Investigation on dynamic response of liquid-filled concave cell structures subject to the penetration of high-speed projectiles

The objective of this paper is to study the dynamic response of a concave cell structure filled with liquid under the high-speed projectile penetration. Ballistic impact tests were conducted onto the cuboid and concave cells together with the corresponding numerical simulations. The strain gauges we...

Full description

Saved in:
Bibliographic Details
Published inThin-walled structures Vol. 157; p. 107119
Main Authors Gao, Shengzhi, Li, Dian, Hou, Hailiang, Li, Yongqing, Bai, Xuefei, Jin, Jian, Li, Mao, Lin, Yuanzhi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of this paper is to study the dynamic response of a concave cell structure filled with liquid under the high-speed projectile penetration. Ballistic impact tests were conducted onto the cuboid and concave cells together with the corresponding numerical simulations. The strain gauges were posted onto the typical position to measure the dynamic response of the cell walls. The pressure load on the cell wall was also obtained. The deformation of the post-impact structure was measured using the 3D scanner. The dynamic response of the liquid-filled cell structure and the effects of the structure form were analyzed considering the maximum deformation curve, pressure waves and strain of the cell walls. The results show that the concave cell tends to expand and deform easily compared with the cuboid cell, mitigating the extrusion effects of the liquid. The cavitation pressure load induces the cell expanding deformation and failure. The specific impulse of the cavitation pressure load on the walls, the strain slope, and the maximum strain value are lower for the concave cell. [Display omitted] •Cavitation pressure is the main reason for bulging deformation and failure of cell structure subjected to HRAM.•The concave cell is more likely to expand and deform, but less damage.•The specific impulse of cavitation pressure decreases more than 36% for concave cell.
AbstractList The objective of this paper is to study the dynamic response of a concave cell structure filled with liquid under the high-speed projectile penetration. Ballistic impact tests were conducted onto the cuboid and concave cells together with the corresponding numerical simulations. The strain gauges were posted onto the typical position to measure the dynamic response of the cell walls. The pressure load on the cell wall was also obtained. The deformation of the post-impact structure was measured using the 3D scanner. The dynamic response of the liquid-filled cell structure and the effects of the structure form were analyzed considering the maximum deformation curve, pressure waves and strain of the cell walls. The results show that the concave cell tends to expand and deform easily compared with the cuboid cell, mitigating the extrusion effects of the liquid. The cavitation pressure load induces the cell expanding deformation and failure. The specific impulse of the cavitation pressure load on the walls, the strain slope, and the maximum strain value are lower for the concave cell. [Display omitted] •Cavitation pressure is the main reason for bulging deformation and failure of cell structure subjected to HRAM.•The concave cell is more likely to expand and deform, but less damage.•The specific impulse of cavitation pressure decreases more than 36% for concave cell.
ArticleNumber 107119
Author Bai, Xuefei
Li, Dian
Jin, Jian
Lin, Yuanzhi
Gao, Shengzhi
Li, Yongqing
Li, Mao
Hou, Hailiang
Author_xml – sequence: 1
  givenname: Shengzhi
  orcidid: 0000-0001-6001-7646
  surname: Gao
  fullname: Gao, Shengzhi
  organization: Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China
– sequence: 2
  givenname: Dian
  surname: Li
  fullname: Li, Dian
  organization: Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China
– sequence: 3
  givenname: Hailiang
  surname: Hou
  fullname: Hou, Hailiang
  email: hou9611104@163.com
  organization: Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China
– sequence: 4
  givenname: Yongqing
  orcidid: 0000-0001-5412-6432
  surname: Li
  fullname: Li, Yongqing
  organization: Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China
– sequence: 5
  givenname: Xuefei
  orcidid: 0000-0003-3069-8529
  surname: Bai
  fullname: Bai, Xuefei
  organization: Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China
– sequence: 6
  givenname: Jian
  surname: Jin
  fullname: Jin, Jian
  organization: China Aerodynamics Research and Development Center, Mianyang, 622661, China
– sequence: 7
  givenname: Mao
  surname: Li
  fullname: Li, Mao
  organization: Naval Research Academy, Beijing, 100161, China
– sequence: 8
  givenname: Yuanzhi
  surname: Lin
  fullname: Lin, Yuanzhi
  organization: Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China
BookMark eNp9kM1qAjEUhUOxULV9gO7yAmOTjE4MXRXpjyB04z6MN3c0MibTJFpc9dUbq6suhAOXC-c7cM6A9Jx3SMgjZyPOePW0HaXvOBJMnH7JubohfT6VqiiFKHukz0RVFlNR8jsyiHHLGJdcjfvkZ-4OGJNd18l6R7PM0dU7CzRg7LyLSH1DW_u1t6ZobNuioeAd1AekgG1LYwp7SPvspnG_2iIkmjxNG6QdOkzhktvQjV1vithhDuiCPxlti_Ge3DZ1G_Hhcodk-fa6nH0Ui8_3-exlUYBQMhUNF9wwBF5OAPnYsJVSU0QcGy6kUvVEqMZIYCBWWVVZleOJkSgrhRIAyiHh51gIPsaAje6C3dXhqDnTpwH1VucB9WlAfR4wM_IfAzb91cmtbHuVfD6TmBsdLAYdwaIDNDbk3tp4e4X-BfUFkTA
CitedBy_id crossref_primary_10_1016_j_matdes_2023_111876
crossref_primary_10_1016_j_tws_2024_112746
crossref_primary_10_3390_app122010213
crossref_primary_10_1016_j_tws_2024_112488
crossref_primary_10_1016_j_tws_2023_111337
crossref_primary_10_1016_j_dt_2025_03_007
crossref_primary_10_1016_j_ijmecsci_2024_109811
crossref_primary_10_1016_j_tws_2024_112357
crossref_primary_10_1016_j_oceaneng_2022_111405
crossref_primary_10_1016_j_engstruct_2021_113283
crossref_primary_10_1007_s40430_025_05482_4
crossref_primary_10_1016_j_tws_2023_111085
Cites_doi 10.1016/j.jfluidstructs.2012.11.003
10.1016/j.ijimpeng.2008.07.020
10.1016/j.dt.2019.09.013
10.1016/j.ijimpeng.2019.04.001
10.1016/j.ast.2011.02.003
10.1615/JFlowVisImageProc.v16.i4.30
10.1016/j.ijimpeng.2017.12.007
10.1016/j.ijimpeng.2008.04.006
10.1016/j.ijimpeng.2008.12.009
10.1016/j.ijimpeng.2018.03.009
10.1016/j.matdes.2018.06.020
10.1016/j.compstruct.2011.04.025
10.1016/j.ijimpeng.2020.103658
10.1016/j.tws.2020.106620
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tws.2020.107119
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3223
ExternalDocumentID 10_1016_j_tws_2020_107119
S0263823120309939
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-f121d0ec135ce14d0b998eee4d12799a529fd7c0c2bc2b636345d7e769e7ccc3
IEDL.DBID .~1
ISSN 0263-8231
IngestDate Tue Jul 01 03:58:59 EDT 2025
Thu Apr 24 23:02:13 EDT 2025
Fri Feb 23 02:39:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic response
Cavitation pressure load
Liquid-filled concave cell
Hydrodynamic ram
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-f121d0ec135ce14d0b998eee4d12799a529fd7c0c2bc2b636345d7e769e7ccc3
ORCID 0000-0001-6001-7646
0000-0003-3069-8529
0000-0001-5412-6432
ParticipantIDs crossref_primary_10_1016_j_tws_2020_107119
crossref_citationtrail_10_1016_j_tws_2020_107119
elsevier_sciencedirect_doi_10_1016_j_tws_2020_107119
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Thin-walled structures
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jin, Hou, Chen (bib28) 2019; 130
Ren, Zhou, Tian (bib18) 2018; 117
Hou, Zhu, Li (bib26) 2008
Varas, Zaera, Lopez-Puente (bib27) 2009; 36
Deletombe, Fabis, Dupas (bib10) 2013; 37
Hassan, Zarei (bib25) 2019; 134
Li, Zhu, Hou (bib5) 2016; 36
Zhao, Zhao, Cui (bib13) 2020; 16
Lecysyn, Dandrieux, Heymes (bib1) 2009; 172
Lecysyn, Bony-Dandrieux, Laurent (bib2) 2010; 178
Guo, Chen, Zhong (bib12) 2020
Ma (bib11) 2014
Ren, Lu, Ye (bib19) 2019
Townsend, Park, Peter, Devall (bib20) 2003; 29
Artero-Guerrero, Varas, Pernas-Sánchez (bib16) 2018; 155
Disimile, Swanson, Toy (bib7) 2009; 36
Varas, Zaera, López-Puente (bib17) 2012; 16
Zhang, Shao, Wang (bib21) 2020
Liying, Xiang, Lanwei (bib14) 2018
Zhao (bib22) 2011
Zhong, Hou, Li (bib4) 2017; 10
Kong, Yang, Gan (bib24) 2020; 148
Varas, Lopez-Puente, Zaera (bib8) 2009; 36
Wu, Li, Wu, Hou (bib6) 2018; 38
Chen, Li, Zhou (bib15) 2020
Varas, Zaera, López-Puente (bib9) 2011; 93
Li, Hou, Chen (bib23) 2018; 114
Disimile, Toy, Swanson (bib3) 2009; 16
Varas (10.1016/j.tws.2020.107119_bib17) 2012; 16
Lecysyn (10.1016/j.tws.2020.107119_bib2) 2010; 178
Zhong (10.1016/j.tws.2020.107119_bib4) 2017; 10
Zhang (10.1016/j.tws.2020.107119_bib21) 2020
Disimile (10.1016/j.tws.2020.107119_bib3) 2009; 16
Hou (10.1016/j.tws.2020.107119_bib26) 2008
Wu (10.1016/j.tws.2020.107119_bib6) 2018; 38
Lecysyn (10.1016/j.tws.2020.107119_bib1) 2009; 172
Zhao (10.1016/j.tws.2020.107119_bib22) 2011
Artero-Guerrero (10.1016/j.tws.2020.107119_bib16) 2018; 155
Zhao (10.1016/j.tws.2020.107119_bib13) 2020; 16
Guo (10.1016/j.tws.2020.107119_bib12) 2020
Disimile (10.1016/j.tws.2020.107119_bib7) 2009; 36
Ren (10.1016/j.tws.2020.107119_bib18) 2018; 117
Ma (10.1016/j.tws.2020.107119_bib11) 2014
Hassan (10.1016/j.tws.2020.107119_bib25) 2019; 134
Varas (10.1016/j.tws.2020.107119_bib27) 2009; 36
Jin (10.1016/j.tws.2020.107119_bib28) 2019; 130
Liying (10.1016/j.tws.2020.107119_bib14) 2018
Varas (10.1016/j.tws.2020.107119_bib8) 2009; 36
Townsend (10.1016/j.tws.2020.107119_bib20) 2003; 29
Li (10.1016/j.tws.2020.107119_bib23) 2018; 114
Kong (10.1016/j.tws.2020.107119_bib24) 2020; 148
Li (10.1016/j.tws.2020.107119_bib5) 2016; 36
Chen (10.1016/j.tws.2020.107119_bib15) 2020
Ren (10.1016/j.tws.2020.107119_bib19) 2019
Varas (10.1016/j.tws.2020.107119_bib9) 2011; 93
Deletombe (10.1016/j.tws.2020.107119_bib10) 2013; 37
References_xml – volume: 36
  start-page: 821
  year: 2009
  end-page: 829
  ident: bib7
  article-title: The hydrodynamic ram pressure generated by spherical projectiles[J]
  publication-title: Int. J. Impact Eng.
– volume: 148
  start-page: 106620
  year: 2020
  ident: bib24
  article-title: Experimental and numerical investigation on the detailed buckling process of similar stiffened panels subjected to in-plane compressive load
  publication-title: Thin-Walled Struct.
– year: 2020
  ident: bib21
  article-title: High velocity projectile impact of a composite rubber/aluminium fluid- filled container
  publication-title: Int. J. Lightweight Mater. Manuf.
– volume: 172
  year: 2009
  ident: bib1
  article-title: Ballistic impact on an industrial tank: study and modeling of consequences
  publication-title: J. Hazard Mater.
– start-page: 143
  year: 2019
  ident: bib19
  article-title: A Combined Experimental and Numerical Investigation on Projectiles Penetrating into Water-Filled Container
– volume: 93
  year: 2011
  ident: bib9
  article-title: Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact
  publication-title: Compos. Struct.
– volume: 16
  year: 2020
  ident: bib13
  article-title: Growth model of cavity generated by the projectile impacting liquid-filled tank
  publication-title: Defence Technol.
– volume: 29
  year: 2003
  ident: bib20
  article-title: Failure of fluid filled structures due to high velocity fragment impact
  publication-title: Int. J. Impact Eng.
– year: 2020
  ident: bib15
  article-title: Study of liquid spurt caused by hydrodynamic ram in liquid-filled container
  publication-title: Int. J. Impact Eng.
– start-page: 210
  year: 2020
  ident: bib12
  article-title: An investigation into container constraint effects on the cavity characteristics due to high-speed projectile water entry[J]
  publication-title: Ocean Eng.
– start-page: 40
  year: 2008
  end-page: 45
  ident: bib26
  article-title: Numerical analysis of perforation mechanism for a thin plate subjected to impact by hemispherical-nosed projectiles with low-velocity
  publication-title: J. Vib. Shock
– year: 2014
  ident: bib11
  article-title: Investigation of Multiphase Flow Characteristics Induced by Water Entry of High-Speed Projectiles
– volume: 178
  year: 2010
  ident: bib2
  article-title: Experimental study of hydraulic ram effects on a liquid storage tank: analysis of overpressure and cavitation induced by a high-speed projectile
  publication-title: J. Hazard Mater.
– volume: 38
  start-page: 76
  year: 2018
  end-page: 84
  ident: bib6
  article-title: etc. Protection ability of liquid-filled structure subjected to penetration by high-velocity long-rod projectile
  publication-title: Explos. Shock Waves
– volume: 36
  start-page: 363
  year: 2009
  end-page: 374
  ident: bib27
  article-title: Numerical modelling of the hydrodynamic ram phenomenon[J]
  publication-title: Int. J. Impact Eng.
– year: 2018
  ident: bib14
  article-title: Characteristics of Dragging Period Cavity Formation in Liquid Filling Container by Fragment Impacting
– volume: 130
  year: 2019
  ident: bib28
  article-title: Experimental study on the combined damage of liquid cabin structure subjected to charge explosion with preset fragments
  publication-title: Int. J. Impact Eng.
– volume: 16
  start-page: 1
  year: 2009
  end-page: 30
  ident: bib3
  article-title: A large-scale shadowgraph technique applied to hydrodynamic ram
  publication-title: J. Flow Visual. Image Process.
– volume: 36
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib5
  article-title: Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration
  publication-title: Explos. Shock Waves
– volume: 37
  start-page: 1
  year: 2013
  end-page: 21
  ident: bib10
  article-title: Experimental analysis of 7.62 mm hydrodynamic ram in containers
  publication-title: J. Fluid Struct.
– volume: 114
  year: 2018
  ident: bib23
  article-title: Experimental study on the combined damage of multi-layered composite structures subjected to close-range explosion of simulated warheads
  publication-title: Int. J. Impact Eng.
– volume: 10
  start-page: 1282
  year: 2017
  end-page: 1290
  ident: bib4
  article-title: Experimental study on anti-penetration mechanism of ceramic/fluid cabin composite structure
  publication-title: J. Ship Mech.
– volume: 36
  start-page: 81
  year: 2009
  end-page: 91
  ident: bib8
  article-title: Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact
  publication-title: Int. J. Impact Eng.
– volume: 155
  year: 2018
  ident: bib16
  article-title: Experimental analysis of an attenuation method for Hydrodynamic Ram effects
  publication-title: Mater. Des.
– volume: 16
  start-page: 19
  year: 2012
  end-page: 28
  ident: bib17
  article-title: Numerical modelling of partially filled aircraft fuel tanks submitted to Hydrodynamic Ram
  publication-title: Aero. Sci. Technol.
– year: 2011
  ident: bib22
  article-title: Study on the Effect of Projectiles High-Velocity Normal Penetrating into Concrete Targets
– volume: 117
  start-page: 153
  year: 2018
  end-page: 163
  ident: bib18
  article-title: Experimental investigation on dynamic failure of water-filled vessel subjected to projectile impact
  publication-title: Int. J. Impact Eng.
– volume: 134
  year: 2019
  ident: bib25
  article-title: FSI simulation of hydrodynamic ram event using LS-Dyna software
  publication-title: Thin-Walled Struct.
– volume: 10
  start-page: 1282
  issue: 21
  year: 2017
  ident: 10.1016/j.tws.2020.107119_bib4
  article-title: Experimental study on anti-penetration mechanism of ceramic/fluid cabin composite structure
  publication-title: J. Ship Mech.
– volume: 37
  start-page: 1
  issue: Complete
  year: 2013
  ident: 10.1016/j.tws.2020.107119_bib10
  article-title: Experimental analysis of 7.62 mm hydrodynamic ram in containers
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2012.11.003
– start-page: 210
  year: 2020
  ident: 10.1016/j.tws.2020.107119_bib12
  article-title: An investigation into container constraint effects on the cavity characteristics due to high-speed projectile water entry[J]
  publication-title: Ocean Eng.
– volume: 36
  start-page: 363
  issue: 3
  year: 2009
  ident: 10.1016/j.tws.2020.107119_bib27
  article-title: Numerical modelling of the hydrodynamic ram phenomenon[J]
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2008.07.020
– volume: 16
  issue: 3
  year: 2020
  ident: 10.1016/j.tws.2020.107119_bib13
  article-title: Growth model of cavity generated by the projectile impacting liquid-filled tank
  publication-title: Defence Technol.
  doi: 10.1016/j.dt.2019.09.013
– volume: 130
  year: 2019
  ident: 10.1016/j.tws.2020.107119_bib28
  article-title: Experimental study on the combined damage of liquid cabin structure subjected to charge explosion with preset fragments
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2019.04.001
– year: 2014
  ident: 10.1016/j.tws.2020.107119_bib11
– volume: 16
  start-page: 19
  issue: 1
  year: 2012
  ident: 10.1016/j.tws.2020.107119_bib17
  article-title: Numerical modelling of partially filled aircraft fuel tanks submitted to Hydrodynamic Ram
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2011.02.003
– volume: 16
  start-page: 1
  year: 2009
  ident: 10.1016/j.tws.2020.107119_bib3
  article-title: A large-scale shadowgraph technique applied to hydrodynamic ram
  publication-title: J. Flow Visual. Image Process.
  doi: 10.1615/JFlowVisImageProc.v16.i4.30
– volume: 114
  year: 2018
  ident: 10.1016/j.tws.2020.107119_bib23
  article-title: Experimental study on the combined damage of multi-layered composite structures subjected to close-range explosion of simulated warheads
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2017.12.007
– volume: 134
  year: 2019
  ident: 10.1016/j.tws.2020.107119_bib25
  article-title: FSI simulation of hydrodynamic ram event using LS-Dyna software
  publication-title: Thin-Walled Struct.
– volume: 29
  issue: 1
  year: 2003
  ident: 10.1016/j.tws.2020.107119_bib20
  article-title: Failure of fluid filled structures due to high velocity fragment impact
  publication-title: Int. J. Impact Eng.
– volume: 36
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.tws.2020.107119_bib5
  article-title: Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration
  publication-title: Explos. Shock Waves
– volume: 36
  start-page: 81
  issue: 1
  year: 2009
  ident: 10.1016/j.tws.2020.107119_bib8
  article-title: Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2008.04.006
– volume: 172
  issue: 2
  year: 2009
  ident: 10.1016/j.tws.2020.107119_bib1
  article-title: Ballistic impact on an industrial tank: study and modeling of consequences
  publication-title: J. Hazard Mater.
– volume: 36
  start-page: 821
  issue: 6
  year: 2009
  ident: 10.1016/j.tws.2020.107119_bib7
  article-title: The hydrodynamic ram pressure generated by spherical projectiles[J]
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2008.12.009
– year: 2011
  ident: 10.1016/j.tws.2020.107119_bib22
– volume: 117
  start-page: 153
  issue: JUL
  year: 2018
  ident: 10.1016/j.tws.2020.107119_bib18
  article-title: Experimental investigation on dynamic failure of water-filled vessel subjected to projectile impact
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2018.03.009
– volume: 38
  start-page: 76
  issue: 1
  year: 2018
  ident: 10.1016/j.tws.2020.107119_bib6
  article-title: etc. Protection ability of liquid-filled structure subjected to penetration by high-velocity long-rod projectile
  publication-title: Explos. Shock Waves
– start-page: 143
  year: 2019
  ident: 10.1016/j.tws.2020.107119_bib19
– volume: 155
  year: 2018
  ident: 10.1016/j.tws.2020.107119_bib16
  article-title: Experimental analysis of an attenuation method for Hydrodynamic Ram effects
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.06.020
– volume: 93
  issue: 10
  year: 2011
  ident: 10.1016/j.tws.2020.107119_bib9
  article-title: Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2011.04.025
– start-page: 40
  year: 2008
  ident: 10.1016/j.tws.2020.107119_bib26
  article-title: Numerical analysis of perforation mechanism for a thin plate subjected to impact by hemispherical-nosed projectiles with low-velocity
  publication-title: J. Vib. Shock
– year: 2020
  ident: 10.1016/j.tws.2020.107119_bib15
  article-title: Study of liquid spurt caused by hydrodynamic ram in liquid-filled container
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2020.103658
– year: 2018
  ident: 10.1016/j.tws.2020.107119_bib14
– year: 2020
  ident: 10.1016/j.tws.2020.107119_bib21
  article-title: High velocity projectile impact of a composite rubber/aluminium fluid- filled container
  publication-title: Int. J. Lightweight Mater. Manuf.
– volume: 148
  start-page: 106620
  year: 2020
  ident: 10.1016/j.tws.2020.107119_bib24
  article-title: Experimental and numerical investigation on the detailed buckling process of similar stiffened panels subjected to in-plane compressive load
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2020.106620
– volume: 178
  issue: 1
  year: 2010
  ident: 10.1016/j.tws.2020.107119_bib2
  article-title: Experimental study of hydraulic ram effects on a liquid storage tank: analysis of overpressure and cavitation induced by a high-speed projectile
  publication-title: J. Hazard Mater.
SSID ssj0017194
Score 2.3480718
Snippet The objective of this paper is to study the dynamic response of a concave cell structure filled with liquid under the high-speed projectile penetration....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107119
SubjectTerms Cavitation pressure load
Dynamic response
Hydrodynamic ram
Liquid-filled concave cell
Title Investigation on dynamic response of liquid-filled concave cell structures subject to the penetration of high-speed projectiles
URI https://dx.doi.org/10.1016/j.tws.2020.107119
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4EuKaNm2W4xiO6WAHnbhbadIUKmOrrtOb_uu-148xQT0IgZLyUsp74X0k7_0eIZcSJKm7kWEiUl0mTDdiEKso5qpEI8oPVi9itsU4GD6Ku6k_bZB-XQuDaZWV7i91eqGtqzedipudLE07DxA9FJdYLt4SKA-L-ISQuMuvP9ZpHlzyohkiEjOkrm82ixyv_B0Ru12cS45gOz_Zpg17M9gju5WjSHvlv-yThp0fkJ0N-MBD8rkBkrGYUxhx2V-evpaZr5YuEjpLX1ZpzBIs-osphL8merMUD-xpCR67Amq6XGk8kaH5goJLSDNQgRWgLn4DQY3ZMgNLR6ujG1AmyyMyGdxM-kNWNVRgxlUyZwl3eexYwz3fWC5iR0OwZa0VMXelUpEPEoqlcYyrYQRe4Ak_llYGykpjjHdMmvPF3J4Q6iW-9iBWA29LCKONCjjMdSCko602Xos4NSdDU4GNY8-LWVhnlT2HwPwQmR-WzG-Rq_WSrETa-ItY1OIJv22XECzB78tO_7fsjGzjrMxiOSdNEI69AF8k1-1is7XJVu92NBzjc3T_NPoCp-bhlg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGxFOUpwcmJKt5OHE9IgQqtHShSGxR7DhSEEoLbWHkr3PXOKhIwIDkxYkviu6se_jO3wGcSZSk7qaGi1R1uTDdlGOsonigck0oP3R7kaothnHvQdw-Ro8NuKzvwlBZpdP9lU5faGv3pOO42ZkUReceo4dFEiugLIEK1Qq0CJ0qakLr4qbfG34lE6S_6IdI6zkR1MnNRZnX7J1AuwOaS5_wdn4yT0sm53oTNpyvyC6q39mChi23YX0JQXAHPpZwMsYlw5FVLebZa1X8atk4Z8_Fy7zIeE73_jKGEbBJ3yyjM3tW4cfOcTWbzjUdyrDZmKFXyCaoBR2mLn2DcI35dILGjrnTG9Qn010YXV-NLnvc9VTgJlByxnM_8DPPGj-MjPVF5mmMt6y1IvMDqVQaoZAyaTwTaBxxGIciyqSVsbLSGBPuQbMcl3YfWJhHOsRwDR0uIYw2KvZxrmMhPW21Cdvg1ZxMjMMbp7YXz0ldWPaUIPMTYn5SMb8N518kkwps46_FohZP8m3HJGgMfic7-B_ZKaz2RneDZHAz7B_CGr2pilqOoImCssfomsz0idt6n1LK4qQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+dynamic+response+of+liquid-filled+concave+cell+structures+subject+to+the+penetration+of+high-speed+projectiles&rft.jtitle=Thin-walled+structures&rft.au=Gao%2C+Shengzhi&rft.au=Li%2C+Dian&rft.au=Hou%2C+Hailiang&rft.au=Li%2C+Yongqing&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.eissn=1879-3223&rft.volume=157&rft_id=info:doi/10.1016%2Fj.tws.2020.107119&rft.externalDocID=S0263823120309939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon