Improved adaptive genetic algorithm for the vehicle Insurance Fraud Identification Model based on a BP Neural Network
With the development of the insurance industry, insurance fraud is increasing rapidly. The existence of insurance fraud considerably hinders the development of the insurance industry. Fraud identification has become the most important part of insurance fraud research. In this paper, an improved adap...
Saved in:
Published in | Theoretical computer science Vol. 817; pp. 12 - 23 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
12.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the development of the insurance industry, insurance fraud is increasing rapidly. The existence of insurance fraud considerably hinders the development of the insurance industry. Fraud identification has become the most important part of insurance fraud research. In this paper, an improved adaptive genetic algorithm (NAGA) combined with a BP neural network (BP neural network) is proposed to optimize the initial weight of BP neural networks to overcome their shortcomings, such as ease of falling into local minima, slow convergence rates and sample dependence. Finally, the historical automobile insurance claim data of an insurance company are taken as a sample. The NAGA-BP neural network model was used for simulation and prediction. The empirical results show that the improved genetic algorithm is more advanced than the traditional genetic algorithm in terms of convergence speed and prediction accuracy. |
---|---|
AbstractList | With the development of the insurance industry, insurance fraud is increasing rapidly. The existence of insurance fraud considerably hinders the development of the insurance industry. Fraud identification has become the most important part of insurance fraud research. In this paper, an improved adaptive genetic algorithm (NAGA) combined with a BP neural network (BP neural network) is proposed to optimize the initial weight of BP neural networks to overcome their shortcomings, such as ease of falling into local minima, slow convergence rates and sample dependence. Finally, the historical automobile insurance claim data of an insurance company are taken as a sample. The NAGA-BP neural network model was used for simulation and prediction. The empirical results show that the improved genetic algorithm is more advanced than the traditional genetic algorithm in terms of convergence speed and prediction accuracy. |
Author | Yan, Chun Li, Meixuan Liu, Wei Qi, Man |
Author_xml | – sequence: 1 givenname: Chun surname: Yan fullname: Yan, Chun email: yanchunchun9896@163.com organization: College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao, 266590, China – sequence: 2 givenname: Meixuan surname: Li fullname: Li, Meixuan email: llmx9512@163.com organization: Postgraduates of Probability Theory and Mathematical Statistics, Shandong University of Science and Technology, Qingdao, 266590, China – sequence: 3 givenname: Wei surname: Liu fullname: Liu, Wei email: liuwei_doctor@yeah.net organization: College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China – sequence: 4 givenname: Man surname: Qi fullname: Qi, Man email: man.qi@canterbury.ac.uk organization: Department of Computing, Canterbury Christ Church University, Canterbury CT1 1QU, UK |
BookMark | eNp9kMlOAzEMhiNUJMryANzyAjMkmXbSiBNULJXYDnCOUsdpU6aTKkmLeHvCcuJQX35Z8mfZ3zEZ9KFHQs45qznj7cWqzpBqwbiqWVszMT4gQz6RqhJCjQZkyBo2qholx0fkOKUVKzWW7ZBsZ-tNDDu01FizyX6HdIE9Zg_UdIsQfV6uqQuR5iXSHS49dEhnfdpG0wPS22i2ls4s9tk7Dyb70NPHYLGjc5PK1tIaev1Cn7AQXYn8EeL7KTl0pkt49pcn5O325nV6Xz08382mVw8VCCVz5QRKIa2w1oBooJ07O0HlkDcMcAJjhoCSOVlGJo0BBXOrFG-cHRkzV841J0T-7oUYUoroNPj8c2SOxneaM_1tT690sae_7WnW6mKvkPwfuYl-beLnXubyl8Hy0s5j1Ak8Fk3WR4SsbfB76C9Ff42- |
CitedBy_id | crossref_primary_10_1016_j_autcon_2024_105364 crossref_primary_10_1155_2022_1191271 crossref_primary_10_2478_orga_2020_0009 crossref_primary_10_3390_su151310242 crossref_primary_10_1016_j_engappai_2023_106248 crossref_primary_10_1142_S0218126621500985 crossref_primary_10_2174_2212797613999200730211514 crossref_primary_10_1007_s11227_022_04658_2 crossref_primary_10_3390_risks10120230 crossref_primary_10_1016_j_compag_2022_107155 crossref_primary_10_1016_j_eswa_2024_124109 crossref_primary_10_1016_j_jenvman_2022_114585 crossref_primary_10_12677_sa_2024_134134 crossref_primary_10_3233_JIFS_230076 crossref_primary_10_1016_j_measurement_2021_109588 crossref_primary_10_1049_ntw2_12056 crossref_primary_10_3390_info16030211 crossref_primary_10_1088_1361_665X_ac775d crossref_primary_10_2478_amns_2023_1_00388 crossref_primary_10_1007_s00500_024_09869_8 crossref_primary_10_1016_j_energy_2023_129954 crossref_primary_10_12677_SEA_2021_103044 crossref_primary_10_1007_s10614_021_10229_z crossref_primary_10_1016_j_apenergy_2022_118725 crossref_primary_10_1016_j_techfore_2022_121939 crossref_primary_10_1007_s00170_020_06442_z crossref_primary_10_1155_2022_1283588 crossref_primary_10_1371_journal_pone_0242011 crossref_primary_10_1016_j_enganabound_2023_03_033 crossref_primary_10_1063_5_0174417 crossref_primary_10_1111_exsy_12974 crossref_primary_10_1016_j_physleta_2024_129571 crossref_primary_10_1371_journal_pone_0312096 crossref_primary_10_2139_ssrn_3982323 crossref_primary_10_1016_j_ribaf_2022_101769 crossref_primary_10_1016_j_matpr_2023_03_259 crossref_primary_10_3390_ma14216593 crossref_primary_10_1109_TII_2021_3072045 crossref_primary_10_1142_S0218001422510090 crossref_primary_10_3390_buildings12050559 crossref_primary_10_3390_risks9040058 crossref_primary_10_1109_ACCESS_2024_3453433 crossref_primary_10_1088_1742_6596_2425_1_012036 |
Cites_doi | 10.1016/j.eswa.2005.04.030 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tcs.2019.06.025 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1879-2294 |
EndPage | 23 |
ExternalDocumentID | 10_1016_j_tcs_2019_06_025 S0304397519304177 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPC SPCBC SSV SSW T5K TN5 WH7 YNT ZMT ~G- 29Q AAEDT AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB G-2 HZ~ R2- RIG SEW SSH SSZ TAE WUQ XJT ZY4 |
ID | FETCH-LOGICAL-c297t-f2e727d2ddac23c6bfd8e9fe130ce8c50ece70f77d283ac9cbd9913fd4aab9ff3 |
IEDL.DBID | IXB |
ISSN | 0304-3975 |
IngestDate | Thu Apr 24 22:57:55 EDT 2025 Tue Jul 01 03:18:01 EDT 2025 Fri Feb 23 02:48:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Genetic algorithm Neural network Insurance fraud |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-f2e727d2ddac23c6bfd8e9fe130ce8c50ece70f77d283ac9cbd9913fd4aab9ff3 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1016_j_tcs_2019_06_025 crossref_primary_10_1016_j_tcs_2019_06_025 elsevier_sciencedirect_doi_10_1016_j_tcs_2019_06_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-12 |
PublicationDateYYYYMMDD | 2020-05-12 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-12 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | Theoretical computer science |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lovro, Štefan, Marko (br0030) 2010; 38 Viaene, Dedene, Derrig (br0020) 2005; 29 Yang, Qian, Wang (br0130) 2017 Wang, Xu (br0080) 2017 Li, Yan, Liu, Li (br0090) 2017 Chudgar (br0100) 2017 Bhowmik (br0110) 2011; 2 Ye (br0040) 2011 Yan, Li, Sun (br0070) 2017 Tang, Mo (br0060) 2013 Y.Z. Zhao, Application of data Mining in vehicle Insurance Fraud and Identification, The times finance is 26: 246+249. Gao, Xue (br0120) 2017; 54 Liu, Chen (br0050) 2012 Lovro (10.1016/j.tcs.2019.06.025_br0030) 2010; 38 10.1016/j.tcs.2019.06.025_br0010 Bhowmik (10.1016/j.tcs.2019.06.025_br0110) 2011; 2 Ye (10.1016/j.tcs.2019.06.025_br0040) 2011 Chudgar (10.1016/j.tcs.2019.06.025_br0100) 2017 Tang (10.1016/j.tcs.2019.06.025_br0060) 2013 Viaene (10.1016/j.tcs.2019.06.025_br0020) 2005; 29 Li (10.1016/j.tcs.2019.06.025_br0090) 2017 Wang (10.1016/j.tcs.2019.06.025_br0080) 2017 Gao (10.1016/j.tcs.2019.06.025_br0120) 2017; 54 Liu (10.1016/j.tcs.2019.06.025_br0050) 2012 Yang (10.1016/j.tcs.2019.06.025_br0130) 2017 Yan (10.1016/j.tcs.2019.06.025_br0070) 2017 |
References_xml | – start-page: 87 year: 2017 end-page: 95 ident: br0080 article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud publication-title: Decis. Support Syst. – start-page: 17 year: 2012 end-page: 22 ident: br0050 article-title: Application of evolutionary data mining algorithms to insurance fraud prediction publication-title: Int. Proc. Comput. Sci. Inf. Technol. – start-page: 675 year: 2017 end-page: 680 ident: br0130 article-title: An improved adaptive genetic algorithm for function optimization IEEE international conference on information and automation publication-title: IEEE – volume: 38 start-page: 1039 year: 2010 end-page: 1052 ident: br0030 article-title: An expert system for detecting automobile insurance fraud using social network analysis publication-title: Expert Syst. Appl. – start-page: 114 year: 2017 end-page: 127 ident: br0070 article-title: A research on automobile insurance fraud identification based on random forest model and ant colony optimization algorithm publication-title: Insur. Stud. – volume: 29 start-page: 653 year: 2005 end-page: 666 ident: br0020 article-title: Auto claim fraud detection using Bayesian learning neural networks publication-title: Expert Syst. Appl. – volume: 2 start-page: 371 year: 2011 end-page: 377 ident: br0110 article-title: Detecting auto insurance fraud by data mining techniques publication-title: J. Emerg. Trends Comput. Inf. Sci. – reference: Y.Z. Zhao, Application of data Mining in vehicle Insurance Fraud and Identification, The times finance is 26: 246+249. – start-page: 39 year: 2013 end-page: 42 ident: br0060 article-title: Construction of vehicle insurance anti fraud system based on data mining technology publication-title: Shanghai Insur. – start-page: 27 year: 2017 end-page: 39 ident: br0090 article-title: A principle component analysis-based random forest with the potential nearest neighbor method for automobile insurance fraud identification publication-title: Appl. Soft Comput. – start-page: 79 year: 2011 end-page: 86 ident: br0040 article-title: Insurance frauds identification research based on the BP neurological network—with China motor insurance claim as an example publication-title: Insur. Stud. – volume: 54 start-page: 294 year: 2017 end-page: 302 ident: br0120 article-title: Back propagation neural network based on improved genetic algorithm fitting LED spectral model publication-title: Laser Optoelectron. Prog. – start-page: 50 year: 2017 end-page: 57 ident: br0100 article-title: An empirical analysis on drivers that contribute to fraudulent activity with regard to life insurance fraud publication-title: Soc. Sci. Electron. Publ. – start-page: 50 year: 2017 ident: 10.1016/j.tcs.2019.06.025_br0100 article-title: An empirical analysis on drivers that contribute to fraudulent activity with regard to life insurance fraud publication-title: Soc. Sci. Electron. Publ. – volume: 54 start-page: 294 issue: 7 year: 2017 ident: 10.1016/j.tcs.2019.06.025_br0120 article-title: Back propagation neural network based on improved genetic algorithm fitting LED spectral model publication-title: Laser Optoelectron. Prog. – volume: 38 start-page: 1039 issue: 1 year: 2010 ident: 10.1016/j.tcs.2019.06.025_br0030 article-title: An expert system for detecting automobile insurance fraud using social network analysis publication-title: Expert Syst. Appl. – start-page: 17 issue: 7 year: 2012 ident: 10.1016/j.tcs.2019.06.025_br0050 article-title: Application of evolutionary data mining algorithms to insurance fraud prediction publication-title: Int. Proc. Comput. Sci. Inf. Technol. – start-page: 39 issue: 11 year: 2013 ident: 10.1016/j.tcs.2019.06.025_br0060 article-title: Construction of vehicle insurance anti fraud system based on data mining technology publication-title: Shanghai Insur. – volume: 29 start-page: 653 issue: 3 year: 2005 ident: 10.1016/j.tcs.2019.06.025_br0020 article-title: Auto claim fraud detection using Bayesian learning neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.04.030 – start-page: 27 year: 2017 ident: 10.1016/j.tcs.2019.06.025_br0090 article-title: A principle component analysis-based random forest with the potential nearest neighbor method for automobile insurance fraud identification publication-title: Appl. Soft Comput. – start-page: 79 issue: 03 year: 2011 ident: 10.1016/j.tcs.2019.06.025_br0040 article-title: Insurance frauds identification research based on the BP neurological network—with China motor insurance claim as an example publication-title: Insur. Stud. – start-page: 114 issue: 06 year: 2017 ident: 10.1016/j.tcs.2019.06.025_br0070 article-title: A research on automobile insurance fraud identification based on random forest model and ant colony optimization algorithm publication-title: Insur. Stud. – ident: 10.1016/j.tcs.2019.06.025_br0010 – volume: 2 start-page: 371 issue: 4 year: 2011 ident: 10.1016/j.tcs.2019.06.025_br0110 article-title: Detecting auto insurance fraud by data mining techniques publication-title: J. Emerg. Trends Comput. Inf. Sci. – start-page: 675 year: 2017 ident: 10.1016/j.tcs.2019.06.025_br0130 article-title: An improved adaptive genetic algorithm for function optimization IEEE international conference on information and automation publication-title: IEEE – start-page: 87 issue: 7 year: 2017 ident: 10.1016/j.tcs.2019.06.025_br0080 article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud publication-title: Decis. Support Syst. |
SSID | ssj0000576 |
Score | 2.5159614 |
Snippet | With the development of the insurance industry, insurance fraud is increasing rapidly. The existence of insurance fraud considerably hinders the development of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 12 |
SubjectTerms | Genetic algorithm Insurance fraud Neural network |
Title | Improved adaptive genetic algorithm for the vehicle Insurance Fraud Identification Model based on a BP Neural Network |
URI | https://dx.doi.org/10.1016/j.tcs.2019.06.025 |
Volume | 817 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54XODAG_GcfOCEVNZHujRHQKABYkICpN2qPGFojAk6jvx27D54SMCBY6u4iuLE_hrbnxnbs1orq5QIpO6YgCfGB5pbEURcR4nz3PGYaocve53uLT_vp_0pdtzUwlBaZW37K5teWuv6TbtezfZ4MGhfU1APvSlBkJBHgirKE56VRXz9o09rnIoqXkkRABzdRDbLHK_CEGN3JEsKT-qW_ZNv-uJvTpfYQg0U4bCayzKbcqMVttg0YYD6TK6w-csP4tWXVTapLgmcBVybMZkywB1ChYqghndPz4Pi_hEQpwLKwKu7p2_D2ehlQv01HCCMnVioind9fZsH1C5tCOTuLOCjgqMrIE4PnF2vSiJfY7enJzfH3aDurBCYWIoi8LFD3GJja5WJE9PR3mZOeocOzbjMpKEzToRe4JAsUUYabRFHJt5ypbT0PllnM6Onkdtg0OE6lZkUOlUZ96mTlLBqeegTLpQP000WNmuam5p2nLpfDPMmv-whRzXkpIaccuxiFNn_EBlXnBt_DeaNovJvGydHn_C72Nb_xLbZXEw_3ETfGu-wmeJ54nYRlRS6xaYP3qIWmz08u-j2WuUmfAd3aeWB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58HNSDb_HtHDwJoWmy6WaPKkqrtggq9Bb2qZVaS5v6-51pEh-gHjwm7IRldzPzJTPzfYwdW62VVUoEUjdMwGPjA82tCOpc12PnueMR9Q63O43mA7_qJt0Zdl71wlBZZen7C58-9dblnVq5mrVhr1e7o6QeRlOCICGvCzHL5hENCNJvaHXPPt1xIoqEJaUAcHiV2pwWeeWGKLvrcsrhSXLZPwWnLwHncpUtl0gRTovJrLEZN1hnK5UKA5Qv5Tpban8wr4432KT4S-As4OIMyZcBHhHqVATVf3wd9fKnF0CgCmgDb-6Jng2twXhCAhsOEMdOLBTdu778nQekl9YHincW8FLB2S0QqQfOrlNUkW-yh8uL-_NmUEorBCaSIg985BC42MhaZaLYNLS3qZPeYUQzLjVJ6IwToRc4JI2VkUZbBJKxt1wpLb2Pt9jc4HXgthk0uE5kKoVOVMp94iRVrFoe-pgL5cNkh4XVmmam5B0n-Yt-VhWYPWe4DRltQ0ZFdhGanHyYDAvSjb8G82qjsm8nJ8Og8LvZ7v_MjthC8759k920Otd7bDGir2_ico322Vw-mrgDhCi5PpwewXdtIeYU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+adaptive+genetic+algorithm+for+the+vehicle+Insurance+Fraud+Identification+Model+based+on+a+BP+Neural+Network&rft.jtitle=Theoretical+computer+science&rft.au=Yan%2C+Chun&rft.au=Li%2C+Meixuan&rft.au=Liu%2C+Wei&rft.au=Qi%2C+Man&rft.date=2020-05-12&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=817&rft.spage=12&rft.epage=23&rft_id=info:doi/10.1016%2Fj.tcs.2019.06.025&rft.externalDocID=S0304397519304177 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon |