Improved adaptive genetic algorithm for the vehicle Insurance Fraud Identification Model based on a BP Neural Network

With the development of the insurance industry, insurance fraud is increasing rapidly. The existence of insurance fraud considerably hinders the development of the insurance industry. Fraud identification has become the most important part of insurance fraud research. In this paper, an improved adap...

Full description

Saved in:
Bibliographic Details
Published inTheoretical computer science Vol. 817; pp. 12 - 23
Main Authors Yan, Chun, Li, Meixuan, Liu, Wei, Qi, Man
Format Journal Article
LanguageEnglish
Published Elsevier B.V 12.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the development of the insurance industry, insurance fraud is increasing rapidly. The existence of insurance fraud considerably hinders the development of the insurance industry. Fraud identification has become the most important part of insurance fraud research. In this paper, an improved adaptive genetic algorithm (NAGA) combined with a BP neural network (BP neural network) is proposed to optimize the initial weight of BP neural networks to overcome their shortcomings, such as ease of falling into local minima, slow convergence rates and sample dependence. Finally, the historical automobile insurance claim data of an insurance company are taken as a sample. The NAGA-BP neural network model was used for simulation and prediction. The empirical results show that the improved genetic algorithm is more advanced than the traditional genetic algorithm in terms of convergence speed and prediction accuracy.
AbstractList With the development of the insurance industry, insurance fraud is increasing rapidly. The existence of insurance fraud considerably hinders the development of the insurance industry. Fraud identification has become the most important part of insurance fraud research. In this paper, an improved adaptive genetic algorithm (NAGA) combined with a BP neural network (BP neural network) is proposed to optimize the initial weight of BP neural networks to overcome their shortcomings, such as ease of falling into local minima, slow convergence rates and sample dependence. Finally, the historical automobile insurance claim data of an insurance company are taken as a sample. The NAGA-BP neural network model was used for simulation and prediction. The empirical results show that the improved genetic algorithm is more advanced than the traditional genetic algorithm in terms of convergence speed and prediction accuracy.
Author Yan, Chun
Li, Meixuan
Liu, Wei
Qi, Man
Author_xml – sequence: 1
  givenname: Chun
  surname: Yan
  fullname: Yan, Chun
  email: yanchunchun9896@163.com
  organization: College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao, 266590, China
– sequence: 2
  givenname: Meixuan
  surname: Li
  fullname: Li, Meixuan
  email: llmx9512@163.com
  organization: Postgraduates of Probability Theory and Mathematical Statistics, Shandong University of Science and Technology, Qingdao, 266590, China
– sequence: 3
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  email: liuwei_doctor@yeah.net
  organization: College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
– sequence: 4
  givenname: Man
  surname: Qi
  fullname: Qi, Man
  email: man.qi@canterbury.ac.uk
  organization: Department of Computing, Canterbury Christ Church University, Canterbury CT1 1QU, UK
BookMark eNp9kMlOAzEMhiNUJMryANzyAjMkmXbSiBNULJXYDnCOUsdpU6aTKkmLeHvCcuJQX35Z8mfZ3zEZ9KFHQs45qznj7cWqzpBqwbiqWVszMT4gQz6RqhJCjQZkyBo2qholx0fkOKUVKzWW7ZBsZ-tNDDu01FizyX6HdIE9Zg_UdIsQfV6uqQuR5iXSHS49dEhnfdpG0wPS22i2ls4s9tk7Dyb70NPHYLGjc5PK1tIaev1Cn7AQXYn8EeL7KTl0pkt49pcn5O325nV6Xz08382mVw8VCCVz5QRKIa2w1oBooJ07O0HlkDcMcAJjhoCSOVlGJo0BBXOrFG-cHRkzV841J0T-7oUYUoroNPj8c2SOxneaM_1tT690sae_7WnW6mKvkPwfuYl-beLnXubyl8Hy0s5j1Ak8Fk3WR4SsbfB76C9Ff42-
CitedBy_id crossref_primary_10_1016_j_autcon_2024_105364
crossref_primary_10_1155_2022_1191271
crossref_primary_10_2478_orga_2020_0009
crossref_primary_10_3390_su151310242
crossref_primary_10_1016_j_engappai_2023_106248
crossref_primary_10_1142_S0218126621500985
crossref_primary_10_2174_2212797613999200730211514
crossref_primary_10_1007_s11227_022_04658_2
crossref_primary_10_3390_risks10120230
crossref_primary_10_1016_j_compag_2022_107155
crossref_primary_10_1016_j_eswa_2024_124109
crossref_primary_10_1016_j_jenvman_2022_114585
crossref_primary_10_12677_sa_2024_134134
crossref_primary_10_3233_JIFS_230076
crossref_primary_10_1016_j_measurement_2021_109588
crossref_primary_10_1049_ntw2_12056
crossref_primary_10_3390_info16030211
crossref_primary_10_1088_1361_665X_ac775d
crossref_primary_10_2478_amns_2023_1_00388
crossref_primary_10_1007_s00500_024_09869_8
crossref_primary_10_1016_j_energy_2023_129954
crossref_primary_10_12677_SEA_2021_103044
crossref_primary_10_1007_s10614_021_10229_z
crossref_primary_10_1016_j_apenergy_2022_118725
crossref_primary_10_1016_j_techfore_2022_121939
crossref_primary_10_1007_s00170_020_06442_z
crossref_primary_10_1155_2022_1283588
crossref_primary_10_1371_journal_pone_0242011
crossref_primary_10_1016_j_enganabound_2023_03_033
crossref_primary_10_1063_5_0174417
crossref_primary_10_1111_exsy_12974
crossref_primary_10_1016_j_physleta_2024_129571
crossref_primary_10_1371_journal_pone_0312096
crossref_primary_10_2139_ssrn_3982323
crossref_primary_10_1016_j_ribaf_2022_101769
crossref_primary_10_1016_j_matpr_2023_03_259
crossref_primary_10_3390_ma14216593
crossref_primary_10_1109_TII_2021_3072045
crossref_primary_10_1142_S0218001422510090
crossref_primary_10_3390_buildings12050559
crossref_primary_10_3390_risks9040058
crossref_primary_10_1109_ACCESS_2024_3453433
crossref_primary_10_1088_1742_6596_2425_1_012036
Cites_doi 10.1016/j.eswa.2005.04.030
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2019.06.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 23
ExternalDocumentID 10_1016_j_tcs_2019_06_025
S0304397519304177
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
G-2
HZ~
R2-
RIG
SEW
SSH
SSZ
TAE
WUQ
XJT
ZY4
ID FETCH-LOGICAL-c297t-f2e727d2ddac23c6bfd8e9fe130ce8c50ece70f77d283ac9cbd9913fd4aab9ff3
IEDL.DBID IXB
ISSN 0304-3975
IngestDate Thu Apr 24 22:57:55 EDT 2025
Tue Jul 01 03:18:01 EDT 2025
Fri Feb 23 02:48:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Genetic algorithm
Neural network
Insurance fraud
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-f2e727d2ddac23c6bfd8e9fe130ce8c50ece70f77d283ac9cbd9913fd4aab9ff3
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_tcs_2019_06_025
crossref_primary_10_1016_j_tcs_2019_06_025
elsevier_sciencedirect_doi_10_1016_j_tcs_2019_06_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-12
PublicationDateYYYYMMDD 2020-05-12
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-12
  day: 12
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lovro, Štefan, Marko (br0030) 2010; 38
Viaene, Dedene, Derrig (br0020) 2005; 29
Yang, Qian, Wang (br0130) 2017
Wang, Xu (br0080) 2017
Li, Yan, Liu, Li (br0090) 2017
Chudgar (br0100) 2017
Bhowmik (br0110) 2011; 2
Ye (br0040) 2011
Yan, Li, Sun (br0070) 2017
Tang, Mo (br0060) 2013
Y.Z. Zhao, Application of data Mining in vehicle Insurance Fraud and Identification, The times finance is 26: 246+249.
Gao, Xue (br0120) 2017; 54
Liu, Chen (br0050) 2012
Lovro (10.1016/j.tcs.2019.06.025_br0030) 2010; 38
10.1016/j.tcs.2019.06.025_br0010
Bhowmik (10.1016/j.tcs.2019.06.025_br0110) 2011; 2
Ye (10.1016/j.tcs.2019.06.025_br0040) 2011
Chudgar (10.1016/j.tcs.2019.06.025_br0100) 2017
Tang (10.1016/j.tcs.2019.06.025_br0060) 2013
Viaene (10.1016/j.tcs.2019.06.025_br0020) 2005; 29
Li (10.1016/j.tcs.2019.06.025_br0090) 2017
Wang (10.1016/j.tcs.2019.06.025_br0080) 2017
Gao (10.1016/j.tcs.2019.06.025_br0120) 2017; 54
Liu (10.1016/j.tcs.2019.06.025_br0050) 2012
Yang (10.1016/j.tcs.2019.06.025_br0130) 2017
Yan (10.1016/j.tcs.2019.06.025_br0070) 2017
References_xml – start-page: 87
  year: 2017
  end-page: 95
  ident: br0080
  article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud
  publication-title: Decis. Support Syst.
– start-page: 17
  year: 2012
  end-page: 22
  ident: br0050
  article-title: Application of evolutionary data mining algorithms to insurance fraud prediction
  publication-title: Int. Proc. Comput. Sci. Inf. Technol.
– start-page: 675
  year: 2017
  end-page: 680
  ident: br0130
  article-title: An improved adaptive genetic algorithm for function optimization IEEE international conference on information and automation
  publication-title: IEEE
– volume: 38
  start-page: 1039
  year: 2010
  end-page: 1052
  ident: br0030
  article-title: An expert system for detecting automobile insurance fraud using social network analysis
  publication-title: Expert Syst. Appl.
– start-page: 114
  year: 2017
  end-page: 127
  ident: br0070
  article-title: A research on automobile insurance fraud identification based on random forest model and ant colony optimization algorithm
  publication-title: Insur. Stud.
– volume: 29
  start-page: 653
  year: 2005
  end-page: 666
  ident: br0020
  article-title: Auto claim fraud detection using Bayesian learning neural networks
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 371
  year: 2011
  end-page: 377
  ident: br0110
  article-title: Detecting auto insurance fraud by data mining techniques
  publication-title: J. Emerg. Trends Comput. Inf. Sci.
– reference: Y.Z. Zhao, Application of data Mining in vehicle Insurance Fraud and Identification, The times finance is 26: 246+249.
– start-page: 39
  year: 2013
  end-page: 42
  ident: br0060
  article-title: Construction of vehicle insurance anti fraud system based on data mining technology
  publication-title: Shanghai Insur.
– start-page: 27
  year: 2017
  end-page: 39
  ident: br0090
  article-title: A principle component analysis-based random forest with the potential nearest neighbor method for automobile insurance fraud identification
  publication-title: Appl. Soft Comput.
– start-page: 79
  year: 2011
  end-page: 86
  ident: br0040
  article-title: Insurance frauds identification research based on the BP neurological network—with China motor insurance claim as an example
  publication-title: Insur. Stud.
– volume: 54
  start-page: 294
  year: 2017
  end-page: 302
  ident: br0120
  article-title: Back propagation neural network based on improved genetic algorithm fitting LED spectral model
  publication-title: Laser Optoelectron. Prog.
– start-page: 50
  year: 2017
  end-page: 57
  ident: br0100
  article-title: An empirical analysis on drivers that contribute to fraudulent activity with regard to life insurance fraud
  publication-title: Soc. Sci. Electron. Publ.
– start-page: 50
  year: 2017
  ident: 10.1016/j.tcs.2019.06.025_br0100
  article-title: An empirical analysis on drivers that contribute to fraudulent activity with regard to life insurance fraud
  publication-title: Soc. Sci. Electron. Publ.
– volume: 54
  start-page: 294
  issue: 7
  year: 2017
  ident: 10.1016/j.tcs.2019.06.025_br0120
  article-title: Back propagation neural network based on improved genetic algorithm fitting LED spectral model
  publication-title: Laser Optoelectron. Prog.
– volume: 38
  start-page: 1039
  issue: 1
  year: 2010
  ident: 10.1016/j.tcs.2019.06.025_br0030
  article-title: An expert system for detecting automobile insurance fraud using social network analysis
  publication-title: Expert Syst. Appl.
– start-page: 17
  issue: 7
  year: 2012
  ident: 10.1016/j.tcs.2019.06.025_br0050
  article-title: Application of evolutionary data mining algorithms to insurance fraud prediction
  publication-title: Int. Proc. Comput. Sci. Inf. Technol.
– start-page: 39
  issue: 11
  year: 2013
  ident: 10.1016/j.tcs.2019.06.025_br0060
  article-title: Construction of vehicle insurance anti fraud system based on data mining technology
  publication-title: Shanghai Insur.
– volume: 29
  start-page: 653
  issue: 3
  year: 2005
  ident: 10.1016/j.tcs.2019.06.025_br0020
  article-title: Auto claim fraud detection using Bayesian learning neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.04.030
– start-page: 27
  year: 2017
  ident: 10.1016/j.tcs.2019.06.025_br0090
  article-title: A principle component analysis-based random forest with the potential nearest neighbor method for automobile insurance fraud identification
  publication-title: Appl. Soft Comput.
– start-page: 79
  issue: 03
  year: 2011
  ident: 10.1016/j.tcs.2019.06.025_br0040
  article-title: Insurance frauds identification research based on the BP neurological network—with China motor insurance claim as an example
  publication-title: Insur. Stud.
– start-page: 114
  issue: 06
  year: 2017
  ident: 10.1016/j.tcs.2019.06.025_br0070
  article-title: A research on automobile insurance fraud identification based on random forest model and ant colony optimization algorithm
  publication-title: Insur. Stud.
– ident: 10.1016/j.tcs.2019.06.025_br0010
– volume: 2
  start-page: 371
  issue: 4
  year: 2011
  ident: 10.1016/j.tcs.2019.06.025_br0110
  article-title: Detecting auto insurance fraud by data mining techniques
  publication-title: J. Emerg. Trends Comput. Inf. Sci.
– start-page: 675
  year: 2017
  ident: 10.1016/j.tcs.2019.06.025_br0130
  article-title: An improved adaptive genetic algorithm for function optimization IEEE international conference on information and automation
  publication-title: IEEE
– start-page: 87
  issue: 7
  year: 2017
  ident: 10.1016/j.tcs.2019.06.025_br0080
  article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud
  publication-title: Decis. Support Syst.
SSID ssj0000576
Score 2.5159614
Snippet With the development of the insurance industry, insurance fraud is increasing rapidly. The existence of insurance fraud considerably hinders the development of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 12
SubjectTerms Genetic algorithm
Insurance fraud
Neural network
Title Improved adaptive genetic algorithm for the vehicle Insurance Fraud Identification Model based on a BP Neural Network
URI https://dx.doi.org/10.1016/j.tcs.2019.06.025
Volume 817
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54XODAG_GcfOCEVNZHujRHQKABYkICpN2qPGFojAk6jvx27D54SMCBY6u4iuLE_hrbnxnbs1orq5QIpO6YgCfGB5pbEURcR4nz3PGYaocve53uLT_vp_0pdtzUwlBaZW37K5teWuv6TbtezfZ4MGhfU1APvSlBkJBHgirKE56VRXz9o09rnIoqXkkRABzdRDbLHK_CEGN3JEsKT-qW_ZNv-uJvTpfYQg0U4bCayzKbcqMVttg0YYD6TK6w-csP4tWXVTapLgmcBVybMZkywB1ChYqghndPz4Pi_hEQpwLKwKu7p2_D2ehlQv01HCCMnVioind9fZsH1C5tCOTuLOCjgqMrIE4PnF2vSiJfY7enJzfH3aDurBCYWIoi8LFD3GJja5WJE9PR3mZOeocOzbjMpKEzToRe4JAsUUYabRFHJt5ypbT0PllnM6Onkdtg0OE6lZkUOlUZ96mTlLBqeegTLpQP000WNmuam5p2nLpfDPMmv-whRzXkpIaccuxiFNn_EBlXnBt_DeaNovJvGydHn_C72Nb_xLbZXEw_3ETfGu-wmeJ54nYRlRS6xaYP3qIWmz08u-j2WuUmfAd3aeWB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58HNSDb_HtHDwJoWmy6WaPKkqrtggq9Bb2qZVaS5v6-51pEh-gHjwm7IRldzPzJTPzfYwdW62VVUoEUjdMwGPjA82tCOpc12PnueMR9Q63O43mA7_qJt0Zdl71wlBZZen7C58-9dblnVq5mrVhr1e7o6QeRlOCICGvCzHL5hENCNJvaHXPPt1xIoqEJaUAcHiV2pwWeeWGKLvrcsrhSXLZPwWnLwHncpUtl0gRTovJrLEZN1hnK5UKA5Qv5Tpban8wr4432KT4S-As4OIMyZcBHhHqVATVf3wd9fKnF0CgCmgDb-6Jng2twXhCAhsOEMdOLBTdu778nQekl9YHincW8FLB2S0QqQfOrlNUkW-yh8uL-_NmUEorBCaSIg985BC42MhaZaLYNLS3qZPeYUQzLjVJ6IwToRc4JI2VkUZbBJKxt1wpLb2Pt9jc4HXgthk0uE5kKoVOVMp94iRVrFoe-pgL5cNkh4XVmmam5B0n-Yt-VhWYPWe4DRltQ0ZFdhGanHyYDAvSjb8G82qjsm8nJ8Og8LvZ7v_MjthC8759k920Otd7bDGir2_ico322Vw-mrgDhCi5PpwewXdtIeYU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+adaptive+genetic+algorithm+for+the+vehicle+Insurance+Fraud+Identification+Model+based+on+a+BP+Neural+Network&rft.jtitle=Theoretical+computer+science&rft.au=Yan%2C+Chun&rft.au=Li%2C+Meixuan&rft.au=Liu%2C+Wei&rft.au=Qi%2C+Man&rft.date=2020-05-12&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=817&rft.spage=12&rft.epage=23&rft_id=info:doi/10.1016%2Fj.tcs.2019.06.025&rft.externalDocID=S0304397519304177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon