Network configuration distributed production scheduling problem: A constraint programming approach
•Considering a two-echelon network with different shop configurations for factories.•The factories have hybrid flow shop and flexible job shop configuration.•Presenting a model to minimize the maximum completion time and transportation costs.•The constraint programming technique is applied to solve...
Saved in:
Published in | Computers & industrial engineering Vol. 188; p. 109916 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-8352 1879-0550 |
DOI | 10.1016/j.cie.2024.109916 |
Cover
Abstract | •Considering a two-echelon network with different shop configurations for factories.•The factories have hybrid flow shop and flexible job shop configuration.•Presenting a model to minimize the maximum completion time and transportation costs.•The constraint programming technique is applied to solve the problem.
Nowadays, many massive factories are forced to distribute their products in several manufacturing units. This issue has caused the emergence of a novel category of problems called distributed production scheduling, which is vital in today's growing world. In this paper, the distributed production scheduling problem by considering network configuration with two echelons is addressed. The first and second echelon factories have different job configurations and have a hybrid flow shop and a flexible job shop environment, respectively. For this problem, A bi-objective mixed integer linear programming (MILP) model is presented to minimize the maximum completion time of jobs and transportation costs between the selected factories in two echelons, respectively. Consequently, the epsilon constraint method is used to deal with this bi-objective model. In addition, since distributed scheduling problems are classified as NP-Hard problems, it is very challenging to solve them for large-sized instances. For this reason, a constraint programming model (CP) is also proposed. To evaluate the performance of the proposed MILP model and CP model, a total of 180 numerical instances are randomly generated in small, medium, and large sizes. The obtained results demonstrate the significant ability of the constraint programming approach in solving complex distributed scheduling problems even for large-sized instances with 30 jobs, 10 stages/operations for each job, 6 machines for each stage/operation, and 4 factories at each echelon in a reasonable time and proof that the CP model can outperform the MILP model in this problem. |
---|---|
AbstractList | •Considering a two-echelon network with different shop configurations for factories.•The factories have hybrid flow shop and flexible job shop configuration.•Presenting a model to minimize the maximum completion time and transportation costs.•The constraint programming technique is applied to solve the problem.
Nowadays, many massive factories are forced to distribute their products in several manufacturing units. This issue has caused the emergence of a novel category of problems called distributed production scheduling, which is vital in today's growing world. In this paper, the distributed production scheduling problem by considering network configuration with two echelons is addressed. The first and second echelon factories have different job configurations and have a hybrid flow shop and a flexible job shop environment, respectively. For this problem, A bi-objective mixed integer linear programming (MILP) model is presented to minimize the maximum completion time of jobs and transportation costs between the selected factories in two echelons, respectively. Consequently, the epsilon constraint method is used to deal with this bi-objective model. In addition, since distributed scheduling problems are classified as NP-Hard problems, it is very challenging to solve them for large-sized instances. For this reason, a constraint programming model (CP) is also proposed. To evaluate the performance of the proposed MILP model and CP model, a total of 180 numerical instances are randomly generated in small, medium, and large sizes. The obtained results demonstrate the significant ability of the constraint programming approach in solving complex distributed scheduling problems even for large-sized instances with 30 jobs, 10 stages/operations for each job, 6 machines for each stage/operation, and 4 factories at each echelon in a reasonable time and proof that the CP model can outperform the MILP model in this problem. |
ArticleNumber | 109916 |
Author | Ziadlou, Ghazal Emami, Saeed Asadi-Gangraj, Ebrahim |
Author_xml | – sequence: 1 givenname: Ghazal surname: Ziadlou fullname: Ziadlou, Ghazal email: gh.ziadloo@stu.nit.ac.ir – sequence: 2 givenname: Saeed orcidid: 0000-0002-6356-0529 surname: Emami fullname: Emami, Saeed email: s_emami@nit.ac.ir – sequence: 3 givenname: Ebrahim surname: Asadi-Gangraj fullname: Asadi-Gangraj, Ebrahim email: e.asadi@nit.ac.ir |
BookMark | eNp9kM1OwzAQhC1UJNrCA3DLC6TYcWzHcKoq_iQEFzhbjr1uXdKksh0Qb0_ScuLQ02pH8612ZoYmbdcCQtcELwgm_Ga7MB4WBS7KYZeS8DM0JZWQOWYMT9AUU47zirLiAs1i3GKMSybJFNWvkL678JmZrnV-3QedfNdm1scUfN0nsNk-dLY3BzmaDdi-8e16VOsGdrfZckQHt_ZtGtV10Lvd6ND7YdNmc4nOnW4iXP3NOfp4uH9fPeUvb4_Pq-VLbgopUu6I1YRwoFwXsqzKmklpCuZqp6uKY2o1FZWtBLfE1IKCKIUQ1JQMCsIcd3SOxPGuCV2MAZwyPh3ijM81imA1VqW2gw5qrEodqxpI8o_cB7_T4eckc3dkYIj05SGoOFhaA9YHMEnZzp-gfwE5JIXh |
CitedBy_id | crossref_primary_10_1016_j_dajour_2024_100485 crossref_primary_10_32604_cmc_2024_055244 crossref_primary_10_3390_a18030158 crossref_primary_10_1111_itor_70003 crossref_primary_10_1080_01605682_2024_2382867 crossref_primary_10_1016_j_jmsy_2024_10_005 |
Cites_doi | 10.1109/12.59854 10.1080/00207543.2021.1925772 10.1016/j.cie.2017.07.020 10.1016/j.simpat.2017.09.001 10.1007/s10601-018-9281-x 10.1016/j.cie.2019.07.011 10.1016/j.cie.2020.106288 10.1080/00207543.2020.1757174 10.1016/j.eswa.2022.119151 10.1016/j.cie.2020.107021 10.1021/acs.iecr.6b03453 10.1016/j.cie.2019.04.032 10.1287/mnsc.27.3.336 10.1016/j.cie.2020.106347 10.1016/j.ejor.2005.02.077 10.1080/00207543.2019.1598596 10.1080/00207543.2020.1797207 10.1021/acs.iecr.0c00969 10.1080/07408170208928913 10.1016/j.ejor.2015.11.020 10.1016/j.cor.2009.06.019 10.1080/00207543.2017.1401749 10.1016/j.cie.2021.107832 10.1007/s10845-009-0318-2 10.1016/j.eswa.2021.115827 10.1080/00207543.2018.1481301 10.1016/j.cie.2018.03.043 10.1080/0951192X.2012.688141 10.1007/BF02023073 10.1016/j.amc.2009.03.037 10.1016/j.cor.2016.11.021 10.1016/j.eswa.2005.04.009 10.1016/j.cie.2015.01.023 10.1287/opre.22.1.180 10.1016/j.knosys.2023.110309 10.1080/00207543.2017.1421781 10.1016/j.cie.2020.106320 10.1080/00207540903121065 10.1016/j.jii.2021.100233 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cie.2024.109916 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-0550 |
ExternalDocumentID | 10_1016_j_cie_2024_109916 S0360835224000378 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-f1da116e36a29484b599c25fbfa88603da378d876d1cb73e747773c45e215f6f3 |
IEDL.DBID | AIKHN |
ISSN | 0360-8352 |
IngestDate | Tue Jul 01 02:59:59 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Sat Mar 02 16:00:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Distributed scheduling Network configuration Epsilon constraint method Constraint programming Multi-factory scheduling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-f1da116e36a29484b599c25fbfa88603da378d876d1cb73e747773c45e215f6f3 |
ORCID | 0000-0002-6356-0529 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cie_2024_109916 crossref_primary_10_1016_j_cie_2024_109916 elsevier_sciencedirect_doi_10_1016_j_cie_2024_109916 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | Computers & industrial engineering |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Marandi, Fatemi Ghomi (b0145) 2019; 57 Kanet, J.J., Ahire, S.L. & Gorman, M.F. (2004). Constraint programming for scheduling. Rossi, Van Beek, Walsh (b0185) 2006 Wang, Rangaiah (b0225) 2017; 56 Karp (b0115) 1972 Williams (b0235) 1981; 27 Guo, Yang, Wang, Yang (b0075) 2015; 83 Thoney, Hodgson, King, Taner, Wilson (b0210) 2002; 34 Karabulut, Kizilay, Tasgetiren, Gao, Kandiller (b0110) 2022; 163 Fathollahi-Fard, Woodward, Akhrif (b0040) 2021; 24 Smith, W.E. (1955). Various optimizers for single-stage production. In: CALIFORNIA UNIV LOS ANGELES NUMERICAL ANALYSIS RESEARCH. Olhager, Feldmann (b0175) 2018; 56 Shahmoradi, Ketabi, Esmaelian (b0195) 2017; 8 Novas (b0170) 2019; 136 Haimes (b0085) 1971; 1 Wu, Lin, Lin, Chen (b0240) 2017; 80 Meng, Zhang, Ren, Zhang, Lv (b0160) 2020; 142 Fernandez-Viagas, Framinan (b0045) 2020; 141 Chan, Chung, Chan (b0020) 2005; 29 Shao, Shao, Pi (b0200) 2023; 214 El Khayat, Langevin, Riopel (b0035) 2006; 175 Lei, Liu (b0130) 2020; 141 Marandi, Ghomi (b0150) 2019; 132 H'Mida, Lopez (b0080) 2013; 26 Toptal, Sabuncuoglu (b0215) 2010; 48 Jiang, Yuan, Ma, Wang (b0100) 2022; 60 Naderi, Ruiz (b0165) 2010; 37 Laborie, Rogerie, Shaw, Vilím (b0125) 2018; 23 Yang, Xu (b0245) 2021; 59 Lohmer, Lasch (b0140) 2021; 59 Bonomi, Kumar (b0010) 1990; 39 Gedik, Rainwater, Nachtmann, Pohl (b0050) 2016; 251 Gholami, Sun (b0055) 2023; 264 Hou, Fu, Gao, Zhang, Sadollah (b0090) 2022; 187 Mavrotas (b0155) 2009; 213 Wang, Parhi, Rangaiah, Jana (b0220) 2020; 59 Glover, Woolsey (b0060) 1974; 22 Gonzalez-Neira, Ferone, Hatami, Juan (b0070) 2017; 79 Brandimarte (b0015) 1993; 41 Wang, Yang, Yu (b0230) 2018; 125 Pinedo (b0180) 2012; (Vol. 29) CSP, C.-E. (2020). Constraint Satisfaction Problems. Kelbel, Hanzálek (b0120) 2011; 22 Deb (b0030) 2014 Gökgür, Hnich, Özpeynirci (b0065) 2018; 56 Bargaoui, Driss, Ghédira (b0005) 2017; 111 Huang, Pan, Huang, Suganthan, Gao (b0095) 2021; 152 Lei, Yuan, Cai, Bai (b0135) 2020; 58 Sauer, J. (1998). A Multi-Site Scheduling System. In: AAAI's Special Interest Group in Manufacturing Workshop on Artificial Intelligence and Manufacturing: State of the Art and State of Practice (pp. 161-168). Meng (10.1016/j.cie.2024.109916_b0160) 2020; 142 Williams (10.1016/j.cie.2024.109916_b0235) 1981; 27 Gökgür (10.1016/j.cie.2024.109916_b0065) 2018; 56 Yang (10.1016/j.cie.2024.109916_b0245) 2021; 59 Naderi (10.1016/j.cie.2024.109916_b0165) 2010; 37 Glover (10.1016/j.cie.2024.109916_b0060) 1974; 22 Marandi (10.1016/j.cie.2024.109916_b0150) 2019; 132 Wang (10.1016/j.cie.2024.109916_b0225) 2017; 56 Bargaoui (10.1016/j.cie.2024.109916_b0005) 2017; 111 10.1016/j.cie.2024.109916_b0205 Wang (10.1016/j.cie.2024.109916_b0220) 2020; 59 Wu (10.1016/j.cie.2024.109916_b0240) 2017; 80 Brandimarte (10.1016/j.cie.2024.109916_b0015) 1993; 41 Olhager (10.1016/j.cie.2024.109916_b0175) 2018; 56 Deb (10.1016/j.cie.2024.109916_b0030) 2014 Lohmer (10.1016/j.cie.2024.109916_b0140) 2021; 59 Lei (10.1016/j.cie.2024.109916_b0130) 2020; 141 H'Mida (10.1016/j.cie.2024.109916_b0080) 2013; 26 Pinedo (10.1016/j.cie.2024.109916_b0180) 2012; (Vol. 29) Haimes (10.1016/j.cie.2024.109916_b0085) 1971; 1 Toptal (10.1016/j.cie.2024.109916_b0215) 2010; 48 Bonomi (10.1016/j.cie.2024.109916_b0010) 1990; 39 Chan (10.1016/j.cie.2024.109916_b0020) 2005; 29 Karp (10.1016/j.cie.2024.109916_b0115) 1972 Rossi (10.1016/j.cie.2024.109916_b0185) 2006 Shao (10.1016/j.cie.2024.109916_b0200) 2023; 214 Mavrotas (10.1016/j.cie.2024.109916_b0155) 2009; 213 Gholami (10.1016/j.cie.2024.109916_b0055) 2023; 264 Fathollahi-Fard (10.1016/j.cie.2024.109916_b0040) 2021; 24 Fernandez-Viagas (10.1016/j.cie.2024.109916_b0045) 2020; 141 Thoney (10.1016/j.cie.2024.109916_b0210) 2002; 34 Kelbel (10.1016/j.cie.2024.109916_b0120) 2011; 22 10.1016/j.cie.2024.109916_b0105 Gonzalez-Neira (10.1016/j.cie.2024.109916_b0070) 2017; 79 Guo (10.1016/j.cie.2024.109916_b0075) 2015; 83 10.1016/j.cie.2024.109916_b0025 Laborie (10.1016/j.cie.2024.109916_b0125) 2018; 23 El Khayat (10.1016/j.cie.2024.109916_b0035) 2006; 175 Jiang (10.1016/j.cie.2024.109916_b0100) 2022; 60 Karabulut (10.1016/j.cie.2024.109916_b0110) 2022; 163 Shahmoradi (10.1016/j.cie.2024.109916_b0195) 2017; 8 Novas (10.1016/j.cie.2024.109916_b0170) 2019; 136 10.1016/j.cie.2024.109916_b0190 Marandi (10.1016/j.cie.2024.109916_b0145) 2019; 57 Hou (10.1016/j.cie.2024.109916_b0090) 2022; 187 Huang (10.1016/j.cie.2024.109916_b0095) 2021; 152 Lei (10.1016/j.cie.2024.109916_b0135) 2020; 58 Wang (10.1016/j.cie.2024.109916_b0230) 2018; 125 Gedik (10.1016/j.cie.2024.109916_b0050) 2016; 251 |
References_xml | – volume: 213 start-page: 455 year: 2009 end-page: 465 ident: b0155 article-title: Effective implementation of the ε-constraint method in multi-objective mathematical programming problems publication-title: Applied mathematics and computation – year: 2006 ident: b0185 article-title: Handbook of constraint programming – volume: 39 start-page: 1232 year: 1990 end-page: 1250 ident: b0010 article-title: Adaptive optimal load balancing in a nonhomogeneous multiserver system with a central job scheduler publication-title: IEEE Transactions on Computers – reference: Smith, W.E. (1955). Various optimizers for single-stage production. In: CALIFORNIA UNIV LOS ANGELES NUMERICAL ANALYSIS RESEARCH. – volume: 187 year: 2022 ident: b0090 article-title: Modelling and optimization of integrated distributed flow shop scheduling and distribution problems with time windows publication-title: Expert Systems with Applications – volume: 26 start-page: 252 year: 2013 end-page: 266 ident: b0080 article-title: Multi-site scheduling under production and transportation constraints publication-title: International Journal of Computer Integrated Manufacturing – volume: 56 start-page: 692 year: 2018 end-page: 708 ident: b0175 article-title: Distribution of manufacturing strategy decision-making in multi-plant networks publication-title: International Journal of Production Research – volume: 132 start-page: 293 year: 2019 end-page: 310 ident: b0150 article-title: Network configuration multi-factory scheduling with batch delivery: A learning-oriented simulated annealing approach publication-title: Computers & Industrial Engineering – volume: 1 start-page: 296 year: 1971 end-page: 297 ident: b0085 article-title: On a bicriterion formulation of the problems of integrated system identification and system optimization publication-title: IEEE transactions on systems, man, and cybernetics – volume: 79 start-page: 23 year: 2017 end-page: 36 ident: b0070 article-title: A biased-randomized simheuristic for the distributed assembly permutation flowshop problem with stochastic processing times publication-title: Simulation Modelling Practice and Theory – volume: (Vol. 29): year: 2012 ident: b0180 publication-title: Scheduling – volume: 60 start-page: 3534 year: 2022 end-page: 3554 ident: b0100 article-title: The evolution of production scheduling from Industry 3.0 through Industry 4.0 publication-title: International Journal of Production Research – reference: CSP, C.-E. (2020). Constraint Satisfaction Problems. – volume: 34 start-page: 803 year: 2002 end-page: 811 ident: b0210 article-title: Satisfying due-dates in large multi-factory supply chains publication-title: IIE Transactions – volume: 56 start-page: 5541 year: 2018 end-page: 5557 ident: b0065 article-title: Parallel machine scheduling with tool loading: A constraint programming approach publication-title: International Journal of Production Research – reference: Kanet, J.J., Ahire, S.L. & Gorman, M.F. (2004). Constraint programming for scheduling. – volume: 59 start-page: 4053 year: 2021 end-page: 4071 ident: b0245 article-title: The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery publication-title: International Journal of Production Research – volume: 152 year: 2021 ident: b0095 article-title: An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem publication-title: Computers & Industrial Engineering – volume: 141 year: 2020 ident: b0045 article-title: Design of a testbed for hybrid flow shop scheduling with identical machines publication-title: Computers & Industrial Engineering – volume: 264 year: 2023 ident: b0055 article-title: Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks publication-title: Knowledge-Based Systems – volume: 141 year: 2020 ident: b0130 article-title: An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance publication-title: Computers & Industrial Engineering – volume: 142 year: 2020 ident: b0160 article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem publication-title: Computers & Industrial Engineering – start-page: 85 year: 1972 end-page: 103 ident: b0115 article-title: Reducibility among combinatorial problems publication-title: Complexity of computer computations – volume: 24 year: 2021 ident: b0040 article-title: Sustainable distributed permutation flow-shop scheduling model based on a triple bottom line concept publication-title: Journal of Industrial Information Integration – volume: 22 start-page: 180 year: 1974 end-page: 182 ident: b0060 article-title: Converting the 0–1 polynomial programming problem to a 0–1 linear program publication-title: Operations research – volume: 22 start-page: 553 year: 2011 end-page: 562 ident: b0120 article-title: Solving production scheduling with earliness/tardiness penalties by constraint programming publication-title: Journal of Intelligent Manufacturing – volume: 251 start-page: 640 year: 2016 end-page: 650 ident: b0050 article-title: Analysis of a parallel machine scheduling problem with sequence dependent setup times and job availability intervals publication-title: European Journal of Operational Research – volume: 163 year: 2022 ident: b0110 article-title: An evolution strategy approach for the distributed blocking flowshop scheduling problem publication-title: Computers & Industrial Engineering – volume: 56 start-page: 560 year: 2017 end-page: 574 ident: b0225 article-title: Application and analysis of methods for selecting an optimal solution from the Pareto-optimal front obtained by multiobjective optimization publication-title: Industrial & Engineering Chemistry Research – volume: 59 start-page: 14850 year: 2020 end-page: 14867 ident: b0220 article-title: Analysis of weighting and selection methods for pareto-optimal solutions of multiobjective optimization in chemical engineering applications publication-title: Industrial & Engineering Chemistry Research – volume: 23 start-page: 210 year: 2018 end-page: 250 ident: b0125 article-title: IBM ILOG CP optimizer for scheduling publication-title: Constraints – volume: 57 start-page: 722 year: 2019 end-page: 748 ident: b0145 article-title: Integrated multi-factory production and distribution scheduling applying vehicle routing approach publication-title: International Journal of Production Research – volume: 83 start-page: 74 year: 2015 end-page: 90 ident: b0075 article-title: Harmony search-based multi-objective optimization model for multi-site order planning with multiple uncertainties and learning effects publication-title: Computers & Industrial Engineering – volume: 125 start-page: 545 year: 2018 end-page: 562 ident: b0230 article-title: Lean-pull strategy for order scheduling problem in a multi-site semiconductor crystal ingot-pulling manufacturing company publication-title: Computers & Industrial Engineering – volume: 175 start-page: 1818 year: 2006 end-page: 1832 ident: b0035 article-title: Integrated production and material handling scheduling using mathematical programming and constraint programming publication-title: European Journal of Operational Research – volume: 59 start-page: 2028 year: 2021 end-page: 2054 ident: b0140 article-title: Production planning and scheduling in multi-factory production networks: A systematic literature review publication-title: International Journal of Production Research – volume: 29 start-page: 364 year: 2005 end-page: 371 ident: b0020 article-title: An adaptive genetic algorithm with dominated genes for distributed scheduling problems publication-title: Expert Systems with Applications – volume: 41 start-page: 157 year: 1993 end-page: 183 ident: b0015 article-title: Routing and scheduling in a flexible job shop by tabu search publication-title: Annals of Operations research – start-page: 403 year: 2014 end-page: 449 ident: b0030 article-title: Multi-objective optimization publication-title: Search methodologies – volume: 27 start-page: 336 year: 1981 end-page: 352 ident: b0235 article-title: Heuristic techniques for simultaneous scheduling of production and distribution in multi-echelon structures: Theory and empirical comparisons publication-title: Management Science – volume: 80 start-page: 101 year: 2017 end-page: 112 ident: b0240 article-title: Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems publication-title: Computers & Operations Research – volume: 214 year: 2023 ident: b0200 article-title: Modelling and optimization of distributed heterogeneous hybrid flow shop lot-streaming scheduling problem publication-title: Expert Systems with Applications – volume: 111 start-page: 239 year: 2017 end-page: 250 ident: b0005 article-title: A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion publication-title: Computers & Industrial Engineering – volume: 37 start-page: 754 year: 2010 end-page: 768 ident: b0165 article-title: The distributed permutation flowshop scheduling problem publication-title: Computers & Operations Research – volume: 136 start-page: 252 year: 2019 end-page: 264 ident: b0170 article-title: Production scheduling and lot streaming at flexible job-shops environments using constraint programming publication-title: Computers & Industrial Engineering – volume: 58 start-page: 597 year: 2020 end-page: 614 ident: b0135 article-title: An imperialist competitive algorithm with memory for distributed unrelated parallel machines scheduling publication-title: International Journal of Production Research – volume: 8 start-page: 119 year: 2017 end-page: 138 ident: b0195 article-title: University Course Timetabling using Constraint Programming publication-title: Journal of Production and Operations Management – volume: 48 start-page: 5235 year: 2010 end-page: 5262 ident: b0215 article-title: Distributed scheduling: A review of concepts and applications publication-title: International Journal of Production Research – reference: Sauer, J. (1998). A Multi-Site Scheduling System. In: AAAI's Special Interest Group in Manufacturing Workshop on Artificial Intelligence and Manufacturing: State of the Art and State of Practice (pp. 161-168). – volume: 39 start-page: 1232 issue: 10 year: 1990 ident: 10.1016/j.cie.2024.109916_b0010 article-title: Adaptive optimal load balancing in a nonhomogeneous multiserver system with a central job scheduler publication-title: IEEE Transactions on Computers doi: 10.1109/12.59854 – volume: 60 start-page: 3534 issue: 11 year: 2022 ident: 10.1016/j.cie.2024.109916_b0100 article-title: The evolution of production scheduling from Industry 3.0 through Industry 4.0 publication-title: International Journal of Production Research doi: 10.1080/00207543.2021.1925772 – volume: 111 start-page: 239 year: 2017 ident: 10.1016/j.cie.2024.109916_b0005 article-title: A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2017.07.020 – volume: 79 start-page: 23 year: 2017 ident: 10.1016/j.cie.2024.109916_b0070 article-title: A biased-randomized simheuristic for the distributed assembly permutation flowshop problem with stochastic processing times publication-title: Simulation Modelling Practice and Theory doi: 10.1016/j.simpat.2017.09.001 – volume: (Vol. 29): year: 2012 ident: 10.1016/j.cie.2024.109916_b0180 – volume: 23 start-page: 210 issue: 2 year: 2018 ident: 10.1016/j.cie.2024.109916_b0125 article-title: IBM ILOG CP optimizer for scheduling publication-title: Constraints doi: 10.1007/s10601-018-9281-x – volume: 136 start-page: 252 year: 2019 ident: 10.1016/j.cie.2024.109916_b0170 article-title: Production scheduling and lot streaming at flexible job-shops environments using constraint programming publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2019.07.011 – ident: 10.1016/j.cie.2024.109916_b0025 – volume: 141 year: 2020 ident: 10.1016/j.cie.2024.109916_b0045 article-title: Design of a testbed for hybrid flow shop scheduling with identical machines publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.106288 – ident: 10.1016/j.cie.2024.109916_b0105 – volume: 59 start-page: 4053 issue: 13 year: 2021 ident: 10.1016/j.cie.2024.109916_b0245 article-title: The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery publication-title: International Journal of Production Research doi: 10.1080/00207543.2020.1757174 – volume: 214 year: 2023 ident: 10.1016/j.cie.2024.109916_b0200 article-title: Modelling and optimization of distributed heterogeneous hybrid flow shop lot-streaming scheduling problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.119151 – volume: 152 year: 2021 ident: 10.1016/j.cie.2024.109916_b0095 article-title: An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.107021 – volume: 56 start-page: 560 issue: 2 year: 2017 ident: 10.1016/j.cie.2024.109916_b0225 article-title: Application and analysis of methods for selecting an optimal solution from the Pareto-optimal front obtained by multiobjective optimization publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.6b03453 – volume: 132 start-page: 293 year: 2019 ident: 10.1016/j.cie.2024.109916_b0150 article-title: Network configuration multi-factory scheduling with batch delivery: A learning-oriented simulated annealing approach publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2019.04.032 – volume: 27 start-page: 336 issue: 3 year: 1981 ident: 10.1016/j.cie.2024.109916_b0235 article-title: Heuristic techniques for simultaneous scheduling of production and distribution in multi-echelon structures: Theory and empirical comparisons publication-title: Management Science doi: 10.1287/mnsc.27.3.336 – year: 2006 ident: 10.1016/j.cie.2024.109916_b0185 – volume: 142 year: 2020 ident: 10.1016/j.cie.2024.109916_b0160 article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.106347 – volume: 175 start-page: 1818 issue: 3 year: 2006 ident: 10.1016/j.cie.2024.109916_b0035 article-title: Integrated production and material handling scheduling using mathematical programming and constraint programming publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2005.02.077 – start-page: 85 year: 1972 ident: 10.1016/j.cie.2024.109916_b0115 article-title: Reducibility among combinatorial problems – volume: 58 start-page: 597 issue: 2 year: 2020 ident: 10.1016/j.cie.2024.109916_b0135 article-title: An imperialist competitive algorithm with memory for distributed unrelated parallel machines scheduling publication-title: International Journal of Production Research doi: 10.1080/00207543.2019.1598596 – volume: 59 start-page: 2028 issue: 7 year: 2021 ident: 10.1016/j.cie.2024.109916_b0140 article-title: Production planning and scheduling in multi-factory production networks: A systematic literature review publication-title: International Journal of Production Research doi: 10.1080/00207543.2020.1797207 – volume: 59 start-page: 14850 issue: 33 year: 2020 ident: 10.1016/j.cie.2024.109916_b0220 article-title: Analysis of weighting and selection methods for pareto-optimal solutions of multiobjective optimization in chemical engineering applications publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.0c00969 – volume: 34 start-page: 803 issue: 9 year: 2002 ident: 10.1016/j.cie.2024.109916_b0210 article-title: Satisfying due-dates in large multi-factory supply chains publication-title: IIE Transactions doi: 10.1080/07408170208928913 – ident: 10.1016/j.cie.2024.109916_b0190 – volume: 251 start-page: 640 issue: 2 year: 2016 ident: 10.1016/j.cie.2024.109916_b0050 article-title: Analysis of a parallel machine scheduling problem with sequence dependent setup times and job availability intervals publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.11.020 – volume: 37 start-page: 754 issue: 4 year: 2010 ident: 10.1016/j.cie.2024.109916_b0165 article-title: The distributed permutation flowshop scheduling problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2009.06.019 – volume: 56 start-page: 692 issue: 1–2 year: 2018 ident: 10.1016/j.cie.2024.109916_b0175 article-title: Distribution of manufacturing strategy decision-making in multi-plant networks publication-title: International Journal of Production Research doi: 10.1080/00207543.2017.1401749 – volume: 163 year: 2022 ident: 10.1016/j.cie.2024.109916_b0110 article-title: An evolution strategy approach for the distributed blocking flowshop scheduling problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107832 – volume: 1 start-page: 296 issue: 3 year: 1971 ident: 10.1016/j.cie.2024.109916_b0085 article-title: On a bicriterion formulation of the problems of integrated system identification and system optimization publication-title: IEEE transactions on systems, man, and cybernetics – volume: 22 start-page: 553 issue: 4 year: 2011 ident: 10.1016/j.cie.2024.109916_b0120 article-title: Solving production scheduling with earliness/tardiness penalties by constraint programming publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-009-0318-2 – volume: 187 year: 2022 ident: 10.1016/j.cie.2024.109916_b0090 article-title: Modelling and optimization of integrated distributed flow shop scheduling and distribution problems with time windows publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115827 – volume: 57 start-page: 722 issue: 3 year: 2019 ident: 10.1016/j.cie.2024.109916_b0145 article-title: Integrated multi-factory production and distribution scheduling applying vehicle routing approach publication-title: International Journal of Production Research doi: 10.1080/00207543.2018.1481301 – volume: 125 start-page: 545 year: 2018 ident: 10.1016/j.cie.2024.109916_b0230 article-title: Lean-pull strategy for order scheduling problem in a multi-site semiconductor crystal ingot-pulling manufacturing company publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.03.043 – volume: 26 start-page: 252 issue: 3 year: 2013 ident: 10.1016/j.cie.2024.109916_b0080 article-title: Multi-site scheduling under production and transportation constraints publication-title: International Journal of Computer Integrated Manufacturing doi: 10.1080/0951192X.2012.688141 – volume: 41 start-page: 157 issue: 3 year: 1993 ident: 10.1016/j.cie.2024.109916_b0015 article-title: Routing and scheduling in a flexible job shop by tabu search publication-title: Annals of Operations research doi: 10.1007/BF02023073 – volume: 213 start-page: 455 issue: 2 year: 2009 ident: 10.1016/j.cie.2024.109916_b0155 article-title: Effective implementation of the ε-constraint method in multi-objective mathematical programming problems publication-title: Applied mathematics and computation doi: 10.1016/j.amc.2009.03.037 – volume: 80 start-page: 101 year: 2017 ident: 10.1016/j.cie.2024.109916_b0240 article-title: Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems publication-title: Computers & Operations Research doi: 10.1016/j.cor.2016.11.021 – volume: 29 start-page: 364 issue: 2 year: 2005 ident: 10.1016/j.cie.2024.109916_b0020 article-title: An adaptive genetic algorithm with dominated genes for distributed scheduling problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.04.009 – volume: 83 start-page: 74 year: 2015 ident: 10.1016/j.cie.2024.109916_b0075 article-title: Harmony search-based multi-objective optimization model for multi-site order planning with multiple uncertainties and learning effects publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2015.01.023 – volume: 22 start-page: 180 issue: 1 year: 1974 ident: 10.1016/j.cie.2024.109916_b0060 article-title: Converting the 0–1 polynomial programming problem to a 0–1 linear program publication-title: Operations research doi: 10.1287/opre.22.1.180 – volume: 264 year: 2023 ident: 10.1016/j.cie.2024.109916_b0055 article-title: Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2023.110309 – volume: 56 start-page: 5541 issue: 16 year: 2018 ident: 10.1016/j.cie.2024.109916_b0065 article-title: Parallel machine scheduling with tool loading: A constraint programming approach publication-title: International Journal of Production Research doi: 10.1080/00207543.2017.1421781 – volume: 141 year: 2020 ident: 10.1016/j.cie.2024.109916_b0130 article-title: An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.106320 – ident: 10.1016/j.cie.2024.109916_b0205 – volume: 8 start-page: 119 issue: 1 year: 2017 ident: 10.1016/j.cie.2024.109916_b0195 article-title: University Course Timetabling using Constraint Programming publication-title: Journal of Production and Operations Management – volume: 48 start-page: 5235 issue: 18 year: 2010 ident: 10.1016/j.cie.2024.109916_b0215 article-title: Distributed scheduling: A review of concepts and applications publication-title: International Journal of Production Research doi: 10.1080/00207540903121065 – volume: 24 year: 2021 ident: 10.1016/j.cie.2024.109916_b0040 article-title: Sustainable distributed permutation flow-shop scheduling model based on a triple bottom line concept publication-title: Journal of Industrial Information Integration doi: 10.1016/j.jii.2021.100233 – start-page: 403 year: 2014 ident: 10.1016/j.cie.2024.109916_b0030 article-title: Multi-objective optimization |
SSID | ssj0004591 |
Score | 2.4435208 |
Snippet | •Considering a two-echelon network with different shop configurations for factories.•The factories have hybrid flow shop and flexible job shop... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109916 |
SubjectTerms | Constraint programming Distributed scheduling Epsilon constraint method Multi-factory scheduling Network configuration |
Title | Network configuration distributed production scheduling problem: A constraint programming approach |
URI | https://dx.doi.org/10.1016/j.cie.2024.109916 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB76uOjBR1Wsj5KDJyG2u0mTjbdSlKrYixZ6W_aRSEVrsdurv93JJisV1IPHDZkQZpJ5sJPvAzgLLOq5YJoqqRXluTI0UZJRvOM6NJqxrGRRuB-L0YTfTvvTGgyrtzC2rdL7fufTS2_tR7pem93FbNZ9QN_r8gdeoqhEdWiGTIl-A5qDm7vReA003BHn4XxqBaqfm2WbF66MVWLILa6SsqznP4WntZBzvQNbPlckA7edXajpeQu2fd5I_K1ctmBzDVRwD9Kx6-wmWOma2dPKmZjkFiHXkluh6MLBvNphLG4x2Ng36cRzy1ySgRVdluQRBfENXK92RgVAvg-T66vH4Yh6JgWahUoW1AR5EgRCM5GEikc87SuVhX2TmiSKRI_lCeovR8eYB1kqmcYaQ0prJo0ZgRGGHUBj_jbXh0AMiyTXGNfQN3CpjTKZDHIRRTxD87KwDb1KgXHmYcbthl_iqp_sGcd1bHUeO5234fxLZOEwNv6azCurxN8OSowx4Hexo_-JHcOG_XJt2ifQKN5X-hSzkCLtQP3iI-j4s_YJt_fcUg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADjwKiPD0wIZk2sRPHbFVFVaDtQit1i_KwURGUirYrv51z7KAiAQOrcxdFd_Y9lM_fAVx6hvU8ZIpKoSTludQ0kYJRPOPK14qxrJii0B-E3RG_HwfjCrTLuzAGVuliv43pRbR2Kw1nzcZsMmk8Yuy19QMvWFSiNVjnARMG13f94a1QhtuxeShNjXj5a7MAeeF7sUf0uWFVkmbm-U_JaSXhdHZh21WKpGU_Zg8qalqDHVc1Encm5zXYWqEU3Id0YHHdBPtcPXlaWgeT3PDjmtFWqDqzJK9mGVtbTDXmRjpxk2VuSMuozovREQvi4FuvRqKkHz-AUed22O5SN0eBZr4UC6q9PPG8ULEw8SWPeBpImfmBTnUSRWGT5QlaL8ewmHtZKpjCDkMI4ySF9YAONTuE6vRtqo6AaBYJrjCrYWTgQmmpM-HlYRTxDJ3L_Do0SwPGmSMZNx_8EpdosmdcV7GxeWxtXoerL5WZZdj4S5iXXom_bZMYM8Dvasf_U7uAje6w34t7d4OHE9g0Tyxg-xSqi_elOsN6ZJGeF_vtE5J23R0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+configuration+distributed+production+scheduling+problem%3A+A+constraint+programming+approach&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Ziadlou%2C+Ghazal&rft.au=Emami%2C+Saeed&rft.au=Asadi-Gangraj%2C+Ebrahim&rft.date=2024-02-01&rft.issn=0360-8352&rft.volume=188&rft.spage=109916&rft_id=info:doi/10.1016%2Fj.cie.2024.109916&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2024_109916 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |