Binary NiCo nanoalloys and single-atoms implanted nitrogen-doped carbon nanotubes as highly efficient, robust electrocatalyst for overall water splitting
[Display omitted] •NiCo nanoparticles and single-atoms confined by nitrogen doped carbon nanotubes are synthesized.•NiCo-N-CNTs-900 requires lower overpotential at 10 mA cm−2 in OER and HER than the Ni-N-CNTs-900 and Co-N-CNTs-900.•Highly dispersed NiCo nanoalloys and Ni/Co single-atoms structure bo...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 471; p. 144378 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•NiCo nanoparticles and single-atoms confined by nitrogen doped carbon nanotubes are synthesized.•NiCo-N-CNTs-900 requires lower overpotential at 10 mA cm−2 in OER and HER than the Ni-N-CNTs-900 and Co-N-CNTs-900.•Highly dispersed NiCo nanoalloys and Ni/Co single-atoms structure boost OER and HER.•A water electrolyzer using NiCo-N-CNTs-900 exhibits low cell voltage than the Pt/C//RuO2 couple.
Finding robust, high-efficiency, noble-metal-free electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) particularly at a low overpotential is a crucial endeavor for water electrolyzer-based green H2 harvesting, but challenges remain. Fortunately, atomically dispersed metal catalysts hold great potential for OER and HER owing to the exclusive electronic structure and maximized atom utilization, however, the insufficient population of reactive sites and unfortunate electrical conductivity seriously limit their performance. Herein, we rationally designed and synthesized a single-atom catalyst consisting of atomic Co and Ni with NiCo alloys encapsulated nitrogen-doped carbon nanotubes (N-CNTs). The NiCo-N-CNTs catalyst annealed at 900 °C (NiCo-N-CNTs-900) displays ultralow overpotential of 210 mV and 54 mV at 10 mA/cm2 for OER and HER, respectively, which are attributed to the robust synergistic effects of Ni/Co single atoms and NiCo nanoalloys. Furthermore, NiCo-N-CNTs-900 electrode exhibits higher mass activity of 2188 A/gNiCo and 468.75 A/gNiCo and turnover frequency of 0.679 O2 s−1 and 0.285 H2 s−1 for OER and HER, respectively, which is much better than those of commercial RuO2 and Pt/C catalysts. We further employed the NiCo-N-CNTs-900 as both anode and cathode catalyst for constructing a two-electrode electrolyzer, generating a current density of 10 mA/cm2 at a low cell voltage of 1.483 V, surpassing the benchmark Pt/C//RuO2 pair. This work not only provides a robust and effective non-precious metal catalyst but also a facile, efficient method to fabricate atomically dispersed metal atoms integrated with alloys for clean hydrogen production and beyond. |
---|---|
AbstractList | [Display omitted]
•NiCo nanoparticles and single-atoms confined by nitrogen doped carbon nanotubes are synthesized.•NiCo-N-CNTs-900 requires lower overpotential at 10 mA cm−2 in OER and HER than the Ni-N-CNTs-900 and Co-N-CNTs-900.•Highly dispersed NiCo nanoalloys and Ni/Co single-atoms structure boost OER and HER.•A water electrolyzer using NiCo-N-CNTs-900 exhibits low cell voltage than the Pt/C//RuO2 couple.
Finding robust, high-efficiency, noble-metal-free electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) particularly at a low overpotential is a crucial endeavor for water electrolyzer-based green H2 harvesting, but challenges remain. Fortunately, atomically dispersed metal catalysts hold great potential for OER and HER owing to the exclusive electronic structure and maximized atom utilization, however, the insufficient population of reactive sites and unfortunate electrical conductivity seriously limit their performance. Herein, we rationally designed and synthesized a single-atom catalyst consisting of atomic Co and Ni with NiCo alloys encapsulated nitrogen-doped carbon nanotubes (N-CNTs). The NiCo-N-CNTs catalyst annealed at 900 °C (NiCo-N-CNTs-900) displays ultralow overpotential of 210 mV and 54 mV at 10 mA/cm2 for OER and HER, respectively, which are attributed to the robust synergistic effects of Ni/Co single atoms and NiCo nanoalloys. Furthermore, NiCo-N-CNTs-900 electrode exhibits higher mass activity of 2188 A/gNiCo and 468.75 A/gNiCo and turnover frequency of 0.679 O2 s−1 and 0.285 H2 s−1 for OER and HER, respectively, which is much better than those of commercial RuO2 and Pt/C catalysts. We further employed the NiCo-N-CNTs-900 as both anode and cathode catalyst for constructing a two-electrode electrolyzer, generating a current density of 10 mA/cm2 at a low cell voltage of 1.483 V, surpassing the benchmark Pt/C//RuO2 pair. This work not only provides a robust and effective non-precious metal catalyst but also a facile, efficient method to fabricate atomically dispersed metal atoms integrated with alloys for clean hydrogen production and beyond. |
ArticleNumber | 144378 |
Author | Khan, Hasmat Kwon, Se-Hun Balasubramanian, Paramasivam Baek, Ji-Hu |
Author_xml | – sequence: 1 givenname: Paramasivam surname: Balasubramanian fullname: Balasubramanian, Paramasivam organization: Institute of Materials Technology, Pusan National University, 30 Jangjeon-Dong Geumjeong-Gu, Busan 46241, Republic of Korea – sequence: 2 givenname: Hasmat orcidid: 0000-0002-4402-4835 surname: Khan fullname: Khan, Hasmat organization: Institute of Materials Technology, Pusan National University, 30 Jangjeon-Dong Geumjeong-Gu, Busan 46241, Republic of Korea – sequence: 3 givenname: Ji-Hu orcidid: 0000-0003-0439-2526 surname: Baek fullname: Baek, Ji-Hu organization: School of Materials Science and Engineering, Pusan National University, 30 Jangjeon-Dong Geumjeong-Gu, Busan 46241, Republic of Korea – sequence: 4 givenname: Se-Hun surname: Kwon fullname: Kwon, Se-Hun email: sehun@pusan.ac.kr organization: Institute of Materials Technology, Pusan National University, 30 Jangjeon-Dong Geumjeong-Gu, Busan 46241, Republic of Korea |
BookMark | eNp9kD1OAzEQRl0EiSRwADofgA22N5vdFRVE_EkIGqgt2ztOvHLsle0E5SjcFodQUaSa-Yo3n-ZN0Mh5BwhdUTKjhC5u-pmCfsYIK2d0Pi_rZoTGtGyqomnn9TmaxNgTQhYtbcfo-944Efb4zSw9dsJ5Ya3fRyxch6NxKwuFSH4TsdkMVrgEHXYmBb8CV3R-yFGJIL37ZdNWQkYjXpvV2u4xaG2UAZeucfByGxMGCyrTSiRh9zlrH7DfQcit-EskCDgO1qSUmy_QmRY2wuXfnKLPx4eP5XPx-v70srx7LRRr61RopZhkrFKkVrrLe1WVlRBUs5bpBZOqkXohVS21qLq2ZlKWsmx1VzWNJlo25RTVx7sq-BgDaK5MEsl4l4IwllPCD1Z5z7NVfrDKj1YzSf-RQzCbbPMkc3tkIL-0MxB4PBhS0JmQ1fDOmxP0D_-Emh0 |
CitedBy_id | crossref_primary_10_1039_D3CY01209C crossref_primary_10_1016_j_fuel_2025_134438 crossref_primary_10_1016_j_molstruc_2024_139190 crossref_primary_10_1002_adfm_202405919 crossref_primary_10_1007_s12598_024_03168_9 crossref_primary_10_1007_s12678_024_00902_w crossref_primary_10_1016_j_cclet_2024_110397 crossref_primary_10_1016_j_cej_2025_160981 crossref_primary_10_1016_j_nanoen_2024_109305 crossref_primary_10_1016_j_ijhydene_2023_12_277 crossref_primary_10_1002_adfm_202423552 crossref_primary_10_1016_j_jallcom_2024_177296 crossref_primary_10_1016_j_mtchem_2024_102476 crossref_primary_10_1016_j_cej_2024_150624 crossref_primary_10_1039_D4NJ00015C crossref_primary_10_1016_j_ijhydene_2024_07_411 crossref_primary_10_1021_acs_langmuir_4c02023 crossref_primary_10_1016_j_ijhydene_2024_12_024 crossref_primary_10_1016_j_ijhydene_2024_12_101 crossref_primary_10_1016_j_ijhydene_2023_12_221 crossref_primary_10_1016_j_jcis_2024_09_038 crossref_primary_10_1016_j_jallcom_2025_179719 crossref_primary_10_1016_j_cej_2024_157208 crossref_primary_10_1016_j_colsurfa_2025_136559 crossref_primary_10_1002_adfm_202414935 crossref_primary_10_1002_aenm_202304546 crossref_primary_10_1149_1945_7111_ad8bf6 |
Cites_doi | 10.1021/acsnano.1c04471 10.1002/aenm.201803918 10.1002/adfm.202103360 10.1126/sciadv.1500564 10.1002/anie.202203335 10.1002/anie.202103557 10.1016/j.apcatb.2021.120071 10.1021/acsnano.1c08506 10.1002/adfm.202104735 10.1039/C7TA10933D 10.1002/adma.201901666 10.1021/acsami.2c09271 10.1038/s41467-019-08419-3 10.1016/j.apcatb.2018.08.081 10.1039/C8EE01841C 10.1002/smll.202105680 10.1021/acs.chemmater.2c00041 10.1016/j.apcatb.2022.121953 10.1002/advs.201902371 10.1002/adfm.202107608 10.1002/aenm.202002896 10.1016/j.nanoen.2021.106153 10.1021/acscatal.1c04454 10.1002/anie.202115835 10.1002/adma.201904548 10.1039/C4TA04337E 10.1021/acs.nanolett.2c00658 10.1002/smll.202002511 10.1002/anie.202002984 10.1039/D0NR07126A 10.1002/aenm.201903854 10.1021/acsenergylett.1c00037 10.1002/smll.202105487 10.1016/j.carbon.2019.09.001 10.1038/s41467-019-13415-8 10.1021/acssuschemeng.9b05238 10.1016/j.apcatb.2021.120935 10.1002/adma.202100745 10.1021/acs.nanolett.1c00279 10.1016/j.apcatb.2021.121006 10.1039/C8TA06946H 10.1038/s41929-018-0162-x 10.1021/jacs.8b05134 10.1002/smll.201900550 10.1002/aenm.201803689 10.1021/acssuschemeng.0c02498 10.1002/adma.201905622 10.1016/j.nanoen.2019.104293 10.1002/smll.202200586 10.1039/D0TA08865J 10.1002/aenm.202002214 10.1002/adma.202107421 10.1002/aenm.202200579 10.1002/aenm.201700220 10.1016/j.carbon.2018.12.008 10.1002/anie.202212329 10.1002/smll.202104354 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2023.144378 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_cej_2023_144378 S1385894723031091 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAYWO AAYXX ABXDB ACVFH ADCNI AEUPX AFFNX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-fcc2b225c07cfdc2b5535aa1f292f62bc8bf6bc7bfa5d972bb3b39fd588f0fb83 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 05:23:29 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Sat Mar 08 15:49:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bifunctional electrocatalyst Single atom Electrocatalysis Nitrogen-doped carbon nanotubes Hydrogen production |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-fcc2b225c07cfdc2b5535aa1f292f62bc8bf6bc7bfa5d972bb3b39fd588f0fb83 |
ORCID | 0000-0003-0439-2526 0000-0002-4402-4835 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2023_144378 crossref_primary_10_1016_j_cej_2023_144378 elsevier_sciencedirect_doi_10_1016_j_cej_2023_144378 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 2023-09-00 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lei, Wang, Hou, Liu, Yang, Zhang, Zhuang, Chen, Yang, Lei, Yuan, Qiu, Feng (b0120) 2019; 12 Hona, Karki, Ramezanipour (b0225) 2020; 8 Ren, Tan, Jia, Krammer, Sun, Qu, Smith, Schueler, Hu, Zhao (b0185) 2022; 61 Su, Pei, Wang, Ma, Jiang, Liang, Zhou, Zhao, Liu, Lu (b0140) 2021; 60 Hossain, Liu, Zhuang, Yan, Xu, Gadre, Tyagi, Abidi, Sun, Wong, Guda, Hao, Pan, Amine, Luo (b0115) 2019; 9 Liu, Wang, Feng, Ni, Song, Liu (b0245) 2022; 14 Shi, Liu, Ma, Fang, Liang, Shao, Tang, Yang, Qin, Fang (b0275) 2020; 10 Wang, Zhu, Tan, Liu, Xu, Zhang, Liu, Zou, Liu, Lu (b0215) 2021; 31 Wu, Zhang, Chen, Hu, Regier, Rawach, Sun (b0285) 2021; 6 Suryanto, Wang, Hocking, Adamson, Zhao (b0025) 2019; 10 Li, Zhu, Li, Li, Zhang, Li, Zheng (b0155) 2021; 18 Zhou, Gao, Hu, Jin, Hu, Reddy, Yuan, Lin, Qiu (b0130) 2022; 22 Tan, Zhang, Lei, Yu, Wu, Wang, Cheng (b0175) 2022; 304 Chen, Ha, Jia, Yan, Chen, Liu, Wu (b0280) 2019; 9 Liu, Cheng, He, Li, Mao, Zheng, Chen, Cui, Hao (b0005) 2022; 304 Lee, Park (b0080) 2022; 18 Yu, Wang, Sun, Xie, Liu, Ma, Wang, Tian, Li, Fu (b0150) 2019; 31 Li, Li, Liu, Yin, Sun, Zhang, Xu, Tang, Zhang (b0040) 2019; 7 Lu, Guo, Wu, Peng, Lu, Smart, Wang, Finfrock, Morris, Zhang, Li, Gao, Ping, Chen (b0235) 2019; 10 Li, Liu, Fang, Xu, Lu, Hou (b0055) 2022; 18 Hao, Zhuang, Hao, Wang, Lu, Duan, Xu, Du, Zhu (b0230) 2022; 12 Zaman, Su, Dong, Qi, Huang, Qin, Huang, Li, You, Guo, Li, Ding, Xia (b0160) 2021; 61 Zhang, Zhu, Li, Hui, Song, Cheng, Lu (b0060) 2020; 12 Ahn, Manthiram (b0085) 2020; 16 Zhang, Xia, Dai (b0170) 2015; 1 Ren, Chen, Wang, Tian, Gao, Yuan (b0045) 2020; 8 Tomboc, Kim, Jung, Yoon, Lee (b0125) 2022; 18 Shi, Liu, Qi, Li, Zhu, Yu, Li, Hong, Wu, Xi, Zhou, Mai (b0240) 2021; 87 Jeong, Mai, Nam, Park, Jeon (b0035) 2022; 16 Zhou, Liu, Liu, Yu, Mao, Xiao, Wang (b0265) 2022; 32 Wang, Zhu, Cao, Zhu, Cao, Xu, Xu, Yin (b0010) 2021; 291 Wu, Wang, Wan, Liu, Wang, Wang (b0065) 2020; 16 Jiang, Yan, Zhou, Cheng, Cui, Ge, Xu (b0070) 2020; 10 Zhang, Xia, Cao, Zhang, Tiep, He, Chen, Huang, Fan (b0255) 2017; 7 Wang, Gao, Wang, Miao, Wu, Li, Bao (b0270) 2014; 2 Li, Meng, Zhang, Li, Shi, Hou, Liu, Cheng, Shao (b0145) 2021; 31 Wan, Liu, Li, Peng, Xi, Luo (b0205) 2019; 240 Li, Liu, Chen, Yang, Yang, Li, Lin (b0135) 2021; 21 Kumar, Chaudhary, Parvin, Bhattacharyya (b0260) 2018; 6 Zhang, Liu, Chen, Zhang, Zhang, Lou (b0105) 2019; 31 Han, Ling, Yu, Xie, Li, Peng, Zhong, Zhao, Deng, Hu (b0110) 2019; 31 Liu, Li, Cao, Wang, Lu, Kong, Xu, Bu (b0100) 2022; 34 Yang, Wang, Lv, Cao (b0165) 2019; 144 Yi, Gao, Zhou, Chen, Wu (b0190) 2022; 61 Peng, Gong, Li, Yu, Ji, Zhan, Hu, Zhang, Chou, Du, Ramakrishna (b0050) 2018; 140 Han, Im, Lee, Choo (b0195) 2023; 320 Batugedara, Brock (b0250) 2022; 34 Lei, Wang, Yang, Huang, Liu, Liang, Xie, Javed, Lu, Tan, Mai (b0200) 2020; 68 Gou, Bian, Zhang, Xia, Liu, Yang, Dong, Li, Qu (b0220) 2019; 155 Luo, Wang, Luo, Gong, Wei, Li, Gan, Zhao, Zhu, Li (b0030) 2022; 12 Wagh, Kim, Kim, Shinde, Lee (b0095) 2021; 15 Roy, Sebok, Scott, Fiordaliso, Sørensen, Bodin, Trimarco, Damsgaard, Vesborg, Hansen, Stephens, Kibsgaard, Chorkendorff (b0020) 2018; 1 Ray, Lee, Jin, Kundu, Park, Chan Jun (b0075) 2018; 6 Zhang, Cai, Bao (b0015) 2021; 33 Zhang, Han, Yang, Han, Hu, Li, Yang, Wang, Liu, Liu (b0180) 2020; 59 Zhang, Zhao, Xi, Zhang, Chen, Zeng, Huang, Yang, Liu, Pennycook, Chen (b0090) 2020; 10 He, Yin, Li, Chen, Wang, Gu (b0210) 2020; 8 Li (10.1016/j.cej.2023.144378_b0145) 2021; 31 Ray (10.1016/j.cej.2023.144378_b0075) 2018; 6 Suryanto (10.1016/j.cej.2023.144378_b0025) 2019; 10 Lee (10.1016/j.cej.2023.144378_b0080) 2022; 18 Han (10.1016/j.cej.2023.144378_b0195) 2023; 320 Liu (10.1016/j.cej.2023.144378_b0100) 2022; 34 Luo (10.1016/j.cej.2023.144378_b0030) 2022; 12 Peng (10.1016/j.cej.2023.144378_b0050) 2018; 140 He (10.1016/j.cej.2023.144378_b0210) 2020; 8 Hona (10.1016/j.cej.2023.144378_b0225) 2020; 8 Li (10.1016/j.cej.2023.144378_b0040) 2019; 7 Li (10.1016/j.cej.2023.144378_b0055) 2022; 18 Su (10.1016/j.cej.2023.144378_b0140) 2021; 60 Li (10.1016/j.cej.2023.144378_b0155) 2021; 18 Zhang (10.1016/j.cej.2023.144378_b0180) 2020; 59 Lei (10.1016/j.cej.2023.144378_b0200) 2020; 68 Wang (10.1016/j.cej.2023.144378_b0215) 2021; 31 Wang (10.1016/j.cej.2023.144378_b0270) 2014; 2 Lu (10.1016/j.cej.2023.144378_b0235) 2019; 10 Shi (10.1016/j.cej.2023.144378_b0275) 2020; 10 Hao (10.1016/j.cej.2023.144378_b0230) 2022; 12 Lei (10.1016/j.cej.2023.144378_b0120) 2019; 12 Batugedara (10.1016/j.cej.2023.144378_b0250) 2022; 34 Tomboc (10.1016/j.cej.2023.144378_b0125) 2022; 18 Shi (10.1016/j.cej.2023.144378_b0240) 2021; 87 Roy (10.1016/j.cej.2023.144378_b0020) 2018; 1 Wagh (10.1016/j.cej.2023.144378_b0095) 2021; 15 Liu (10.1016/j.cej.2023.144378_b0005) 2022; 304 Zhang (10.1016/j.cej.2023.144378_b0105) 2019; 31 Zhang (10.1016/j.cej.2023.144378_b0255) 2017; 7 Zhang (10.1016/j.cej.2023.144378_b0015) 2021; 33 Wu (10.1016/j.cej.2023.144378_b0065) 2020; 16 Zhou (10.1016/j.cej.2023.144378_b0265) 2022; 32 Li (10.1016/j.cej.2023.144378_b0135) 2021; 21 Ren (10.1016/j.cej.2023.144378_b0185) 2022; 61 Zhang (10.1016/j.cej.2023.144378_b0090) 2020; 10 Liu (10.1016/j.cej.2023.144378_b0245) 2022; 14 Wu (10.1016/j.cej.2023.144378_b0285) 2021; 6 Yang (10.1016/j.cej.2023.144378_b0165) 2019; 144 Zhang (10.1016/j.cej.2023.144378_b0170) 2015; 1 Jiang (10.1016/j.cej.2023.144378_b0070) 2020; 10 Ren (10.1016/j.cej.2023.144378_b0045) 2020; 8 Ahn (10.1016/j.cej.2023.144378_b0085) 2020; 16 Hossain (10.1016/j.cej.2023.144378_b0115) 2019; 9 Chen (10.1016/j.cej.2023.144378_b0280) 2019; 9 Zaman (10.1016/j.cej.2023.144378_b0160) 2021; 61 Gou (10.1016/j.cej.2023.144378_b0220) 2019; 155 Zhang (10.1016/j.cej.2023.144378_b0060) 2020; 12 Tan (10.1016/j.cej.2023.144378_b0175) 2022; 304 Jeong (10.1016/j.cej.2023.144378_b0035) 2022; 16 Han (10.1016/j.cej.2023.144378_b0110) 2019; 31 Kumar (10.1016/j.cej.2023.144378_b0260) 2018; 6 Yu (10.1016/j.cej.2023.144378_b0150) 2019; 31 Wan (10.1016/j.cej.2023.144378_b0205) 2019; 240 Wang (10.1016/j.cej.2023.144378_b0010) 2021; 291 Zhou (10.1016/j.cej.2023.144378_b0130) 2022; 22 Yi (10.1016/j.cej.2023.144378_b0190) 2022; 61 |
References_xml | – volume: 10 start-page: 2002896 year: 2020 ident: b0090 article-title: Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn–Air Battery and Self-Driven Water Splitting publication-title: Adv. Energy Mater. – volume: 8 start-page: 11549 year: 2020 end-page: 11557 ident: b0225 article-title: Oxide Electrocatalysts Based on Earth-Abundant Metals for Both Hydrogen- and Oxygen-Evolution Reactions publication-title: ACS Sustain. Chem. Eng. – volume: 61 start-page: e202203335 year: 2022 ident: b0185 article-title: Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy-Efficient CO publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 5599 year: 2019 ident: b0025 article-title: Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide publication-title: Nat. Commun. – volume: 10 start-page: 631 year: 2019 ident: b0235 article-title: Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media publication-title: Nat. Commun. – volume: 12 start-page: 2200579 year: 2022 ident: b0230 article-title: Interatomic Electronegativity Offset Dictates Selectivity When Catalyzing the CO publication-title: Adv. Energy Mater. – volume: 31 start-page: 1901666 year: 2019 ident: b0150 article-title: Co Nanoislands Rooted on Co–N–C Nanosheets as Efficient Oxygen Electrocatalyst for Zn–Air Batteries publication-title: Adv. Mater. – volume: 320 year: 2023 ident: b0195 article-title: N-bridged Ni and Mn single-atom pair sites: A highly efficient electrocatalyst for CO publication-title: Appl. Catal. B – volume: 14 start-page: 38739 year: 2022 end-page: 38749 ident: b0245 article-title: Anchoring Bimetal Single Atoms and Alloys on N-Doping-Carbon Nanofiber Networks for an Efficient Oxygen Reduction Reaction and Zinc−Air Batteries publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 14683 year: 2021 end-page: 14696 ident: b0095 article-title: Heuristic Iron–Cobalt-Mediated Robust pH-Universal Oxygen Bifunctional Lusters for Reversible Aqueous and Flexible Solid-State Zn–Air Cells publication-title: ACS Nano – volume: 87 year: 2021 ident: b0240 article-title: Hierarchical N-Doped Carbon Spheres Anchored with Cobalt Nanocrystals and Single Atoms for Oxygen Reduction Reaction publication-title: Nano Energy – volume: 18 start-page: 2104354 year: 2022 ident: b0055 article-title: Ultrafast Room-Temperature Synthesis of Self-Supported NiFe-Layered Double Hydroxide as Large-Current–Density Oxygen Evolution Electrocatalyst publication-title: Small – volume: 1 start-page: e1500564 year: 2015 ident: b0170 article-title: Carbon-based electrocatalysts for advanced energy conversion and storage publication-title: Sci. Adv. – volume: 31 start-page: 1904548 year: 2019 ident: b0105 article-title: Unveiling the Activity Origin of Electrocatalytic Oxygen Evolution over Isolated Ni Atoms Supported on a N-Doped Carbon Matrix publication-title: Adv. Mater. – volume: 12 start-page: 149 year: 2019 end-page: 156 ident: b0120 article-title: Efficient alkaline hydrogen evolution on atomically dispersed Ni–Nx Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics publication-title: Energ. Environ. Sci. – volume: 22 start-page: 3392 year: 2022 end-page: 3399 ident: b0130 article-title: Theoretically Revealed and Experimentally Demonstrated Synergistic Electronic Interaction of CoFe Dual-Metal Sites on N-doped Carbon for Boosting Both Oxygen Reduction and Evolution Reactions publication-title: Nano Lett. – volume: 16 start-page: 2002511 year: 2020 ident: b0085 article-title: Single Ni Atoms and Clusters Embedded in N-Doped Carbon “Tubes on Fibers” Matrix with Bifunctional Activity for Water Splitting at High Current Densities publication-title: Small – volume: 12 start-page: 23851 year: 2020 end-page: 23858 ident: b0060 article-title: CoP and Ni publication-title: Nanoscale – volume: 6 start-page: 4466 year: 2018 end-page: 4476 ident: b0075 article-title: Conceptual design of three-dimensional CoN/Ni publication-title: J. Mater. Chem. A – volume: 34 start-page: 2107421 year: 2022 ident: b0100 article-title: A “Pre-Constrained Metal Twins” Strategy to Prepare Efficient Dual-Metal-Atom Catalysts for Cooperative Oxygen Electrocatalysis publication-title: Adv. Mater. – volume: 291 year: 2021 ident: b0010 article-title: Heterogeneous bimetallic sulfides-based seawater electrolysis towards stable industrial-level large current density publication-title: Appl. Catal. B – volume: 33 start-page: 2100745 year: 2021 ident: b0015 article-title: Top-Level Design Strategy to Construct an Advanced High-Entropy Co–Cu–Fe–Mo (Oxy)Hydroxide Electrocatalyst for the Oxygen Evolution Reaction publication-title: Adv. Mater. – volume: 68 year: 2020 ident: b0200 article-title: NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries publication-title: Nano Energy – volume: 18 start-page: 2105680 year: 2022 ident: b0125 article-title: Modulating the Local Coordination Environment of Single-Atom Catalysts for Enhanced Catalytic Performance in Hydrogen/Oxygen Evolution Reaction publication-title: Small – volume: 7 start-page: 1902371 year: 2019 ident: b0040 article-title: Immobilization of Ni publication-title: Adv. Sci. – volume: 155 start-page: 545 year: 2019 end-page: 552 ident: b0220 article-title: Interfacial metal-nitrogen units of NiCo/nitrogen-doped carbon for robust oxygen reduction reaction publication-title: Carbon – volume: 10 start-page: 1903854 year: 2020 ident: b0275 article-title: High-Performance Trifunctional Electrocatalysts Based on FeCo/Co publication-title: Adv. Energy Mater. – volume: 18 start-page: 2200586 year: 2022 ident: b0080 article-title: Metal-Organic Framework-Derived Hollow CoSx Nanoarray Coupled with NiFe Layered Double Hydroxides as Efficient Bifunctional Electrocatalyst for Overall Water Splitting publication-title: Small – volume: 8 start-page: 25805 year: 2020 end-page: 25823 ident: b0210 article-title: CoNi alloys with slight oxidation@N, O Co-doped carbon: enhanced collective contributions of cores and shells to multifunctional electrocatalytic activity and Zn–air batteries publication-title: J. Mater. Chem. A – volume: 9 start-page: 1803689 year: 2019 ident: b0115 article-title: Rational Design of Graphene-Supported Single Atom Catalysts for Hydrogen Evolution Reaction publication-title: Adv. Energy Mater. – volume: 31 start-page: 2103360 year: 2021 ident: b0145 article-title: Dual-Phasic Carbon with Co Single Atoms and Nanoparticles as a Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries publication-title: Adv. Funct. Mater. – volume: 34 start-page: 4414 year: 2022 end-page: 4427 ident: b0250 article-title: Role of Noble- and Base-Metal Speciation and Surface Segregation in Ni publication-title: Chem. Mater. – volume: 16 start-page: 930 year: 2022 end-page: 938 ident: b0035 article-title: Self-Healing Graphene-Templated Platinum-Nickel Oxide Heterostructures for Overall Water Splitting publication-title: ACS Nano – volume: 10 start-page: 2002214 year: 2020 ident: b0070 article-title: Interplanar Growth of 2D Non-Van der Waals Co publication-title: Adv. Energy Mater. – volume: 2 start-page: 20067 year: 2014 ident: b0270 article-title: Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis publication-title: J. Mater. Chem. A – volume: 61 start-page: e202212329 year: 2022 ident: b0190 article-title: Design of Co-Cu Diatomic Site Catalysts for High-efficiency Synergistic CO publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 1153 year: 2021 end-page: 1161 ident: b0285 article-title: Self-Reconstruction of Co/Co publication-title: ACS Energy Lett. – volume: 304 year: 2022 ident: b0175 article-title: Electronic modulation optimizes OH* intermediate adsorption on Co-Nx-C sites via coupling CoNi alloy in hollow carbon nanopolyhedron toward efficient reversible oxygen electrocatalysis publication-title: Appl. Catal. B – volume: 144 start-page: 8 year: 2019 end-page: 14 ident: b0165 article-title: Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn–Air batteries publication-title: Carbon – volume: 8 start-page: 223 year: 2020 end-page: 237 ident: b0045 article-title: FeNi Nanoalloys Encapsulated in N-Doped CNTs Tangled with N-Doped Carbon Nanosheets as Efficient Multifunctional Catalysts for Overall Water Splitting and Rechargeable Zn–Air Batteries publication-title: ACS Sustain. Chem. Eng. – volume: 140 start-page: 13644 year: 2018 end-page: 13653 ident: b0050 article-title: Necklace-like Multishelled Hollow Spinel Oxides with Oxygen Vacancies for Efficient Water Electrolysis publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 2105487 year: 2021 ident: b0155 article-title: Study on the Structure-Activity Relationship Between Single-Atom, Cluster and Nanoparticle Catalysts in a Hierarchical Structure for the Oxygen Reduction Reaction publication-title: Small – volume: 1 start-page: 820 year: 2018 end-page: 829 ident: b0020 article-title: Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy publication-title: Nat. Catal. – volume: 6 start-page: 18948 year: 2018 end-page: 18959 ident: b0260 article-title: High performance duckweed-derived carbon support to anchor NiFe electrocatalysts for efficient solar energy driven water splitting publication-title: J. Mater. Chem. A – volume: 32 start-page: 2107608 year: 2022 ident: b0265 article-title: 1D/3D Heterogeneous Assembling Body as Trifunctional Electrocatalysts Enabling Zinc-Air Battery and Self-Powered Overall Water Splitting publication-title: Adv. Funct. Mater. – volume: 31 start-page: 1905622 year: 2019 ident: b0110 article-title: Atomically Dispersed Binary Co-Ni Sites in Nitrogen-Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution publication-title: Adv. Mater. – volume: 21 start-page: 3098 year: 2021 end-page: 3105 ident: b0135 article-title: Rechargeable Zn–Air Batteries with Outstanding Cycling Stability Enabled by Ultrafine FeNi Nanoparticles-Encapsulated N-Doped Carbon Nanosheets as a Bifunctional Electrocatalyst publication-title: Nano Lett. – volume: 9 start-page: 1803918 year: 2019 ident: b0280 article-title: Oriented Transformation of Co-LDH into 2D/3D ZIF-67 to Achieve Co–N–C Hybrids for Efficient Overall Water Splitting publication-title: Adv. Energy Mater. – volume: 304 year: 2022 ident: b0005 article-title: Interfacial electronic modulation of Ni publication-title: Appl. Catal. B – volume: 12 start-page: 1167 year: 2022 end-page: 1179 ident: b0030 article-title: Single-Atom and Bimetallic Nanoalloy Supported on Nanotubes as a Bifunctional Electrocatalyst for Ultrahigh-Current-Density Overall Water Splitting publication-title: ACS Catal. – volume: 16 start-page: 1900550 year: 2020 ident: b0065 article-title: An Efficient Cobalt Phosphide Electrocatalyst Derived from Cobalt Phosphonate Complex for All-pH Hydrogen Evolution Reaction and Overall Water Splitting in Alkaline Solution publication-title: Small – volume: 240 start-page: 193 year: 2019 end-page: 200 ident: b0205 article-title: 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries publication-title: Appl. Catal. B – volume: 7 start-page: 1700220 year: 2017 ident: b0255 article-title: Ultrafine Metal Nanoparticles/N-Doped Porous Carbon Hybrids Coated on Carbon Fibers as Flexible and Binder-Free Water Splitting Catalysts publication-title: Adv. Energy Mater. – volume: 59 start-page: 12055 year: 2020 end-page: 12061 ident: b0180 article-title: Atomically Dispersed Nickel(I) on an Alloy-Encapsulated Nitrogen-Doped Carbon Nanotube Array for High-Performance Electrochemical CO publication-title: Angew. Chem. Int. Ed. – volume: 61 start-page: e202115835 year: 2021 ident: b0160 article-title: Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction publication-title: Angew. Chem. Int. Ed. – volume: 60 start-page: 16044 year: 2021 end-page: 16050 ident: b0140 article-title: Exceptional Electrochemical HER Performance with Enhanced Electron Transfer between Ru Nanoparticles and Single Atoms Dispersed on a Carbon Substrate publication-title: Angew. Chem. Int. Ed. – volume: 31 start-page: 2104735 year: 2021 ident: b0215 article-title: Understanding the Synergistic Effects of Cobalt Single Atoms and Small Nanoparticles: Enhancing Oxygen Reduction Reaction Catalytic Activity and Stability for Zinc-Air Batteries publication-title: Adv. Funct. Mater. – volume: 15 start-page: 14683 year: 2021 ident: 10.1016/j.cej.2023.144378_b0095 article-title: Heuristic Iron–Cobalt-Mediated Robust pH-Universal Oxygen Bifunctional Lusters for Reversible Aqueous and Flexible Solid-State Zn–Air Cells publication-title: ACS Nano doi: 10.1021/acsnano.1c04471 – volume: 9 start-page: 1803918 year: 2019 ident: 10.1016/j.cej.2023.144378_b0280 article-title: Oriented Transformation of Co-LDH into 2D/3D ZIF-67 to Achieve Co–N–C Hybrids for Efficient Overall Water Splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803918 – volume: 31 start-page: 2103360 year: 2021 ident: 10.1016/j.cej.2023.144378_b0145 article-title: Dual-Phasic Carbon with Co Single Atoms and Nanoparticles as a Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103360 – volume: 1 start-page: e1500564 year: 2015 ident: 10.1016/j.cej.2023.144378_b0170 article-title: Carbon-based electrocatalysts for advanced energy conversion and storage publication-title: Sci. Adv. doi: 10.1126/sciadv.1500564 – volume: 61 start-page: e202203335 year: 2022 ident: 10.1016/j.cej.2023.144378_b0185 article-title: Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy-Efficient CO2 Electroreduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202203335 – volume: 60 start-page: 16044 year: 2021 ident: 10.1016/j.cej.2023.144378_b0140 article-title: Exceptional Electrochemical HER Performance with Enhanced Electron Transfer between Ru Nanoparticles and Single Atoms Dispersed on a Carbon Substrate publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202103557 – volume: 291 year: 2021 ident: 10.1016/j.cej.2023.144378_b0010 article-title: Heterogeneous bimetallic sulfides-based seawater electrolysis towards stable industrial-level large current density publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120071 – volume: 16 start-page: 930 issue: 1 year: 2022 ident: 10.1016/j.cej.2023.144378_b0035 article-title: Self-Healing Graphene-Templated Platinum-Nickel Oxide Heterostructures for Overall Water Splitting publication-title: ACS Nano doi: 10.1021/acsnano.1c08506 – volume: 31 start-page: 2104735 year: 2021 ident: 10.1016/j.cej.2023.144378_b0215 article-title: Understanding the Synergistic Effects of Cobalt Single Atoms and Small Nanoparticles: Enhancing Oxygen Reduction Reaction Catalytic Activity and Stability for Zinc-Air Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104735 – volume: 6 start-page: 4466 issue: 10 year: 2018 ident: 10.1016/j.cej.2023.144378_b0075 article-title: Conceptual design of three-dimensional CoN/Ni3N-coupled nanograsses integrated on N-doped carbon to serve as efficient and robust water splitting electrocatalysts publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10933D – volume: 31 start-page: 1901666 year: 2019 ident: 10.1016/j.cej.2023.144378_b0150 article-title: Co Nanoislands Rooted on Co–N–C Nanosheets as Efficient Oxygen Electrocatalyst for Zn–Air Batteries publication-title: Adv. Mater. doi: 10.1002/adma.201901666 – volume: 14 start-page: 38739 year: 2022 ident: 10.1016/j.cej.2023.144378_b0245 article-title: Anchoring Bimetal Single Atoms and Alloys on N-Doping-Carbon Nanofiber Networks for an Efficient Oxygen Reduction Reaction and Zinc−Air Batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c09271 – volume: 10 start-page: 631 year: 2019 ident: 10.1016/j.cej.2023.144378_b0235 article-title: Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media publication-title: Nat. Commun. doi: 10.1038/s41467-019-08419-3 – volume: 240 start-page: 193 year: 2019 ident: 10.1016/j.cej.2023.144378_b0205 article-title: 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.08.081 – volume: 12 start-page: 149 year: 2019 ident: 10.1016/j.cej.2023.144378_b0120 article-title: Efficient alkaline hydrogen evolution on atomically dispersed Ni–Nx Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics publication-title: Energ. Environ. Sci. doi: 10.1039/C8EE01841C – volume: 18 start-page: 2105680 year: 2022 ident: 10.1016/j.cej.2023.144378_b0125 article-title: Modulating the Local Coordination Environment of Single-Atom Catalysts for Enhanced Catalytic Performance in Hydrogen/Oxygen Evolution Reaction publication-title: Small doi: 10.1002/smll.202105680 – volume: 34 start-page: 4414 year: 2022 ident: 10.1016/j.cej.2023.144378_b0250 article-title: Role of Noble- and Base-Metal Speciation and Surface Segregation in Ni2–xRhxP Nanocrystals on Electrocatalytic Water Splitting Reactions in Alkaline Media publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.2c00041 – volume: 320 year: 2023 ident: 10.1016/j.cej.2023.144378_b0195 article-title: N-bridged Ni and Mn single-atom pair sites: A highly efficient electrocatalyst for CO2 conversion to CO publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2022.121953 – volume: 7 start-page: 1902371 year: 2019 ident: 10.1016/j.cej.2023.144378_b0040 article-title: Immobilization of Ni3Co Nanoparticles into N-Doped Carbon Nanotube/Nanofiber Integrated Hierarchically Branched Architectures toward Efficient Overall Water Splitting publication-title: Adv. Sci. doi: 10.1002/advs.201902371 – volume: 32 start-page: 2107608 year: 2022 ident: 10.1016/j.cej.2023.144378_b0265 article-title: 1D/3D Heterogeneous Assembling Body as Trifunctional Electrocatalysts Enabling Zinc-Air Battery and Self-Powered Overall Water Splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107608 – volume: 10 start-page: 2002896 year: 2020 ident: 10.1016/j.cej.2023.144378_b0090 article-title: Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn–Air Battery and Self-Driven Water Splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002896 – volume: 87 year: 2021 ident: 10.1016/j.cej.2023.144378_b0240 article-title: Hierarchical N-Doped Carbon Spheres Anchored with Cobalt Nanocrystals and Single Atoms for Oxygen Reduction Reaction publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106153 – volume: 12 start-page: 1167 year: 2022 ident: 10.1016/j.cej.2023.144378_b0030 article-title: Single-Atom and Bimetallic Nanoalloy Supported on Nanotubes as a Bifunctional Electrocatalyst for Ultrahigh-Current-Density Overall Water Splitting publication-title: ACS Catal. doi: 10.1021/acscatal.1c04454 – volume: 61 start-page: e202115835 year: 2021 ident: 10.1016/j.cej.2023.144378_b0160 article-title: Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202115835 – volume: 31 start-page: 1904548 year: 2019 ident: 10.1016/j.cej.2023.144378_b0105 article-title: Unveiling the Activity Origin of Electrocatalytic Oxygen Evolution over Isolated Ni Atoms Supported on a N-Doped Carbon Matrix publication-title: Adv. Mater. doi: 10.1002/adma.201904548 – volume: 2 start-page: 20067 year: 2014 ident: 10.1016/j.cej.2023.144378_b0270 article-title: Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04337E – volume: 22 start-page: 3392 year: 2022 ident: 10.1016/j.cej.2023.144378_b0130 article-title: Theoretically Revealed and Experimentally Demonstrated Synergistic Electronic Interaction of CoFe Dual-Metal Sites on N-doped Carbon for Boosting Both Oxygen Reduction and Evolution Reactions publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c00658 – volume: 16 start-page: 2002511 year: 2020 ident: 10.1016/j.cej.2023.144378_b0085 article-title: Single Ni Atoms and Clusters Embedded in N-Doped Carbon “Tubes on Fibers” Matrix with Bifunctional Activity for Water Splitting at High Current Densities publication-title: Small doi: 10.1002/smll.202002511 – volume: 59 start-page: 12055 year: 2020 ident: 10.1016/j.cej.2023.144378_b0180 article-title: Atomically Dispersed Nickel(I) on an Alloy-Encapsulated Nitrogen-Doped Carbon Nanotube Array for High-Performance Electrochemical CO2 Reduction Reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002984 – volume: 12 start-page: 23851 issue: 46 year: 2020 ident: 10.1016/j.cej.2023.144378_b0060 article-title: CoP and Ni2P implanted in a hollow porous N-doped carbon polyhedron for pH universal hydrogen evolution reaction and alkaline overall water splitting publication-title: Nanoscale doi: 10.1039/D0NR07126A – volume: 10 start-page: 1903854 year: 2020 ident: 10.1016/j.cej.2023.144378_b0275 article-title: High-Performance Trifunctional Electrocatalysts Based on FeCo/Co2P Hybrid Nanoparticles for Zinc-Air Battery and Self-Powered Overall Water Splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903854 – volume: 6 start-page: 1153 year: 2021 ident: 10.1016/j.cej.2023.144378_b0285 article-title: Self-Reconstruction of Co/Co2P Heterojunctions Confined in N-Doped Carbon Nanotubes for Zinc-Air Flow Batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00037 – volume: 18 start-page: 2105487 year: 2021 ident: 10.1016/j.cej.2023.144378_b0155 article-title: Study on the Structure-Activity Relationship Between Single-Atom, Cluster and Nanoparticle Catalysts in a Hierarchical Structure for the Oxygen Reduction Reaction publication-title: Small doi: 10.1002/smll.202105487 – volume: 155 start-page: 545 year: 2019 ident: 10.1016/j.cej.2023.144378_b0220 article-title: Interfacial metal-nitrogen units of NiCo/nitrogen-doped carbon for robust oxygen reduction reaction publication-title: Carbon doi: 10.1016/j.carbon.2019.09.001 – volume: 10 start-page: 5599 year: 2019 ident: 10.1016/j.cej.2023.144378_b0025 article-title: Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide publication-title: Nat. Commun. doi: 10.1038/s41467-019-13415-8 – volume: 8 start-page: 223 year: 2020 ident: 10.1016/j.cej.2023.144378_b0045 article-title: FeNi Nanoalloys Encapsulated in N-Doped CNTs Tangled with N-Doped Carbon Nanosheets as Efficient Multifunctional Catalysts for Overall Water Splitting and Rechargeable Zn–Air Batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05238 – volume: 304 year: 2022 ident: 10.1016/j.cej.2023.144378_b0005 article-title: Interfacial electronic modulation of Ni3S2 nanosheet arrays decorated with Au nanoparticles boosts overall water splitting publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120935 – volume: 33 start-page: 2100745 year: 2021 ident: 10.1016/j.cej.2023.144378_b0015 article-title: Top-Level Design Strategy to Construct an Advanced High-Entropy Co–Cu–Fe–Mo (Oxy)Hydroxide Electrocatalyst for the Oxygen Evolution Reaction publication-title: Adv. Mater. doi: 10.1002/adma.202100745 – volume: 21 start-page: 3098 year: 2021 ident: 10.1016/j.cej.2023.144378_b0135 article-title: Rechargeable Zn–Air Batteries with Outstanding Cycling Stability Enabled by Ultrafine FeNi Nanoparticles-Encapsulated N-Doped Carbon Nanosheets as a Bifunctional Electrocatalyst publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00279 – volume: 304 year: 2022 ident: 10.1016/j.cej.2023.144378_b0175 article-title: Electronic modulation optimizes OH* intermediate adsorption on Co-Nx-C sites via coupling CoNi alloy in hollow carbon nanopolyhedron toward efficient reversible oxygen electrocatalysis publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.121006 – volume: 6 start-page: 18948 year: 2018 ident: 10.1016/j.cej.2023.144378_b0260 article-title: High performance duckweed-derived carbon support to anchor NiFe electrocatalysts for efficient solar energy driven water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06946H – volume: 1 start-page: 820 year: 2018 ident: 10.1016/j.cej.2023.144378_b0020 article-title: Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy publication-title: Nat. Catal. doi: 10.1038/s41929-018-0162-x – volume: 140 start-page: 13644 year: 2018 ident: 10.1016/j.cej.2023.144378_b0050 article-title: Necklace-like Multishelled Hollow Spinel Oxides with Oxygen Vacancies for Efficient Water Electrolysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05134 – volume: 16 start-page: 1900550 issue: 15 year: 2020 ident: 10.1016/j.cej.2023.144378_b0065 article-title: An Efficient Cobalt Phosphide Electrocatalyst Derived from Cobalt Phosphonate Complex for All-pH Hydrogen Evolution Reaction and Overall Water Splitting in Alkaline Solution publication-title: Small doi: 10.1002/smll.201900550 – volume: 9 start-page: 1803689 year: 2019 ident: 10.1016/j.cej.2023.144378_b0115 article-title: Rational Design of Graphene-Supported Single Atom Catalysts for Hydrogen Evolution Reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803689 – volume: 8 start-page: 11549 year: 2020 ident: 10.1016/j.cej.2023.144378_b0225 article-title: Oxide Electrocatalysts Based on Earth-Abundant Metals for Both Hydrogen- and Oxygen-Evolution Reactions publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c02498 – volume: 31 start-page: 1905622 year: 2019 ident: 10.1016/j.cej.2023.144378_b0110 article-title: Atomically Dispersed Binary Co-Ni Sites in Nitrogen-Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution publication-title: Adv. Mater. doi: 10.1002/adma.201905622 – volume: 68 year: 2020 ident: 10.1016/j.cej.2023.144378_b0200 article-title: NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104293 – volume: 18 start-page: 2200586 year: 2022 ident: 10.1016/j.cej.2023.144378_b0080 article-title: Metal-Organic Framework-Derived Hollow CoSx Nanoarray Coupled with NiFe Layered Double Hydroxides as Efficient Bifunctional Electrocatalyst for Overall Water Splitting publication-title: Small doi: 10.1002/smll.202200586 – volume: 8 start-page: 25805 year: 2020 ident: 10.1016/j.cej.2023.144378_b0210 article-title: CoNi alloys with slight oxidation@N, O Co-doped carbon: enhanced collective contributions of cores and shells to multifunctional electrocatalytic activity and Zn–air batteries publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08865J – volume: 10 start-page: 2002214 issue: 44 year: 2020 ident: 10.1016/j.cej.2023.144378_b0070 article-title: Interplanar Growth of 2D Non-Van der Waals Co2N-Based Heterostructures for Efficient Overall Water Splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002214 – volume: 34 start-page: 2107421 year: 2022 ident: 10.1016/j.cej.2023.144378_b0100 article-title: A “Pre-Constrained Metal Twins” Strategy to Prepare Efficient Dual-Metal-Atom Catalysts for Cooperative Oxygen Electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.202107421 – volume: 12 start-page: 2200579 year: 2022 ident: 10.1016/j.cej.2023.144378_b0230 article-title: Interatomic Electronegativity Offset Dictates Selectivity When Catalyzing the CO2 Reduction Reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200579 – volume: 7 start-page: 1700220 year: 2017 ident: 10.1016/j.cej.2023.144378_b0255 article-title: Ultrafine Metal Nanoparticles/N-Doped Porous Carbon Hybrids Coated on Carbon Fibers as Flexible and Binder-Free Water Splitting Catalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700220 – volume: 144 start-page: 8 year: 2019 ident: 10.1016/j.cej.2023.144378_b0165 article-title: Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn–Air batteries publication-title: Carbon doi: 10.1016/j.carbon.2018.12.008 – volume: 61 start-page: e202212329 year: 2022 ident: 10.1016/j.cej.2023.144378_b0190 article-title: Design of Co-Cu Diatomic Site Catalysts for High-efficiency Synergistic CO2 Electroreduction at Industrial-level Current Density publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202212329 – volume: 18 start-page: 2104354 issue: 2 year: 2022 ident: 10.1016/j.cej.2023.144378_b0055 article-title: Ultrafast Room-Temperature Synthesis of Self-Supported NiFe-Layered Double Hydroxide as Large-Current–Density Oxygen Evolution Electrocatalyst publication-title: Small doi: 10.1002/smll.202104354 |
SSID | ssj0006919 |
Score | 2.5446193 |
Snippet | [Display omitted]
•NiCo nanoparticles and single-atoms confined by nitrogen doped carbon nanotubes are synthesized.•NiCo-N-CNTs-900 requires lower... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 144378 |
SubjectTerms | Bifunctional electrocatalyst Electrocatalysis Hydrogen production Nitrogen-doped carbon nanotubes Single atom |
Title | Binary NiCo nanoalloys and single-atoms implanted nitrogen-doped carbon nanotubes as highly efficient, robust electrocatalyst for overall water splitting |
URI | https://dx.doi.org/10.1016/j.cej.2023.144378 |
Volume | 471 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWWBAPMVbHpgQ6SOJ42aEClSo1AGoYItsx5ZatUmVpEJd-B_8W-6chIcEDEyJI58S-S6-z77Pd4ScaVdzFQvpuCqwu1UdR4CiQSGwZGHaF6xk-Q6D_si_e2bPK6RXn4VBWmU195dzup2tqyetajRb8_G49dDBmFbocwDRNr0lnmD3OVp58_WT5hGEtrgHdnawdx3ZtBwvpSdNrB-OIU4PK6395Ju--JubTbJRAUV6WX7LFlnRyTZZ_5I-cIe8XdnDtHQ47qU0EUmKQfRlTkUSU9wCmGoHltSznI5n8ymOYEzhB85SsBknTufQVCKTaWJli4XUIJpTTGA8XVJtc0uAS7qgWSoXeUGrijl2w2cJbYC7FAmg8Fb6ApA1ozkgWsuj3iWjm-vHXt-pSi04yg154RilXAm_tmpzZWK4Z8xjQnSMG7omcKXqShNIxaURLA65K6UnvdDErNs1bSO73h5pJGmi9wmFpXrgBVwDrvR9QJciNFJyoUGI-Z4OD0i7HuRIVXnIsRzGNKoJZ5MI9BKhXqJSLwfk_ENkXibh-KuzX2su-mZJETiJ38UO_yd2RNawVbLOjkmjyBb6BGBKIU-tHZ6S1cvbQX-I18H90-Adod7sxw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YEJEdomcR4jVFQFShdaqVtkO7bUqk2iJBXqwv_g33J2EigSMLDFiU-xfLbvs-_zHUKXwhQuDykzTO7o06q2QUHRoBDYshBhU1KwfAdOb2Q_jsm4hjrVXRhFqyzX_mJN16t1-aZZ9mYzmUyaL23l0_JtF0C0Dm-5htZtmL4qjcHN2xfPw_F1dg9V21DVK9emJnlxMb1RCcSVj9NSqdZ-Mk4rBqe7g7ZLpIhvi8bsopqI9tDWSvzAffR-p2_T4sGkE-OIRrHyoi8zTKMQqzOAmTBgTz3P8GSezFQXhhhmcBrDoDHCOIEipymLIy2bL5gA0QyrCMazJRY6uATYpGucxmyR5bhMmaNPfJZQBryLFQMU_opfAbOmOANIq4nUB2jUvR92ekaZa8Hgpu_mhuTcZDC3ecvlMoRnQixCaVuavikdk3GPSYdxl0lKQt81GbOY5cuQeJ5sSeZZh6gexZE4Qhj26o7luAKApW0DvKS-ZMylAoSIbQm_gVpVJwe8DESu8mHMgopxNg1AL4HSS1DopYGuPkWSIgrHX5XtSnPBt6EUgJX4Xez4f2IXaKM3fO4H_YfB0wnaVF8KCtopqufpQpwBZsnZuR6TH6rw7LI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binary+NiCo+nanoalloys+and+single-atoms+implanted+nitrogen-doped+carbon+nanotubes+as+highly+efficient%2C+robust+electrocatalyst+for+overall+water+splitting&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Balasubramanian%2C+Paramasivam&rft.au=Khan%2C+Hasmat&rft.au=Baek%2C+Ji-Hu&rft.au=Kwon%2C+Se-Hun&rft.date=2023-09-01&rft.issn=1385-8947&rft.volume=471&rft.spage=144378&rft_id=info:doi/10.1016%2Fj.cej.2023.144378&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2023_144378 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |