Network configuration distributed production scheduling problem: A constraint programming approach

•Considering a two-echelon network with different shop configurations for factories.•The factories have hybrid flow shop and flexible job shop configuration.•Presenting a model to minimize the maximum completion time and transportation costs.•The constraint programming technique is applied to solve...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 188; p. 109916
Main Authors Ziadlou, Ghazal, Emami, Saeed, Asadi-Gangraj, Ebrahim
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text
ISSN0360-8352
1879-0550
DOI10.1016/j.cie.2024.109916

Cover

Abstract •Considering a two-echelon network with different shop configurations for factories.•The factories have hybrid flow shop and flexible job shop configuration.•Presenting a model to minimize the maximum completion time and transportation costs.•The constraint programming technique is applied to solve the problem. Nowadays, many massive factories are forced to distribute their products in several manufacturing units. This issue has caused the emergence of a novel category of problems called distributed production scheduling, which is vital in today's growing world. In this paper, the distributed production scheduling problem by considering network configuration with two echelons is addressed. The first and second echelon factories have different job configurations and have a hybrid flow shop and a flexible job shop environment, respectively. For this problem, A bi-objective mixed integer linear programming (MILP) model is presented to minimize the maximum completion time of jobs and transportation costs between the selected factories in two echelons, respectively. Consequently, the epsilon constraint method is used to deal with this bi-objective model. In addition, since distributed scheduling problems are classified as NP-Hard problems, it is very challenging to solve them for large-sized instances. For this reason, a constraint programming model (CP) is also proposed. To evaluate the performance of the proposed MILP model and CP model, a total of 180 numerical instances are randomly generated in small, medium, and large sizes. The obtained results demonstrate the significant ability of the constraint programming approach in solving complex distributed scheduling problems even for large-sized instances with 30 jobs, 10 stages/operations for each job, 6 machines for each stage/operation, and 4 factories at each echelon in a reasonable time and proof that the CP model can outperform the MILP model in this problem.
AbstractList •Considering a two-echelon network with different shop configurations for factories.•The factories have hybrid flow shop and flexible job shop configuration.•Presenting a model to minimize the maximum completion time and transportation costs.•The constraint programming technique is applied to solve the problem. Nowadays, many massive factories are forced to distribute their products in several manufacturing units. This issue has caused the emergence of a novel category of problems called distributed production scheduling, which is vital in today's growing world. In this paper, the distributed production scheduling problem by considering network configuration with two echelons is addressed. The first and second echelon factories have different job configurations and have a hybrid flow shop and a flexible job shop environment, respectively. For this problem, A bi-objective mixed integer linear programming (MILP) model is presented to minimize the maximum completion time of jobs and transportation costs between the selected factories in two echelons, respectively. Consequently, the epsilon constraint method is used to deal with this bi-objective model. In addition, since distributed scheduling problems are classified as NP-Hard problems, it is very challenging to solve them for large-sized instances. For this reason, a constraint programming model (CP) is also proposed. To evaluate the performance of the proposed MILP model and CP model, a total of 180 numerical instances are randomly generated in small, medium, and large sizes. The obtained results demonstrate the significant ability of the constraint programming approach in solving complex distributed scheduling problems even for large-sized instances with 30 jobs, 10 stages/operations for each job, 6 machines for each stage/operation, and 4 factories at each echelon in a reasonable time and proof that the CP model can outperform the MILP model in this problem.
ArticleNumber 109916
Author Ziadlou, Ghazal
Emami, Saeed
Asadi-Gangraj, Ebrahim
Author_xml – sequence: 1
  givenname: Ghazal
  surname: Ziadlou
  fullname: Ziadlou, Ghazal
  email: gh.ziadloo@stu.nit.ac.ir
– sequence: 2
  givenname: Saeed
  orcidid: 0000-0002-6356-0529
  surname: Emami
  fullname: Emami, Saeed
  email: s_emami@nit.ac.ir
– sequence: 3
  givenname: Ebrahim
  surname: Asadi-Gangraj
  fullname: Asadi-Gangraj, Ebrahim
  email: e.asadi@nit.ac.ir
BookMark eNp9kM1OwzAQhC1UJNrCA3DLC6TYcWzHcKoq_iQEFzhbjr1uXdKksh0Qb0_ScuLQ02pH8612ZoYmbdcCQtcELwgm_Ga7MB4WBS7KYZeS8DM0JZWQOWYMT9AUU47zirLiAs1i3GKMSybJFNWvkL678JmZrnV-3QedfNdm1scUfN0nsNk-dLY3BzmaDdi-8e16VOsGdrfZckQHt_ZtGtV10Lvd6ND7YdNmc4nOnW4iXP3NOfp4uH9fPeUvb4_Pq-VLbgopUu6I1YRwoFwXsqzKmklpCuZqp6uKY2o1FZWtBLfE1IKCKIUQ1JQMCsIcd3SOxPGuCV2MAZwyPh3ijM81imA1VqW2gw5qrEodqxpI8o_cB7_T4eckc3dkYIj05SGoOFhaA9YHMEnZzp-gfwE5JIXh
CitedBy_id crossref_primary_10_1016_j_dajour_2024_100485
crossref_primary_10_32604_cmc_2024_055244
crossref_primary_10_3390_a18030158
crossref_primary_10_1111_itor_70003
crossref_primary_10_1080_01605682_2024_2382867
crossref_primary_10_1016_j_jmsy_2024_10_005
Cites_doi 10.1109/12.59854
10.1080/00207543.2021.1925772
10.1016/j.cie.2017.07.020
10.1016/j.simpat.2017.09.001
10.1007/s10601-018-9281-x
10.1016/j.cie.2019.07.011
10.1016/j.cie.2020.106288
10.1080/00207543.2020.1757174
10.1016/j.eswa.2022.119151
10.1016/j.cie.2020.107021
10.1021/acs.iecr.6b03453
10.1016/j.cie.2019.04.032
10.1287/mnsc.27.3.336
10.1016/j.cie.2020.106347
10.1016/j.ejor.2005.02.077
10.1080/00207543.2019.1598596
10.1080/00207543.2020.1797207
10.1021/acs.iecr.0c00969
10.1080/07408170208928913
10.1016/j.ejor.2015.11.020
10.1016/j.cor.2009.06.019
10.1080/00207543.2017.1401749
10.1016/j.cie.2021.107832
10.1007/s10845-009-0318-2
10.1016/j.eswa.2021.115827
10.1080/00207543.2018.1481301
10.1016/j.cie.2018.03.043
10.1080/0951192X.2012.688141
10.1007/BF02023073
10.1016/j.amc.2009.03.037
10.1016/j.cor.2016.11.021
10.1016/j.eswa.2005.04.009
10.1016/j.cie.2015.01.023
10.1287/opre.22.1.180
10.1016/j.knosys.2023.110309
10.1080/00207543.2017.1421781
10.1016/j.cie.2020.106320
10.1080/00207540903121065
10.1016/j.jii.2021.100233
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2024.109916
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2024_109916
S0360835224000378
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-f1da116e36a29484b599c25fbfa88603da378d876d1cb73e747773c45e215f6f3
IEDL.DBID AIKHN
ISSN 0360-8352
IngestDate Tue Jul 01 02:59:59 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Sat Mar 02 16:00:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Distributed scheduling
Network configuration
Epsilon constraint method
Constraint programming
Multi-factory scheduling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-f1da116e36a29484b599c25fbfa88603da378d876d1cb73e747773c45e215f6f3
ORCID 0000-0002-6356-0529
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2024_109916
crossref_primary_10_1016_j_cie_2024_109916
elsevier_sciencedirect_doi_10_1016_j_cie_2024_109916
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Marandi, Fatemi Ghomi (b0145) 2019; 57
Kanet, J.J., Ahire, S.L. & Gorman, M.F. (2004). Constraint programming for scheduling.
Rossi, Van Beek, Walsh (b0185) 2006
Wang, Rangaiah (b0225) 2017; 56
Karp (b0115) 1972
Williams (b0235) 1981; 27
Guo, Yang, Wang, Yang (b0075) 2015; 83
Thoney, Hodgson, King, Taner, Wilson (b0210) 2002; 34
Karabulut, Kizilay, Tasgetiren, Gao, Kandiller (b0110) 2022; 163
Fathollahi-Fard, Woodward, Akhrif (b0040) 2021; 24
Smith, W.E. (1955). Various optimizers for single-stage production. In: CALIFORNIA UNIV LOS ANGELES NUMERICAL ANALYSIS RESEARCH.
Olhager, Feldmann (b0175) 2018; 56
Shahmoradi, Ketabi, Esmaelian (b0195) 2017; 8
Novas (b0170) 2019; 136
Haimes (b0085) 1971; 1
Wu, Lin, Lin, Chen (b0240) 2017; 80
Meng, Zhang, Ren, Zhang, Lv (b0160) 2020; 142
Fernandez-Viagas, Framinan (b0045) 2020; 141
Chan, Chung, Chan (b0020) 2005; 29
Shao, Shao, Pi (b0200) 2023; 214
El Khayat, Langevin, Riopel (b0035) 2006; 175
Lei, Liu (b0130) 2020; 141
Marandi, Ghomi (b0150) 2019; 132
H'Mida, Lopez (b0080) 2013; 26
Toptal, Sabuncuoglu (b0215) 2010; 48
Jiang, Yuan, Ma, Wang (b0100) 2022; 60
Naderi, Ruiz (b0165) 2010; 37
Laborie, Rogerie, Shaw, Vilím (b0125) 2018; 23
Yang, Xu (b0245) 2021; 59
Lohmer, Lasch (b0140) 2021; 59
Bonomi, Kumar (b0010) 1990; 39
Gedik, Rainwater, Nachtmann, Pohl (b0050) 2016; 251
Gholami, Sun (b0055) 2023; 264
Hou, Fu, Gao, Zhang, Sadollah (b0090) 2022; 187
Mavrotas (b0155) 2009; 213
Wang, Parhi, Rangaiah, Jana (b0220) 2020; 59
Glover, Woolsey (b0060) 1974; 22
Gonzalez-Neira, Ferone, Hatami, Juan (b0070) 2017; 79
Brandimarte (b0015) 1993; 41
Wang, Yang, Yu (b0230) 2018; 125
Pinedo (b0180) 2012; (Vol. 29)
CSP, C.-E. (2020). Constraint Satisfaction Problems.
Kelbel, Hanzálek (b0120) 2011; 22
Deb (b0030) 2014
Gökgür, Hnich, Özpeynirci (b0065) 2018; 56
Bargaoui, Driss, Ghédira (b0005) 2017; 111
Huang, Pan, Huang, Suganthan, Gao (b0095) 2021; 152
Lei, Yuan, Cai, Bai (b0135) 2020; 58
Sauer, J. (1998). A Multi-Site Scheduling System. In: AAAI's Special Interest Group in Manufacturing Workshop on Artificial Intelligence and Manufacturing: State of the Art and State of Practice (pp. 161-168).
Meng (10.1016/j.cie.2024.109916_b0160) 2020; 142
Williams (10.1016/j.cie.2024.109916_b0235) 1981; 27
Gökgür (10.1016/j.cie.2024.109916_b0065) 2018; 56
Yang (10.1016/j.cie.2024.109916_b0245) 2021; 59
Naderi (10.1016/j.cie.2024.109916_b0165) 2010; 37
Glover (10.1016/j.cie.2024.109916_b0060) 1974; 22
Marandi (10.1016/j.cie.2024.109916_b0150) 2019; 132
Wang (10.1016/j.cie.2024.109916_b0225) 2017; 56
Bargaoui (10.1016/j.cie.2024.109916_b0005) 2017; 111
10.1016/j.cie.2024.109916_b0205
Wang (10.1016/j.cie.2024.109916_b0220) 2020; 59
Wu (10.1016/j.cie.2024.109916_b0240) 2017; 80
Brandimarte (10.1016/j.cie.2024.109916_b0015) 1993; 41
Olhager (10.1016/j.cie.2024.109916_b0175) 2018; 56
Deb (10.1016/j.cie.2024.109916_b0030) 2014
Lohmer (10.1016/j.cie.2024.109916_b0140) 2021; 59
Lei (10.1016/j.cie.2024.109916_b0130) 2020; 141
H'Mida (10.1016/j.cie.2024.109916_b0080) 2013; 26
Pinedo (10.1016/j.cie.2024.109916_b0180) 2012; (Vol. 29)
Haimes (10.1016/j.cie.2024.109916_b0085) 1971; 1
Toptal (10.1016/j.cie.2024.109916_b0215) 2010; 48
Bonomi (10.1016/j.cie.2024.109916_b0010) 1990; 39
Chan (10.1016/j.cie.2024.109916_b0020) 2005; 29
Karp (10.1016/j.cie.2024.109916_b0115) 1972
Rossi (10.1016/j.cie.2024.109916_b0185) 2006
Shao (10.1016/j.cie.2024.109916_b0200) 2023; 214
Mavrotas (10.1016/j.cie.2024.109916_b0155) 2009; 213
Gholami (10.1016/j.cie.2024.109916_b0055) 2023; 264
Fathollahi-Fard (10.1016/j.cie.2024.109916_b0040) 2021; 24
Fernandez-Viagas (10.1016/j.cie.2024.109916_b0045) 2020; 141
Thoney (10.1016/j.cie.2024.109916_b0210) 2002; 34
Kelbel (10.1016/j.cie.2024.109916_b0120) 2011; 22
10.1016/j.cie.2024.109916_b0105
Gonzalez-Neira (10.1016/j.cie.2024.109916_b0070) 2017; 79
Guo (10.1016/j.cie.2024.109916_b0075) 2015; 83
10.1016/j.cie.2024.109916_b0025
Laborie (10.1016/j.cie.2024.109916_b0125) 2018; 23
El Khayat (10.1016/j.cie.2024.109916_b0035) 2006; 175
Jiang (10.1016/j.cie.2024.109916_b0100) 2022; 60
Karabulut (10.1016/j.cie.2024.109916_b0110) 2022; 163
Shahmoradi (10.1016/j.cie.2024.109916_b0195) 2017; 8
Novas (10.1016/j.cie.2024.109916_b0170) 2019; 136
10.1016/j.cie.2024.109916_b0190
Marandi (10.1016/j.cie.2024.109916_b0145) 2019; 57
Hou (10.1016/j.cie.2024.109916_b0090) 2022; 187
Huang (10.1016/j.cie.2024.109916_b0095) 2021; 152
Lei (10.1016/j.cie.2024.109916_b0135) 2020; 58
Wang (10.1016/j.cie.2024.109916_b0230) 2018; 125
Gedik (10.1016/j.cie.2024.109916_b0050) 2016; 251
References_xml – volume: 213
  start-page: 455
  year: 2009
  end-page: 465
  ident: b0155
  article-title: Effective implementation of the ε-constraint method in multi-objective mathematical programming problems
  publication-title: Applied mathematics and computation
– year: 2006
  ident: b0185
  article-title: Handbook of constraint programming
– volume: 39
  start-page: 1232
  year: 1990
  end-page: 1250
  ident: b0010
  article-title: Adaptive optimal load balancing in a nonhomogeneous multiserver system with a central job scheduler
  publication-title: IEEE Transactions on Computers
– reference: Smith, W.E. (1955). Various optimizers for single-stage production. In: CALIFORNIA UNIV LOS ANGELES NUMERICAL ANALYSIS RESEARCH.
– volume: 187
  year: 2022
  ident: b0090
  article-title: Modelling and optimization of integrated distributed flow shop scheduling and distribution problems with time windows
  publication-title: Expert Systems with Applications
– volume: 26
  start-page: 252
  year: 2013
  end-page: 266
  ident: b0080
  article-title: Multi-site scheduling under production and transportation constraints
  publication-title: International Journal of Computer Integrated Manufacturing
– volume: 56
  start-page: 692
  year: 2018
  end-page: 708
  ident: b0175
  article-title: Distribution of manufacturing strategy decision-making in multi-plant networks
  publication-title: International Journal of Production Research
– volume: 132
  start-page: 293
  year: 2019
  end-page: 310
  ident: b0150
  article-title: Network configuration multi-factory scheduling with batch delivery: A learning-oriented simulated annealing approach
  publication-title: Computers & Industrial Engineering
– volume: 1
  start-page: 296
  year: 1971
  end-page: 297
  ident: b0085
  article-title: On a bicriterion formulation of the problems of integrated system identification and system optimization
  publication-title: IEEE transactions on systems, man, and cybernetics
– volume: 79
  start-page: 23
  year: 2017
  end-page: 36
  ident: b0070
  article-title: A biased-randomized simheuristic for the distributed assembly permutation flowshop problem with stochastic processing times
  publication-title: Simulation Modelling Practice and Theory
– volume: (Vol. 29):
  year: 2012
  ident: b0180
  publication-title: Scheduling
– volume: 60
  start-page: 3534
  year: 2022
  end-page: 3554
  ident: b0100
  article-title: The evolution of production scheduling from Industry 3.0 through Industry 4.0
  publication-title: International Journal of Production Research
– reference: CSP, C.-E. (2020). Constraint Satisfaction Problems.
– volume: 34
  start-page: 803
  year: 2002
  end-page: 811
  ident: b0210
  article-title: Satisfying due-dates in large multi-factory supply chains
  publication-title: IIE Transactions
– volume: 56
  start-page: 5541
  year: 2018
  end-page: 5557
  ident: b0065
  article-title: Parallel machine scheduling with tool loading: A constraint programming approach
  publication-title: International Journal of Production Research
– reference: Kanet, J.J., Ahire, S.L. & Gorman, M.F. (2004). Constraint programming for scheduling.
– volume: 59
  start-page: 4053
  year: 2021
  end-page: 4071
  ident: b0245
  article-title: The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery
  publication-title: International Journal of Production Research
– volume: 152
  year: 2021
  ident: b0095
  article-title: An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 141
  year: 2020
  ident: b0045
  article-title: Design of a testbed for hybrid flow shop scheduling with identical machines
  publication-title: Computers & Industrial Engineering
– volume: 264
  year: 2023
  ident: b0055
  article-title: Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Knowledge-Based Systems
– volume: 141
  year: 2020
  ident: b0130
  article-title: An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance
  publication-title: Computers & Industrial Engineering
– volume: 142
  year: 2020
  ident: b0160
  article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem
  publication-title: Computers & Industrial Engineering
– start-page: 85
  year: 1972
  end-page: 103
  ident: b0115
  article-title: Reducibility among combinatorial problems
  publication-title: Complexity of computer computations
– volume: 24
  year: 2021
  ident: b0040
  article-title: Sustainable distributed permutation flow-shop scheduling model based on a triple bottom line concept
  publication-title: Journal of Industrial Information Integration
– volume: 22
  start-page: 180
  year: 1974
  end-page: 182
  ident: b0060
  article-title: Converting the 0–1 polynomial programming problem to a 0–1 linear program
  publication-title: Operations research
– volume: 22
  start-page: 553
  year: 2011
  end-page: 562
  ident: b0120
  article-title: Solving production scheduling with earliness/tardiness penalties by constraint programming
  publication-title: Journal of Intelligent Manufacturing
– volume: 251
  start-page: 640
  year: 2016
  end-page: 650
  ident: b0050
  article-title: Analysis of a parallel machine scheduling problem with sequence dependent setup times and job availability intervals
  publication-title: European Journal of Operational Research
– volume: 163
  year: 2022
  ident: b0110
  article-title: An evolution strategy approach for the distributed blocking flowshop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 56
  start-page: 560
  year: 2017
  end-page: 574
  ident: b0225
  article-title: Application and analysis of methods for selecting an optimal solution from the Pareto-optimal front obtained by multiobjective optimization
  publication-title: Industrial & Engineering Chemistry Research
– volume: 59
  start-page: 14850
  year: 2020
  end-page: 14867
  ident: b0220
  article-title: Analysis of weighting and selection methods for pareto-optimal solutions of multiobjective optimization in chemical engineering applications
  publication-title: Industrial & Engineering Chemistry Research
– volume: 23
  start-page: 210
  year: 2018
  end-page: 250
  ident: b0125
  article-title: IBM ILOG CP optimizer for scheduling
  publication-title: Constraints
– volume: 57
  start-page: 722
  year: 2019
  end-page: 748
  ident: b0145
  article-title: Integrated multi-factory production and distribution scheduling applying vehicle routing approach
  publication-title: International Journal of Production Research
– volume: 83
  start-page: 74
  year: 2015
  end-page: 90
  ident: b0075
  article-title: Harmony search-based multi-objective optimization model for multi-site order planning with multiple uncertainties and learning effects
  publication-title: Computers & Industrial Engineering
– volume: 125
  start-page: 545
  year: 2018
  end-page: 562
  ident: b0230
  article-title: Lean-pull strategy for order scheduling problem in a multi-site semiconductor crystal ingot-pulling manufacturing company
  publication-title: Computers & Industrial Engineering
– volume: 175
  start-page: 1818
  year: 2006
  end-page: 1832
  ident: b0035
  article-title: Integrated production and material handling scheduling using mathematical programming and constraint programming
  publication-title: European Journal of Operational Research
– volume: 59
  start-page: 2028
  year: 2021
  end-page: 2054
  ident: b0140
  article-title: Production planning and scheduling in multi-factory production networks: A systematic literature review
  publication-title: International Journal of Production Research
– volume: 29
  start-page: 364
  year: 2005
  end-page: 371
  ident: b0020
  article-title: An adaptive genetic algorithm with dominated genes for distributed scheduling problems
  publication-title: Expert Systems with Applications
– volume: 41
  start-page: 157
  year: 1993
  end-page: 183
  ident: b0015
  article-title: Routing and scheduling in a flexible job shop by tabu search
  publication-title: Annals of Operations research
– start-page: 403
  year: 2014
  end-page: 449
  ident: b0030
  article-title: Multi-objective optimization
  publication-title: Search methodologies
– volume: 27
  start-page: 336
  year: 1981
  end-page: 352
  ident: b0235
  article-title: Heuristic techniques for simultaneous scheduling of production and distribution in multi-echelon structures: Theory and empirical comparisons
  publication-title: Management Science
– volume: 80
  start-page: 101
  year: 2017
  end-page: 112
  ident: b0240
  article-title: Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems
  publication-title: Computers & Operations Research
– volume: 214
  year: 2023
  ident: b0200
  article-title: Modelling and optimization of distributed heterogeneous hybrid flow shop lot-streaming scheduling problem
  publication-title: Expert Systems with Applications
– volume: 111
  start-page: 239
  year: 2017
  end-page: 250
  ident: b0005
  article-title: A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion
  publication-title: Computers & Industrial Engineering
– volume: 37
  start-page: 754
  year: 2010
  end-page: 768
  ident: b0165
  article-title: The distributed permutation flowshop scheduling problem
  publication-title: Computers & Operations Research
– volume: 136
  start-page: 252
  year: 2019
  end-page: 264
  ident: b0170
  article-title: Production scheduling and lot streaming at flexible job-shops environments using constraint programming
  publication-title: Computers & Industrial Engineering
– volume: 58
  start-page: 597
  year: 2020
  end-page: 614
  ident: b0135
  article-title: An imperialist competitive algorithm with memory for distributed unrelated parallel machines scheduling
  publication-title: International Journal of Production Research
– volume: 8
  start-page: 119
  year: 2017
  end-page: 138
  ident: b0195
  article-title: University Course Timetabling using Constraint Programming
  publication-title: Journal of Production and Operations Management
– volume: 48
  start-page: 5235
  year: 2010
  end-page: 5262
  ident: b0215
  article-title: Distributed scheduling: A review of concepts and applications
  publication-title: International Journal of Production Research
– reference: Sauer, J. (1998). A Multi-Site Scheduling System. In: AAAI's Special Interest Group in Manufacturing Workshop on Artificial Intelligence and Manufacturing: State of the Art and State of Practice (pp. 161-168).
– volume: 39
  start-page: 1232
  issue: 10
  year: 1990
  ident: 10.1016/j.cie.2024.109916_b0010
  article-title: Adaptive optimal load balancing in a nonhomogeneous multiserver system with a central job scheduler
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/12.59854
– volume: 60
  start-page: 3534
  issue: 11
  year: 2022
  ident: 10.1016/j.cie.2024.109916_b0100
  article-title: The evolution of production scheduling from Industry 3.0 through Industry 4.0
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2021.1925772
– volume: 111
  start-page: 239
  year: 2017
  ident: 10.1016/j.cie.2024.109916_b0005
  article-title: A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.07.020
– volume: 79
  start-page: 23
  year: 2017
  ident: 10.1016/j.cie.2024.109916_b0070
  article-title: A biased-randomized simheuristic for the distributed assembly permutation flowshop problem with stochastic processing times
  publication-title: Simulation Modelling Practice and Theory
  doi: 10.1016/j.simpat.2017.09.001
– volume: (Vol. 29):
  year: 2012
  ident: 10.1016/j.cie.2024.109916_b0180
– volume: 23
  start-page: 210
  issue: 2
  year: 2018
  ident: 10.1016/j.cie.2024.109916_b0125
  article-title: IBM ILOG CP optimizer for scheduling
  publication-title: Constraints
  doi: 10.1007/s10601-018-9281-x
– volume: 136
  start-page: 252
  year: 2019
  ident: 10.1016/j.cie.2024.109916_b0170
  article-title: Production scheduling and lot streaming at flexible job-shops environments using constraint programming
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2019.07.011
– ident: 10.1016/j.cie.2024.109916_b0025
– volume: 141
  year: 2020
  ident: 10.1016/j.cie.2024.109916_b0045
  article-title: Design of a testbed for hybrid flow shop scheduling with identical machines
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106288
– ident: 10.1016/j.cie.2024.109916_b0105
– volume: 59
  start-page: 4053
  issue: 13
  year: 2021
  ident: 10.1016/j.cie.2024.109916_b0245
  article-title: The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1757174
– volume: 214
  year: 2023
  ident: 10.1016/j.cie.2024.109916_b0200
  article-title: Modelling and optimization of distributed heterogeneous hybrid flow shop lot-streaming scheduling problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.119151
– volume: 152
  year: 2021
  ident: 10.1016/j.cie.2024.109916_b0095
  article-title: An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.107021
– volume: 56
  start-page: 560
  issue: 2
  year: 2017
  ident: 10.1016/j.cie.2024.109916_b0225
  article-title: Application and analysis of methods for selecting an optimal solution from the Pareto-optimal front obtained by multiobjective optimization
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/acs.iecr.6b03453
– volume: 132
  start-page: 293
  year: 2019
  ident: 10.1016/j.cie.2024.109916_b0150
  article-title: Network configuration multi-factory scheduling with batch delivery: A learning-oriented simulated annealing approach
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2019.04.032
– volume: 27
  start-page: 336
  issue: 3
  year: 1981
  ident: 10.1016/j.cie.2024.109916_b0235
  article-title: Heuristic techniques for simultaneous scheduling of production and distribution in multi-echelon structures: Theory and empirical comparisons
  publication-title: Management Science
  doi: 10.1287/mnsc.27.3.336
– year: 2006
  ident: 10.1016/j.cie.2024.109916_b0185
– volume: 142
  year: 2020
  ident: 10.1016/j.cie.2024.109916_b0160
  article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106347
– volume: 175
  start-page: 1818
  issue: 3
  year: 2006
  ident: 10.1016/j.cie.2024.109916_b0035
  article-title: Integrated production and material handling scheduling using mathematical programming and constraint programming
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.02.077
– start-page: 85
  year: 1972
  ident: 10.1016/j.cie.2024.109916_b0115
  article-title: Reducibility among combinatorial problems
– volume: 58
  start-page: 597
  issue: 2
  year: 2020
  ident: 10.1016/j.cie.2024.109916_b0135
  article-title: An imperialist competitive algorithm with memory for distributed unrelated parallel machines scheduling
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2019.1598596
– volume: 59
  start-page: 2028
  issue: 7
  year: 2021
  ident: 10.1016/j.cie.2024.109916_b0140
  article-title: Production planning and scheduling in multi-factory production networks: A systematic literature review
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1797207
– volume: 59
  start-page: 14850
  issue: 33
  year: 2020
  ident: 10.1016/j.cie.2024.109916_b0220
  article-title: Analysis of weighting and selection methods for pareto-optimal solutions of multiobjective optimization in chemical engineering applications
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/acs.iecr.0c00969
– volume: 34
  start-page: 803
  issue: 9
  year: 2002
  ident: 10.1016/j.cie.2024.109916_b0210
  article-title: Satisfying due-dates in large multi-factory supply chains
  publication-title: IIE Transactions
  doi: 10.1080/07408170208928913
– ident: 10.1016/j.cie.2024.109916_b0190
– volume: 251
  start-page: 640
  issue: 2
  year: 2016
  ident: 10.1016/j.cie.2024.109916_b0050
  article-title: Analysis of a parallel machine scheduling problem with sequence dependent setup times and job availability intervals
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.11.020
– volume: 37
  start-page: 754
  issue: 4
  year: 2010
  ident: 10.1016/j.cie.2024.109916_b0165
  article-title: The distributed permutation flowshop scheduling problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2009.06.019
– volume: 56
  start-page: 692
  issue: 1–2
  year: 2018
  ident: 10.1016/j.cie.2024.109916_b0175
  article-title: Distribution of manufacturing strategy decision-making in multi-plant networks
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2017.1401749
– volume: 163
  year: 2022
  ident: 10.1016/j.cie.2024.109916_b0110
  article-title: An evolution strategy approach for the distributed blocking flowshop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107832
– volume: 1
  start-page: 296
  issue: 3
  year: 1971
  ident: 10.1016/j.cie.2024.109916_b0085
  article-title: On a bicriterion formulation of the problems of integrated system identification and system optimization
  publication-title: IEEE transactions on systems, man, and cybernetics
– volume: 22
  start-page: 553
  issue: 4
  year: 2011
  ident: 10.1016/j.cie.2024.109916_b0120
  article-title: Solving production scheduling with earliness/tardiness penalties by constraint programming
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-009-0318-2
– volume: 187
  year: 2022
  ident: 10.1016/j.cie.2024.109916_b0090
  article-title: Modelling and optimization of integrated distributed flow shop scheduling and distribution problems with time windows
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115827
– volume: 57
  start-page: 722
  issue: 3
  year: 2019
  ident: 10.1016/j.cie.2024.109916_b0145
  article-title: Integrated multi-factory production and distribution scheduling applying vehicle routing approach
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2018.1481301
– volume: 125
  start-page: 545
  year: 2018
  ident: 10.1016/j.cie.2024.109916_b0230
  article-title: Lean-pull strategy for order scheduling problem in a multi-site semiconductor crystal ingot-pulling manufacturing company
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.03.043
– volume: 26
  start-page: 252
  issue: 3
  year: 2013
  ident: 10.1016/j.cie.2024.109916_b0080
  article-title: Multi-site scheduling under production and transportation constraints
  publication-title: International Journal of Computer Integrated Manufacturing
  doi: 10.1080/0951192X.2012.688141
– volume: 41
  start-page: 157
  issue: 3
  year: 1993
  ident: 10.1016/j.cie.2024.109916_b0015
  article-title: Routing and scheduling in a flexible job shop by tabu search
  publication-title: Annals of Operations research
  doi: 10.1007/BF02023073
– volume: 213
  start-page: 455
  issue: 2
  year: 2009
  ident: 10.1016/j.cie.2024.109916_b0155
  article-title: Effective implementation of the ε-constraint method in multi-objective mathematical programming problems
  publication-title: Applied mathematics and computation
  doi: 10.1016/j.amc.2009.03.037
– volume: 80
  start-page: 101
  year: 2017
  ident: 10.1016/j.cie.2024.109916_b0240
  article-title: Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2016.11.021
– volume: 29
  start-page: 364
  issue: 2
  year: 2005
  ident: 10.1016/j.cie.2024.109916_b0020
  article-title: An adaptive genetic algorithm with dominated genes for distributed scheduling problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.04.009
– volume: 83
  start-page: 74
  year: 2015
  ident: 10.1016/j.cie.2024.109916_b0075
  article-title: Harmony search-based multi-objective optimization model for multi-site order planning with multiple uncertainties and learning effects
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2015.01.023
– volume: 22
  start-page: 180
  issue: 1
  year: 1974
  ident: 10.1016/j.cie.2024.109916_b0060
  article-title: Converting the 0–1 polynomial programming problem to a 0–1 linear program
  publication-title: Operations research
  doi: 10.1287/opre.22.1.180
– volume: 264
  year: 2023
  ident: 10.1016/j.cie.2024.109916_b0055
  article-title: Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2023.110309
– volume: 56
  start-page: 5541
  issue: 16
  year: 2018
  ident: 10.1016/j.cie.2024.109916_b0065
  article-title: Parallel machine scheduling with tool loading: A constraint programming approach
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2017.1421781
– volume: 141
  year: 2020
  ident: 10.1016/j.cie.2024.109916_b0130
  article-title: An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106320
– ident: 10.1016/j.cie.2024.109916_b0205
– volume: 8
  start-page: 119
  issue: 1
  year: 2017
  ident: 10.1016/j.cie.2024.109916_b0195
  article-title: University Course Timetabling using Constraint Programming
  publication-title: Journal of Production and Operations Management
– volume: 48
  start-page: 5235
  issue: 18
  year: 2010
  ident: 10.1016/j.cie.2024.109916_b0215
  article-title: Distributed scheduling: A review of concepts and applications
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540903121065
– volume: 24
  year: 2021
  ident: 10.1016/j.cie.2024.109916_b0040
  article-title: Sustainable distributed permutation flow-shop scheduling model based on a triple bottom line concept
  publication-title: Journal of Industrial Information Integration
  doi: 10.1016/j.jii.2021.100233
– start-page: 403
  year: 2014
  ident: 10.1016/j.cie.2024.109916_b0030
  article-title: Multi-objective optimization
SSID ssj0004591
Score 2.4435208
Snippet •Considering a two-echelon network with different shop configurations for factories.•The factories have hybrid flow shop and flexible job shop...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109916
SubjectTerms Constraint programming
Distributed scheduling
Epsilon constraint method
Multi-factory scheduling
Network configuration
Title Network configuration distributed production scheduling problem: A constraint programming approach
URI https://dx.doi.org/10.1016/j.cie.2024.109916
Volume 188
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB76uOjBR1Wsj5KDJyG2u0mTjbdSlKrYixZ6W_aRSEVrsdurv93JJisV1IPHDZkQZpJ5sJPvAzgLLOq5YJoqqRXluTI0UZJRvOM6NJqxrGRRuB-L0YTfTvvTGgyrtzC2rdL7fufTS2_tR7pem93FbNZ9QN_r8gdeoqhEdWiGTIl-A5qDm7vReA003BHn4XxqBaqfm2WbF66MVWLILa6SsqznP4WntZBzvQNbPlckA7edXajpeQu2fd5I_K1ctmBzDVRwD9Kx6-wmWOma2dPKmZjkFiHXkluh6MLBvNphLG4x2Ng36cRzy1ySgRVdluQRBfENXK92RgVAvg-T66vH4Yh6JgWahUoW1AR5EgRCM5GEikc87SuVhX2TmiSKRI_lCeovR8eYB1kqmcYaQ0prJo0ZgRGGHUBj_jbXh0AMiyTXGNfQN3CpjTKZDHIRRTxD87KwDb1KgXHmYcbthl_iqp_sGcd1bHUeO5234fxLZOEwNv6azCurxN8OSowx4Hexo_-JHcOG_XJt2ifQKN5X-hSzkCLtQP3iI-j4s_YJt_fcUg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADjwKiPD0wIZk2sRPHbFVFVaDtQit1i_KwURGUirYrv51z7KAiAQOrcxdFd_Y9lM_fAVx6hvU8ZIpKoSTludQ0kYJRPOPK14qxrJii0B-E3RG_HwfjCrTLuzAGVuliv43pRbR2Kw1nzcZsMmk8Yuy19QMvWFSiNVjnARMG13f94a1QhtuxeShNjXj5a7MAeeF7sUf0uWFVkmbm-U_JaSXhdHZh21WKpGU_Zg8qalqDHVc1Encm5zXYWqEU3Id0YHHdBPtcPXlaWgeT3PDjmtFWqDqzJK9mGVtbTDXmRjpxk2VuSMuozovREQvi4FuvRqKkHz-AUed22O5SN0eBZr4UC6q9PPG8ULEw8SWPeBpImfmBTnUSRWGT5QlaL8ewmHtZKpjCDkMI4ySF9YAONTuE6vRtqo6AaBYJrjCrYWTgQmmpM-HlYRTxDJ3L_Do0SwPGmSMZNx_8EpdosmdcV7GxeWxtXoerL5WZZdj4S5iXXom_bZMYM8Dvasf_U7uAje6w34t7d4OHE9g0Tyxg-xSqi_elOsN6ZJGeF_vtE5J23R0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+configuration+distributed+production+scheduling+problem%3A+A+constraint+programming+approach&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Ziadlou%2C+Ghazal&rft.au=Emami%2C+Saeed&rft.au=Asadi-Gangraj%2C+Ebrahim&rft.date=2024-02-01&rft.issn=0360-8352&rft.volume=188&rft.spage=109916&rft_id=info:doi/10.1016%2Fj.cie.2024.109916&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2024_109916
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon