A review on Generative Adversarial Networks for image generation
Generative Adversarial Networks (GANs) are a type of deep learning architecture that uses two networks namely a generator and a discriminator that, by competing against each other, pursue to create realistic but previously unseen samples. They have become a popular research topic in recent years, pa...
Saved in:
Published in | Computers & graphics Vol. 114; pp. 13 - 25 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Generative Adversarial Networks (GANs) are a type of deep learning architecture that uses two networks namely a generator and a discriminator that, by competing against each other, pursue to create realistic but previously unseen samples. They have become a popular research topic in recent years, particularly for image processing and synthesis, leading to many advances and applications in various fields. With the profusion of published works and interest from professionals of different areas, surveys on GANs are necessary, mainly for those who aim starting on this topic. In this work, we cover the basics and notable architectures of GANs, focusing on their applications in image generation. We also discuss how the challenges to be addressed in GANs architectures have been faced, such as mode coverage, stability, convergence, and evaluating image quality using metrics.
[Display omitted]
•A review on GANs for image generation, aiming at readers who are new to the area.•A comprehensive overview of GAN fundamentals, and methods to address the most common issues.•A detailed explanation of how various works applied GANs in image-based applications.•A discussion of future directions for this area. |
---|---|
AbstractList | Generative Adversarial Networks (GANs) are a type of deep learning architecture that uses two networks namely a generator and a discriminator that, by competing against each other, pursue to create realistic but previously unseen samples. They have become a popular research topic in recent years, particularly for image processing and synthesis, leading to many advances and applications in various fields. With the profusion of published works and interest from professionals of different areas, surveys on GANs are necessary, mainly for those who aim starting on this topic. In this work, we cover the basics and notable architectures of GANs, focusing on their applications in image generation. We also discuss how the challenges to be addressed in GANs architectures have been faced, such as mode coverage, stability, convergence, and evaluating image quality using metrics.
[Display omitted]
•A review on GANs for image generation, aiming at readers who are new to the area.•A comprehensive overview of GAN fundamentals, and methods to address the most common issues.•A detailed explanation of how various works applied GANs in image-based applications.•A discussion of future directions for this area. |
Author | Gois, João Paulo Marques, Bruno Augusto Dorta Batagelo, Harlen Costa Trevisan de Souza, Vinicius Luis |
Author_xml | – sequence: 1 givenname: Vinicius Luis orcidid: 0009-0009-4524-9006 surname: Trevisan de Souza fullname: Trevisan de Souza, Vinicius Luis email: vinicius.trevisan@ufabc.edu.br – sequence: 2 givenname: Bruno Augusto Dorta surname: Marques fullname: Marques, Bruno Augusto Dorta – sequence: 3 givenname: Harlen Costa surname: Batagelo fullname: Batagelo, Harlen Costa – sequence: 4 givenname: João Paulo surname: Gois fullname: Gois, João Paulo |
BookMark | eNp9kL1OwzAUhT0UibbwAGx-gYR7nR_bYqGqoCBVsMBsOc515VISZEeteHtS2omB6Sz3uzrfmbFJ13fE2A1CjoD17TZ3dpMLEEUOVQ4IEzYF0DJTpS4u2SylLQAIUZdTdr_gkfaBDrzv-Io6inYIe-KLdk8x2Rjsjr_QcOjjR-K-jzx82g3xzfmy767Yhbe7RNfnnLP3x4e35VO2fl09LxfrzAkth8w3JYqmQtBaQUsSVIPOkkRZq8JDgSjKopZKlQpUrTRobHzbNKiqEpzzxZzh6a-LfUqRvPmKY5f4bRDMUdtszahtjtoGKjNqj4z8w7gw_LYeog27f8m7E0mj0jhPNMkF6hy1IZIbTNuHf-gfYdh0-w |
CitedBy_id | crossref_primary_10_3390_brainsci14040367 crossref_primary_10_4108_eetiot_5336 crossref_primary_10_1111_spc3_70021 crossref_primary_10_3390_app14167178 crossref_primary_10_1007_s11227_024_06108_7 crossref_primary_10_1109_ACCESS_2024_3482989 crossref_primary_10_1007_s10278_024_01334_0 crossref_primary_10_3390_app14125049 crossref_primary_10_3390_bioengineering10121435 crossref_primary_10_1111_1365_2478_13646 crossref_primary_10_1016_j_cag_2023_11_004 crossref_primary_10_3390_buildings14093011 crossref_primary_10_2339_politeknik_1357144 crossref_primary_10_1007_s44295_024_00038_z crossref_primary_10_1186_s40494_024_01424_w crossref_primary_10_3390_electronics14061101 crossref_primary_10_1016_j_cag_2023_08_026 crossref_primary_10_3390_app15073534 crossref_primary_10_1007_s11760_024_03596_1 crossref_primary_10_1016_j_aej_2024_12_031 crossref_primary_10_1021_acsomega_3c09762 crossref_primary_10_3390_app14188125 crossref_primary_10_3390_s23218757 crossref_primary_10_1109_JSTARS_2024_3449097 crossref_primary_10_1371_journal_pone_0315721 crossref_primary_10_1007_s44163_024_00107_6 crossref_primary_10_3390_commodities3030016 crossref_primary_10_1111_php_14006 crossref_primary_10_1145_3712263 |
Cites_doi | 10.1007/s00894-021-04674-8 10.1109/CVPR.2019.00482 10.1109/CVPR52688.2022.01565 10.1109/CVPR.2016.90 10.1145/3450626.3459838 10.1016/j.neunet.2021.02.003 10.1109/CVPR.2018.00068 10.1109/CVPR.2018.00917 10.1109/ICCV48922.2021.00209 10.1109/ICCV.2017.244 10.1016/j.ymssp.2021.108035 10.1109/TMM.2021.3109419 10.1109/TIP.2022.3222918 10.1109/CVPR.2019.00453 10.1145/3463475 10.1109/CVPR42600.2020.00813 10.1109/ICCV.2017.629 10.1109/CVPR52688.2022.01042 10.1109/CVPR46437.2021.01268 10.1109/CVPR.2016.350 10.1109/TVCG.2019.2921336 10.1109/TIP.2003.819861 10.1109/CVPR.2017.19 10.1109/CVPR.2016.308 10.1109/ICCVW54120.2021.00217 10.1145/3474838 10.1109/TKDE.2019.2961882 10.1016/j.procs.2019.01.256 10.1109/CVPR.2017.632 10.1109/ICCV.2017.167 10.1145/3446374 10.1038/s41524-020-00352-0 10.1145/3528223.3530164 10.1111/cgf.14503 10.1109/CVPR42600.2020.00832 10.1145/3559540 10.1109/CVPR52688.2022.00361 10.1109/CVPR.2019.00244 10.1109/CVPR46437.2021.00905 10.1007/s41095-021-0234-8 10.1109/CVPR.2018.00813 10.1109/ICCV.2019.00453 10.1007/978-3-030-11021-5_5 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cag.2023.05.010 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 25 |
ExternalDocumentID | 10_1016_j_cag_2023_05_010 S009784932300064X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABDPE ABEFU ABJNI ABMAC ABTAH ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AFFNX AFJKZ AFTJW AGHFR AGSOS AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W K-O KOM LG9 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSH SSV SSW SSZ T5K TN5 UHS VH1 VOH WH7 WUQ XPP ZMT ZY4 ~02 ~G- AAYWO AAYXX AFXIZ AGCQF AGQPQ AGRNS AIIUN APXCP CITATION |
ID | FETCH-LOGICAL-c297t-fb412b5109980de708b1cae717683f031124367884808689091bfdbb18540ccf3 |
IEDL.DBID | .~1 |
ISSN | 0097-8493 |
IngestDate | Tue Jul 01 03:26:55 EDT 2025 Thu Apr 24 23:04:11 EDT 2025 Sun Apr 06 06:53:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep image synthesis Generative Adversarial Network Generative models Image generation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-fb412b5109980de708b1cae717683f031124367884808689091bfdbb18540ccf3 |
ORCID | 0009-0009-4524-9006 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_cag_2023_05_010 crossref_citationtrail_10_1016_j_cag_2023_05_010 elsevier_sciencedirect_doi_10_1016_j_cag_2023_05_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | Computers & graphics |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Radford, Kim, Hallacy, Ramesh, Goh, Agarwal (b71) 2021 Deng, Yang, Ramanan, Zhu (b12) 2023 Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, et al. Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, p. 4681–90. Parmar, Vaswani, Uszkoreit, Kaiser, Shazeer, Ku (b74) 2018 Arjovsky, Chintala, Bottou (b56) 2017 Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 4401–10. Miyato, Kataoka, Koyama, Yoshida (b59) 2018 Sauer, Chitta, Müller, Geiger (b61) 2021; 34 Bińkowski M, Sutherland DJ, Arbel M, Gretton A. Demystifying MMD GANs. In: International conference on learning representations. 2018. Shu, Park, Kwon (b15) 2019 Gao, Shen, Wang, Chen, Yin, Li (b13) 2022 Gui, Sun, Wen, Tao, Ye (b2) 2021 Singh, Raza (b3) 2021 Kingma, Welling (b93) 2013 Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, et al. ESRGAN: Enhanced super-resolution generative adversarial networks. In: The European conference on computer vision workshops. ECCVW, 2018. Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter (b54) 2017; 30 Wang, Wang, Wang, Zhao, Zhang, Zhang (b9) 2021; 33 Ioffe, Szegedy (b49) 2015 Simonyan, Zisserman (b86) 2014 Gao, Xue, Shao, Zhao, Qin, Prabowo (b11) 2022; 13 Karras, Aittala, Laine, Härkönen, Hellsten, Lehtinen (b22) 2021 Kynkäänniemi, Karras, Aittala, Aila, Lehtinen (b63) 2022 Brophy, Wang, She, Ward (b10) 2023; 55 Crowson, Biderman, Kornis, Stander, Hallahan, Castricato (b27) 2022 Wang X, Xie L, Dong C, Shan Y. Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data. In: Proceedings of the IEEE/CVF international conference on computer vision. 2021, p. 1905–14. Deng J, Guo J, Xue N, Zafeiriou S. Arcface: Additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 4690–9. Mirza, Osindero (b52) 2014 Brock A, Donahue J, Simonyan K. Large Scale GAN Training for High Fidelity Natural Image Synthesis. In: International conference on learning representations. 2019. Zhang, Liang, Song, Liu, Wang, Li (b8) 2022; 162 Arjovsky M, Bottou L. Towards principled methods for training generative adversarial networks. In: International conference on learning representations. 2017. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 2818–26. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8. Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair (b1) 2014; 27 Roich, Mokady, Bermano, Cohen-Or (b32) 2021 Zhang R, Isola P, Efros AA, Shechtman E, Wang O. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 586–95. Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 10684–95. Pang, Lin, Qin, Chen (b46) 2021; 24 Jolicoeur-Martineau (b87) 2018 Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T. Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 8110–9. Wang X, Girshick R, Gupta A, He K. Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 7794–803. Esser P, Rombach R, Ommer B. Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021, p. 12873–83. Yadav, Salmani (b94) 2019 Abdal R, Qin Y, Wonka P. Image2stylegan++: How to edit the embedded images?. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 8296–305. Goodfellow, Bengio, Courville (b47) 2016 Zhang, Zhong, Dong, Wang, Wang (b7) 2019; 147 Karras, Aittala, Hellsten, Laine, Lehtinen, Aila (b21) 2020 Wang T-C, Liu M-Y, Zhu J-Y, Tao A, Kautz J, Catanzaro B. High-resolution image synthesis and semantic manipulation with conditional gans. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 8798–807. Bermano, Gal, Alaluf, Mokady, Nitzan, Tov (b44) 2022; 41 Saharia, Chan, Saxena, Li, Whang, Denton (b79) 2022 Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli (b90) 2015 Deng, Dong, Socher, Li, Li, Fei-Fei (b51) 2009 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez (b73) 2017; 30 Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, p. 1125–34. Patashnik O, Wu Z, Shechtman E, Cohen-Or D, Lischinski D. Styleclip: Text-driven manipulation of stylegan imagery. In: Proceedings of the IEEE/CVF international conference on computer vision. 2021, p. 2085–94. Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (b57) 2017; 30 Jing, Yang, Feng, Ye, Yu, Song (b83) 2020; 26 Xue, Guo, Zhang, Xu, Zhang, Huang (b67) 2022; 8 Liu, Yuan, Hou, Hamzaoui, Gao (b16) 2022; 31 Dan, Zhao, Li, Li, Hu, Hu (b4) 2020; 6 Zhu, Shen, Zhao, Zhou (b31) 2020 Wang X, Li Y, Zhang H, Shan Y. Towards Real-World Blind Face Restoration with Generative Facial Prior. In: The IEEE conference on computer vision and pattern recognition. CVPR, 2021. Chan ER, Lin CZ, Chan MA, Nagano K, Pan B, De Mello S, et al. Efficient geometry-aware 3D generative adversarial networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 16123–33. Zhang, Goodfellow, Metaxas, Odena (b23) 2019 Xiao Z, Kreis K, Vahdat A. Tackling the Generative Learning Trilemma with Denoising Diffusion GANs. In: International conference on learning representations. ICLR, 2022. Yu, Seff, Zhang, Song, Funkhouser, Xiao (b50) 2015 Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 1501–10. Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen (b55) 2016; 29 Bihlo (b6) 2021; 139 Trevisan De Souza, Marques, Gois (b42) 2022 Wang, Bovik, Sheikh, Simoncelli (b65) 2004; 13 Ho, Jain, Abbeel (b91) 2020; 33 Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The Cityscapes Dataset for Semantic Urban Scene Understanding. In: Proc. of the IEEE conference on computer vision and pattern recognition. CVPR, 2016. Zhou, Zhang, Chen, Li, Tensmeyer, Yu (b80) 2021 Park T, Liu M-Y, Wang T-C, Zhu J-Y. Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 2337–46. Skorokhodov I, Tulyakov S, Elhoseiny M. Stylegan-v: A continuous video generator with the price, image quality and perks of stylegan2. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 3626–36. Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, et al. StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 5907–15. Dhariwal, Nichol (b92) 2021; 34 Achlioptas, Diamanti, Mitliagkas, Guibas (b14) 2018; vol. 80 Abdal R, Qin Y, Wonka P. Image2stylegan: How to embed images into the stylegan latent space?. In: Proceedings of the IEEE/CVF international conference on computer vision. 2019, p. 4432–41. Radford A, Metz L, Chintala S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. In: International conference on learning representations. 2016. Karras T, Aila T, Laine S, Lehtinen J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. In: International conference on learning representations. 2018. Jabbar, Li, Omar (b43) 2022; 54 Gal, Patashnik, Maron, Bermano, Chechik, Cohen-Or (b70) 2022; 41 Sauer, Karras, Laine, Geiger, Aila (b28) 2023 Wang, She, Ward (b18) 2021; 54 Tov, Alaluf, Nitzan, Patashnik, Cohen-Or (b82) 2021; 40 Bian, Xie (b5) 2021; 27 Ronneberger, Fischer, Brox (b88) 2015 Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 2223–32. Saxena, Cao (b45) 2022; 54 Odena, Buckman, Olsson, Brown, Olah, Raffel (b60) 2018 Sauer, Schwarz, Geiger (b25) 2022 Park, Zhu, Wang, Lu, Shechtman, Efros (b36) 2020; 33 Ramesh, Dhariwal, Nichol, Chu, Chen (b77) 2022 Brophy (10.1016/j.cag.2023.05.010_b10) 2023; 55 Saxena (10.1016/j.cag.2023.05.010_b45) 2022; 54 Yu (10.1016/j.cag.2023.05.010_b50) 2015 Arjovsky (10.1016/j.cag.2023.05.010_b56) 2017 Xue (10.1016/j.cag.2023.05.010_b67) 2022; 8 Vaswani (10.1016/j.cag.2023.05.010_b73) 2017; 30 Jabbar (10.1016/j.cag.2023.05.010_b43) 2022; 54 Trevisan De Souza (10.1016/j.cag.2023.05.010_b42) 2022 Gulrajani (10.1016/j.cag.2023.05.010_b57) 2017; 30 Radford (10.1016/j.cag.2023.05.010_b71) 2021 Zhang (10.1016/j.cag.2023.05.010_b7) 2019; 147 10.1016/j.cag.2023.05.010_b19 Singh (10.1016/j.cag.2023.05.010_b3) 2021 Salimans (10.1016/j.cag.2023.05.010_b55) 2016; 29 10.1016/j.cag.2023.05.010_b17 Park (10.1016/j.cag.2023.05.010_b36) 2020; 33 Zhu (10.1016/j.cag.2023.05.010_b31) 2020 Gao (10.1016/j.cag.2023.05.010_b13) 2022 Ronneberger (10.1016/j.cag.2023.05.010_b88) 2015 Sauer (10.1016/j.cag.2023.05.010_b61) 2021; 34 Dhariwal (10.1016/j.cag.2023.05.010_b92) 2021; 34 Bermano (10.1016/j.cag.2023.05.010_b44) 2022; 41 10.1016/j.cag.2023.05.010_b53 Odena (10.1016/j.cag.2023.05.010_b60) 2018 10.1016/j.cag.2023.05.010_b58 Wang (10.1016/j.cag.2023.05.010_b9) 2021; 33 Bihlo (10.1016/j.cag.2023.05.010_b6) 2021; 139 Yadav (10.1016/j.cag.2023.05.010_b94) 2019 10.1016/j.cag.2023.05.010_b40 10.1016/j.cag.2023.05.010_b84 Tov (10.1016/j.cag.2023.05.010_b82) 2021; 40 Zhang (10.1016/j.cag.2023.05.010_b8) 2022; 162 10.1016/j.cag.2023.05.010_b81 Karras (10.1016/j.cag.2023.05.010_b22) 2021 Sauer (10.1016/j.cag.2023.05.010_b25) 2022 Ramesh (10.1016/j.cag.2023.05.010_b77) 2022 Saharia (10.1016/j.cag.2023.05.010_b79) 2022 Heusel (10.1016/j.cag.2023.05.010_b54) 2017; 30 Mirza (10.1016/j.cag.2023.05.010_b52) 2014 Zhou (10.1016/j.cag.2023.05.010_b80) 2021 10.1016/j.cag.2023.05.010_b41 10.1016/j.cag.2023.05.010_b85 10.1016/j.cag.2023.05.010_b48 Jolicoeur-Martineau (10.1016/j.cag.2023.05.010_b87) 2018 10.1016/j.cag.2023.05.010_b89 Goodfellow (10.1016/j.cag.2023.05.010_b47) 2016 Goodfellow (10.1016/j.cag.2023.05.010_b1) 2014; 27 10.1016/j.cag.2023.05.010_b72 Achlioptas (10.1016/j.cag.2023.05.010_b14) 2018; vol. 80 Sauer (10.1016/j.cag.2023.05.010_b28) 2023 Karras (10.1016/j.cag.2023.05.010_b21) 2020 10.1016/j.cag.2023.05.010_b39 10.1016/j.cag.2023.05.010_b38 Deng (10.1016/j.cag.2023.05.010_b51) 2009 Jing (10.1016/j.cag.2023.05.010_b83) 2020; 26 10.1016/j.cag.2023.05.010_b33 10.1016/j.cag.2023.05.010_b76 10.1016/j.cag.2023.05.010_b75 10.1016/j.cag.2023.05.010_b30 10.1016/j.cag.2023.05.010_b37 Ho (10.1016/j.cag.2023.05.010_b91) 2020; 33 10.1016/j.cag.2023.05.010_b35 Gao (10.1016/j.cag.2023.05.010_b11) 2022; 13 10.1016/j.cag.2023.05.010_b34 Wang (10.1016/j.cag.2023.05.010_b65) 2004; 13 10.1016/j.cag.2023.05.010_b78 Bian (10.1016/j.cag.2023.05.010_b5) 2021; 27 Roich (10.1016/j.cag.2023.05.010_b32) 2021 Crowson (10.1016/j.cag.2023.05.010_b27) 2022 10.1016/j.cag.2023.05.010_b62 Shu (10.1016/j.cag.2023.05.010_b15) 2019 Wang (10.1016/j.cag.2023.05.010_b18) 2021; 54 Pang (10.1016/j.cag.2023.05.010_b46) 2021; 24 Gal (10.1016/j.cag.2023.05.010_b70) 2022; 41 Miyato (10.1016/j.cag.2023.05.010_b59) 2018 Kynkäänniemi (10.1016/j.cag.2023.05.010_b63) 2022 10.1016/j.cag.2023.05.010_b29 Deng (10.1016/j.cag.2023.05.010_b12) 2023 Simonyan (10.1016/j.cag.2023.05.010_b86) 2014 Parmar (10.1016/j.cag.2023.05.010_b74) 2018 Ioffe (10.1016/j.cag.2023.05.010_b49) 2015 10.1016/j.cag.2023.05.010_b66 Gui (10.1016/j.cag.2023.05.010_b2) 2021 Zhang (10.1016/j.cag.2023.05.010_b23) 2019 10.1016/j.cag.2023.05.010_b20 10.1016/j.cag.2023.05.010_b64 Kingma (10.1016/j.cag.2023.05.010_b93) 2013 10.1016/j.cag.2023.05.010_b26 Sohl-Dickstein (10.1016/j.cag.2023.05.010_b90) 2015 Liu (10.1016/j.cag.2023.05.010_b16) 2022; 31 10.1016/j.cag.2023.05.010_b69 Dan (10.1016/j.cag.2023.05.010_b4) 2020; 6 10.1016/j.cag.2023.05.010_b24 10.1016/j.cag.2023.05.010_b68 |
References_xml | – reference: Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 4401–10. – start-page: 88 year: 2022 end-page: 105 ident: b27 article-title: VQGAN-CLIP: Open domain image generation and editing with natural language guidance publication-title: European conference on computer vision – year: 2023 ident: b28 article-title: StyleGAN-T: Unlocking the power of GANs for fast large-scale text-to-image synthesis – reference: Wang X, Xie L, Dong C, Shan Y. Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data. In: Proceedings of the IEEE/CVF international conference on computer vision. 2021, p. 1905–14. – reference: Wang X, Li Y, Zhang H, Shan Y. Towards Real-World Blind Face Restoration with Generative Facial Prior. In: The IEEE conference on computer vision and pattern recognition. CVPR, 2021. – volume: 29 start-page: 2234 year: 2016 end-page: 2242 ident: b55 article-title: Improved techniques for training gans publication-title: Adv Neural Inf Process Syst – reference: Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 1501–10. – start-page: 248 year: 2009 end-page: 255 ident: b51 article-title: ImageNet: A large-scale hierarchical image database publication-title: 2009 IEEE conference on computer vision and pattern recognition – reference: Xiao Z, Kreis K, Vahdat A. Tackling the Generative Learning Trilemma with Denoising Diffusion GANs. In: International conference on learning representations. ICLR, 2022. – start-page: 12104 year: 2020 end-page: 12114 ident: b21 article-title: Training generative adversarial networks with limited data publication-title: Advances in neural information processing systems. Vol. 33 – reference: Patashnik O, Wu Z, Shechtman E, Cohen-Or D, Lischinski D. Styleclip: Text-driven manipulation of stylegan imagery. In: Proceedings of the IEEE/CVF international conference on computer vision. 2021, p. 2085–94. – volume: 6 start-page: 84 year: 2020 ident: b4 article-title: Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials publication-title: Npj Comput Mater – year: 2015 ident: b50 article-title: LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop – volume: 30 year: 2017 ident: b73 article-title: Attention is all you need publication-title: Adv Neural Inf Process Syst – volume: 40 start-page: 1 year: 2021 end-page: 14 ident: b82 article-title: Designing an encoder for stylegan image manipulation publication-title: ACM Trans Graph – volume: 55 year: 2023 ident: b10 article-title: Generative adversarial networks in time series: A systematic literature review publication-title: ACM Comput Surv – start-page: 8748 year: 2021 end-page: 8763 ident: b71 article-title: Learning transferable visual models from natural language supervision publication-title: International conference on machine learning – year: 2021 ident: b80 article-title: LAFITE: Towards language-free training for text-to-image generation – start-page: 852 year: 2021 end-page: 863 ident: b22 article-title: Alias-free generative adversarial networks publication-title: Advances in neural information processing systems. Vol. 34 – reference: Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The Cityscapes Dataset for Semantic Urban Scene Understanding. In: Proc. of the IEEE conference on computer vision and pattern recognition. CVPR, 2016. – year: 2014 ident: b52 article-title: Conditional generative adversarial nets – volume: 27 year: 2014 ident: b1 article-title: Generative adversarial nets publication-title: Adv Neural Inf Process Syst – reference: Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 2223–32. – reference: Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, et al. ESRGAN: Enhanced super-resolution generative adversarial networks. In: The European conference on computer vision workshops. ECCVW, 2018. – year: 2018 ident: b87 article-title: The relativistic discriminator: a key element missing from standard GAN – year: 2021 ident: b32 article-title: Pivotal tuning for latent-based editing of real images – reference: Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, et al. StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 5907–15. – year: 2022 ident: b13 article-title: GET3D: A generative model of high quality 3D textured shapes learned from images publication-title: Advances in neural information processing systems – year: 2013 ident: b93 article-title: Auto-encoding variational bayes – start-page: 214 year: 2017 end-page: 223 ident: b56 article-title: Wasserstein generative adversarial networks publication-title: International conference on machine learning – reference: Abdal R, Qin Y, Wonka P. Image2stylegan: How to embed images into the stylegan latent space?. In: Proceedings of the IEEE/CVF international conference on computer vision. 2019, p. 4432–41. – start-page: 4055 year: 2018 end-page: 4064 ident: b74 article-title: Image transformer publication-title: International conference on machine learning – volume: 26 start-page: 3365 year: 2020 end-page: 3385 ident: b83 article-title: Neural style transfer: A review publication-title: IEEE Trans Vis Comput Graphics – start-page: 2256 year: 2015 end-page: 2265 ident: b90 article-title: Deep unsupervised learning using nonequilibrium thermodynamics publication-title: International conference on machine learning – reference: Zhang R, Isola P, Efros AA, Shechtman E, Wang O. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 586–95. – volume: vol. 80 start-page: 40 year: 2018 end-page: 49 ident: b14 article-title: Learning representations and generative models for 3D point clouds publication-title: Proceedings of the 35th international conference on machine learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018 – volume: 24 start-page: 3859 year: 2021 end-page: 3881 ident: b46 article-title: Image-to-image translation: Methods and applications publication-title: IEEE Trans Multimed – reference: Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 10684–95. – start-page: 308 year: 2022 end-page: 313 ident: b42 article-title: Fundamentals and challenges of generative adversarial networks for image-based applications publication-title: 2022 35th SIBGRAPI conference on graphics, patterns and images. Vol. 1 – reference: Wang T-C, Liu M-Y, Zhu J-Y, Tao A, Kautz J, Catanzaro B. High-resolution image synthesis and semantic manipulation with conditional gans. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 8798–807. – reference: Deng J, Guo J, Xue N, Zafeiriou S. Arcface: Additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 4690–9. – year: 2023 ident: b12 article-title: 3D-aware conditional image synthesis – volume: 13 year: 2022 ident: b11 article-title: Generative adversarial networks for spatio-temporal data: A survey publication-title: ACM Trans Intell Syst Technol – start-page: 852 year: 2019 end-page: 857 ident: b94 article-title: Deepfake: A survey on facial forgery technique using generative adversarial network publication-title: 2019 International conference on intelligent computing and control systems – start-page: 77 year: 2021 end-page: 96 ident: b3 article-title: Medical image generation using generative adversarial networks: A review publication-title: Health Inf A Comput Perspect Healthc – reference: He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8. – volume: 33 start-page: 7198 year: 2020 end-page: 7211 ident: b36 article-title: Swapping autoencoder for deep image manipulation publication-title: Adv Neural Inf Process Syst – reference: Skorokhodov I, Tulyakov S, Elhoseiny M. Stylegan-v: A continuous video generator with the price, image quality and perks of stylegan2. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 3626–36. – volume: 54 start-page: 1 year: 2022 end-page: 42 ident: b45 article-title: Generative adversarial networks (GANs): Challenges, solutions, and future directions publication-title: ACM Comput Surv – start-page: 3858 year: 2019 end-page: 3867 ident: b15 article-title: 3D point cloud generative adversarial network based on tree structured graph convolutions publication-title: 2019 IEEE/CVF international conference on computer vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019 – year: 2022 ident: b79 article-title: Photorealistic text-to-image diffusion models with deep language understanding – reference: Park T, Liu M-Y, Wang T-C, Zhu J-Y. Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 2337–46. – year: 2018 ident: b59 article-title: Spectral normalization for generative adversarial networks publication-title: International conference on learning representations – start-page: 775 year: 2016 ident: b47 article-title: Deep learning – start-page: 448 year: 2015 end-page: 456 ident: b49 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: International conference on machine learning – reference: Esser P, Rombach R, Ommer B. Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021, p. 12873–83. – reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 2818–26. – volume: 30 year: 2017 ident: b54 article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium publication-title: Adv Neural Inf Process Syst – year: 2021 ident: b2 article-title: A review on generative adversarial networks: Algorithms, theory, and applications publication-title: IEEE Trans Knowl Data Eng – volume: 30 year: 2017 ident: b57 article-title: Improved training of wasserstein gans publication-title: Adv Neural Inf Process Syst – reference: Wang X, Girshick R, Gupta A, He K. Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 7794–803. – volume: 54 start-page: 1 year: 2021 end-page: 38 ident: b18 article-title: Generative adversarial networks in computer vision: A survey and taxonomy publication-title: ACM Comput Surv – volume: 34 start-page: 17480 year: 2021 end-page: 17492 ident: b61 article-title: Projected gans converge faster publication-title: Adv Neural Inf Process Syst – volume: 34 start-page: 8780 year: 2021 end-page: 8794 ident: b92 article-title: Diffusion models beat gans on image synthesis publication-title: Adv Neural Inf Process Syst – volume: 31 start-page: 7389 year: 2022 end-page: 7402 ident: b16 article-title: PUFA-GAN: A frequency-aware generative adversarial network for 3D point cloud upsampling publication-title: IEEE Trans Image Process – start-page: 10 year: 2022 ident: b25 article-title: StyleGAN-XL: Scaling StyleGAN to large diverse datasets publication-title: ACM SIGGRAPH 2022 conference proceedings – reference: Arjovsky M, Bottou L. Towards principled methods for training generative adversarial networks. In: International conference on learning representations. 2017. – volume: 33 start-page: 3090 year: 2021 end-page: 3103 ident: b9 article-title: Learning graph representation with generative adversarial nets publication-title: IEEE Trans Knowl Data Eng – reference: Brock A, Donahue J, Simonyan K. Large Scale GAN Training for High Fidelity Natural Image Synthesis. In: International conference on learning representations. 2019. – start-page: 3849 year: 2018 end-page: 3858 ident: b60 article-title: Is generator conditioning causally related to GAN performance? publication-title: International conference on machine learning – reference: Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, et al. Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, p. 4681–90. – volume: 139 start-page: 1 year: 2021 end-page: 16 ident: b6 article-title: A generative adversarial network approach to (ensemble) weather prediction publication-title: Neural Netw – volume: 147 start-page: 400 year: 2019 end-page: 406 ident: b7 article-title: Stock market prediction based on generative adversarial network publication-title: Procedia Comput Sci – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: b65 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process – volume: 41 year: 2022 ident: b70 article-title: StyleGAN-NADA: CLIP-guided domain adaptation of image generators publication-title: ACM Trans Graph – volume: 8 start-page: 3 year: 2022 end-page: 31 ident: b67 article-title: Deep image synthesis from intuitive user input: A review and perspectives publication-title: Comput Vis Media – start-page: 592 year: 2020 end-page: 608 ident: b31 article-title: In-domain gan inversion for real image editing publication-title: European conference on computer vision – reference: Bińkowski M, Sutherland DJ, Arbel M, Gretton A. Demystifying MMD GANs. In: International conference on learning representations. 2018. – start-page: 234 year: 2015 end-page: 241 ident: b88 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International conference on medical image computing and computer-assisted intervention – volume: 27 start-page: 1 year: 2021 end-page: 18 ident: b5 article-title: Generative chemistry: drug discovery with deep learning generative models publication-title: J Mol Model – volume: 162 year: 2022 ident: b8 article-title: Generative adversarial network for geological prediction based on TBM operational data publication-title: Mech Syst Signal Process – year: 2022 ident: b63 article-title: The role of ImageNet classes in Fréchet inception distance – reference: Chan ER, Lin CZ, Chan MA, Nagano K, Pan B, De Mello S, et al. Efficient geometry-aware 3D generative adversarial networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 16123–33. – volume: 54 start-page: 1 year: 2022 end-page: 49 ident: b43 article-title: A survey on generative adversarial networks: Variants, applications, and training publication-title: ACM Comput Surv – reference: Karras T, Aila T, Laine S, Lehtinen J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. In: International conference on learning representations. 2018. – start-page: 7354 year: 2019 end-page: 7363 ident: b23 article-title: Self-attention generative adversarial networks publication-title: International conference on machine learning – reference: Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, p. 1125–34. – reference: Abdal R, Qin Y, Wonka P. Image2stylegan++: How to edit the embedded images?. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 8296–305. – year: 2022 ident: b77 article-title: Hierarchical text-conditional image generation with clip latents – year: 2014 ident: b86 article-title: Very deep convolutional networks for large-scale image recognition – reference: Radford A, Metz L, Chintala S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. In: International conference on learning representations. 2016. – volume: 41 start-page: 591 year: 2022 end-page: 611 ident: b44 article-title: State-of-the-art in the architecture, methods and applications of StyleGAN publication-title: Comput Graph Forum – volume: 33 start-page: 6840 year: 2020 end-page: 6851 ident: b91 article-title: Denoising diffusion probabilistic models publication-title: Adv Neural Inf Process Syst – reference: Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T. Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 8110–9. – volume: 27 start-page: 1 year: 2021 ident: 10.1016/j.cag.2023.05.010_b5 article-title: Generative chemistry: drug discovery with deep learning generative models publication-title: J Mol Model doi: 10.1007/s00894-021-04674-8 – ident: 10.1016/j.cag.2023.05.010_b89 doi: 10.1109/CVPR.2019.00482 – ident: 10.1016/j.cag.2023.05.010_b48 – volume: 27 year: 2014 ident: 10.1016/j.cag.2023.05.010_b1 article-title: Generative adversarial nets publication-title: Adv Neural Inf Process Syst – ident: 10.1016/j.cag.2023.05.010_b17 doi: 10.1109/CVPR52688.2022.01565 – ident: 10.1016/j.cag.2023.05.010_b85 doi: 10.1109/CVPR.2016.90 – start-page: 592 year: 2020 ident: 10.1016/j.cag.2023.05.010_b31 article-title: In-domain gan inversion for real image editing – volume: 40 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.cag.2023.05.010_b82 article-title: Designing an encoder for stylegan image manipulation publication-title: ACM Trans Graph doi: 10.1145/3450626.3459838 – volume: 34 start-page: 17480 year: 2021 ident: 10.1016/j.cag.2023.05.010_b61 article-title: Projected gans converge faster publication-title: Adv Neural Inf Process Syst – volume: 139 start-page: 1 year: 2021 ident: 10.1016/j.cag.2023.05.010_b6 article-title: A generative adversarial network approach to (ensemble) weather prediction publication-title: Neural Netw doi: 10.1016/j.neunet.2021.02.003 – start-page: 88 year: 2022 ident: 10.1016/j.cag.2023.05.010_b27 article-title: VQGAN-CLIP: Open domain image generation and editing with natural language guidance – ident: 10.1016/j.cag.2023.05.010_b66 doi: 10.1109/CVPR.2018.00068 – ident: 10.1016/j.cag.2023.05.010_b34 doi: 10.1109/CVPR.2018.00917 – ident: 10.1016/j.cag.2023.05.010_b64 – start-page: 775 year: 2016 ident: 10.1016/j.cag.2023.05.010_b47 – volume: 54 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.cag.2023.05.010_b18 article-title: Generative adversarial networks in computer vision: A survey and taxonomy publication-title: ACM Comput Surv – start-page: 7354 year: 2019 ident: 10.1016/j.cag.2023.05.010_b23 article-title: Self-attention generative adversarial networks – ident: 10.1016/j.cag.2023.05.010_b26 doi: 10.1109/ICCV48922.2021.00209 – ident: 10.1016/j.cag.2023.05.010_b37 doi: 10.1109/ICCV.2017.244 – year: 2021 ident: 10.1016/j.cag.2023.05.010_b32 – volume: vol. 80 start-page: 40 year: 2018 ident: 10.1016/j.cag.2023.05.010_b14 article-title: Learning representations and generative models for 3D point clouds – ident: 10.1016/j.cag.2023.05.010_b53 – year: 2018 ident: 10.1016/j.cag.2023.05.010_b59 article-title: Spectral normalization for generative adversarial networks – year: 2022 ident: 10.1016/j.cag.2023.05.010_b77 – start-page: 2256 year: 2015 ident: 10.1016/j.cag.2023.05.010_b90 article-title: Deep unsupervised learning using nonequilibrium thermodynamics – start-page: 308 year: 2022 ident: 10.1016/j.cag.2023.05.010_b42 article-title: Fundamentals and challenges of generative adversarial networks for image-based applications – volume: 162 year: 2022 ident: 10.1016/j.cag.2023.05.010_b8 article-title: Generative adversarial network for geological prediction based on TBM operational data publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2021.108035 – volume: 24 start-page: 3859 year: 2021 ident: 10.1016/j.cag.2023.05.010_b46 article-title: Image-to-image translation: Methods and applications publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2021.3109419 – year: 2023 ident: 10.1016/j.cag.2023.05.010_b12 – volume: 31 start-page: 7389 year: 2022 ident: 10.1016/j.cag.2023.05.010_b16 article-title: PUFA-GAN: A frequency-aware generative adversarial network for 3D point cloud upsampling publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2022.3222918 – start-page: 852 year: 2021 ident: 10.1016/j.cag.2023.05.010_b22 article-title: Alias-free generative adversarial networks – year: 2018 ident: 10.1016/j.cag.2023.05.010_b87 – ident: 10.1016/j.cag.2023.05.010_b19 doi: 10.1109/CVPR.2019.00453 – start-page: 448 year: 2015 ident: 10.1016/j.cag.2023.05.010_b49 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – year: 2022 ident: 10.1016/j.cag.2023.05.010_b13 article-title: GET3D: A generative model of high quality 3D textured shapes learned from images – volume: 30 year: 2017 ident: 10.1016/j.cag.2023.05.010_b57 article-title: Improved training of wasserstein gans publication-title: Adv Neural Inf Process Syst – volume: 54 start-page: 1 issue: 8 year: 2022 ident: 10.1016/j.cag.2023.05.010_b43 article-title: A survey on generative adversarial networks: Variants, applications, and training publication-title: ACM Comput Surv doi: 10.1145/3463475 – ident: 10.1016/j.cag.2023.05.010_b20 doi: 10.1109/CVPR42600.2020.00813 – ident: 10.1016/j.cag.2023.05.010_b76 doi: 10.1109/ICCV.2017.629 – start-page: 3849 year: 2018 ident: 10.1016/j.cag.2023.05.010_b60 article-title: Is generator conditioning causally related to GAN performance? – start-page: 8748 year: 2021 ident: 10.1016/j.cag.2023.05.010_b71 article-title: Learning transferable visual models from natural language supervision – ident: 10.1016/j.cag.2023.05.010_b78 doi: 10.1109/CVPR52688.2022.01042 – ident: 10.1016/j.cag.2023.05.010_b81 doi: 10.1109/CVPR46437.2021.01268 – year: 2021 ident: 10.1016/j.cag.2023.05.010_b2 article-title: A review on generative adversarial networks: Algorithms, theory, and applications publication-title: IEEE Trans Knowl Data Eng – ident: 10.1016/j.cag.2023.05.010_b84 doi: 10.1109/CVPR.2016.350 – start-page: 3858 year: 2019 ident: 10.1016/j.cag.2023.05.010_b15 article-title: 3D point cloud generative adversarial network based on tree structured graph convolutions – volume: 26 start-page: 3365 issue: 11 year: 2020 ident: 10.1016/j.cag.2023.05.010_b83 article-title: Neural style transfer: A review publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2019.2921336 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.cag.2023.05.010_b65 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – ident: 10.1016/j.cag.2023.05.010_b38 doi: 10.1109/CVPR.2017.19 – ident: 10.1016/j.cag.2023.05.010_b62 doi: 10.1109/CVPR.2016.308 – ident: 10.1016/j.cag.2023.05.010_b40 doi: 10.1109/ICCVW54120.2021.00217 – start-page: 248 year: 2009 ident: 10.1016/j.cag.2023.05.010_b51 article-title: ImageNet: A large-scale hierarchical image database – volume: 13 issue: 2 year: 2022 ident: 10.1016/j.cag.2023.05.010_b11 article-title: Generative adversarial networks for spatio-temporal data: A survey publication-title: ACM Trans Intell Syst Technol doi: 10.1145/3474838 – volume: 33 start-page: 3090 issue: 8 year: 2021 ident: 10.1016/j.cag.2023.05.010_b9 article-title: Learning graph representation with generative adversarial nets publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2019.2961882 – year: 2015 ident: 10.1016/j.cag.2023.05.010_b50 – volume: 147 start-page: 400 year: 2019 ident: 10.1016/j.cag.2023.05.010_b7 article-title: Stock market prediction based on generative adversarial network publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2019.01.256 – start-page: 12104 year: 2020 ident: 10.1016/j.cag.2023.05.010_b21 article-title: Training generative adversarial networks with limited data – volume: 33 start-page: 7198 year: 2020 ident: 10.1016/j.cag.2023.05.010_b36 article-title: Swapping autoencoder for deep image manipulation publication-title: Adv Neural Inf Process Syst – year: 2014 ident: 10.1016/j.cag.2023.05.010_b86 – year: 2013 ident: 10.1016/j.cag.2023.05.010_b93 – start-page: 214 year: 2017 ident: 10.1016/j.cag.2023.05.010_b56 article-title: Wasserstein generative adversarial networks – year: 2022 ident: 10.1016/j.cag.2023.05.010_b79 – ident: 10.1016/j.cag.2023.05.010_b33 doi: 10.1109/CVPR.2017.632 – year: 2023 ident: 10.1016/j.cag.2023.05.010_b28 – year: 2014 ident: 10.1016/j.cag.2023.05.010_b52 – ident: 10.1016/j.cag.2023.05.010_b68 doi: 10.1109/ICCV.2017.167 – volume: 54 start-page: 1 issue: 3 year: 2022 ident: 10.1016/j.cag.2023.05.010_b45 article-title: Generative adversarial networks (GANs): Challenges, solutions, and future directions publication-title: ACM Comput Surv doi: 10.1145/3446374 – volume: 6 start-page: 84 issue: 1 year: 2020 ident: 10.1016/j.cag.2023.05.010_b4 article-title: Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials publication-title: Npj Comput Mater doi: 10.1038/s41524-020-00352-0 – volume: 41 issue: 4 year: 2022 ident: 10.1016/j.cag.2023.05.010_b70 article-title: StyleGAN-NADA: CLIP-guided domain adaptation of image generators publication-title: ACM Trans Graph doi: 10.1145/3528223.3530164 – ident: 10.1016/j.cag.2023.05.010_b24 – volume: 30 year: 2017 ident: 10.1016/j.cag.2023.05.010_b73 article-title: Attention is all you need publication-title: Adv Neural Inf Process Syst – volume: 41 start-page: 591 issue: 2 year: 2022 ident: 10.1016/j.cag.2023.05.010_b44 article-title: State-of-the-art in the architecture, methods and applications of StyleGAN publication-title: Comput Graph Forum doi: 10.1111/cgf.14503 – ident: 10.1016/j.cag.2023.05.010_b30 doi: 10.1109/CVPR42600.2020.00832 – volume: 55 issue: 10 year: 2023 ident: 10.1016/j.cag.2023.05.010_b10 article-title: Generative adversarial networks in time series: A systematic literature review publication-title: ACM Comput Surv doi: 10.1145/3559540 – ident: 10.1016/j.cag.2023.05.010_b69 doi: 10.1109/CVPR52688.2022.00361 – ident: 10.1016/j.cag.2023.05.010_b72 – ident: 10.1016/j.cag.2023.05.010_b35 doi: 10.1109/CVPR.2019.00244 – start-page: 77 year: 2021 ident: 10.1016/j.cag.2023.05.010_b3 article-title: Medical image generation using generative adversarial networks: A review publication-title: Health Inf A Comput Perspect Healthc – ident: 10.1016/j.cag.2023.05.010_b41 doi: 10.1109/CVPR46437.2021.00905 – year: 2021 ident: 10.1016/j.cag.2023.05.010_b80 – start-page: 234 year: 2015 ident: 10.1016/j.cag.2023.05.010_b88 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 33 start-page: 6840 year: 2020 ident: 10.1016/j.cag.2023.05.010_b91 article-title: Denoising diffusion probabilistic models publication-title: Adv Neural Inf Process Syst – volume: 34 start-page: 8780 year: 2021 ident: 10.1016/j.cag.2023.05.010_b92 article-title: Diffusion models beat gans on image synthesis publication-title: Adv Neural Inf Process Syst – volume: 8 start-page: 3 year: 2022 ident: 10.1016/j.cag.2023.05.010_b67 article-title: Deep image synthesis from intuitive user input: A review and perspectives publication-title: Comput Vis Media doi: 10.1007/s41095-021-0234-8 – start-page: 10 year: 2022 ident: 10.1016/j.cag.2023.05.010_b25 article-title: StyleGAN-XL: Scaling StyleGAN to large diverse datasets – volume: 29 start-page: 2234 year: 2016 ident: 10.1016/j.cag.2023.05.010_b55 article-title: Improved techniques for training gans publication-title: Adv Neural Inf Process Syst – ident: 10.1016/j.cag.2023.05.010_b58 – year: 2022 ident: 10.1016/j.cag.2023.05.010_b63 – start-page: 852 year: 2019 ident: 10.1016/j.cag.2023.05.010_b94 article-title: Deepfake: A survey on facial forgery technique using generative adversarial network – ident: 10.1016/j.cag.2023.05.010_b75 doi: 10.1109/CVPR.2018.00813 – ident: 10.1016/j.cag.2023.05.010_b29 doi: 10.1109/ICCV.2019.00453 – volume: 30 year: 2017 ident: 10.1016/j.cag.2023.05.010_b54 article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium publication-title: Adv Neural Inf Process Syst – start-page: 4055 year: 2018 ident: 10.1016/j.cag.2023.05.010_b74 article-title: Image transformer – ident: 10.1016/j.cag.2023.05.010_b39 doi: 10.1007/978-3-030-11021-5_5 |
SSID | ssj0002264 |
Score | 2.5179694 |
Snippet | Generative Adversarial Networks (GANs) are a type of deep learning architecture that uses two networks namely a generator and a discriminator that, by... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 13 |
SubjectTerms | Deep image synthesis Generative Adversarial Network Generative models Image generation |
Title | A review on Generative Adversarial Networks for image generation |
URI | https://dx.doi.org/10.1016/j.cag.2023.05.010 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1VZYEB8SnKR-WBCSmt0zhxslFVVAVEJyp1s2LHroogrWhZ-e2cYweKBAyMic5SdLHfu5Pv3QFccpbxglvZL7JbwFQWBZk0JshUjGRieias5GMP42Q0YXfTeNqAQa2FsWWVHvsdpldo7d90vTe7y_ncanwxA2IYf0QVsU6tgp1xu8s7719lHlYo6jpRIhqjdX2zWdV4qXzWsfPDXfNO-jM3bfDNcA92faBI-u5b9qGhywPY2WgfeAjXfeKUJ2RREtc_2oIXqYYsr3K7tcjYlXmvCAanZP6C6EFm3nJRHsFkePM4GAV-IkKgehlfB0aysCdje5uV0kJzmspQ5RpTsiSNDJ5PZOsI6SdlKaYqaYbBgDSFlEjKjCplomNolotSnwCRVKs4ogZDLsM4k1LGcZ4UiU6jsNCZbgGtfSGUbxdup1Y8i7ou7Emg-4R1n6CxQPe14OpzydL1yvjLmNUOFt9-uEAs_33Z6f-WncG2fXKVe-fQXL--6QuMJtayXW2XNmz1b-9H4w8vmcZd |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHtSD8RnxuQe9mBRKu6XtwUSiEpDHCRJuK7vdJRgtRDDGi3_KP-hst1VM1IMJ13anab9Ovm82Ow-AU5-GfuTrsl9UN4uK0LVCrpQVCg_FRDmqnJSPtTuVeo_e9r1-Dt6zWhidVplyv-H0hK3TK6UUzdJkNNI1vrgDohh_uImw9tPMyqZ8fcF92_SicY0_-cxxajfdq7qVjhawhBP6M0txWna4p4-FAjuSvh3wshhI3NtUAleho6PsucjjAQ0w5g9CVFWuIs5R3agthHLxuUuwTJEu9NiE4ttXXomuTDWtL5H-8fWyo9QkqUwMhkU9sNx0C7V_FsM5gattwHoamZKq-fhNyMl4C9bm-hVuw2WVmFIXMo6JaVit2ZIkU52nA-3LpGPyyqcEo2EyekS6IsN05Tjegd5CcNqFfDyO5R4QbkvhubbCGE9Rn3LOPW9QiSoycMuRDGUB7AwLJtL-5HpMxgPLEtHuGcLHNHzM9hjCV4DzT5OJac7x12KaAcy-eRhD8fjdbP9_ZiewUu-2W6zV6DQPYFXfMWmDh5CfPT3LIwxlZvw4cR0Cd4v21Q9ilP-X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+Generative+Adversarial+Networks+for+image+generation&rft.jtitle=Computers+%26+graphics&rft.au=Trevisan+de+Souza%2C+Vinicius+Luis&rft.au=Marques%2C+Bruno+Augusto+Dorta&rft.au=Batagelo%2C+Harlen+Costa&rft.au=Gois%2C+Jo%C3%A3o+Paulo&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0097-8493&rft.volume=114&rft.spage=13&rft.epage=25&rft_id=info:doi/10.1016%2Fj.cag.2023.05.010&rft.externalDocID=S009784932300064X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8493&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8493&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8493&client=summon |