Optimized tracking control based on reinforcement learning for a class of high-order unknown nonlinear dynamic systems

The article is to develop an optimized tracking control using fuzzy logic system (FLS)-based reinforcement learning (RL) for a class of unknown nonlinear dynamic single-input–single-output (SISO) system under canonical form. From mathematical viewpoint, optimal nonlinear control depends on the solut...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 606; pp. 368 - 379
Main Authors Wen, Guoxing, Niu, Ben
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The article is to develop an optimized tracking control using fuzzy logic system (FLS)-based reinforcement learning (RL) for a class of unknown nonlinear dynamic single-input–single-output (SISO) system under canonical form. From mathematical viewpoint, optimal nonlinear control depends on the solution of Hamilton–Jacobi-Bellman (HJB) equation, but finding the equation’s analytic solution is almost impossible because of the strong nonlinearity. For addressing the problem in this work, the RL approximation strategy is employed by on-line iterating both critic and actor FLSs, where critic FLS aims for evaluating control performance and making feedback to actor, and actor FLS aims for executing the modified control behavior. Different with the previous RL-based optimization approach, the proposed approach derives RL training laws from negative gradient of a simple positive function rather than the square of HJB equation’s approximation. As a result, the control algorithm can be significantly simplified. Furthermore, it can avoid two general conditions, persistence excitation and known dynamic, required in most RL optimal control methods. Finally, the proposed optimized control is demonstrated from both aspects of theory proof and computation simulation.
AbstractList The article is to develop an optimized tracking control using fuzzy logic system (FLS)-based reinforcement learning (RL) for a class of unknown nonlinear dynamic single-input–single-output (SISO) system under canonical form. From mathematical viewpoint, optimal nonlinear control depends on the solution of Hamilton–Jacobi-Bellman (HJB) equation, but finding the equation’s analytic solution is almost impossible because of the strong nonlinearity. For addressing the problem in this work, the RL approximation strategy is employed by on-line iterating both critic and actor FLSs, where critic FLS aims for evaluating control performance and making feedback to actor, and actor FLS aims for executing the modified control behavior. Different with the previous RL-based optimization approach, the proposed approach derives RL training laws from negative gradient of a simple positive function rather than the square of HJB equation’s approximation. As a result, the control algorithm can be significantly simplified. Furthermore, it can avoid two general conditions, persistence excitation and known dynamic, required in most RL optimal control methods. Finally, the proposed optimized control is demonstrated from both aspects of theory proof and computation simulation.
Author Wen, Guoxing
Niu, Ben
Author_xml – sequence: 1
  givenname: Guoxing
  surname: Wen
  fullname: Wen, Guoxing
  email: wengx_sd@hotmail.com
  organization: College of Science, Binzhou University, Binzhou 256600, Shandong, China
– sequence: 2
  givenname: Ben
  surname: Niu
  fullname: Niu, Ben
  organization: School of Information Science and Engineering, Shandong Normal University, Jinan 250014, Shandong, China
BookMark eNp9kMtqwzAQRUVJoUnaD-hOP2B3pFi2Q1cl9AWBbNq1kOVRosSWgqSmpF9fh3TVRVYDl3uGmTMhI-cdEnLPIGfAyodtbl3MOXCeg8ihqK_ImNUVz0o-ZyMyBuCQARfihkxi3AJAUZXlmBxW-2R7-4MtTUHpnXVrqr1LwXe0UXGIvaMBrTM-aOzRJdqhCu7UGyKqqO5UjNQburHrTeZDi4F-uZ3z344OR3bWDX3aHp3qrabxGBP28ZZcG9VFvPubU_L58vyxeMuWq9f3xdMy03xepczwBo02ujYzA0KJWhUNgq6Yglk5EwUXTaEqFLop6qYtwQAz80obVs4FVFjMpqQ679XBxxjQSG2TSvb0obKdZCBP-uRWDvrkSZ8EIQd9A8n-kftgexWOF5nHM4PDSweLQUZt0WlsbUCdZOvtBfoXhtCOIA
CitedBy_id crossref_primary_10_1016_j_ejcon_2024_101132
crossref_primary_10_3390_e25121570
crossref_primary_10_1080_00207721_2025_2480184
crossref_primary_10_1002_rnc_7415
crossref_primary_10_1109_JSYST_2024_3433023
crossref_primary_10_1002_oca_3115
crossref_primary_10_1177_01423312241287955
crossref_primary_10_1016_j_ins_2022_07_181
crossref_primary_10_1109_JSYST_2023_3280192
crossref_primary_10_1016_j_ins_2023_119070
crossref_primary_10_1016_j_ins_2023_01_030
crossref_primary_10_1016_j_compeleceng_2024_109179
crossref_primary_10_1016_j_ins_2022_11_109
crossref_primary_10_1002_rnc_7259
crossref_primary_10_1016_j_ast_2025_110079
crossref_primary_10_1016_j_jfranklin_2024_106693
Cites_doi 10.1109/3477.809035
10.1109/TSMCB.2008.926614
10.1109/TIE.2019.2946545
10.1038/nature14540
10.1109/91.227383
10.1109/TSMC.2021.3130070
10.1016/j.automatica.2010.02.018
10.1016/j.ins.2018.06.022
10.1109/TII.2019.2894282
10.1016/j.automatica.2012.09.019
10.1016/j.ins.2021.06.055
10.1109/TAC.1979.1102178
10.1016/j.fss.2003.11.017
10.1016/j.automatica.2010.10.033
10.1016/j.ins.2019.12.039
10.1109/TNNLS.2018.2803726
10.1109/TFUZZ.2017.2787561
10.1162/089976600300015961
10.1016/j.ins.2012.07.006
10.1080/00207179.2013.790562
10.1049/iet-cta.2014.1319
10.1109/TNNLS.2021.3105548
10.1109/TFUZZ.2022.3148865
10.1109/TNNLS.2021.3051030
10.1016/j.ins.2021.09.055
10.1016/j.ins.2011.01.040
10.1080/00207179.2013.848292
10.1016/j.ins.2021.01.030
10.1049/iet-cta.2013.0472
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.05.048
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 379
ExternalDocumentID 10_1016_j_ins_2022_05_048
S0020025522004807
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-f2befcfc8f3f05a58a4be0c71a03635425b4a7e5cb48bd60f01f97cf169507e43
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Tue Jul 01 01:26:51 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Fri Feb 23 02:40:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Actor-critic architecture
Optimal control
Nonlinear system
Fuzzy logic system
Unknown dynamic
Reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-f2befcfc8f3f05a58a4be0c71a03635425b4a7e5cb48bd60f01f97cf169507e43
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2022_05_048
crossref_primary_10_1016_j_ins_2022_05_048
elsevier_sciencedirect_doi_10_1016_j_ins_2022_05_048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Li, Tong, Wei (b0140) 2011; 181
G. Wen, B. Li, B. Niu, Optimized backstepping control using reinforcement learning of observer-critic-actor architecture based on fuzzy system for a class of nonlinear strict-feedback systems, IEEE Transactions on Fuzzy Systems doi:10.1109/TFUZZ.2022.3148865.
Liu, Wang, Yang (b0100) 2013; 220
Vamvoudakis, Lewis (b0060) 2010; 46
Li, Chen, Liu (b0110) 2021; 575
Doya (b0075) 2000; 12
Wen, Chen, Ge (b0155) 2020
Y. Li, Y. Liu, S. Tong, Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints, IEEE Transactions on Neural Networks and Learning Systems doi:10.1109/TNNLS.2021.3051030.
G. Wen, B. Li, Optimized leader-follower consensus control using reinforcement learning for a class of second-order nonlinear multiagent systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems doi:10.1109/TSMC.2021.3130070.
Wen, Ge, Tu (b0055) 2018; 29
Yang, Liu, Wang (b0020) 2014; 87
Xiong, Haibo, Qinglai, Biao (b0050) 2018; 463–464
G. Wen, C.L.P. Chen, Optimized backstepping consensus control using reinforcement learning for a class of nonlinear strict-feedback-dynamic multi-agent systems, IEEE Transactions on Neural Networks and Learning Systems doi:10.1109/TNNLS.2021.3105548.
P. Werbos, Approximate dynamic programming for realtime control and neural modelling, Handbook of intelligent control: neural, fuzzy and adaptive approaches (1992) 493–525.
Al-Tamimi, Lewis, Abu-Khalaf (b0070) 2008; 38
Zhang, Wei, Liu (b0080) 2011; 47
Lewis, Vrabie, Syrmos (b0005) 2012
Yang, He, Wei, Luo (b0090) 2018; 463–464
Wang (b0135) 1993; 1
Liu, Zhu, Zhao (b0115) 2021; 562
Wen, Chen, Li (b0015) 2020; 517
Wen, Chen, Feng, Zhou (b0085) 2018; 26
Su, Philip Chen, Liu (b0120) 2021; 581
Wen, Chen, Liu, Liu (b0150) 2015; 9
Yang, Liu, Huang (b0130) 2013; 7
Guoxing, Wen, C., L., Philip, Chen, Bin, Li, Optimized formation control using simplified reinforcement learning for a class of multiagent systems with unknown dynamics, IEEE Transactions on Industrial Electronics 67 (9) (2019) 7879–7888.
Tong, Li, Wang (b0105) 2004; 148
Ge, Hang, Zhang (b0145) 1999; 29
Bellman (b0035) 1957
Bhasin, Kamalapurkar, Johnson, Vamvoudakis, Lewis, Dixon (b0065) 2013; 49
Laub (b0010) 1979; 24
Wen, Chen, Ge, Yang, Liu (b0030) 2019; 15
Liu, Huang, Ding, Wei (b0125) 2013; 86
Littman (b0045) 2015; 521
Vamvoudakis (10.1016/j.ins.2022.05.048_b0060) 2010; 46
Yang (10.1016/j.ins.2022.05.048_b0090) 2018; 463–464
Liu (10.1016/j.ins.2022.05.048_b0100) 2013; 220
10.1016/j.ins.2022.05.048_b0025
Wen (10.1016/j.ins.2022.05.048_b0055) 2018; 29
Yang (10.1016/j.ins.2022.05.048_b0020) 2014; 87
10.1016/j.ins.2022.05.048_b0170
Wen (10.1016/j.ins.2022.05.048_b0085) 2018; 26
10.1016/j.ins.2022.05.048_b0095
Yang (10.1016/j.ins.2022.05.048_b0130) 2013; 7
Zhang (10.1016/j.ins.2022.05.048_b0080) 2011; 47
Wen (10.1016/j.ins.2022.05.048_b0015) 2020; 517
Laub (10.1016/j.ins.2022.05.048_b0010) 1979; 24
Li (10.1016/j.ins.2022.05.048_b0110) 2021; 575
Bellman (10.1016/j.ins.2022.05.048_b0035) 1957
Al-Tamimi (10.1016/j.ins.2022.05.048_b0070) 2008; 38
Xiong (10.1016/j.ins.2022.05.048_b0050) 2018; 463–464
Lewis (10.1016/j.ins.2022.05.048_b0005) 2012
Li (10.1016/j.ins.2022.05.048_b0140) 2011; 181
Su (10.1016/j.ins.2022.05.048_b0120) 2021; 581
Liu (10.1016/j.ins.2022.05.048_b0125) 2013; 86
Ge (10.1016/j.ins.2022.05.048_b0145) 1999; 29
Wen (10.1016/j.ins.2022.05.048_b0150) 2015; 9
10.1016/j.ins.2022.05.048_b0160
Littman (10.1016/j.ins.2022.05.048_b0045) 2015; 521
Wen (10.1016/j.ins.2022.05.048_b0155) 2020
Wen (10.1016/j.ins.2022.05.048_b0030) 2019; 15
10.1016/j.ins.2022.05.048_b0040
Bhasin (10.1016/j.ins.2022.05.048_b0065) 2013; 49
Doya (10.1016/j.ins.2022.05.048_b0075) 2000; 12
10.1016/j.ins.2022.05.048_b0165
Tong (10.1016/j.ins.2022.05.048_b0105) 2004; 148
Wang (10.1016/j.ins.2022.05.048_b0135) 1993; 1
Liu (10.1016/j.ins.2022.05.048_b0115) 2021; 562
References_xml – year: 1957
  ident: b0035
  article-title: Dynamic programming, Princeton
– volume: 7
  start-page: 2037
  year: 2013
  end-page: 2047
  ident: b0130
  article-title: Neural-network-based online optimal control for uncertain non-linear continuous-time systems with control constraints
  publication-title: IET Control Theory and Applications
– volume: 49
  start-page: 82
  year: 2013
  end-page: 92
  ident: b0065
  article-title: A novel actor–critic–identifier architecture for approximate optimal control of uncertain nonlinear systems
  publication-title: Automatica
– year: 2012
  ident: b0005
  article-title: Optimal control of continuous time systems
– volume: 26
  start-page: 2719
  year: 2018
  end-page: 2731
  ident: b0085
  article-title: Optimized multi-agent formation control based on an identifier-actor-critic reinforcement learning algorithm
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 9
  start-page: 1927
  year: 2015
  end-page: 1934
  ident: b0150
  article-title: Neural-network-based adaptive leader-following consensus control for second-order non-linear multi-agent systems
  publication-title: IET Control Theory & Applications
– volume: 1
  start-page: 146
  year: 1993
  end-page: 155
  ident: b0135
  article-title: Stable adaptive fuzzy control of nonlinear systems
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 15
  start-page: 4969
  year: 2019
  end-page: 4977
  ident: b0030
  article-title: Optimized adaptive nonlinear tracking control using actor-critic reinforcement learning strategy
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 521
  start-page: 445
  year: 2015
  end-page: 451
  ident: b0045
  article-title: Michael, Reinforcement learning improves behaviour from evaluative feedback
  publication-title: Nature
– volume: 463–464
  start-page: 307
  year: 2018
  end-page: 322
  ident: b0050
  article-title: Reinforcement learning for robust adaptive control of partially unknown nonlinear systems subject to unmatched uncertainties
  publication-title: Information Sciences
– reference: G. Wen, B. Li, Optimized leader-follower consensus control using reinforcement learning for a class of second-order nonlinear multiagent systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems doi:10.1109/TSMC.2021.3130070.
– volume: 12
  start-page: 219
  year: 2000
  end-page: 245
  ident: b0075
  article-title: Reinforcement learning in continuous time and space
  publication-title: Neural Computation
– volume: 46
  start-page: 878
  year: 2010
  end-page: 888
  ident: b0060
  article-title: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem
  publication-title: Automatica
– year: 2020
  ident: b0155
  article-title: Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions
  publication-title: IEEE Transactions on Cybernetics
– reference: P. Werbos, Approximate dynamic programming for realtime control and neural modelling, Handbook of intelligent control: neural, fuzzy and adaptive approaches (1992) 493–525.
– volume: 29
  start-page: 818
  year: 1999
  end-page: 828
  ident: b0145
  article-title: Adaptive neural network control of nonlinear systems by state and output feedback
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics
– volume: 87
  start-page: 553
  year: 2014
  end-page: 566
  ident: b0020
  article-title: Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints
  publication-title: International Journal of Control
– reference: G. Wen, C.L.P. Chen, Optimized backstepping consensus control using reinforcement learning for a class of nonlinear strict-feedback-dynamic multi-agent systems, IEEE Transactions on Neural Networks and Learning Systems doi:10.1109/TNNLS.2021.3105548.
– volume: 181
  start-page: 2405
  year: 2011
  end-page: 2421
  ident: b0140
  article-title: Fuzzy adaptive high-gain-based observer backstepping control for SISO nonlinear systems
  publication-title: Information Sciences
– volume: 575
  start-page: 485
  year: 2021
  end-page: 498
  ident: b0110
  article-title: Adaptive disturbance observer-based event-triggered fuzzy control for nonlinear system
  publication-title: Information Sciences
– volume: 562
  start-page: 28
  year: 2021
  end-page: 43
  ident: b0115
  article-title: Event-triggered adaptive fuzzy control for switched nonlinear systems with state constraints
  publication-title: Information Sciences
– volume: 29
  start-page: 3850
  year: 2018
  end-page: 3862
  ident: b0055
  article-title: Optimized backstepping for tracking control of strict-feedback systems
  publication-title: IEEE Transactions on Neural Networks & Learning Systems
– volume: 220
  start-page: 331
  year: 2013
  end-page: 342
  ident: b0100
  article-title: An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputs
  publication-title: Information Sciences
– volume: 47
  start-page: 207
  year: 2011
  end-page: 214
  ident: b0080
  article-title: An iterative adaptive dynamic programming method for solving a class of nonlinear zero-sum differential games
  publication-title: Automatica
– volume: 581
  start-page: 553
  year: 2021
  end-page: 566
  ident: b0120
  article-title: Adaptive fuzzy control for uncertain nonlinear systems subject to full state constraints and actuator faults
  publication-title: Information Sciences
– volume: 463–464
  start-page: 307
  year: 2018
  end-page: 322
  ident: b0090
  article-title: Reinforcement learning for robust adaptive control of partially unknown nonlinear systems subject to unmatched uncertainties
  publication-title: Information Sciences
– reference: Guoxing, Wen, C., L., Philip, Chen, Bin, Li, Optimized formation control using simplified reinforcement learning for a class of multiagent systems with unknown dynamics, IEEE Transactions on Industrial Electronics 67 (9) (2019) 7879–7888.
– reference: Y. Li, Y. Liu, S. Tong, Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints, IEEE Transactions on Neural Networks and Learning Systems doi:10.1109/TNNLS.2021.3051030.
– volume: 86
  start-page: 1554
  year: 2013
  end-page: 1566
  ident: b0125
  article-title: Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming
  publication-title: International Journal of Control
– volume: 38
  start-page: 943
  year: 2008
  end-page: 949
  ident: b0070
  article-title: Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
– volume: 148
  start-page: 355
  year: 2004
  end-page: 376
  ident: b0105
  article-title: Observer-based adaptive fuzzy control for siso nonlinear systems
  publication-title: Fuzzy Sets & Systems
– reference: G. Wen, B. Li, B. Niu, Optimized backstepping control using reinforcement learning of observer-critic-actor architecture based on fuzzy system for a class of nonlinear strict-feedback systems, IEEE Transactions on Fuzzy Systems doi:10.1109/TFUZZ.2022.3148865.
– volume: 517
  start-page: 230
  year: 2020
  end-page: 243
  ident: b0015
  article-title: Simplified optimized control using reinforcement learning algorithm for a class of stochastic nonlinear systems
  publication-title: Information Sciences
– volume: 24
  start-page: 913
  year: 1979
  end-page: 921
  ident: b0010
  article-title: A schur method for solving algebraic riccati equations
  publication-title: IEEE Transactions on Automatic Control
– volume: 29
  start-page: 818
  issue: 6
  year: 1999
  ident: 10.1016/j.ins.2022.05.048_b0145
  article-title: Adaptive neural network control of nonlinear systems by state and output feedback
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics
  doi: 10.1109/3477.809035
– volume: 38
  start-page: 943
  issue: 4
  year: 2008
  ident: 10.1016/j.ins.2022.05.048_b0070
  article-title: Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2008.926614
– ident: 10.1016/j.ins.2022.05.048_b0025
  doi: 10.1109/TIE.2019.2946545
– volume: 521
  start-page: 445
  issue: 7553
  year: 2015
  ident: 10.1016/j.ins.2022.05.048_b0045
  article-title: Michael, Reinforcement learning improves behaviour from evaluative feedback
  publication-title: Nature
  doi: 10.1038/nature14540
– volume: 1
  start-page: 146
  issue: 2
  year: 1993
  ident: 10.1016/j.ins.2022.05.048_b0135
  article-title: Stable adaptive fuzzy control of nonlinear systems
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.227383
– ident: 10.1016/j.ins.2022.05.048_b0170
  doi: 10.1109/TSMC.2021.3130070
– volume: 46
  start-page: 878
  issue: 5
  year: 2010
  ident: 10.1016/j.ins.2022.05.048_b0060
  article-title: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.02.018
– volume: 463–464
  start-page: 307
  year: 2018
  ident: 10.1016/j.ins.2022.05.048_b0090
  article-title: Reinforcement learning for robust adaptive control of partially unknown nonlinear systems subject to unmatched uncertainties
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.06.022
– year: 2020
  ident: 10.1016/j.ins.2022.05.048_b0155
  article-title: Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions
  publication-title: IEEE Transactions on Cybernetics
– volume: 15
  start-page: 4969
  issue: 9
  year: 2019
  ident: 10.1016/j.ins.2022.05.048_b0030
  article-title: Optimized adaptive nonlinear tracking control using actor-critic reinforcement learning strategy
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2894282
– volume: 49
  start-page: 82
  issue: 1
  year: 2013
  ident: 10.1016/j.ins.2022.05.048_b0065
  article-title: A novel actor–critic–identifier architecture for approximate optimal control of uncertain nonlinear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.09.019
– volume: 575
  start-page: 485
  year: 2021
  ident: 10.1016/j.ins.2022.05.048_b0110
  article-title: Adaptive disturbance observer-based event-triggered fuzzy control for nonlinear system
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.06.055
– volume: 24
  start-page: 913
  issue: 6
  year: 1979
  ident: 10.1016/j.ins.2022.05.048_b0010
  article-title: A schur method for solving algebraic riccati equations
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1979.1102178
– volume: 148
  start-page: 355
  issue: 3
  year: 2004
  ident: 10.1016/j.ins.2022.05.048_b0105
  article-title: Observer-based adaptive fuzzy control for siso nonlinear systems
  publication-title: Fuzzy Sets & Systems
  doi: 10.1016/j.fss.2003.11.017
– volume: 47
  start-page: 207
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2022.05.048_b0080
  article-title: An iterative adaptive dynamic programming method for solving a class of nonlinear zero-sum differential games
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.10.033
– volume: 517
  start-page: 230
  year: 2020
  ident: 10.1016/j.ins.2022.05.048_b0015
  article-title: Simplified optimized control using reinforcement learning algorithm for a class of stochastic nonlinear systems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.12.039
– ident: 10.1016/j.ins.2022.05.048_b0040
– volume: 29
  start-page: 3850
  issue: 8
  year: 2018
  ident: 10.1016/j.ins.2022.05.048_b0055
  article-title: Optimized backstepping for tracking control of strict-feedback systems
  publication-title: IEEE Transactions on Neural Networks & Learning Systems
  doi: 10.1109/TNNLS.2018.2803726
– volume: 26
  start-page: 2719
  issue: 5
  year: 2018
  ident: 10.1016/j.ins.2022.05.048_b0085
  article-title: Optimized multi-agent formation control based on an identifier-actor-critic reinforcement learning algorithm
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2017.2787561
– volume: 12
  start-page: 219
  issue: 1
  year: 2000
  ident: 10.1016/j.ins.2022.05.048_b0075
  article-title: Reinforcement learning in continuous time and space
  publication-title: Neural Computation
  doi: 10.1162/089976600300015961
– volume: 220
  start-page: 331
  year: 2013
  ident: 10.1016/j.ins.2022.05.048_b0100
  article-title: An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputs
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2012.07.006
– volume: 86
  start-page: 1554
  issue: 9
  year: 2013
  ident: 10.1016/j.ins.2022.05.048_b0125
  article-title: Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming
  publication-title: International Journal of Control
  doi: 10.1080/00207179.2013.790562
– volume: 9
  start-page: 1927
  issue: 13
  year: 2015
  ident: 10.1016/j.ins.2022.05.048_b0150
  article-title: Neural-network-based adaptive leader-following consensus control for second-order non-linear multi-agent systems
  publication-title: IET Control Theory & Applications
  doi: 10.1049/iet-cta.2014.1319
– ident: 10.1016/j.ins.2022.05.048_b0160
  doi: 10.1109/TNNLS.2021.3105548
– year: 1957
  ident: 10.1016/j.ins.2022.05.048_b0035
– volume: 463–464
  start-page: 307
  year: 2018
  ident: 10.1016/j.ins.2022.05.048_b0050
  article-title: Reinforcement learning for robust adaptive control of partially unknown nonlinear systems subject to unmatched uncertainties
  publication-title: Information Sciences
– year: 2012
  ident: 10.1016/j.ins.2022.05.048_b0005
– ident: 10.1016/j.ins.2022.05.048_b0165
  doi: 10.1109/TFUZZ.2022.3148865
– ident: 10.1016/j.ins.2022.05.048_b0095
  doi: 10.1109/TNNLS.2021.3051030
– volume: 581
  start-page: 553
  year: 2021
  ident: 10.1016/j.ins.2022.05.048_b0120
  article-title: Adaptive fuzzy control for uncertain nonlinear systems subject to full state constraints and actuator faults
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.09.055
– volume: 181
  start-page: 2405
  issue: 11
  year: 2011
  ident: 10.1016/j.ins.2022.05.048_b0140
  article-title: Fuzzy adaptive high-gain-based observer backstepping control for SISO nonlinear systems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.01.040
– volume: 87
  start-page: 553
  issue: 3
  year: 2014
  ident: 10.1016/j.ins.2022.05.048_b0020
  article-title: Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints
  publication-title: International Journal of Control
  doi: 10.1080/00207179.2013.848292
– volume: 562
  start-page: 28
  year: 2021
  ident: 10.1016/j.ins.2022.05.048_b0115
  article-title: Event-triggered adaptive fuzzy control for switched nonlinear systems with state constraints
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.01.030
– volume: 7
  start-page: 2037
  issue: 17
  year: 2013
  ident: 10.1016/j.ins.2022.05.048_b0130
  article-title: Neural-network-based online optimal control for uncertain non-linear continuous-time systems with control constraints
  publication-title: IET Control Theory and Applications
  doi: 10.1049/iet-cta.2013.0472
SSID ssj0004766
Score 2.4680276
Snippet The article is to develop an optimized tracking control using fuzzy logic system (FLS)-based reinforcement learning (RL) for a class of unknown nonlinear...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 368
SubjectTerms Actor-critic architecture
Fuzzy logic system
Nonlinear system
Optimal control
Reinforcement learning
Unknown dynamic
Title Optimized tracking control based on reinforcement learning for a class of high-order unknown nonlinear dynamic systems
URI https://dx.doi.org/10.1016/j.ins.2022.05.048
Volume 606
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BQFWt2AGJACiWvHyVhVoAKiLFTqFjmOjYogVKVlYOC344sdKBIwMMayk8jn3F3s994RcmRoGvNIyEBwYX9QCloEaWrSINYsNrJIQpEjG_lmGA9G7GrMxw3Sr7kwCKv0vt_59Mpb-5YzP5tn08kEOb60yogpdcRoZLAzgav89P0L5mFbYgfzCAPsXZ9sVhivSYmK3ZRW4p1YAuin2LQUby42yLpPFKHn3mWTNHS5RdaW5AO3SNuTDuAYPKsIZxn857pNXm-tP3iavOkC5jOpcFMcPDQdMHoVYHvPdKWdqqptQvBFJO7BNoEEhbk1PBtAVeOgkumERYn7cCWUTmRDzqBwVe3BqUK_7JDRxfldfxD4OguBoqmYB4bm2iijEtM1IZc8kSzXoRKRxFNebr_qnEmhucpZkhdxaMLIpEKZKE5tNqlZd5c07TP1HgGlI01VN490Ipi0N6aacWVzmKjLqDVpi4T1DGfKi5BjLYzHrEabPWTWKBkaJQt5Zo3SIiefQ6ZOgeOvzqw2W_ZtGWU2Qvw-bP9_ww7IKl45POAhac5nC922Oco871SLsENWepfXg-EHMtHo4A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT90wDLf4OGw7IHhsGgOGD2gHpI42L2naI0KgNz7eLjzp3aI0TdCbtg6VwmGH_e2LmxSYNHbgmjptZSe249g_A-w7VuYikzqRQvoDSs3qpCxdmeSW507XRSorqka-nOaTGT-bi_kSHA-1MJRWGXV_0Om9to4jh5GbhzeLBdX4st4jZiwURi_DKvfbl9oYfP79mOfBZbiwpHMSkQ9Xm32S16IhyG7GevRO6gH0L-P0xOCcrsNa9BTxKPzMBizZZgRvnuAHjmA3Vh3gJ4xlRcRmjPt1E-6_eoXwY_HL1ti12lBUHGNuOpL5qtFTt7YHTzV9nBBjF4lr9EOo0ZBzjT8dEqxx0uN04l1DgbgGm4CyoVusQ1t7DLDQt29hdnpydTxJYqOFxLBSdoljlXXGmcKNXSq0KDSvbGpkpumaV_htXXEtrTAVL6o6T12auVIal-WldyctH7-DFf9N-x7Q2MwyM64yW0iu_YuZ5cJ4JyYbc-ZlugXpwGFlIgo5NcP4roZ0s2_KC0WRUFQqlBfKFhw8TLkJEBz_I-aD2NRf60h5E_H8tA8vm7YHryZXlxfq4sv0fBte05OQHLgDK117Z3e9w9JVH_sF-QeReOpu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+tracking+control+based+on+reinforcement+learning+for+a+class+of+high-order+unknown+nonlinear+dynamic+systems&rft.jtitle=Information+sciences&rft.au=Wen%2C+Guoxing&rft.au=Niu%2C+Ben&rft.date=2022-08-01&rft.issn=0020-0255&rft.volume=606&rft.spage=368&rft.epage=379&rft_id=info:doi/10.1016%2Fj.ins.2022.05.048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_05_048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon