Optimized tracking control based on reinforcement learning for a class of high-order unknown nonlinear dynamic systems
The article is to develop an optimized tracking control using fuzzy logic system (FLS)-based reinforcement learning (RL) for a class of unknown nonlinear dynamic single-input–single-output (SISO) system under canonical form. From mathematical viewpoint, optimal nonlinear control depends on the solut...
Saved in:
Published in | Information sciences Vol. 606; pp. 368 - 379 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The article is to develop an optimized tracking control using fuzzy logic system (FLS)-based reinforcement learning (RL) for a class of unknown nonlinear dynamic single-input–single-output (SISO) system under canonical form. From mathematical viewpoint, optimal nonlinear control depends on the solution of Hamilton–Jacobi-Bellman (HJB) equation, but finding the equation’s analytic solution is almost impossible because of the strong nonlinearity. For addressing the problem in this work, the RL approximation strategy is employed by on-line iterating both critic and actor FLSs, where critic FLS aims for evaluating control performance and making feedback to actor, and actor FLS aims for executing the modified control behavior. Different with the previous RL-based optimization approach, the proposed approach derives RL training laws from negative gradient of a simple positive function rather than the square of HJB equation’s approximation. As a result, the control algorithm can be significantly simplified. Furthermore, it can avoid two general conditions, persistence excitation and known dynamic, required in most RL optimal control methods. Finally, the proposed optimized control is demonstrated from both aspects of theory proof and computation simulation. |
---|---|
AbstractList | The article is to develop an optimized tracking control using fuzzy logic system (FLS)-based reinforcement learning (RL) for a class of unknown nonlinear dynamic single-input–single-output (SISO) system under canonical form. From mathematical viewpoint, optimal nonlinear control depends on the solution of Hamilton–Jacobi-Bellman (HJB) equation, but finding the equation’s analytic solution is almost impossible because of the strong nonlinearity. For addressing the problem in this work, the RL approximation strategy is employed by on-line iterating both critic and actor FLSs, where critic FLS aims for evaluating control performance and making feedback to actor, and actor FLS aims for executing the modified control behavior. Different with the previous RL-based optimization approach, the proposed approach derives RL training laws from negative gradient of a simple positive function rather than the square of HJB equation’s approximation. As a result, the control algorithm can be significantly simplified. Furthermore, it can avoid two general conditions, persistence excitation and known dynamic, required in most RL optimal control methods. Finally, the proposed optimized control is demonstrated from both aspects of theory proof and computation simulation. |
Author | Wen, Guoxing Niu, Ben |
Author_xml | – sequence: 1 givenname: Guoxing surname: Wen fullname: Wen, Guoxing email: wengx_sd@hotmail.com organization: College of Science, Binzhou University, Binzhou 256600, Shandong, China – sequence: 2 givenname: Ben surname: Niu fullname: Niu, Ben organization: School of Information Science and Engineering, Shandong Normal University, Jinan 250014, Shandong, China |
BookMark | eNp9kMtqwzAQRUVJoUnaD-hOP2B3pFi2Q1cl9AWBbNq1kOVRosSWgqSmpF9fh3TVRVYDl3uGmTMhI-cdEnLPIGfAyodtbl3MOXCeg8ihqK_ImNUVz0o-ZyMyBuCQARfihkxi3AJAUZXlmBxW-2R7-4MtTUHpnXVrqr1LwXe0UXGIvaMBrTM-aOzRJdqhCu7UGyKqqO5UjNQburHrTeZDi4F-uZ3z344OR3bWDX3aHp3qrabxGBP28ZZcG9VFvPubU_L58vyxeMuWq9f3xdMy03xepczwBo02ujYzA0KJWhUNgq6Yglk5EwUXTaEqFLop6qYtwQAz80obVs4FVFjMpqQ679XBxxjQSG2TSvb0obKdZCBP-uRWDvrkSZ8EIQd9A8n-kftgexWOF5nHM4PDSweLQUZt0WlsbUCdZOvtBfoXhtCOIA |
CitedBy_id | crossref_primary_10_1016_j_ejcon_2024_101132 crossref_primary_10_3390_e25121570 crossref_primary_10_1080_00207721_2025_2480184 crossref_primary_10_1002_rnc_7415 crossref_primary_10_1109_JSYST_2024_3433023 crossref_primary_10_1002_oca_3115 crossref_primary_10_1177_01423312241287955 crossref_primary_10_1016_j_ins_2022_07_181 crossref_primary_10_1109_JSYST_2023_3280192 crossref_primary_10_1016_j_ins_2023_119070 crossref_primary_10_1016_j_ins_2023_01_030 crossref_primary_10_1016_j_compeleceng_2024_109179 crossref_primary_10_1016_j_ins_2022_11_109 crossref_primary_10_1002_rnc_7259 crossref_primary_10_1016_j_ast_2025_110079 crossref_primary_10_1016_j_jfranklin_2024_106693 |
Cites_doi | 10.1109/3477.809035 10.1109/TSMCB.2008.926614 10.1109/TIE.2019.2946545 10.1038/nature14540 10.1109/91.227383 10.1109/TSMC.2021.3130070 10.1016/j.automatica.2010.02.018 10.1016/j.ins.2018.06.022 10.1109/TII.2019.2894282 10.1016/j.automatica.2012.09.019 10.1016/j.ins.2021.06.055 10.1109/TAC.1979.1102178 10.1016/j.fss.2003.11.017 10.1016/j.automatica.2010.10.033 10.1016/j.ins.2019.12.039 10.1109/TNNLS.2018.2803726 10.1109/TFUZZ.2017.2787561 10.1162/089976600300015961 10.1016/j.ins.2012.07.006 10.1080/00207179.2013.790562 10.1049/iet-cta.2014.1319 10.1109/TNNLS.2021.3105548 10.1109/TFUZZ.2022.3148865 10.1109/TNNLS.2021.3051030 10.1016/j.ins.2021.09.055 10.1016/j.ins.2011.01.040 10.1080/00207179.2013.848292 10.1016/j.ins.2021.01.030 10.1049/iet-cta.2013.0472 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. |
Copyright_xml | – notice: 2022 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ins.2022.05.048 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1872-6291 |
EndPage | 379 |
ExternalDocumentID | 10_1016_j_ins_2022_05_048 S0020025522004807 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-f2befcfc8f3f05a58a4be0c71a03635425b4a7e5cb48bd60f01f97cf169507e43 |
IEDL.DBID | .~1 |
ISSN | 0020-0255 |
IngestDate | Tue Jul 01 01:26:51 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Fri Feb 23 02:40:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Actor-critic architecture Optimal control Nonlinear system Fuzzy logic system Unknown dynamic Reinforcement learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-f2befcfc8f3f05a58a4be0c71a03635425b4a7e5cb48bd60f01f97cf169507e43 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2022_05_048 crossref_primary_10_1016_j_ins_2022_05_048 elsevier_sciencedirect_doi_10_1016_j_ins_2022_05_048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationTitle | Information sciences |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Li, Tong, Wei (b0140) 2011; 181 G. Wen, B. Li, B. Niu, Optimized backstepping control using reinforcement learning of observer-critic-actor architecture based on fuzzy system for a class of nonlinear strict-feedback systems, IEEE Transactions on Fuzzy Systems doi:10.1109/TFUZZ.2022.3148865. Liu, Wang, Yang (b0100) 2013; 220 Vamvoudakis, Lewis (b0060) 2010; 46 Li, Chen, Liu (b0110) 2021; 575 Doya (b0075) 2000; 12 Wen, Chen, Ge (b0155) 2020 Y. Li, Y. Liu, S. Tong, Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints, IEEE Transactions on Neural Networks and Learning Systems doi:10.1109/TNNLS.2021.3051030. G. Wen, B. Li, Optimized leader-follower consensus control using reinforcement learning for a class of second-order nonlinear multiagent systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems doi:10.1109/TSMC.2021.3130070. Wen, Ge, Tu (b0055) 2018; 29 Yang, Liu, Wang (b0020) 2014; 87 Xiong, Haibo, Qinglai, Biao (b0050) 2018; 463–464 G. Wen, C.L.P. Chen, Optimized backstepping consensus control using reinforcement learning for a class of nonlinear strict-feedback-dynamic multi-agent systems, IEEE Transactions on Neural Networks and Learning Systems doi:10.1109/TNNLS.2021.3105548. P. Werbos, Approximate dynamic programming for realtime control and neural modelling, Handbook of intelligent control: neural, fuzzy and adaptive approaches (1992) 493–525. Al-Tamimi, Lewis, Abu-Khalaf (b0070) 2008; 38 Zhang, Wei, Liu (b0080) 2011; 47 Lewis, Vrabie, Syrmos (b0005) 2012 Yang, He, Wei, Luo (b0090) 2018; 463–464 Wang (b0135) 1993; 1 Liu, Zhu, Zhao (b0115) 2021; 562 Wen, Chen, Li (b0015) 2020; 517 Wen, Chen, Feng, Zhou (b0085) 2018; 26 Su, Philip Chen, Liu (b0120) 2021; 581 Wen, Chen, Liu, Liu (b0150) 2015; 9 Yang, Liu, Huang (b0130) 2013; 7 Guoxing, Wen, C., L., Philip, Chen, Bin, Li, Optimized formation control using simplified reinforcement learning for a class of multiagent systems with unknown dynamics, IEEE Transactions on Industrial Electronics 67 (9) (2019) 7879–7888. Tong, Li, Wang (b0105) 2004; 148 Ge, Hang, Zhang (b0145) 1999; 29 Bellman (b0035) 1957 Bhasin, Kamalapurkar, Johnson, Vamvoudakis, Lewis, Dixon (b0065) 2013; 49 Laub (b0010) 1979; 24 Wen, Chen, Ge, Yang, Liu (b0030) 2019; 15 Liu, Huang, Ding, Wei (b0125) 2013; 86 Littman (b0045) 2015; 521 Vamvoudakis (10.1016/j.ins.2022.05.048_b0060) 2010; 46 Yang (10.1016/j.ins.2022.05.048_b0090) 2018; 463–464 Liu (10.1016/j.ins.2022.05.048_b0100) 2013; 220 10.1016/j.ins.2022.05.048_b0025 Wen (10.1016/j.ins.2022.05.048_b0055) 2018; 29 Yang (10.1016/j.ins.2022.05.048_b0020) 2014; 87 10.1016/j.ins.2022.05.048_b0170 Wen (10.1016/j.ins.2022.05.048_b0085) 2018; 26 10.1016/j.ins.2022.05.048_b0095 Yang (10.1016/j.ins.2022.05.048_b0130) 2013; 7 Zhang (10.1016/j.ins.2022.05.048_b0080) 2011; 47 Wen (10.1016/j.ins.2022.05.048_b0015) 2020; 517 Laub (10.1016/j.ins.2022.05.048_b0010) 1979; 24 Li (10.1016/j.ins.2022.05.048_b0110) 2021; 575 Bellman (10.1016/j.ins.2022.05.048_b0035) 1957 Al-Tamimi (10.1016/j.ins.2022.05.048_b0070) 2008; 38 Xiong (10.1016/j.ins.2022.05.048_b0050) 2018; 463–464 Lewis (10.1016/j.ins.2022.05.048_b0005) 2012 Li (10.1016/j.ins.2022.05.048_b0140) 2011; 181 Su (10.1016/j.ins.2022.05.048_b0120) 2021; 581 Liu (10.1016/j.ins.2022.05.048_b0125) 2013; 86 Ge (10.1016/j.ins.2022.05.048_b0145) 1999; 29 Wen (10.1016/j.ins.2022.05.048_b0150) 2015; 9 10.1016/j.ins.2022.05.048_b0160 Littman (10.1016/j.ins.2022.05.048_b0045) 2015; 521 Wen (10.1016/j.ins.2022.05.048_b0155) 2020 Wen (10.1016/j.ins.2022.05.048_b0030) 2019; 15 10.1016/j.ins.2022.05.048_b0040 Bhasin (10.1016/j.ins.2022.05.048_b0065) 2013; 49 Doya (10.1016/j.ins.2022.05.048_b0075) 2000; 12 10.1016/j.ins.2022.05.048_b0165 Tong (10.1016/j.ins.2022.05.048_b0105) 2004; 148 Wang (10.1016/j.ins.2022.05.048_b0135) 1993; 1 Liu (10.1016/j.ins.2022.05.048_b0115) 2021; 562 |
References_xml | – year: 1957 ident: b0035 article-title: Dynamic programming, Princeton – volume: 7 start-page: 2037 year: 2013 end-page: 2047 ident: b0130 article-title: Neural-network-based online optimal control for uncertain non-linear continuous-time systems with control constraints publication-title: IET Control Theory and Applications – volume: 49 start-page: 82 year: 2013 end-page: 92 ident: b0065 article-title: A novel actor–critic–identifier architecture for approximate optimal control of uncertain nonlinear systems publication-title: Automatica – year: 2012 ident: b0005 article-title: Optimal control of continuous time systems – volume: 26 start-page: 2719 year: 2018 end-page: 2731 ident: b0085 article-title: Optimized multi-agent formation control based on an identifier-actor-critic reinforcement learning algorithm publication-title: IEEE Transactions on Fuzzy Systems – volume: 9 start-page: 1927 year: 2015 end-page: 1934 ident: b0150 article-title: Neural-network-based adaptive leader-following consensus control for second-order non-linear multi-agent systems publication-title: IET Control Theory & Applications – volume: 1 start-page: 146 year: 1993 end-page: 155 ident: b0135 article-title: Stable adaptive fuzzy control of nonlinear systems publication-title: IEEE Transactions on Fuzzy Systems – volume: 15 start-page: 4969 year: 2019 end-page: 4977 ident: b0030 article-title: Optimized adaptive nonlinear tracking control using actor-critic reinforcement learning strategy publication-title: IEEE Transactions on Industrial Informatics – volume: 521 start-page: 445 year: 2015 end-page: 451 ident: b0045 article-title: Michael, Reinforcement learning improves behaviour from evaluative feedback publication-title: Nature – volume: 463–464 start-page: 307 year: 2018 end-page: 322 ident: b0050 article-title: Reinforcement learning for robust adaptive control of partially unknown nonlinear systems subject to unmatched uncertainties publication-title: Information Sciences – reference: G. Wen, B. Li, Optimized leader-follower consensus control using reinforcement learning for a class of second-order nonlinear multiagent systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems doi:10.1109/TSMC.2021.3130070. – volume: 12 start-page: 219 year: 2000 end-page: 245 ident: b0075 article-title: Reinforcement learning in continuous time and space publication-title: Neural Computation – volume: 46 start-page: 878 year: 2010 end-page: 888 ident: b0060 article-title: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem publication-title: Automatica – year: 2020 ident: b0155 article-title: Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions publication-title: IEEE Transactions on Cybernetics – reference: P. Werbos, Approximate dynamic programming for realtime control and neural modelling, Handbook of intelligent control: neural, fuzzy and adaptive approaches (1992) 493–525. – volume: 29 start-page: 818 year: 1999 end-page: 828 ident: b0145 article-title: Adaptive neural network control of nonlinear systems by state and output feedback publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics – volume: 87 start-page: 553 year: 2014 end-page: 566 ident: b0020 article-title: Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints publication-title: International Journal of Control – reference: G. Wen, C.L.P. Chen, Optimized backstepping consensus control using reinforcement learning for a class of nonlinear strict-feedback-dynamic multi-agent systems, IEEE Transactions on Neural Networks and Learning Systems doi:10.1109/TNNLS.2021.3105548. – volume: 181 start-page: 2405 year: 2011 end-page: 2421 ident: b0140 article-title: Fuzzy adaptive high-gain-based observer backstepping control for SISO nonlinear systems publication-title: Information Sciences – volume: 575 start-page: 485 year: 2021 end-page: 498 ident: b0110 article-title: Adaptive disturbance observer-based event-triggered fuzzy control for nonlinear system publication-title: Information Sciences – volume: 562 start-page: 28 year: 2021 end-page: 43 ident: b0115 article-title: Event-triggered adaptive fuzzy control for switched nonlinear systems with state constraints publication-title: Information Sciences – volume: 29 start-page: 3850 year: 2018 end-page: 3862 ident: b0055 article-title: Optimized backstepping for tracking control of strict-feedback systems publication-title: IEEE Transactions on Neural Networks & Learning Systems – volume: 220 start-page: 331 year: 2013 end-page: 342 ident: b0100 article-title: An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputs publication-title: Information Sciences – volume: 47 start-page: 207 year: 2011 end-page: 214 ident: b0080 article-title: An iterative adaptive dynamic programming method for solving a class of nonlinear zero-sum differential games publication-title: Automatica – volume: 581 start-page: 553 year: 2021 end-page: 566 ident: b0120 article-title: Adaptive fuzzy control for uncertain nonlinear systems subject to full state constraints and actuator faults publication-title: Information Sciences – volume: 463–464 start-page: 307 year: 2018 end-page: 322 ident: b0090 article-title: Reinforcement learning for robust adaptive control of partially unknown nonlinear systems subject to unmatched uncertainties publication-title: Information Sciences – reference: Guoxing, Wen, C., L., Philip, Chen, Bin, Li, Optimized formation control using simplified reinforcement learning for a class of multiagent systems with unknown dynamics, IEEE Transactions on Industrial Electronics 67 (9) (2019) 7879–7888. – reference: Y. Li, Y. Liu, S. Tong, Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints, IEEE Transactions on Neural Networks and Learning Systems doi:10.1109/TNNLS.2021.3051030. – volume: 86 start-page: 1554 year: 2013 end-page: 1566 ident: b0125 article-title: Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming publication-title: International Journal of Control – volume: 38 start-page: 943 year: 2008 end-page: 949 ident: b0070 article-title: Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) – volume: 148 start-page: 355 year: 2004 end-page: 376 ident: b0105 article-title: Observer-based adaptive fuzzy control for siso nonlinear systems publication-title: Fuzzy Sets & Systems – reference: G. Wen, B. Li, B. Niu, Optimized backstepping control using reinforcement learning of observer-critic-actor architecture based on fuzzy system for a class of nonlinear strict-feedback systems, IEEE Transactions on Fuzzy Systems doi:10.1109/TFUZZ.2022.3148865. – volume: 517 start-page: 230 year: 2020 end-page: 243 ident: b0015 article-title: Simplified optimized control using reinforcement learning algorithm for a class of stochastic nonlinear systems publication-title: Information Sciences – volume: 24 start-page: 913 year: 1979 end-page: 921 ident: b0010 article-title: A schur method for solving algebraic riccati equations publication-title: IEEE Transactions on Automatic Control – volume: 29 start-page: 818 issue: 6 year: 1999 ident: 10.1016/j.ins.2022.05.048_b0145 article-title: Adaptive neural network control of nonlinear systems by state and output feedback publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics doi: 10.1109/3477.809035 – volume: 38 start-page: 943 issue: 4 year: 2008 ident: 10.1016/j.ins.2022.05.048_b0070 article-title: Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2008.926614 – ident: 10.1016/j.ins.2022.05.048_b0025 doi: 10.1109/TIE.2019.2946545 – volume: 521 start-page: 445 issue: 7553 year: 2015 ident: 10.1016/j.ins.2022.05.048_b0045 article-title: Michael, Reinforcement learning improves behaviour from evaluative feedback publication-title: Nature doi: 10.1038/nature14540 – volume: 1 start-page: 146 issue: 2 year: 1993 ident: 10.1016/j.ins.2022.05.048_b0135 article-title: Stable adaptive fuzzy control of nonlinear systems publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/91.227383 – ident: 10.1016/j.ins.2022.05.048_b0170 doi: 10.1109/TSMC.2021.3130070 – volume: 46 start-page: 878 issue: 5 year: 2010 ident: 10.1016/j.ins.2022.05.048_b0060 article-title: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem publication-title: Automatica doi: 10.1016/j.automatica.2010.02.018 – volume: 463–464 start-page: 307 year: 2018 ident: 10.1016/j.ins.2022.05.048_b0090 article-title: Reinforcement learning for robust adaptive control of partially unknown nonlinear systems subject to unmatched uncertainties publication-title: Information Sciences doi: 10.1016/j.ins.2018.06.022 – year: 2020 ident: 10.1016/j.ins.2022.05.048_b0155 article-title: Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions publication-title: IEEE Transactions on Cybernetics – volume: 15 start-page: 4969 issue: 9 year: 2019 ident: 10.1016/j.ins.2022.05.048_b0030 article-title: Optimized adaptive nonlinear tracking control using actor-critic reinforcement learning strategy publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2894282 – volume: 49 start-page: 82 issue: 1 year: 2013 ident: 10.1016/j.ins.2022.05.048_b0065 article-title: A novel actor–critic–identifier architecture for approximate optimal control of uncertain nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2012.09.019 – volume: 575 start-page: 485 year: 2021 ident: 10.1016/j.ins.2022.05.048_b0110 article-title: Adaptive disturbance observer-based event-triggered fuzzy control for nonlinear system publication-title: Information Sciences doi: 10.1016/j.ins.2021.06.055 – volume: 24 start-page: 913 issue: 6 year: 1979 ident: 10.1016/j.ins.2022.05.048_b0010 article-title: A schur method for solving algebraic riccati equations publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1979.1102178 – volume: 148 start-page: 355 issue: 3 year: 2004 ident: 10.1016/j.ins.2022.05.048_b0105 article-title: Observer-based adaptive fuzzy control for siso nonlinear systems publication-title: Fuzzy Sets & Systems doi: 10.1016/j.fss.2003.11.017 – volume: 47 start-page: 207 issue: 1 year: 2011 ident: 10.1016/j.ins.2022.05.048_b0080 article-title: An iterative adaptive dynamic programming method for solving a class of nonlinear zero-sum differential games publication-title: Automatica doi: 10.1016/j.automatica.2010.10.033 – volume: 517 start-page: 230 year: 2020 ident: 10.1016/j.ins.2022.05.048_b0015 article-title: Simplified optimized control using reinforcement learning algorithm for a class of stochastic nonlinear systems publication-title: Information Sciences doi: 10.1016/j.ins.2019.12.039 – ident: 10.1016/j.ins.2022.05.048_b0040 – volume: 29 start-page: 3850 issue: 8 year: 2018 ident: 10.1016/j.ins.2022.05.048_b0055 article-title: Optimized backstepping for tracking control of strict-feedback systems publication-title: IEEE Transactions on Neural Networks & Learning Systems doi: 10.1109/TNNLS.2018.2803726 – volume: 26 start-page: 2719 issue: 5 year: 2018 ident: 10.1016/j.ins.2022.05.048_b0085 article-title: Optimized multi-agent formation control based on an identifier-actor-critic reinforcement learning algorithm publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2017.2787561 – volume: 12 start-page: 219 issue: 1 year: 2000 ident: 10.1016/j.ins.2022.05.048_b0075 article-title: Reinforcement learning in continuous time and space publication-title: Neural Computation doi: 10.1162/089976600300015961 – volume: 220 start-page: 331 year: 2013 ident: 10.1016/j.ins.2022.05.048_b0100 article-title: An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputs publication-title: Information Sciences doi: 10.1016/j.ins.2012.07.006 – volume: 86 start-page: 1554 issue: 9 year: 2013 ident: 10.1016/j.ins.2022.05.048_b0125 article-title: Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming publication-title: International Journal of Control doi: 10.1080/00207179.2013.790562 – volume: 9 start-page: 1927 issue: 13 year: 2015 ident: 10.1016/j.ins.2022.05.048_b0150 article-title: Neural-network-based adaptive leader-following consensus control for second-order non-linear multi-agent systems publication-title: IET Control Theory & Applications doi: 10.1049/iet-cta.2014.1319 – ident: 10.1016/j.ins.2022.05.048_b0160 doi: 10.1109/TNNLS.2021.3105548 – year: 1957 ident: 10.1016/j.ins.2022.05.048_b0035 – volume: 463–464 start-page: 307 year: 2018 ident: 10.1016/j.ins.2022.05.048_b0050 article-title: Reinforcement learning for robust adaptive control of partially unknown nonlinear systems subject to unmatched uncertainties publication-title: Information Sciences – year: 2012 ident: 10.1016/j.ins.2022.05.048_b0005 – ident: 10.1016/j.ins.2022.05.048_b0165 doi: 10.1109/TFUZZ.2022.3148865 – ident: 10.1016/j.ins.2022.05.048_b0095 doi: 10.1109/TNNLS.2021.3051030 – volume: 581 start-page: 553 year: 2021 ident: 10.1016/j.ins.2022.05.048_b0120 article-title: Adaptive fuzzy control for uncertain nonlinear systems subject to full state constraints and actuator faults publication-title: Information Sciences doi: 10.1016/j.ins.2021.09.055 – volume: 181 start-page: 2405 issue: 11 year: 2011 ident: 10.1016/j.ins.2022.05.048_b0140 article-title: Fuzzy adaptive high-gain-based observer backstepping control for SISO nonlinear systems publication-title: Information Sciences doi: 10.1016/j.ins.2011.01.040 – volume: 87 start-page: 553 issue: 3 year: 2014 ident: 10.1016/j.ins.2022.05.048_b0020 article-title: Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints publication-title: International Journal of Control doi: 10.1080/00207179.2013.848292 – volume: 562 start-page: 28 year: 2021 ident: 10.1016/j.ins.2022.05.048_b0115 article-title: Event-triggered adaptive fuzzy control for switched nonlinear systems with state constraints publication-title: Information Sciences doi: 10.1016/j.ins.2021.01.030 – volume: 7 start-page: 2037 issue: 17 year: 2013 ident: 10.1016/j.ins.2022.05.048_b0130 article-title: Neural-network-based online optimal control for uncertain non-linear continuous-time systems with control constraints publication-title: IET Control Theory and Applications doi: 10.1049/iet-cta.2013.0472 |
SSID | ssj0004766 |
Score | 2.4680276 |
Snippet | The article is to develop an optimized tracking control using fuzzy logic system (FLS)-based reinforcement learning (RL) for a class of unknown nonlinear... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 368 |
SubjectTerms | Actor-critic architecture Fuzzy logic system Nonlinear system Optimal control Reinforcement learning Unknown dynamic |
Title | Optimized tracking control based on reinforcement learning for a class of high-order unknown nonlinear dynamic systems |
URI | https://dx.doi.org/10.1016/j.ins.2022.05.048 |
Volume | 606 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BQFWt2AGJACiWvHyVhVoAKiLFTqFjmOjYogVKVlYOC344sdKBIwMMayk8jn3F3s994RcmRoGvNIyEBwYX9QCloEaWrSINYsNrJIQpEjG_lmGA9G7GrMxw3Sr7kwCKv0vt_59Mpb-5YzP5tn08kEOb60yogpdcRoZLAzgav89P0L5mFbYgfzCAPsXZ9sVhivSYmK3ZRW4p1YAuin2LQUby42yLpPFKHn3mWTNHS5RdaW5AO3SNuTDuAYPKsIZxn857pNXm-tP3iavOkC5jOpcFMcPDQdMHoVYHvPdKWdqqptQvBFJO7BNoEEhbk1PBtAVeOgkumERYn7cCWUTmRDzqBwVe3BqUK_7JDRxfldfxD4OguBoqmYB4bm2iijEtM1IZc8kSzXoRKRxFNebr_qnEmhucpZkhdxaMLIpEKZKE5tNqlZd5c07TP1HgGlI01VN490Ipi0N6aacWVzmKjLqDVpi4T1DGfKi5BjLYzHrEabPWTWKBkaJQt5Zo3SIiefQ6ZOgeOvzqw2W_ZtGWU2Qvw-bP9_ww7IKl45POAhac5nC922Oco871SLsENWepfXg-EHMtHo4A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT90wDLf4OGw7IHhsGgOGD2gHpI42L2naI0KgNz7eLjzp3aI0TdCbtg6VwmGH_e2LmxSYNHbgmjptZSe249g_A-w7VuYikzqRQvoDSs3qpCxdmeSW507XRSorqka-nOaTGT-bi_kSHA-1MJRWGXV_0Om9to4jh5GbhzeLBdX4st4jZiwURi_DKvfbl9oYfP79mOfBZbiwpHMSkQ9Xm32S16IhyG7GevRO6gH0L-P0xOCcrsNa9BTxKPzMBizZZgRvnuAHjmA3Vh3gJ4xlRcRmjPt1E-6_eoXwY_HL1ti12lBUHGNuOpL5qtFTt7YHTzV9nBBjF4lr9EOo0ZBzjT8dEqxx0uN04l1DgbgGm4CyoVusQ1t7DLDQt29hdnpydTxJYqOFxLBSdoljlXXGmcKNXSq0KDSvbGpkpumaV_htXXEtrTAVL6o6T12auVIal-WldyctH7-DFf9N-x7Q2MwyM64yW0iu_YuZ5cJ4JyYbc-ZlugXpwGFlIgo5NcP4roZ0s2_KC0WRUFQqlBfKFhw8TLkJEBz_I-aD2NRf60h5E_H8tA8vm7YHryZXlxfq4sv0fBte05OQHLgDK117Z3e9w9JVH_sF-QeReOpu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+tracking+control+based+on+reinforcement+learning+for+a+class+of+high-order+unknown+nonlinear+dynamic+systems&rft.jtitle=Information+sciences&rft.au=Wen%2C+Guoxing&rft.au=Niu%2C+Ben&rft.date=2022-08-01&rft.issn=0020-0255&rft.volume=606&rft.spage=368&rft.epage=379&rft_id=info:doi/10.1016%2Fj.ins.2022.05.048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_05_048 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |