 02:44:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | HIA LaRC FEA IEA SAR SMA Gossamer space structure LDA Reflector antennas MFC GS PVDF Large deployable antenna Membrane-based reflector antennas Ultra-lightweight structure RF IMPC SMP GRC RMS NIS LDV |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-fcf379408b9d65132d0de3347fc9f0ff06b14b732f689ed13a9641935c5cfa043 |
ORCID | 0000-0002-2269-5152 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1016_j_asr_2021_06_051 crossref_citationtrail_10_1016_j_asr_2021_06_051 elsevier_sciencedirect_doi_10_1016_j_asr_2021_06_051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Advances in space research |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Paradies, R; Hertwig; M; Elspass; WJ (1996) ‘Shape control of an adaptive mirror at different angles of inclination’, Journal of Intelligent Material Systems and Structures 7(2): 203–210, 9(2), pp. 183–205. doi: 10.1177/07399863870092005. Rey, J. J. et al. (2014) ‘A deployable, annular, 30m telescope, space-based observatory’, in Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, p. 914318. doi: 10.1117/12.2057182. Borse, Upadhyay, Singh (b0050) 2014; 11 Lee, E. and Youn, S. (2006) ‘Finite element analysis of wrinkling membrane structures with large deformations’, Finite Elements in Analysis and Design 42 (2006) 780–791, 42, pp. 780–791. doi: 10.1016/j.finel.2006.01.004. Kalra, Bhattacharya, Munjal (b0305) 2017; 26 Fang, H. et al. (2012) ‘A large and high radio frequency deployable reflector’, 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012, (April). doi: 10.2514/6.2012-1838. Leng (b0350) 2009; 34 Tung, S. and Witherspoon, S. (2005) ‘Electroactive-Polymer Actuators for Controlling’, Journal of spacecraft and rockets Vol. 42, No. 4, July–August 2005, 42(4). Gaspar, J., Sreekantamurthy, T., Mann, T., Behun, V., Romanofsky, R., Lambert, K. and Pearson, J. (2006) ‘Test and Analysis of an Inflatable Parabolic Dish Antenna’, In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th (p. 1600)., (May). Pappa, Lassiter, Ross (b0485) 2003; 40 Grahne, Cadogan (b0235) 1999 Suenaga, Prevaux (b0650) 2005; 57 Bradford (b0055) 2012; April Lecieux, Bouzidi (b0340) 2010; 47 Park, Kim, Inman (b0495) 2001; 12 Sauder (b0590) 2020; January Liu (b0410) 2018; 53 Yoo, Roh, Han (b0750) 2007; 340 Liu, Xu, Fu (b0390) 2019; 33 Zhou-Lian (b0770) 2009; 2009 Xu, Y. et al. (2012) ‘Development of a Novel Double-Ring Deployable Mesh Antenna’, 2012. doi: 10.1155/2012/375463. Usoff (b0690) 2014; 21 Gaspar (b0225) 2007 Kumar, Upadhyay, Mathur (b0325) 2015; 3 Puig, Barton, Rando (b0525) 2010; 67 Soykasap, Karakaya (b0635) 2012; April Liu, J. and Sun, S. (2012) ‘Advances in Reconfigurable Mechanisms and Robots I’, Advances in Reconfigurable Mechanisms and Robots I, pp. 773–782. doi: 10.1007/978-1-4471-4141-9. Ruggiero, E. J. and Inman, D. (2015) ‘Multi-input multi-output vibration testing of an inflatable torus’, Mechanical Systems and Signal Processing, (SEPTEMBER 2004). doi: 10.1016/j.ymssp.2004.01.003. Tan, Soykasap, Pellegrino (b0655) 2005; 5 Liu (b0400) 2017; 140 Gajbhiye, Upadhyay, Harsha (b0210) 2013; 51 Pierre (b0520) 2001; 21 Song, Smith, Main (b0625) 2006; 29 Behl, Razzaq, Lendlein (b0030) 2010; 22 Freeland, Veal (b0195) 1998 Adetona (b0010) 2003 Freeland, Bilyeu (b0185) 1993; 30 Liu (b0375) 2014; 14 Jenkins, Marker (b0285) 1998; 120(4): 29 Wang (b0700) 2009; 46 An (b0020) 2018; 27 Miller, Hedgepetht (b0445) 1982; December Coleman, Baginski, Romanofsky (b0105) 2012; 49 Bonin, Seffen (b0040) 2014; 51 Lin (b0365) 2006 Dronadula, Benaroya (b0130) 2021; 179 Shin, Chung, Kim (b0620) 2005; 286 Jenkins, Schur (b0290) 2002; 39 Ueberschlag (b0680) 2001; 21 Chmielewski, Jenkins (b0085) 2005 Freeland (b0180) 1997; 41 Martins, Silvestre, Bebiano (b0430) 2020; 175 Lu (b0420) 2020; 122 Song, Tan, Wang (b0630) 2019; 00 Urata (b0685) 2018; 4 Lu, Y. et al. (2019) ‘Active vibration control of a polyvinylidene fluoride laminated membrane plate mirror’, Journal of Vibration and Control, (June). doi: 10.1177/1077546319862445. Flint, Ca (b0170) 2003; April Gajbhiye, S. C., Upadhyay, S. H. and Harsha, S. P. (2012) ‘Finite element analysis of an inflatable torus considering air mass structural element’, Advances in Space Research (2013), 53(1), pp. 163–173. doi: 10.1016/j.asr.2013.09.040. Meguro (b0440) 2009; 65 Keller (b0315) 2006; May Thomson (b0665) 2002 Kumar, Upadhyay (b0320) 2015 Nakamura (b0470) 2016 Quadrelli, Sirlin (b0545) 2001 Gurvits (b0245) 2020; 65 Pazhooh, Dokainish, Ziada (b0510) 2010 Qidwai, Lagoudas (b0540) 2000; 47 Roh, Han, Lee (b0560) 2005 Cadogan, Scarborough (b0065) 2001 Stein, Hedgepeth (b0645) 1961 Rajan, Kochupillai (b0015) 2014 Shi (b0615) 2019; 155 Cliff E. Willey, Ron C. Schulze, Robert S. Bokulic, W. E. S. (2001) ‘A Hybrid Inflatable Dish Antenna System for Spacecraft’, ctures, Structural Dynamics, and Materials 42nd AIAA/ASME/ASCE/AHS/ASC AIAA Gossamer Spacecraft Forum Conference & Exhibit April 16-19,2001 / Seattle, WA, (c). Borse (b0045) 2014; 11 Nagaraj, Pandiyan, Ghosal (b0465) 2009; 44 Fang (b0155) 2011 ISRO (2019) Radial Rib Antenna of RISAT-2BR1 deployed successfully. Available at: https://www.isro.gov.in/update/12-dec-2019/radial-rib-antenna-of-risat-2br1-deployed-successfully (Accessed: 31 July 2020). Zhang (b0765) 2017; 23 Qi (b0530) 2016; 58 Ruggiero, Inman (b0575) 2006; 43 Wang, Tan (b0705) 2010; 105019 Bishop, B. (2013) Reflector System Built by Northrop Grumman’s Astro Aerospace Unit Deploys Successfully Aboard Alphasat Communications Satellite, news.northropgrumman.com. Dadgar-Rad, Imani (b0110) 2019; 132 J. Santiago-Prowald, H. B. (2013) ‘Advances in deployable structures and surfaces for large apertures in space’, pp. 89–115. doi: 10.1007/s12567-013-0048-3. Shen, Zheng, Wang (b0610) 2007 Liu, Jin (b0385) 2015; 52 Xiao (b0730) 2015; 5 Chahat, N., Sauder, J. and Hodges, R. E. (2017) ‘The Deep- Space Network Telecommunication CubeSat Antenna’, IEEE AntEnnAs & ProPAgAtIon MAgAzInE, (april 2017). Gajbhiye, Upadhyay, Harsha (b0205) 2012; 4 Tanaka, Natori (b0660) 2004; 55 Fang, H. et al. (2006) ‘Dynamic analysis of large in-space deployable membrane antennas’, ICSV13-Vienna. Liu, Yang, Zhang (b0380) 2015; 106 Davis, G. L. and Tanimoto, R. L. (2006) ‘Mechanical Development of Antenna Systems’, Spaceborne Antennas for Planetary Exploration, pp. 425–454. doi: 10.1002/0470052783.ch8. Behl, Lendlein (b0025) 2007; 10 Chodimella, Moore, Otto (b0090) 2006 Cadogan, D. (2001) ‘Rigidization Mechanisms And Materials’, Gossamer Spacecraft: Membrane And Inflatable Structures Technology For Space Applications, pp. 257–279. doi: 10.2514/5.9781600866616.0257.0279. Chang-Jiang (b0080) 2010; 2010 Yoon, Washington (b0755) 2010; 19 Wang, C. G. et al. (2007) ‘Wrinkling prediction of rectangular shell-membrane under transverse in-plane displacement’, International Journal of Solids and Structures 44 (2007) 6507–6516, 44, pp. 6507–6516. doi: 10.1016/j.ijsolstr.2007.02.036. Lampani, Gaudenzi (b0330) 2010; 67 Du (b0135) 2018; 146 Munjal, B. S. (2014) ‘Challenges in Spacecraft Reflector Technologies – A Few Potential Applications of Smart Materials’, pp. 1–22. Available at: http://istam.iitkgp.ac.in/resources/2015/SpeakerAbstracts/dr_ b_s_munjal_60.pdf. Ruggiero, E. J. et al. (2003) ‘A Literature Review of Ultra-Light and Inflated Toroidal Satellite Components’, The Shock and Vibration Digest, (Shock Vib. Dig.). Qi, X., Deng, Z. and Li, B. (2013) ‘Design and optimization of large deployable mechanism constructed by Myard linkages’. doi: 10.1007/s12567-013-0036-7. Tzou, Ding (b0675) 2003; 125 Guy, R. F. E., Wyllie, C. B. and Brain, J. R. (2003) ‘Synthesis of the Inmarsat 4 multibeam mobile antenna’. Cassapakis, Allan, Palisoc (b0070) 1998; 3 Semler, D. et al. (2010) ‘Design, integration, and deployment of the terreStar 18-meter reflector’, in 28th AIAA International Communications Satellite Systems Conference (ICSSC-2010), p. 8855. Xinjie, Yue Honghao (b0715) 2009; 15 Kardashev, N. S., Kovalev, Y. Y. and Kellermann, K. I. (2012) ‘Radioastron: An earth-space radio interferometer with a 350,000 km baseline’, URSI Radio Science Bulletin, 2012(343), pp. 22–29. San, Wu, Sun (b0585) 2014; 104 Huang, Feria (b0260) 1999; 20 Young (b0760) 2005; 42 Murphey (b0460) 2009 Deng (b0120) 2011; 3 Palisoc (b0480) 1994 Morterolle (b0450) 2015; 42 Flint (b0165) 2003 Gupta, Sharma, Thakur (b0240) 2010; 21 John, M. (1985) ‘Finite element analysis of partly membranes’, Computers & Strucrures, 20(Vol 20, No. l-3, pp. 631–639), pp. 631–639. Xu, Guan (b0745) 2012; 76 Maji, Montemerlo, Ng (b0425) 2004; 41 Scialino (b0595) 2013; 5 Xin (b0735) 2019; 32 Lan, L. et al. (2016) ‘An experimental study on reflector wave-front error correction using PZT actuators’, Active and Passive Smart Structures and Integrated Systems 2016, 9799, p. 97990G. doi: 10.1117/12.2218713. Freeland, Bilyeu, Veal (b0190) 1996; 38 Jha, Inman (b0295) 2004; 278 Gajbhiye, Upadhyay, Harsha (b0215) 2015; 21 Park, Ruggiero, Inman (b0500) 2002; 11 Wang (b0725) 2016; 27 Pellegrino (b0515) 2002; 22 Gaspar, J. L. (2003) Membrane Vibration Tests Using Surface-Bonded Piezoelectric Patch Actuation. National Aeronautics and Space Administration, Langley Research Center. DeSmidt, Wang, Fang (b0125) 2007; 44 Entekhabi (b0145) 2010; 98 Wang, Li (b0720) 2014; 20 Park, Sausse, Inman (b0505) 2003; 41 Li (b0360) 2021; 159 Liu (b0405) 2017; 24 Du (b0140) 2018; 146 Fraux (b0175) 2013; 5 Sharma, Bhattacharya (b0605) 2019; 38 Wang, X. et al. (2018) ‘Numerical study on the dynamic properties of wrinkled membranes’, International Journal of Solids and Structures, 143(https://doi.org/10.1016/j.ijsolstr.2018.03.001), pp. 125–143. doi: 10.1016/j.ijsolstr.2018.03.001. Medzmariashvili (b0435) 2013; 5 Rao SS and Sunar M (1994) (1994) ‘Piezoelectricity and its use in disturbance sensing and control of flexible structures: A survey’, Applied Mechanics Reviews, 47(4): 113. Coleman, Baginski (b0100) 2010 NISAR Science Team, Simard (b0475) 2018; December Zolesi, V. S. et al. (2012) ‘On an innovative deployment concept for large space structures’, 42nd International Conference on Environmental Systems 2012, ICES 2012, (July), pp. 1–14. doi: 10.2514/6.2012-3601. Ruze (b0580) 1966; 54 Sreekantamurthy (b0640) 2007; 2 Cadogan (10.1016/j.asr.2021.06.051_b0065) 2001 Pazhooh (10.1016/j.asr.2021.06.051_b0510) 2010 Chang-Jiang (10.1016/j.asr.2021.06.051_b0080) 2010; 2010 Liu (10.1016/j.asr.2021.06.051_b0410) 2018; 53 Kalra (10.1016/j.asr.2021.06.051_b0305) 2017; 26 Borse (10.1016/j.asr.2021.06.051_b0045) 2014; 11 Medzmariashvili (10.1016/j.asr.2021.06.051_b0435) 2013; 5 Du (10.1016/j.asr.2021.06.051_b0135) 2018; 146 Huang (10.1016/j.asr.2021.06.051_b0260) 1999; 20 Park (10.1016/j.asr.2021.06.051_b0495) 2001; 12 Park (10.1016/j.asr.2021.06.051_b0500) 2002; 11 Grahne (10.1016/j.asr.2021.06.051_b0235) 1999 Pierre (10.1016/j.asr.2021.06.051_b0520) 2001; 21 Shen (10.1016/j.asr.2021.06.051_b0610) 2007 Rajan (10.1016/j.asr.2021.06.051_b0015) 2014 Dronadula (10.1016/j.asr.2021.06.051_b0130) 2021; 179 Entekhabi (10.1016/j.asr.2021.06.051_b0145) 2010; 98 Thomson (10.1016/j.asr.2021.06.051_b0665) 2002 Yoo (10.1016/j.asr.2021.06.051_b0750) 2007; 340 Chodimella (10.1016/j.asr.2021.06.051_b0090) 2006 Leng (10.1016/j.asr.2021.06.051_b0350) 2009; 34 Gupta (10.1016/j.asr.2021.06.051_b0240) 2010; 21 Gajbhiye (10.1016/j.asr.2021.06.051_b0205) 2012; 4 Bonin (10.1016/j.asr.2021.06.051_b0040) 2014; 51 Freeland (10.1016/j.asr.2021.06.051_b0185) 1993; 30 Suenaga (10.1016/j.asr.2021.06.051_b0650) 2005; 57 Zhang (10.1016/j.asr.2021.06.051_b0765) 2017; 23 10.1016/j.asr.2021.06.051_b0535 Freeland (10.1016/j.asr.2021.06.051_b0190) 1996; 38 Gurvits (10.1016/j.asr.2021.06.051_b0245) 2020; 65 10.1016/j.asr.2021.06.051_b0415 Urata (10.1016/j.asr.2021.06.051_b0685) 2018; 4 10.1016/j.asr.2021.06.051_b0775 NISAR Science Team (10.1016/j.asr.2021.06.051_b0475) 2018; December Soykasap (10.1016/j.asr.2021.06.051_b0635) 2012; April Kumar (10.1016/j.asr.2021.06.051_b0325) 2015; 3 Jenkins (10.1016/j.asr.2021.06.051_b0285) 1998; 120(4): 29 Tanaka (10.1016/j.asr.2021.06.051_b0660) 2004; 55 10.1016/j.asr.2021.06.051_b0490 10.1016/j.asr.2021.06.051_b0095 10.1016/j.asr.2021.06.051_b0250 Li (10.1016/j.asr.2021.06.051_b0360) 2021; 159 Liu (10.1016/j.asr.2021.06.051_b0400) 2017; 140 DeSmidt (10.1016/j.asr.2021.06.051_b0125) 2007; 44 Freeland (10.1016/j.asr.2021.06.051_b0180) 1997; 41 Young (10.1016/j.asr.2021.06.051_b0760) 2005; 42 Tan (10.1016/j.asr.2021.06.051_b0655) 2005; 5 Lin (10.1016/j.asr.2021.06.051_b0365) 2006 Maji (10.1016/j.asr.2021.06.051_b0425) 2004; 41 10.1016/j.asr.2021.06.051_b0300 Meguro (10.1016/j.asr.2021.06.051_b0440) 2009; 65 Martins (10.1016/j.asr.2021.06.051_b0430) 2020; 175 Ruggiero (10.1016/j.asr.2021.06.051_b0575) 2006; 43 Pappa (10.1016/j.asr.2021.06.051_b0485) 2003; 40 Liu (10.1016/j.asr.2021.06.051_b0405) 2017; 24 Dadgar-Rad (10.1016/j.asr.2021.06.051_b0110) 2019; 132 Du (10.1016/j.asr.2021.06.051_b0140) 2018; 146 Gaspar (10.1016/j.asr.2021.06.051_b0225) 2007 Behl (10.1016/j.asr.2021.06.051_b0025) 2007; 10 Bradford (10.1016/j.asr.2021.06.051_b0055) 2012; April Keller (10.1016/j.asr.2021.06.051_b0315) 2006; May Park (10.1016/j.asr.2021.06.051_b0505) 2003; 41 Coleman (10.1016/j.asr.2021.06.051_b0105) 2012; 49 Yoon (10.1016/j.asr.2021.06.051_b0755) 2010; 19 10.1016/j.asr.2021.06.051_b0710 Wang (10.1016/j.asr.2021.06.051_b0720) 2014; 20 10.1016/j.asr.2021.06.051_b0035 10.1016/j.asr.2021.06.051_b0310 San (10.1016/j.asr.2021.06.051_b0585) 2014; 104 Murphey (10.1016/j.asr.2021.06.051_b0460) 2009 10.1016/j.asr.2021.06.051_b0555 Flint (10.1016/j.asr.2021.06.051_b0165) 2003 10.1016/j.asr.2021.06.051_b0395 10.1016/j.asr.2021.06.051_b0670 10.1016/j.asr.2021.06.051_b0275 10.1016/j.asr.2021.06.051_b0550 Sreekantamurthy (10.1016/j.asr.2021.06.051_b0640) 2007; 2 Xu (10.1016/j.asr.2021.06.051_b0745) 2012; 76 Palisoc (10.1016/j.asr.2021.06.051_b0480) 1994 10.1016/j.asr.2021.06.051_b0150 Song (10.1016/j.asr.2021.06.051_b0630) 2019; 00 Shin (10.1016/j.asr.2021.06.051_b0620) 2005; 286 An (10.1016/j.asr.2021.06.051_b0020) 2018; 27 Kumar (10.1016/j.asr.2021.06.051_b0320) 2015 Xiao (10.1016/j.asr.2021.06.051_b0730) 2015; 5 Gajbhiye (10.1016/j.asr.2021.06.051_b0210) 2013; 51 Chmielewski (10.1016/j.asr.2021.06.051_b0085) 2005 Scialino (10.1016/j.asr.2021.06.051_b0595) 2013; 5 10.1016/j.asr.2021.06.051_b0600 10.1016/j.asr.2021.06.051_b0200 10.1016/j.asr.2021.06.051_b0565 Flint (10.1016/j.asr.2021.06.051_b0170) 2003; April Jenkins (10.1016/j.asr.2021.06.051_b0290) 2002; 39 10.1016/j.asr.2021.06.051_b0280 10.1016/j.asr.2021.06.051_b0160 Pellegrino (10.1016/j.asr.2021.06.051_b0515) 2002; 22 Adetona (10.1016/j.asr.2021.06.051_b0010) 2003 Borse (10.1016/j.asr.2021.06.051_b0050) 2014; 11 Miller (10.1016/j.asr.2021.06.051_b0445) 1982; December Sauder (10.1016/j.asr.2021.06.051_b0590) 2020; January Sharma (10.1016/j.asr.2021.06.051_b0605) 2019; 38 Nagaraj (10.1016/j.asr.2021.06.051_b0465) 2009; 44 Qidwai (10.1016/j.asr.2021.06.051_b0540) 2000; 47 Ueberschlag (10.1016/j.asr.2021.06.051_b0680) 2001; 21 Ruze (10.1016/j.asr.2021.06.051_b0580) 1966; 54 Qi (10.1016/j.asr.2021.06.051_b0530) 2016; 58 Morterolle (10.1016/j.asr.2021.06.051_b0450) 2015; 42 Wang (10.1016/j.asr.2021.06.051_b0705) 2010; 105019 Wang (10.1016/j.asr.2021.06.051_b0700) 2009; 46 Usoff (10.1016/j.asr.2021.06.051_b0690) 2014; 21 Gajbhiye (10.1016/j.asr.2021.06.051_b0215) 2015; 21 Jha (10.1016/j.asr.2021.06.051_b0295) 2004; 278 Xinjie (10.1016/j.asr.2021.06.051_b0715) 2009; 15 10.1016/j.asr.2021.06.051_b0695 Xin (10.1016/j.asr.2021.06.051_b0735) 2019; 32 10.1016/j.asr.2021.06.051_b0455 10.1016/j.asr.2021.06.051_b0335 Quadrelli (10.1016/j.asr.2021.06.051_b0545) 2001 10.1016/j.asr.2021.06.051_b0570 Stein (10.1016/j.asr.2021.06.051_b0645) 1961 Puig (10.1016/j.asr.2021.06.051_b0525) 2010; 67 Zhou-Lian (10.1016/j.asr.2021.06.051_b0770) 2009; 2009 Liu (10.1016/j.asr.2021.06.051_b0385) 2015; 52 10.1016/j.asr.2021.06.051_b0740 Deng (10.1016/j.asr.2021.06.051_b0120) 2011; 3 10.1016/j.asr.2021.06.051_b0345 Song (10.1016/j.asr.2021.06.051_b0625) 2006; 29 10.1016/j.asr.2021.06.051_b0220 10.1016/j.asr.2021.06.051_b0060 Fang (10.1016/j.asr.2021.06.051_b0155) 2011 Cassapakis (10.1016/j.asr.2021.06.051_b0070) 1998; 3 Shi (10.1016/j.asr.2021.06.051_b0615) 2019; 155 Fraux (10.1016/j.asr.2021.06.051_b0175) 2013; 5 Liu (10.1016/j.asr.2021.06.051_b0375) 2014; 14 Liu (10.1016/j.asr.2021.06.051_b0390) 2019; 33 Coleman (10.1016/j.asr.2021.06.051_b0100) 2010 Roh (10.1016/j.asr.2021.06.051_b0560) 2005 Wang (10.1016/j.asr.2021.06.051_b0725) 2016; 27 10.1016/j.asr.2021.06.051_b0115 10.1016/j.asr.2021.06.051_b0075 10.1016/j.asr.2021.06.051_b0230 Lu (10.1016/j.asr.2021.06.051_b0420) 2020; 122 Lampani (10.1016/j.asr.2021.06.051_b0330) 2010; 67 Lecieux (10.1016/j.asr.2021.06.051_b0340) 2010; 47 Tzou (10.1016/j.asr.2021.06.051_b0675) 2003; 125 Freeland (10.1016/j.asr.2021.06.051_b0195) 1998 Behl (10.1016/j.asr.2021.06.051_b0030) 2010; 22 Nakamura (10.1016/j.asr.2021.06.051_b0470) 2016 Liu (10.1016/j.asr.2021.06.051_b0380) 2015; 106 |
References_xml | – reference: Guy, R. F. E., Wyllie, C. B. and Brain, J. R. (2003) ‘Synthesis of the Inmarsat 4 multibeam mobile antenna’. – volume: 21 start-page: 1227 year: 2010 end-page: 1243 ident: b0240 article-title: Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: A technical review publication-title: J. Intell. Mater. Syst. Struct. – start-page: 2104 year: 1998 ident: b0195 article-title: ‘Significance of the inflatable antenna experiment technology’, in publication-title: Structural Dynamics, and Materials Conference and Exhibit – start-page: 2032 year: 2002 ident: b0665 article-title: AstroMesh deployable reflectors for ku and ka band commercial satellites publication-title: in – volume: 19 year: 2010 ident: b0755 article-title: An optimal method of shape control for deformable structures with an application to a mechanically reconfigurable reflector antenna publication-title: Smart Mater. Struct. – volume: 11 start-page: 42 year: 2014 end-page: 47 ident: b0050 publication-title: Finite element analysis of deployable space structures – volume: 5 start-page: 195 year: 2013 end-page: 201 ident: b0175 article-title: Novel large deployable antenna backing structure concepts for foldable reflectors publication-title: CEAS Space Journal – volume: 34 start-page: 848 year: 2009 end-page: 855 ident: b0350 article-title: Shape-memory polymers - A class of novel smart materials publication-title: MRS Bull. – volume: 5 start-page: 203 year: 2013 end-page: 210 ident: b0435 article-title: Possible options for jointly deploying a ring provided with V-fold bars and a flexible pre-stressed center publication-title: CEAS Space Journal – reference: Gaspar, J. L. (2003) Membrane Vibration Tests Using Surface-Bonded Piezoelectric Patch Actuation. National Aeronautics and Space Administration, Langley Research Center. – volume: 175 year: 2020 ident: b0430 article-title: International Journal of Mechanical Sciences A new modal theory for wrinkling analysis of stretched membranes publication-title: Int. J. Mech. Sci. – volume: 3 start-page: 453 year: 1998 end-page: 545 ident: b0070 article-title: Inflatable Space Antennas A Brief Overview publication-title: IEEE Aerospace Conference Proceedings – year: 1999 ident: b0235 article-title: Revolutionary design concepts for inflatable space strucutures publication-title: SAE Technical Papers – volume: 125 start-page: 577 year: 2003 end-page: 584 ident: b0675 article-title: Actuator Placement and Micro-Actuation Efficiency of Adaptive Paraboloidal Shells publication-title: Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME – volume: 27 start-page: 705 year: 2016 end-page: 720 ident: b0725 publication-title: ‘Modeling and optimal design for static shape control of smart reflector using simulated annealing algorithm’ – volume: January start-page: 1 year: 2020 end-page: 11 ident: b0590 article-title: ‘Integration, Test, and On-Orbit Operation of a Ka-band Parabolic Deployable Antenna (KaPDA) for CubeSats’, publication-title: Forum – volume: 46 start-page: 1516 year: 2009 end-page: 1526 ident: b0700 article-title: International Journal of Solids and Structures A new computational method for wrinkling analysis of gossamer space structures q publication-title: Int. J. Solids Struct. – volume: 65 start-page: 1306 year: 2009 end-page: 1316 ident: b0440 article-title: In-orbit deployment characteristics of large deployable antenna reflector onboard Engineering Test Satellite VIII publication-title: Acta Astronaut. – volume: 10 start-page: 20 year: 2007 end-page: 28 ident: b0025 article-title: Shape-memory polymers publication-title: Mater. Today – volume: 40 start-page: 15 year: 2003 end-page: 23 ident: b0485 article-title: Structural dynamics experimental activities in ultralightweight and inflatable space structures publication-title: Journal of Spacecraft and Rockets – volume: 41 year: 2003 ident: b0505 article-title: Vibration Testing and Finite Element Analysis of an In atable Structure Introduction publication-title: AIAA JOURNAL – volume: 42 start-page: 74 year: 2015 end-page: 79 ident: b0450 article-title: Modal behavior of a new large reflector conceptual design publication-title: Aerosp. Sci. Technol. – volume: 22 start-page: p year: 2002 ident: b0515 article-title: Deployable Membrane Reflectors publication-title: Proc. 2nd World Engineering Congress – volume: 286 start-page: 1019 year: 2005 end-page: 1031 ident: b0620 article-title: Dynamic characteristics of the out-of-plane vibration for an axially moving membrane publication-title: J. Sound Vib. – reference: Fang, H. et al. (2006) ‘Dynamic analysis of large in-space deployable membrane antennas’, ICSV13-Vienna. – volume: 54 start-page: 633 year: 1966 end-page: 640 ident: b0580 article-title: Antenna tolerance theory—A review publication-title: Proc. IEEE – volume: 14 start-page: 1 year: 2014 end-page: 24 ident: b0375 article-title: Nonlinear damped vibration of pre-stressed orthotropic membrane structure under impact loading publication-title: Int. J. Struct. Stab. Dyn. – volume: 38 start-page: 296 year: 2019 end-page: 311 ident: b0605 article-title: Parameter estimation of butyl rubber aided with dynamic mechanical analysis for numerical modelling of an air-inflated torus and experimental validation using 3D-laser Doppler vibrometer publication-title: Journal of Low Frequency Noise Vibration and Active Control – volume: 41 start-page: 267 year: 1997 end-page: 277 ident: b0180 article-title: Large inflatable deployable antenna flight experiment results publication-title: Acta Astronaut. – volume: 65 start-page: 868 year: 2020 end-page: 876 ident: b0245 article-title: Space VLBI: from first ideas to operational missions publication-title: Adv. Space Res. – reference: John, M. (1985) ‘Finite element analysis of partly membranes’, Computers & Strucrures, 20(Vol 20, No. l-3, pp. 631–639), pp. 631–639. – volume: April start-page: 1 year: 2003 end-page: 11 ident: b0170 publication-title: ‘Experimentally Characterizing the Dynamics of 0. 5m + Diameter Doubly Curved Shells Made From Thin Films’ – volume: 20 start-page: 97 year: 1999 end-page: 99 ident: b0260 article-title: A 1-m X-band inflatable reflectarray antenna publication-title: Microwave Opt. Technol. Lett. – volume: 179 start-page: 42 year: 2021 end-page: 55 ident: b0130 article-title: Hybrid lunar inflatable structure publication-title: Acta Astronaut. – volume: 3 year: 2011 ident: b0120 article-title: Synthesis of deployable/foldable single loop mechanisms with revolute joints publication-title: Journal of Mechanisms and Robotics – year: 2001 ident: b0065 article-title: ‘Rigidizable Materials for use in Gossamer Space Inflatable Structures 42nd AIAA / ASME / ASCE / AHS / ASC Structures, Structural Dynamics publication-title: and Materials Conference & Exhibit AIAA Gossamer Spacecraft Forum’, (c) – reference: Munjal, B. S. (2014) ‘Challenges in Spacecraft Reflector Technologies – A Few Potential Applications of Smart Materials’, pp. 1–22. Available at: http://istam.iitkgp.ac.in/resources/2015/SpeakerAbstracts/dr_ b_s_munjal_60.pdf. – year: 1961 ident: b0645 article-title: Analysis of partly wrinkled membranes publication-title: National Aeronautics and Space – volume: 30 start-page: 29 year: 1993 end-page: 40 ident: b0185 article-title: In-step inflatable antenna experiment publication-title: Acta Astronaut. – reference: ISRO (2019) Radial Rib Antenna of RISAT-2BR1 deployed successfully. Available at: https://www.isro.gov.in/update/12-dec-2019/radial-rib-antenna-of-risat-2br1-deployed-successfully (Accessed: 31 July 2020). – volume: 5 start-page: 125 year: 2013 end-page: 146 ident: b0595 article-title: Large deployable reflectors for telecom and earth observation applications publication-title: CEAS Space Journal – volume: 21 start-page: 118 year: 2001 ident: b0680 article-title: PVDF piezoelectric polymer publication-title: Sensor Review – reference: Bishop, B. (2013) Reflector System Built by Northrop Grumman’s Astro Aerospace Unit Deploys Successfully Aboard Alphasat Communications Satellite, news.northropgrumman.com. – reference: Lu, Y. et al. (2019) ‘Active vibration control of a polyvinylidene fluoride laminated membrane plate mirror’, Journal of Vibration and Control, (June). doi: 10.1177/1077546319862445. – volume: 106 start-page: 90 year: 2015 end-page: 100 ident: b0380 article-title: Optimization design combined with coupled structural-electrostatic analysis for the electrostatically controlled deployable membrane reflector publication-title: Acta Astronaut. – volume: 33 year: 2019 ident: b0390 article-title: Orientable wrinkles in stretched orthotropic films publication-title: Extreme Mech. Lett. – start-page: 1 year: 2009 end-page: 28 ident: b0460 article-title: Historical Perspectives on the Development of Deployable Reflectors publication-title: (May) – volume: 43 start-page: 10 year: 2006 end-page: 24 ident: b0575 article-title: ‘Gossamer Spacecraft : Recent Trends in Design publication-title: Analysis, Experimentation, and Control’ – volume: 47 start-page: 2459 year: 2010 end-page: 2475 ident: b0340 article-title: International Journal of Solids and Structures Experimental analysis on membrane wrinkling under biaxial load – Comparison with bifurcation analysis publication-title: Int. J. Solids Struct. – volume: 20 start-page: 1257 year: 2014 end-page: 1268 ident: b0720 article-title: Optimal piezoelectric sensor/actuator placement of cable net structures using H2-norm measures publication-title: J. Vib. Control – volume: 5 start-page: 3078 year: 2005 end-page: 3088 ident: b0655 article-title: Design & manufacture of stiffened spring-back reflector demonstrator publication-title: Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference – volume: 159 year: 2021 ident: b0360 article-title: Stress Superposition Method and free vibration of corner tensioned rectangular thin membranes publication-title: Thin-Walled Structures – volume: 11 start-page: 147 year: 2002 end-page: 155 ident: b0500 article-title: Dynamic testing of inflatable structures using smart materials publication-title: Smart Mater. Struct. – volume: 51 start-page: 3303 year: 2014 end-page: 3313 ident: b0040 article-title: De-wrinkling of pre-tensioned membranes publication-title: Int. J. Solids Struct. – volume: 5 start-page: 1 year: 2015 end-page: 12 ident: b0730 article-title: Shape memory polymers with high and low temperature resistant properties publication-title: Sci. Rep. – reference: Cliff E. Willey, Ron C. Schulze, Robert S. Bokulic, W. E. S. (2001) ‘A Hybrid Inflatable Dish Antenna System for Spacecraft’, ctures, Structural Dynamics, and Materials 42nd AIAA/ASME/ASCE/AHS/ASC AIAA Gossamer Spacecraft Forum Conference & Exhibit April 16-19,2001 / Seattle, WA, (c). – volume: 340 year: 2007 ident: b0750 article-title: Wrinkling control of inflatable booms using shape memory alloy wires publication-title: Smart Mater. Struct. – volume: 2009 year: 2009 ident: b0770 article-title: Free vibration analysis of rectangular orthotropic membranes in large deflection publication-title: Mathematical Problems in Engineering – reference: Semler, D. et al. (2010) ‘Design, integration, and deployment of the terreStar 18-meter reflector’, in 28th AIAA International Communications Satellite Systems Conference (ICSSC-2010), p. 8855. – reference: Qi, X., Deng, Z. and Li, B. (2013) ‘Design and optimization of large deployable mechanism constructed by Myard linkages’. doi: 10.1007/s12567-013-0036-7. – reference: Lee, E. and Youn, S. (2006) ‘Finite element analysis of wrinkling membrane structures with large deformations’, Finite Elements in Analysis and Design 42 (2006) 780–791, 42, pp. 780–791. doi: 10.1016/j.finel.2006.01.004. – volume: 155 start-page: 80 year: 2019 end-page: 89 ident: b0615 article-title: An active control strategy to suppress nonlinear vibrations of large space membranes publication-title: Acta Astronaut. – volume: 4 start-page: 3942 year: 2012 end-page: 3948 ident: b0205 article-title: Free Vibration Analysis of Flat Thin Membrane publication-title: International Journal of Engineering Science and Technology – volume: December start-page: 1761 year: 1982 end-page: 1763 ident: b0445 publication-title: ‘An Algorithm for Finite Element Analysis of Partly Wrinkled Membranes’, – reference: Liu, J. and Sun, S. (2012) ‘Advances in Reconfigurable Mechanisms and Robots I’, Advances in Reconfigurable Mechanisms and Robots I, pp. 773–782. doi: 10.1007/978-1-4471-4141-9. – reference: J. Santiago-Prowald, H. B. (2013) ‘Advances in deployable structures and surfaces for large apertures in space’, pp. 89–115. doi: 10.1007/s12567-013-0048-3. – volume: 4 start-page: 1 year: 2018 end-page: 16 ident: b0685 article-title: Development of an L-Band SAR Microsatellite Antenna for Earth Observation publication-title: Aerospace, – reference: Lan, L. et al. (2016) ‘An experimental study on reflector wave-front error correction using PZT actuators’, Active and Passive Smart Structures and Integrated Systems 2016, 9799, p. 97990G. doi: 10.1117/12.2218713. – reference: Chahat, N., Sauder, J. and Hodges, R. E. (2017) ‘The Deep- Space Network Telecommunication CubeSat Antenna’, IEEE AntEnnAs & ProPAgAtIon MAgAzInE, (april 2017). – reference: Wang, X. et al. (2018) ‘Numerical study on the dynamic properties of wrinkled membranes’, International Journal of Solids and Structures, 143(https://doi.org/10.1016/j.ijsolstr.2018.03.001), pp. 125–143. doi: 10.1016/j.ijsolstr.2018.03.001. – volume: 00 year: 2019 ident: b0630 article-title: Active shape control of an antenna reflector using piezoelectric actuators publication-title: 2 Journal ofIntelligent Material Systems and Structures – volume: 23 start-page: 1681 year: 2017 end-page: 1692 ident: b0765 article-title: Active vibration suppression of membrane structures and evaluation with a non-contact laser excitation vibration test publication-title: JVC/Journal of Vibration and Control – volume: 58 start-page: 498 year: 2016 end-page: 510 ident: b0530 article-title: A large ring deployable mechanism for space satellite antenna publication-title: Aerosp. Sci. Technol. – volume: 146 start-page: 192 year: 2018 end-page: 201 ident: b0135 article-title: Shape adjustment optimization and experiment of cable-membrane reflectors publication-title: Acta Astronaut. – start-page: LTR-94-AP- year: 1994 ident: b0480 article-title: Inflatable Reflector Development Program, Task 3 Report publication-title: LÕGarde Technical Report – volume: 55 start-page: 519 year: 2004 end-page: 527 ident: b0660 article-title: Shape control of space antennas consisting of cable networks publication-title: Acta Astronaut. – start-page: 20 year: 2005 ident: b0085 article-title: Gossamer spacecraft publication-title: WIT Transactions on State-of-the-art in Science and Engineering – volume: 104 start-page: 11 year: 2014 end-page: 25 ident: b0585 article-title: Shape error study of inflatable antennas using a numerical model publication-title: Acta Astronaut. – volume: 44 start-page: 822 year: 2009 end-page: 834 ident: b0465 article-title: Kinematics of pantograph masts publication-title: Mech. Mach. Theory – volume: 47 start-page: p year: 2000 ident: b0540 article-title: Numerical Implementation of a Shape Memory Alloy Thermomechanical Constitutive Model using Return Mapping Algorithms publication-title: Int. J. Numer. Meth. Eng. – volume: 146 start-page: 192 year: 2018 end-page: 201 ident: b0140 article-title: Shape adjustment optimization and experiment of cable-membrane reflectors publication-title: Acta Astronaut. – volume: 27 year: 2018 ident: b0020 article-title: Quantitative evaluation of the three-dimensional deployment behavior of a shape memory polymer antenna publication-title: Smart Mater. Struct. – volume: 2010 year: 2010 ident: b0080 article-title: L-P perturbation solution of nonlinear free vibration of prestressed orthotropic membrane in large amplitude publication-title: Mathematical Problems in Engineering – volume: 26 year: 2017 ident: b0305 article-title: Design of shape memory alloy actuated intelligent parabolic antenna for space applications publication-title: Smart Mater. Struct. – reference: Wang, C. G. et al. (2007) ‘Wrinkling prediction of rectangular shell-membrane under transverse in-plane displacement’, International Journal of Solids and Structures 44 (2007) 6507–6516, 44, pp. 6507–6516. doi: 10.1016/j.ijsolstr.2007.02.036. – reference: Zolesi, V. S. et al. (2012) ‘On an innovative deployment concept for large space structures’, 42nd International Conference on Environmental Systems 2012, ICES 2012, (July), pp. 1–14. doi: 10.2514/6.2012-3601. – year: 2005 ident: b0560 article-title: Finite Element Analysis of Adaptive Inflatable Structures with SMA Strip Actuator publication-title: Proceedings Volume 5764, Smart Structures and Materials Smart Structures and Integrated Systems – volume: 52 year: 2015 ident: b0385 article-title: ‘Analytical Investigation of Dynamics of Inflatable Parabolic publication-title: Membrane Reflector’ – volume: 21 start-page: 83 year: 2014 end-page: 105 ident: b0690 article-title: Optimizing the HUSIR Antenna Surface publication-title: Lincoln Laboratory Journal – start-page: 1737 year: 2003 ident: b0010 article-title: ‘Vibration studies of an inflatable/rigidizable hexapod structure with a tensioned membrane’, in publication-title: Structural Dynamics, and Materials Conference – volume: 122 year: 2020 ident: b0420 article-title: Nonlinear vibration control effects of membrane structures with in-plane PVDF actuators: A parametric study publication-title: Int. J. Non Linear Mech. – reference: Tung, S. and Witherspoon, S. (2005) ‘Electroactive-Polymer Actuators for Controlling’, Journal of spacecraft and rockets Vol. 42, No. 4, July–August 2005, 42(4). – year: 2010 ident: b0510 article-title: Modeling the dynamics of an inflatable, self-rigidizing toroidal satellite component publication-title: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference – year: 2011 ident: b0155 article-title: ‘Experimental study of a membrane antenna surface adaptive control system’, in publication-title: Structural Dynamics and Materials Conference – start-page: 1 year: 2014 end-page: 9 ident: b0015 article-title: Dynamic analysis of a pressure prestressed in vacuo torus with follower load stiffness publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – volume: May start-page: 1 year: 2006 end-page: 11 ident: b0315 article-title: Flexible Precision Reflector publication-title: Technology – volume: 120(4): 29 start-page: 298 year: 1998 end-page: 305 ident: b0285 article-title: Surface precision of inflatable membrane reflectors publication-title: J. Sol. Energy Eng. – reference: Gaspar, J., Sreekantamurthy, T., Mann, T., Behun, V., Romanofsky, R., Lambert, K. and Pearson, J. (2006) ‘Test and Analysis of an Inflatable Parabolic Dish Antenna’, In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th (p. 1600)., (May). – volume: 42 start-page: 3001 year: 2005 end-page: 3025 ident: b0760 article-title: Numerical and experimental dynamic characteristics of thin-film membranes publication-title: LÕGarde Technical Report – volume: 53 start-page: 2793 year: 2018 end-page: 2805 ident: b0410 article-title: Wave based active vibration control of a membrane antenna structure publication-title: Meccanica – volume: 132 year: 2019 ident: b0110 article-title: Theory of gradient-elastic membranes and its application in the wrinkling analysis of stretched thin sheets publication-title: J. Mech. Phys. Solids – volume: 49 start-page: 905 year: 2012 end-page: 914 ident: b0105 article-title: Effect of boundary support and reflector dimensions on inflatable parabolic antenna performance publication-title: Journal of Spacecraft and Rockets – start-page: 1831 year: 2003 ident: b0165 article-title: Experimentally characterizing the dynamics of 0.5 m+ diameter doubly curved shells made from thin films publication-title: in – reference: Ruggiero, E. J. and Inman, D. (2015) ‘Multi-input multi-output vibration testing of an inflatable torus’, Mechanical Systems and Signal Processing, (SEPTEMBER 2004). doi: 10.1016/j.ymssp.2004.01.003. – start-page: 1832 year: 2007 ident: b0225 article-title: ‘Structural test and analysis of a hybrid inflatable antenna’, in publication-title: Structural Dynamics, and Materials Conference – volume: 11 start-page: 48 year: 2014 end-page: 53 ident: b0045 article-title: Free Vibration Analysis of Inflatable Space Structure publication-title: IOSR Journal of Mechanical and Civil Engineering – reference: Fang, H. et al. (2012) ‘A large and high radio frequency deployable reflector’, 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012, (April). doi: 10.2514/6.2012-1838. – reference: Paradies, R; Hertwig; M; Elspass; WJ (1996) ‘Shape control of an adaptive mirror at different angles of inclination’, Journal of Intelligent Material Systems and Structures 7(2): 203–210, 9(2), pp. 183–205. doi: 10.1177/07399863870092005. – reference: Cadogan, D. (2001) ‘Rigidization Mechanisms And Materials’, Gossamer Spacecraft: Membrane And Inflatable Structures Technology For Space Applications, pp. 257–279. doi: 10.2514/5.9781600866616.0257.0279. – volume: 15 start-page: 70 year: 2009 end-page: 74 ident: b0715 article-title: Active control of free paraboloidal membrane shells using photostrictive actuators publication-title: Transactions of Tianjin University – volume: 21 start-page: 1162 year: 2015 end-page: 1170 ident: b0215 article-title: Nonlinear vibration analysis of piezo-actuated flat thin membrane publication-title: JVC/Journal of Vibration and Control – start-page: 1 year: 2010 end-page: 11 ident: b0100 article-title: A shape deformation study of large aperture inflatable elastic parabolic antenna reflectors publication-title: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference – volume: 38 start-page: 251 year: 1996 end-page: 260 ident: b0190 article-title: Development of flight hardware for a large, inflatable-deployable antenna experiment publication-title: Acta Astronaut. – volume: 29 start-page: 839 year: 2006 end-page: 845 ident: b0625 article-title: Dynamic testing of an inflatable, self-supporting, unpressurized thin-film torus publication-title: Journal of Guidance, Control, and Dynamics – start-page: 176 year: 2001 end-page: 185 ident: b0545 article-title: ‘Modeling and control of membranes for gossamer spacecraft. Part 1: Theory’, publication-title: Structural Dynamics and Materials Conference – start-page: 1 year: 2006 end-page: 20 ident: b0090 article-title: Design Evaluation of a Large Aperture Deployable Antenna publication-title: (May) – volume: 67 start-page: 362 year: 2010 end-page: 368 ident: b0330 article-title: Numerical simulation of the behavior of inflatable structures for space publication-title: Acta Astronaut. – volume: 44 start-page: 1122 year: 2007 end-page: 1130 ident: b0125 article-title: Optimized gore/seam cable actuated shape control of gossamer membrane reflectors publication-title: Journal of spacecraft and rockets – reference: Rey, J. J. et al. (2014) ‘A deployable, annular, 30m telescope, space-based observatory’, in Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, p. 914318. doi: 10.1117/12.2057182. – start-page: 1 year: 2007 end-page: 8 ident: b0610 article-title: Dynamic and Vibration Analysis of a SAR Membrane Antenna Membrane antenna publication-title: Proceedings of IMECE2007 2007 ASME International Mechanical Engineering Congress and Exposition – volume: 21 start-page: 118 year: 2001 end-page: 126 ident: b0520 article-title: PVDF piezoelectric polymer publication-title: Sensor Review – start-page: 1 year: 2016 end-page: 12 ident: b0470 article-title: Concept design of 15m class light weight deployable antenna reflector for L-band SAR application publication-title: 3rd AIAA Spacecraft Structures Conference – reference: Gajbhiye, S. C., Upadhyay, S. H. and Harsha, S. P. (2012) ‘Finite element analysis of an inflatable torus considering air mass structural element’, Advances in Space Research (2013), 53(1), pp. 163–173. doi: 10.1016/j.asr.2013.09.040. – year: 2015 ident: b0320 article-title: ‘Wrinkling Analysis of Small Diameter Membrane Reflector’, – volume: 57 start-page: 215 year: 2005 end-page: 223 ident: b0650 article-title: MBSAT a direct broadcast satellite for mobile users in Japan and Korea publication-title: Acta Astronaut. – volume: April start-page: 1 year: 2012 end-page: 15 ident: b0055 article-title: ‘Piezocomposite actuator arrays for correcting and controlling wavefront error in reectors’, publication-title: Structural Dynamics and Materials Conference – volume: April start-page: 1 year: 2012 end-page: 13 ident: b0635 article-title: ‘Design and testing of ultra-thin shell reflector demonstrator’, publication-title: Structural Dynamics and Materials Conference – volume: 22 start-page: 3388 year: 2010 end-page: 3410 ident: b0030 article-title: Multifunctional shape-memory polymers publication-title: Adv. Mater. – volume: 76 start-page: 13 year: 2012 end-page: 25 ident: b0745 article-title: Structure design and mechanical measurement of inflatable antenna publication-title: Acta Astronaut. – volume: 140 start-page: 66 year: 2017 end-page: 77 ident: b0400 article-title: Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables publication-title: Acta Astronaut. – reference: Xu, Y. et al. (2012) ‘Development of a Novel Double-Ring Deployable Mesh Antenna’, 2012. doi: 10.1155/2012/375463. – volume: 2 start-page: 1564 year: 2007 end-page: 1578 ident: b0640 article-title: Nonlinear structural analysis methodology and dynamics scaling of inflatable parabolic reflector antenna concepts publication-title: Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference – volume: 98 start-page: 704 year: 2010 end-page: 716 ident: b0145 article-title: The soil moisture active passive (SMAP) mission publication-title: Proc. IEEE – volume: 3 start-page: 17 year: 2015 end-page: 33 ident: b0325 article-title: Wrinkling simulation of membrane structures under tensile and shear loading publication-title: Journal of Vibration Analysis – start-page: 1604 year: 2006 ident: b0365 article-title: ‘Concept study of a 35-m spherical reflector system for NEXRAD in space application’, in publication-title: and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th – volume: 39 start-page: 669 year: 2002 end-page: 673 ident: b0290 article-title: Gore/Seam Architectures for Gossamer Structures publication-title: Journal of Spacecraft and Rockets – volume: 41 start-page: 558 year: 2004 end-page: 563 ident: b0425 article-title: Shape correction of inflatable membranes by rigidization and actuation publication-title: Journal of Spacecraft and Rockets – volume: 32 start-page: 535 year: 2019 end-page: 565 ident: b0735 article-title: Mechanical Models, Structures, and Applications of Shape-Memory Polymers and Their Composites publication-title: Acta Mech. Solida Sin. – volume: 67 start-page: 12 year: 2010 end-page: 26 ident: b0525 article-title: Acta Astronautica A review on large deployable structures for astrophysics missions publication-title: Acta Astronaut. – volume: 24 start-page: 2418 year: 2017 end-page: 2429 ident: b0405 article-title: Nonlinear vibration analysis of a membrane based on large deflection theory publication-title: JVC/Journal of Vibration and Control – volume: December start-page: 327 year: 2018 ident: b0475 article-title: ‘NASA-ISRO SAR (NISAR) Mission Science Users’ Handbook’, publication-title: Jet Propulsion Laboaroty – volume: 12 start-page: 423 year: 2001 end-page: 433 ident: b0495 article-title: Integration of Smart Materials into Dynamics and Control of Inflatable Space Structures publication-title: Journal of Intelligent Material Systems and Structures - J INTEL MAT SYST STRUCT – reference: Rao SS and Sunar M (1994) (1994) ‘Piezoelectricity and its use in disturbance sensing and control of flexible structures: A survey’, Applied Mechanics Reviews, 47(4): 113. – reference: Ruggiero, E. J. et al. (2003) ‘A Literature Review of Ultra-Light and Inflated Toroidal Satellite Components’, The Shock and Vibration Digest, (Shock Vib. Dig.). – reference: Kardashev, N. S., Kovalev, Y. Y. and Kellermann, K. I. (2012) ‘Radioastron: An earth-space radio interferometer with a 350,000 km baseline’, URSI Radio Science Bulletin, 2012(343), pp. 22–29. – volume: 105019 year: 2010 ident: b0705 article-title: Experimental and numerical studies on wrinkling control of an inflated beam using SMA wires publication-title: SMART MATERIALS AND STRUCTURES – volume: 51 start-page: 1526 year: 2013 end-page: 1531 ident: b0210 article-title: Vibration analysis of an inflatable torus based on mode shape publication-title: AIAA Journal-Technical Notes – volume: 278 start-page: 207 year: 2004 end-page: 231 ident: b0295 article-title: Importance of geometric non-linearity and follower pressure load in the dynamic analysis of a gossamer structure publication-title: J. Sound Vib. – reference: Davis, G. L. and Tanimoto, R. L. (2006) ‘Mechanical Development of Antenna Systems’, Spaceborne Antennas for Planetary Exploration, pp. 425–454. doi: 10.1002/0470052783.ch8. – volume: 52 issue: 1 year: 2015 ident: 10.1016/j.asr.2021.06.051_b0385 article-title: ‘Analytical Investigation of Dynamics of Inflatable Parabolic publication-title: Membrane Reflector’ – volume: 179 start-page: 42 year: 2021 ident: 10.1016/j.asr.2021.06.051_b0130 article-title: Hybrid lunar inflatable structure publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2020.10.039 – volume: 3 issue: 3 year: 2011 ident: 10.1016/j.asr.2021.06.051_b0120 article-title: Synthesis of deployable/foldable single loop mechanisms with revolute joints publication-title: Journal of Mechanisms and Robotics doi: 10.1115/1.4004029 – volume: 105019 year: 2010 ident: 10.1016/j.asr.2021.06.051_b0705 article-title: Experimental and numerical studies on wrinkling control of an inflated beam using SMA wires publication-title: SMART MATERIALS AND STRUCTURES – volume: 14 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.asr.2021.06.051_b0375 article-title: Nonlinear damped vibration of pre-stressed orthotropic membrane structure under impact loading publication-title: Int. J. Struct. Stab. Dyn. doi: 10.1142/S0219455413500557 – volume: 155 start-page: 80 year: 2019 ident: 10.1016/j.asr.2021.06.051_b0615 article-title: An active control strategy to suppress nonlinear vibrations of large space membranes publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.11.042 – volume: 20 start-page: 97 issue: 2 year: 1999 ident: 10.1016/j.asr.2021.06.051_b0260 article-title: A 1-m X-band inflatable reflectarray antenna publication-title: Microwave Opt. Technol. Lett. doi: 10.1002/(SICI)1098-2760(19990120)20:2<97::AID-MOP4>3.0.CO;2-K – ident: 10.1016/j.asr.2021.06.051_b0220 doi: 10.2514/6.2006-1600 – ident: 10.1016/j.asr.2021.06.051_b0115 doi: 10.1002/0470052783.ch8 – volume: 22 start-page: p year: 2002 ident: 10.1016/j.asr.2021.06.051_b0515 article-title: Deployable Membrane Reflectors publication-title: Proc. 2nd World Engineering Congress – ident: 10.1016/j.asr.2021.06.051_b0035 – ident: 10.1016/j.asr.2021.06.051_b0310 – volume: 15 start-page: 70 issue: 1 year: 2009 ident: 10.1016/j.asr.2021.06.051_b0715 article-title: Active control of free paraboloidal membrane shells using photostrictive actuators publication-title: Transactions of Tianjin University – volume: 175 issue: January year: 2020 ident: 10.1016/j.asr.2021.06.051_b0430 article-title: International Journal of Mechanical Sciences A new modal theory for wrinkling analysis of stretched membranes publication-title: Int. J. Mech. Sci. – volume: 39 start-page: 669 year: 2002 ident: 10.1016/j.asr.2021.06.051_b0290 article-title: Gore/Seam Architectures for Gossamer Structures publication-title: Journal of Spacecraft and Rockets doi: 10.2514/2.3888 – volume: 4 start-page: 1 issue: 128 year: 2018 ident: 10.1016/j.asr.2021.06.051_b0685 article-title: Development of an L-Band SAR Microsatellite Antenna for Earth Observation publication-title: Aerospace, – volume: April start-page: 1 year: 2012 ident: 10.1016/j.asr.2021.06.051_b0635 article-title: ‘Design and testing of ultra-thin shell reflector demonstrator’, Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures publication-title: Structural Dynamics and Materials Conference – volume: 11 start-page: 147 issue: 1 year: 2002 ident: 10.1016/j.asr.2021.06.051_b0500 article-title: Dynamic testing of inflatable structures using smart materials publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/11/1/317 – volume: 5 start-page: 195 issue: 3–4 year: 2013 ident: 10.1016/j.asr.2021.06.051_b0175 article-title: Novel large deployable antenna backing structure concepts for foldable reflectors publication-title: CEAS Space Journal doi: 10.1007/s12567-013-0046-5 – start-page: 176 year: 2001 ident: 10.1016/j.asr.2021.06.051_b0545 article-title: ‘Modeling and control of membranes for gossamer spacecraft. Part 1: Theory’, Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures publication-title: Structural Dynamics and Materials Conference – volume: 10 start-page: 20 issue: 4 year: 2007 ident: 10.1016/j.asr.2021.06.051_b0025 article-title: Shape-memory polymers publication-title: Mater. Today doi: 10.1016/S1369-7021(07)70047-0 – ident: 10.1016/j.asr.2021.06.051_b0490 doi: 10.1177/1045389X9600700212 – ident: 10.1016/j.asr.2021.06.051_b0150 – year: 2011 ident: 10.1016/j.asr.2021.06.051_b0155 article-title: ‘Experimental study of a membrane antenna surface adaptive control system’, in AIAA/ASME/ASCE/AHS/ASC Structures publication-title: Structural Dynamics and Materials Conference – volume: 140 start-page: 66 year: 2017 ident: 10.1016/j.asr.2021.06.051_b0400 article-title: Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.07.047 – start-page: 1 year: 2014 ident: 10.1016/j.asr.2021.06.051_b0015 article-title: Dynamic analysis of a pressure prestressed in vacuo torus with follower load stiffness publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – start-page: 1832 year: 2007 ident: 10.1016/j.asr.2021.06.051_b0225 article-title: ‘Structural test and analysis of a hybrid inflatable antenna’, in 48th AIAA/ASME/ASCE/AHS/ASC Structures publication-title: Structural Dynamics, and Materials Conference – ident: 10.1016/j.asr.2021.06.051_b0600 doi: 10.2514/6.2010-8855 – volume: January start-page: 1 year: 2020 ident: 10.1016/j.asr.2021.06.051_b0590 article-title: ‘Integration, Test, and On-Orbit Operation of a Ka-band Parabolic Deployable Antenna (KaPDA) for CubeSats’, AIAA SciTech publication-title: Forum – ident: 10.1016/j.asr.2021.06.051_b0775 doi: 10.2514/6.2012-3601 – volume: 24 start-page: 2418 issue: 12 year: 2017 ident: 10.1016/j.asr.2021.06.051_b0405 article-title: Nonlinear vibration analysis of a membrane based on large deflection theory publication-title: JVC/Journal of Vibration and Control doi: 10.1177/1077546316687924 – ident: 10.1016/j.asr.2021.06.051_b0250 doi: 10.1049/cp:20030023 – volume: 125 start-page: 577 issue: 4 year: 2003 ident: 10.1016/j.asr.2021.06.051_b0675 article-title: Actuator Placement and Micro-Actuation Efficiency of Adaptive Paraboloidal Shells publication-title: Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME doi: 10.1115/1.1636199 – ident: 10.1016/j.asr.2021.06.051_b0415 doi: 10.1177/1077546319862445 – volume: 53 start-page: 2793 issue: 11–12 year: 2018 ident: 10.1016/j.asr.2021.06.051_b0410 article-title: Wave based active vibration control of a membrane antenna structure publication-title: Meccanica doi: 10.1007/s11012-018-0872-9 – volume: 46 start-page: 1516 issue: 6 year: 2009 ident: 10.1016/j.asr.2021.06.051_b0700 article-title: International Journal of Solids and Structures A new computational method for wrinkling analysis of gossamer space structures q publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2008.11.018 – volume: April start-page: 1 year: 2003 ident: 10.1016/j.asr.2021.06.051_b0170 publication-title: ‘Experimentally Characterizing the Dynamics of 0. 5m + Diameter Doubly Curved Shells Made From Thin Films’ – volume: 44 start-page: 822 issue: 4 year: 2009 ident: 10.1016/j.asr.2021.06.051_b0465 article-title: Kinematics of pantograph masts publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2008.04.004 – volume: 51 start-page: 1526 issue: 6 year: 2013 ident: 10.1016/j.asr.2021.06.051_b0210 article-title: Vibration analysis of an inflatable torus based on mode shape publication-title: AIAA Journal-Technical Notes doi: 10.2514/1.J052342 – start-page: 1 year: 2006 ident: 10.1016/j.asr.2021.06.051_b0090 article-title: Design Evaluation of a Large Aperture Deployable Antenna publication-title: (May) – volume: 3 start-page: 453 year: 1998 ident: 10.1016/j.asr.2021.06.051_b0070 article-title: Inflatable Space Antennas A Brief Overview publication-title: IEEE Aerospace Conference Proceedings – volume: 5 start-page: 1 issue: 2 year: 2015 ident: 10.1016/j.asr.2021.06.051_b0730 article-title: Shape memory polymers with high and low temperature resistant properties publication-title: Sci. Rep. – ident: 10.1016/j.asr.2021.06.051_b0550 doi: 10.1115/1.3111074 – start-page: 1604 year: 2006 ident: 10.1016/j.asr.2021.06.051_b0365 article-title: ‘Concept study of a 35-m spherical reflector system for NEXRAD in space application’, in 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics – volume: 22 start-page: 3388 issue: 31 year: 2010 ident: 10.1016/j.asr.2021.06.051_b0030 article-title: Multifunctional shape-memory polymers publication-title: Adv. Mater. doi: 10.1002/adma.200904447 – volume: 3 start-page: 17 issue: 1 year: 2015 ident: 10.1016/j.asr.2021.06.051_b0325 article-title: Wrinkling simulation of membrane structures under tensile and shear loading publication-title: Journal of Vibration Analysis – ident: 10.1016/j.asr.2021.06.051_b0710 doi: 10.1016/j.ijsolstr.2018.03.001 – volume: 21 start-page: 1227 issue: 12 year: 2010 ident: 10.1016/j.asr.2021.06.051_b0240 article-title: Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: A technical review publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X10381659 – volume: 23 start-page: 1681 issue: 10 year: 2017 ident: 10.1016/j.asr.2021.06.051_b0765 article-title: Active vibration suppression of membrane structures and evaluation with a non-contact laser excitation vibration test publication-title: JVC/Journal of Vibration and Control doi: 10.1177/1077546315599302 – ident: 10.1016/j.asr.2021.06.051_b0565 doi: 10.1177/0583102403035003001 – ident: 10.1016/j.asr.2021.06.051_b0075 – volume: 2009 year: 2009 ident: 10.1016/j.asr.2021.06.051_b0770 article-title: Free vibration analysis of rectangular orthotropic membranes in large deflection publication-title: Mathematical Problems in Engineering doi: 10.1155/2009/634362 – volume: 49 start-page: 905 issue: 5 year: 2012 ident: 10.1016/j.asr.2021.06.051_b0105 article-title: Effect of boundary support and reflector dimensions on inflatable parabolic antenna performance publication-title: Journal of Spacecraft and Rockets doi: 10.2514/1.A32021 – volume: 146 start-page: 192 year: 2018 ident: 10.1016/j.asr.2021.06.051_b0140 article-title: Shape adjustment optimization and experiment of cable-membrane reflectors publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.02.037 – volume: 21 start-page: 83 issue: 1 year: 2014 ident: 10.1016/j.asr.2021.06.051_b0690 article-title: Optimizing the HUSIR Antenna Surface publication-title: Lincoln Laboratory Journal – volume: 33 year: 2019 ident: 10.1016/j.asr.2021.06.051_b0390 article-title: Orientable wrinkles in stretched orthotropic films publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2019.100579 – volume: 58 start-page: 498 year: 2016 ident: 10.1016/j.asr.2021.06.051_b0530 article-title: A large ring deployable mechanism for space satellite antenna publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2016.09.014 – volume: 2010 year: 2010 ident: 10.1016/j.asr.2021.06.051_b0080 article-title: L-P perturbation solution of nonlinear free vibration of prestressed orthotropic membrane in large amplitude publication-title: Mathematical Problems in Engineering doi: 10.1155/2010/561364 – volume: 12 start-page: 423 year: 2001 ident: 10.1016/j.asr.2021.06.051_b0495 article-title: Integration of Smart Materials into Dynamics and Control of Inflatable Space Structures publication-title: Journal of Intelligent Material Systems and Structures - J INTEL MAT SYST STRUCT doi: 10.1106/104538902022725 – volume: 132 year: 2019 ident: 10.1016/j.asr.2021.06.051_b0110 article-title: Theory of gradient-elastic membranes and its application in the wrinkling analysis of stretched thin sheets publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2019.103679 – volume: December start-page: 1761 year: 1982 ident: 10.1016/j.asr.2021.06.051_b0445 publication-title: ‘An Algorithm for Finite Element Analysis of Partly Wrinkled Membranes’, TECHNICAL NOTES, American Institute of Aeronautics and Astronautic – year: 2001 ident: 10.1016/j.asr.2021.06.051_b0065 article-title: ‘Rigidizable Materials for use in Gossamer Space Inflatable Structures 42nd AIAA / ASME / ASCE / AHS / ASC Structures, Structural Dynamics – volume: 41 issue: 8 year: 2003 ident: 10.1016/j.asr.2021.06.051_b0505 article-title: Vibration Testing and Finite Element Analysis of an In atable Structure Introduction publication-title: AIAA JOURNAL doi: 10.2514/2.2107 – volume: 57 start-page: 215 issue: 2–8 year: 2005 ident: 10.1016/j.asr.2021.06.051_b0650 article-title: MBSAT a direct broadcast satellite for mobile users in Japan and Korea publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2005.03.026 – volume: 120(4): 29 start-page: 298 year: 1998 ident: 10.1016/j.asr.2021.06.051_b0285 article-title: Surface precision of inflatable membrane reflectors publication-title: J. Sol. Energy Eng. doi: 10.1115/1.2888134 – ident: 10.1016/j.asr.2021.06.051_b0555 doi: 10.1117/12.2057182 – volume: 65 start-page: 868 issue: 2 year: 2020 ident: 10.1016/j.asr.2021.06.051_b0245 article-title: Space VLBI: from first ideas to operational missions publication-title: Adv. Space Res. doi: 10.1016/j.asr.2019.05.042 – volume: 47 start-page: 2459 issue: 18–19 year: 2010 ident: 10.1016/j.asr.2021.06.051_b0340 article-title: International Journal of Solids and Structures Experimental analysis on membrane wrinkling under biaxial load – Comparison with bifurcation analysis publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2010.05.005 – volume: 41 start-page: 558 issue: 4 year: 2004 ident: 10.1016/j.asr.2021.06.051_b0425 article-title: Shape correction of inflatable membranes by rigidization and actuation publication-title: Journal of Spacecraft and Rockets doi: 10.2514/1.11949 – ident: 10.1016/j.asr.2021.06.051_b0570 doi: 10.1016/j.ymssp.2004.01.003 – volume: 106 start-page: 90 year: 2015 ident: 10.1016/j.asr.2021.06.051_b0380 article-title: Optimization design combined with coupled structural-electrostatic analysis for the electrostatically controlled deployable membrane reflector publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2014.10.019 – volume: 21 start-page: 118 issue: 2 year: 2001 ident: 10.1016/j.asr.2021.06.051_b0680 article-title: PVDF piezoelectric polymer publication-title: Sensor Review doi: 10.1108/02602280110388315 – ident: 10.1016/j.asr.2021.06.051_b0300 doi: 10.1016/0045-7949(85)90111-7 – volume: 159 year: 2021 ident: 10.1016/j.asr.2021.06.051_b0360 article-title: Stress Superposition Method and free vibration of corner tensioned rectangular thin membranes publication-title: Thin-Walled Structures doi: 10.1016/j.tws.2020.107201 – volume: 29 start-page: 839 issue: 4 year: 2006 ident: 10.1016/j.asr.2021.06.051_b0625 article-title: Dynamic testing of an inflatable, self-supporting, unpressurized thin-film torus publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.16509 – ident: 10.1016/j.asr.2021.06.051_b0455 – ident: 10.1016/j.asr.2021.06.051_b0200 doi: 10.1016/j.asr.2013.09.040 – volume: 00 year: 2019 ident: 10.1016/j.asr.2021.06.051_b0630 article-title: Active shape control of an antenna reflector using piezoelectric actuators publication-title: 2 Journal ofIntelligent Material Systems and Structures – volume: 11 start-page: 42 year: 2014 ident: 10.1016/j.asr.2021.06.051_b0050 publication-title: Finite element analysis of deployable space structures – year: 2005 ident: 10.1016/j.asr.2021.06.051_b0560 article-title: Finite Element Analysis of Adaptive Inflatable Structures with SMA Strip Actuator – ident: 10.1016/j.asr.2021.06.051_b0060 doi: 10.2514/5.9781600866616.0257.0279 – year: 2010 ident: 10.1016/j.asr.2021.06.051_b0510 article-title: Modeling the dynamics of an inflatable, self-rigidizing toroidal satellite component – start-page: 1831 year: 2003 ident: 10.1016/j.asr.2021.06.051_b0165 article-title: Experimentally characterizing the dynamics of 0.5 m+ diameter doubly curved shells made from thin films – volume: 41 start-page: 267 issue: 4–10 year: 1997 ident: 10.1016/j.asr.2021.06.051_b0180 article-title: Large inflatable deployable antenna flight experiment results publication-title: Acta Astronaut. doi: 10.1016/S0094-5765(98)00057-5 – year: 1961 ident: 10.1016/j.asr.2021.06.051_b0645 article-title: Analysis of partly wrinkled membranes publication-title: National Aeronautics and Space – year: 2015 ident: 10.1016/j.asr.2021.06.051_b0320 – volume: 27 start-page: 705 issue: 5 year: 2016 ident: 10.1016/j.asr.2021.06.051_b0725 publication-title: ‘Modeling and optimal design for static shape control of smart reflector using simulated annealing algorithm’ – volume: 5 start-page: 203 issue: 3–4 year: 2013 ident: 10.1016/j.asr.2021.06.051_b0435 article-title: Possible options for jointly deploying a ring provided with V-fold bars and a flexible pre-stressed center publication-title: CEAS Space Journal doi: 10.1007/s12567-013-0037-6 – volume: 30 start-page: 29 year: 1993 ident: 10.1016/j.asr.2021.06.051_b0185 article-title: In-step inflatable antenna experiment publication-title: Acta Astronaut. doi: 10.1016/0094-5765(93)90098-H – volume: 27 issue: 10 year: 2018 ident: 10.1016/j.asr.2021.06.051_b0020 article-title: Quantitative evaluation of the three-dimensional deployment behavior of a shape memory polymer antenna publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aad936 – ident: 10.1016/j.asr.2021.06.051_b0345 doi: 10.1016/j.finel.2006.01.004 – volume: 44 start-page: 1122 issue: 5 year: 2007 ident: 10.1016/j.asr.2021.06.051_b0125 article-title: Optimized gore/seam cable actuated shape control of gossamer membrane reflectors publication-title: Journal of spacecraft and rockets doi: 10.2514/1.25109 – start-page: 1 year: 2009 ident: 10.1016/j.asr.2021.06.051_b0460 article-title: Historical Perspectives on the Development of Deployable Reflectors publication-title: (May) – volume: 67 start-page: 362 issue: 3–4 year: 2010 ident: 10.1016/j.asr.2021.06.051_b0330 article-title: Numerical simulation of the behavior of inflatable structures for space publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2010.02.006 – volume: 98 start-page: 704 issue: 5 year: 2010 ident: 10.1016/j.asr.2021.06.051_b0145 article-title: The soil moisture active passive (SMAP) mission publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2043918 – volume: 38 start-page: 251 issue: 4–8 year: 1996 ident: 10.1016/j.asr.2021.06.051_b0190 article-title: Development of flight hardware for a large, inflatable-deployable antenna experiment publication-title: Acta Astronaut. doi: 10.1016/0094-5765(96)00030-6 – volume: 5 start-page: 3078 issue: April year: 2005 ident: 10.1016/j.asr.2021.06.051_b0655 article-title: Design & manufacture of stiffened spring-back reflector demonstrator publication-title: Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference – ident: 10.1016/j.asr.2021.06.051_b0280 doi: 10.1007/s12567-013-0048-3 – volume: 42 start-page: 74 year: 2015 ident: 10.1016/j.asr.2021.06.051_b0450 article-title: Modal behavior of a new large reflector conceptual design publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2015.01.002 – volume: December start-page: 327 year: 2018 ident: 10.1016/j.asr.2021.06.051_b0475 article-title: ‘NASA-ISRO SAR (NISAR) Mission Science Users’ Handbook’, California Institute of technology publication-title: Jet Propulsion Laboaroty – volume: 278 start-page: 207 issue: 1–2 year: 2004 ident: 10.1016/j.asr.2021.06.051_b0295 article-title: Importance of geometric non-linearity and follower pressure load in the dynamic analysis of a gossamer structure publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2003.10.026 – volume: 122 year: 2020 ident: 10.1016/j.asr.2021.06.051_b0420 article-title: Nonlinear vibration control effects of membrane structures with in-plane PVDF actuators: A parametric study publication-title: Int. J. Non Linear Mech. doi: 10.1016/j.ijnonlinmec.2020.103466 – volume: 47 start-page: p year: 2000 ident: 10.1016/j.asr.2021.06.051_b0540 article-title: Numerical Implementation of a Shape Memory Alloy Thermomechanical Constitutive Model using Return Mapping Algorithms publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N – ident: 10.1016/j.asr.2021.06.051_b0095 doi: 10.2514/6.2001-1258 – volume: 55 start-page: 519 issue: 3–9 year: 2004 ident: 10.1016/j.asr.2021.06.051_b0660 article-title: Shape control of space antennas consisting of cable networks publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2004.05.014 – volume: 67 start-page: 12 issue: 1–2 year: 2010 ident: 10.1016/j.asr.2021.06.051_b0525 article-title: Acta Astronautica A review on large deployable structures for astrophysics missions publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2010.02.021 – volume: 340 year: 2007 ident: 10.1016/j.asr.2021.06.051_b0750 article-title: Wrinkling control of inflatable booms using shape memory alloy wires publication-title: Smart Mater. Struct. – volume: 42 start-page: 3001 year: 2005 ident: 10.1016/j.asr.2021.06.051_b0760 article-title: Numerical and experimental dynamic characteristics of thin-film membranes publication-title: LÕGarde Technical Report – volume: 43 start-page: 10 issue: 1 year: 2006 ident: 10.1016/j.asr.2021.06.051_b0575 article-title: ‘Gossamer Spacecraft : Recent Trends in Design publication-title: Analysis, Experimentation, and Control’ – volume: May start-page: 1 year: 2006 ident: 10.1016/j.asr.2021.06.051_b0315 article-title: Flexible Precision Reflector publication-title: Technology – volume: 40 start-page: 15 issue: 1 year: 2003 ident: 10.1016/j.asr.2021.06.051_b0485 article-title: Structural dynamics experimental activities in ultralightweight and inflatable space structures publication-title: Journal of Spacecraft and Rockets doi: 10.2514/2.3934 – volume: 38 start-page: 296 issue: 2 year: 2019 ident: 10.1016/j.asr.2021.06.051_b0605 article-title: Parameter estimation of butyl rubber aided with dynamic mechanical analysis for numerical modelling of an air-inflated torus and experimental validation using 3D-laser Doppler vibrometer publication-title: Journal of Low Frequency Noise Vibration and Active Control doi: 10.1177/1461348419825685 – year: 1999 ident: 10.1016/j.asr.2021.06.051_b0235 article-title: Revolutionary design concepts for inflatable space strucutures publication-title: SAE Technical Papers doi: 10.4271/1999-01-5520 – start-page: LTR-94-AP- year: 1994 ident: 10.1016/j.asr.2021.06.051_b0480 article-title: Inflatable Reflector Development Program, Task 3 Report publication-title: LÕGarde Technical Report – start-page: 20 year: 2005 ident: 10.1016/j.asr.2021.06.051_b0085 article-title: Gossamer spacecraft doi: 10.2495/978-1-85312-941-4/10 – ident: 10.1016/j.asr.2021.06.051_b0335 doi: 10.1117/12.2218713 – volume: 5 start-page: 125 issue: 3–4 year: 2013 ident: 10.1016/j.asr.2021.06.051_b0595 article-title: Large deployable reflectors for telecom and earth observation applications publication-title: CEAS Space Journal doi: 10.1007/s12567-013-0044-7 – volume: 286 start-page: 1019 issue: 4–5 year: 2005 ident: 10.1016/j.asr.2021.06.051_b0620 article-title: Dynamic characteristics of the out-of-plane vibration for an axially moving membrane publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2005.01.013 – volume: 20 start-page: 1257 issue: 8 year: 2014 ident: 10.1016/j.asr.2021.06.051_b0720 article-title: Optimal piezoelectric sensor/actuator placement of cable net structures using H2-norm measures publication-title: J. Vib. Control doi: 10.1177/1077546312472927 – volume: April start-page: 1 year: 2012 ident: 10.1016/j.asr.2021.06.051_b0055 article-title: ‘Piezocomposite actuator arrays for correcting and controlling wavefront error in reectors’, Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures publication-title: Structural Dynamics and Materials Conference – ident: 10.1016/j.asr.2021.06.051_b0395 doi: 10.1007/978-1-4471-4141-9_69 – volume: 65 start-page: 1306 issue: 9–10 year: 2009 ident: 10.1016/j.asr.2021.06.051_b0440 article-title: In-orbit deployment characteristics of large deployable antenna reflector onboard Engineering Test Satellite VIII publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2009.03.052 – volume: 21 start-page: 1162 issue: 6 year: 2015 ident: 10.1016/j.asr.2021.06.051_b0215 article-title: Nonlinear vibration analysis of piezo-actuated flat thin membrane publication-title: JVC/Journal of Vibration and Control doi: 10.1177/1077546313493456 – ident: 10.1016/j.asr.2021.06.051_b0160 doi: 10.2514/6.2012-1838 – volume: 104 start-page: 11 issue: 1 year: 2014 ident: 10.1016/j.asr.2021.06.051_b0585 article-title: Shape error study of inflatable antennas using a numerical model publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2014.07.018 – ident: 10.1016/j.asr.2021.06.051_b0740 doi: 10.1155/2012/375463 – start-page: 1 year: 2007 ident: 10.1016/j.asr.2021.06.051_b0610 article-title: Dynamic and Vibration Analysis of a SAR Membrane Antenna Membrane antenna – start-page: 2104 year: 1998 ident: 10.1016/j.asr.2021.06.051_b0195 article-title: ‘Significance of the inflatable antenna experiment technology’, in 39th AIAA/ASME/ASCE/AHS/ASC Structures publication-title: Structural Dynamics, and Materials Conference and Exhibit – volume: 11 start-page: 48 issue: 6 year: 2014 ident: 10.1016/j.asr.2021.06.051_b0045 article-title: Free Vibration Analysis of Inflatable Space Structure publication-title: IOSR Journal of Mechanical and Civil Engineering doi: 10.9790/1684-11634853 – volume: 146 start-page: 192 issue: January year: 2018 ident: 10.1016/j.asr.2021.06.051_b0135 article-title: Shape adjustment optimization and experiment of cable-membrane reflectors publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.02.037 – volume: 54 start-page: 633 issue: 4 year: 1966 ident: 10.1016/j.asr.2021.06.051_b0580 article-title: Antenna tolerance theory—A review publication-title: Proc. IEEE doi: 10.1109/PROC.1966.4784 – volume: 21 start-page: 118 issue: 2 year: 2001 ident: 10.1016/j.asr.2021.06.051_b0520 article-title: PVDF piezoelectric polymer publication-title: Sensor Review doi: 10.1108/02602280110388315 – volume: 26 issue: 9 year: 2017 ident: 10.1016/j.asr.2021.06.051_b0305 article-title: Design of shape memory alloy actuated intelligent parabolic antenna for space applications publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa7468 – ident: 10.1016/j.asr.2021.06.051_b0230 – volume: 76 start-page: 13 year: 2012 ident: 10.1016/j.asr.2021.06.051_b0745 article-title: Structure design and mechanical measurement of inflatable antenna publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2012.02.005 – volume: 19 issue: 10 year: 2010 ident: 10.1016/j.asr.2021.06.051_b0755 article-title: An optimal method of shape control for deformable structures with an application to a mechanically reconfigurable reflector antenna publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/10/105004 – volume: 32 start-page: 535 issue: 5 year: 2019 ident: 10.1016/j.asr.2021.06.051_b0735 article-title: Mechanical Models, Structures, and Applications of Shape-Memory Polymers and Their Composites publication-title: Acta Mech. Solida Sin. doi: 10.1007/s10338-019-00103-9 – start-page: 1 year: 2010 ident: 10.1016/j.asr.2021.06.051_b0100 article-title: A shape deformation study of large aperture inflatable elastic parabolic antenna reflectors – ident: 10.1016/j.asr.2021.06.051_b0275 – ident: 10.1016/j.asr.2021.06.051_b0695 doi: 10.1016/j.ijsolstr.2007.02.036 – start-page: 1737 year: 2003 ident: 10.1016/j.asr.2021.06.051_b0010 article-title: ‘Vibration studies of an inflatable/rigidizable hexapod structure with a tensioned membrane’, in 44th AIAA/ASME/ASCE/AHS/ASC Structures publication-title: Structural Dynamics, and Materials Conference – volume: 51 start-page: 3303 issue: 19–20 year: 2014 ident: 10.1016/j.asr.2021.06.051_b0040 article-title: De-wrinkling of pre-tensioned membranes publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2014.05.001 – volume: 34 start-page: 848 issue: 11 year: 2009 ident: 10.1016/j.asr.2021.06.051_b0350 article-title: Shape-memory polymers - A class of novel smart materials publication-title: MRS Bull. doi: 10.1557/mrs2009.235 – start-page: 2032 year: 2002 ident: 10.1016/j.asr.2021.06.051_b0665 article-title: AstroMesh deployable reflectors for ku and ka band commercial satellites – ident: 10.1016/j.asr.2021.06.051_b0535 doi: 10.1007/s12567-013-0036-7 – ident: 10.1016/j.asr.2021.06.051_b0670 doi: 10.2514/1.3227 – start-page: 1 year: 2016 ident: 10.1016/j.asr.2021.06.051_b0470 article-title: Concept design of 15m class light weight deployable antenna reflector for L-band SAR application – volume: 4 start-page: 3942 issue: 8 year: 2012 ident: 10.1016/j.asr.2021.06.051_b0205 article-title: Free Vibration Analysis of Flat Thin Membrane publication-title: International Journal of Engineering Science and Technology – volume: 2 start-page: 1564 issue: April year: 2007 ident: 10.1016/j.asr.2021.06.051_b0640 article-title: Nonlinear structural analysis methodology and dynamics scaling of inflatable parabolic reflector antenna concepts publication-title: Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference |
SSID | ssj0012770 |
Score | 2.5781178 |
SecondaryResourceType | review_article |
Snippet | The gossamer space structures are very large and ultra-lightweight structures. A large aperture-based space structure is highly efficient in capturing signals... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3749 |
SubjectTerms | Gossamer space structure Large deployable antenna Membrane-based reflector antennas Reflector antennas Ultra-lightweight structure |
Title | A review on developments of deployable membrane-based reflector antennas |
URI | https://dx.doi.org/10.1016/j.asr.2021.06.051 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS9xAFH-IUtCD6LaiVZc5lB6E6WYyX5njIsq2pVLQhb2FJDMDK252MduDF_9252UStdB68JYZ5kF4eXlf897vAXxJhSvKUjLqMs6pYJbRzAhDrdcmSb1jvG0S-3WlJlPxYyZnG3De98JgWWWn-6NOb7V1tzPquDlazeeja0RiwSvHELQgKAk2_AqhUcq_PT6XebBU65hn0Zzi6f5ms63xKhqEBE1ZC-Ep2b9t0yt7c7kHu52jSMbxXfZhw9UDOBw3mLpeLh7IV9I-x8xEM4CdV8iCA_jwO-5_hMmYxPYUsqyJfSkRasjShzXO-8XuKbJwixA4146iXbOBxseEPkHW13XRfILp5cXN-YR24xNolRq9pr7yPPxtSVYaq2SIOm1iHedC-8r4xPtElUyUmqdeZcZZxgujRPDnZCUrXySCH8BmvazdIRBhC5Vpq5WpvCi9MdZJFVheSl0pJ9IjSHrG5VWHLY4jLu7yvojsNg-8zpHXORbSSXYEZ88kqwis8dZh0X-N_C_pyIPi_z_Z5_eRHcM2rmLH4Qlsru__uNPgeqzLYStbQ9gaf_85uXoCSHnXiQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IOpBdFV8m4N4EOI2zas5LqKsTwQVvJW2SWDF7YpdD1787SZN6wPUg7c2zUCZJPPKzDcAezEzWZ5zgk1CKWZEE5woprC2UkWxNYTWRWKXV6J_x87u-f0EHLW1MD6tspH9QabX0roZ6Tbc7D4NBt0bj8Tirxyd0-JBSZJJmGbu-Po2BodvH3keJJYyBFokxX56e7VZJ3lllccEjUmN4cnJz8rpi8I5WYSFxlJEvfAzSzBhyg6s9Sofux4NX9E-qp9DaKLqwPwXaMEOzFyH8WXo91CoT0GjEunPHKEKjax79w1_ffkUGpqh85xLg71i047Ghog-8rwvy6xagbuT49ujPm76J-AiVnKMbWGpO25RkistuHM7daQNpUzaQtnI2kjkhOWSxlYkymhCMyWYM-h4wQubRYyuwlQ5Ks0aIKYzkUgthSosy61S2nDheJ5zWQjD4nWIWsalRQMu7ntcPKZtFtlD6nidel6nPpOOk3U4-CB5Csgaf01m7Wqk37ZH6iT_72Qb_yPbhdn-7eVFenF6db4Jc_5LKD_cgqnx84vZdnbION-p99k7WeHZFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+developments+of+deployable+membrane-based+reflector+antennas&rft.jtitle=Advances+in+space+research&rft.au=Chandra%2C+Mukesh&rft.au=Kumar%2C+Satish&rft.au=Chattopadhyaya%2C+Somnath&rft.au=Chatterjee%2C+Sayan&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=0273-1177&rft.eissn=1879-1948&rft.volume=68&rft.issue=9&rft.spage=3749&rft.epage=3764&rft_id=info:doi/10.1016%2Fj.asr.2021.06.051&rft.externalDocID=S0273117721005378 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon |