Investigation on dynamic response of liquid-filled concave cell structures subject to the penetration of high-speed projectiles
The objective of this paper is to study the dynamic response of a concave cell structure filled with liquid under the high-speed projectile penetration. Ballistic impact tests were conducted onto the cuboid and concave cells together with the corresponding numerical simulations. The strain gauges we...
Saved in:
Published in | Thin-walled structures Vol. 157; p. 107119 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The objective of this paper is to study the dynamic response of a concave cell structure filled with liquid under the high-speed projectile penetration. Ballistic impact tests were conducted onto the cuboid and concave cells together with the corresponding numerical simulations. The strain gauges were posted onto the typical position to measure the dynamic response of the cell walls. The pressure load on the cell wall was also obtained. The deformation of the post-impact structure was measured using the 3D scanner. The dynamic response of the liquid-filled cell structure and the effects of the structure form were analyzed considering the maximum deformation curve, pressure waves and strain of the cell walls. The results show that the concave cell tends to expand and deform easily compared with the cuboid cell, mitigating the extrusion effects of the liquid. The cavitation pressure load induces the cell expanding deformation and failure. The specific impulse of the cavitation pressure load on the walls, the strain slope, and the maximum strain value are lower for the concave cell.
[Display omitted]
•Cavitation pressure is the main reason for bulging deformation and failure of cell structure subjected to HRAM.•The concave cell is more likely to expand and deform, but less damage.•The specific impulse of cavitation pressure decreases more than 36% for concave cell. |
---|---|
AbstractList | The objective of this paper is to study the dynamic response of a concave cell structure filled with liquid under the high-speed projectile penetration. Ballistic impact tests were conducted onto the cuboid and concave cells together with the corresponding numerical simulations. The strain gauges were posted onto the typical position to measure the dynamic response of the cell walls. The pressure load on the cell wall was also obtained. The deformation of the post-impact structure was measured using the 3D scanner. The dynamic response of the liquid-filled cell structure and the effects of the structure form were analyzed considering the maximum deformation curve, pressure waves and strain of the cell walls. The results show that the concave cell tends to expand and deform easily compared with the cuboid cell, mitigating the extrusion effects of the liquid. The cavitation pressure load induces the cell expanding deformation and failure. The specific impulse of the cavitation pressure load on the walls, the strain slope, and the maximum strain value are lower for the concave cell.
[Display omitted]
•Cavitation pressure is the main reason for bulging deformation and failure of cell structure subjected to HRAM.•The concave cell is more likely to expand and deform, but less damage.•The specific impulse of cavitation pressure decreases more than 36% for concave cell. |
ArticleNumber | 107119 |
Author | Bai, Xuefei Li, Dian Jin, Jian Lin, Yuanzhi Gao, Shengzhi Li, Yongqing Li, Mao Hou, Hailiang |
Author_xml | – sequence: 1 givenname: Shengzhi orcidid: 0000-0001-6001-7646 surname: Gao fullname: Gao, Shengzhi organization: Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China – sequence: 2 givenname: Dian surname: Li fullname: Li, Dian organization: Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China – sequence: 3 givenname: Hailiang surname: Hou fullname: Hou, Hailiang email: hou9611104@163.com organization: Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China – sequence: 4 givenname: Yongqing orcidid: 0000-0001-5412-6432 surname: Li fullname: Li, Yongqing organization: Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China – sequence: 5 givenname: Xuefei orcidid: 0000-0003-3069-8529 surname: Bai fullname: Bai, Xuefei organization: Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China – sequence: 6 givenname: Jian surname: Jin fullname: Jin, Jian organization: China Aerodynamics Research and Development Center, Mianyang, 622661, China – sequence: 7 givenname: Mao surname: Li fullname: Li, Mao organization: Naval Research Academy, Beijing, 100161, China – sequence: 8 givenname: Yuanzhi surname: Lin fullname: Lin, Yuanzhi organization: Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China |
BookMark | eNp9kM1qAjEUhUOxULV9gO7yAmOTjE4MXRXpjyB04z6MN3c0MibTJFpc9dUbq6suhAOXC-c7cM6A9Jx3SMgjZyPOePW0HaXvOBJMnH7JubohfT6VqiiFKHukz0RVFlNR8jsyiHHLGJdcjfvkZ-4OGJNd18l6R7PM0dU7CzRg7LyLSH1DW_u1t6ZobNuioeAd1AekgG1LYwp7SPvspnG_2iIkmjxNG6QdOkzhktvQjV1vithhDuiCPxlti_Ge3DZ1G_Hhcodk-fa6nH0Ui8_3-exlUYBQMhUNF9wwBF5OAPnYsJVSU0QcGy6kUvVEqMZIYCBWWVVZleOJkSgrhRIAyiHh51gIPsaAje6C3dXhqDnTpwH1VucB9WlAfR4wM_IfAzb91cmtbHuVfD6TmBsdLAYdwaIDNDbk3tp4e4X-BfUFkTA |
CitedBy_id | crossref_primary_10_1016_j_matdes_2023_111876 crossref_primary_10_1016_j_tws_2024_112746 crossref_primary_10_3390_app122010213 crossref_primary_10_1016_j_tws_2024_112488 crossref_primary_10_1016_j_tws_2023_111337 crossref_primary_10_1016_j_dt_2025_03_007 crossref_primary_10_1016_j_ijmecsci_2024_109811 crossref_primary_10_1016_j_tws_2024_112357 crossref_primary_10_1016_j_oceaneng_2022_111405 crossref_primary_10_1016_j_engstruct_2021_113283 crossref_primary_10_1007_s40430_025_05482_4 crossref_primary_10_1016_j_tws_2023_111085 |
Cites_doi | 10.1016/j.jfluidstructs.2012.11.003 10.1016/j.ijimpeng.2008.07.020 10.1016/j.dt.2019.09.013 10.1016/j.ijimpeng.2019.04.001 10.1016/j.ast.2011.02.003 10.1615/JFlowVisImageProc.v16.i4.30 10.1016/j.ijimpeng.2017.12.007 10.1016/j.ijimpeng.2008.04.006 10.1016/j.ijimpeng.2008.12.009 10.1016/j.ijimpeng.2018.03.009 10.1016/j.matdes.2018.06.020 10.1016/j.compstruct.2011.04.025 10.1016/j.ijimpeng.2020.103658 10.1016/j.tws.2020.106620 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tws.2020.107119 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3223 |
ExternalDocumentID | 10_1016_j_tws_2020_107119 S0263823120309939 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-f121d0ec135ce14d0b998eee4d12799a529fd7c0c2bc2b636345d7e769e7ccc3 |
IEDL.DBID | .~1 |
ISSN | 0263-8231 |
IngestDate | Tue Jul 01 03:58:59 EDT 2025 Thu Apr 24 23:02:13 EDT 2025 Fri Feb 23 02:39:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dynamic response Cavitation pressure load Liquid-filled concave cell Hydrodynamic ram |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-f121d0ec135ce14d0b998eee4d12799a529fd7c0c2bc2b636345d7e769e7ccc3 |
ORCID | 0000-0001-6001-7646 0000-0003-3069-8529 0000-0001-5412-6432 |
ParticipantIDs | crossref_primary_10_1016_j_tws_2020_107119 crossref_citationtrail_10_1016_j_tws_2020_107119 elsevier_sciencedirect_doi_10_1016_j_tws_2020_107119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Thin-walled structures |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jin, Hou, Chen (bib28) 2019; 130 Ren, Zhou, Tian (bib18) 2018; 117 Hou, Zhu, Li (bib26) 2008 Varas, Zaera, Lopez-Puente (bib27) 2009; 36 Deletombe, Fabis, Dupas (bib10) 2013; 37 Hassan, Zarei (bib25) 2019; 134 Li, Zhu, Hou (bib5) 2016; 36 Zhao, Zhao, Cui (bib13) 2020; 16 Lecysyn, Dandrieux, Heymes (bib1) 2009; 172 Lecysyn, Bony-Dandrieux, Laurent (bib2) 2010; 178 Guo, Chen, Zhong (bib12) 2020 Ma (bib11) 2014 Ren, Lu, Ye (bib19) 2019 Townsend, Park, Peter, Devall (bib20) 2003; 29 Artero-Guerrero, Varas, Pernas-Sánchez (bib16) 2018; 155 Disimile, Swanson, Toy (bib7) 2009; 36 Varas, Zaera, López-Puente (bib17) 2012; 16 Zhang, Shao, Wang (bib21) 2020 Liying, Xiang, Lanwei (bib14) 2018 Zhao (bib22) 2011 Zhong, Hou, Li (bib4) 2017; 10 Kong, Yang, Gan (bib24) 2020; 148 Varas, Lopez-Puente, Zaera (bib8) 2009; 36 Wu, Li, Wu, Hou (bib6) 2018; 38 Chen, Li, Zhou (bib15) 2020 Varas, Zaera, López-Puente (bib9) 2011; 93 Li, Hou, Chen (bib23) 2018; 114 Disimile, Toy, Swanson (bib3) 2009; 16 Varas (10.1016/j.tws.2020.107119_bib17) 2012; 16 Lecysyn (10.1016/j.tws.2020.107119_bib2) 2010; 178 Zhong (10.1016/j.tws.2020.107119_bib4) 2017; 10 Zhang (10.1016/j.tws.2020.107119_bib21) 2020 Disimile (10.1016/j.tws.2020.107119_bib3) 2009; 16 Hou (10.1016/j.tws.2020.107119_bib26) 2008 Wu (10.1016/j.tws.2020.107119_bib6) 2018; 38 Lecysyn (10.1016/j.tws.2020.107119_bib1) 2009; 172 Zhao (10.1016/j.tws.2020.107119_bib22) 2011 Artero-Guerrero (10.1016/j.tws.2020.107119_bib16) 2018; 155 Zhao (10.1016/j.tws.2020.107119_bib13) 2020; 16 Guo (10.1016/j.tws.2020.107119_bib12) 2020 Disimile (10.1016/j.tws.2020.107119_bib7) 2009; 36 Ren (10.1016/j.tws.2020.107119_bib18) 2018; 117 Ma (10.1016/j.tws.2020.107119_bib11) 2014 Hassan (10.1016/j.tws.2020.107119_bib25) 2019; 134 Varas (10.1016/j.tws.2020.107119_bib27) 2009; 36 Jin (10.1016/j.tws.2020.107119_bib28) 2019; 130 Liying (10.1016/j.tws.2020.107119_bib14) 2018 Varas (10.1016/j.tws.2020.107119_bib8) 2009; 36 Townsend (10.1016/j.tws.2020.107119_bib20) 2003; 29 Li (10.1016/j.tws.2020.107119_bib23) 2018; 114 Kong (10.1016/j.tws.2020.107119_bib24) 2020; 148 Li (10.1016/j.tws.2020.107119_bib5) 2016; 36 Chen (10.1016/j.tws.2020.107119_bib15) 2020 Ren (10.1016/j.tws.2020.107119_bib19) 2019 Varas (10.1016/j.tws.2020.107119_bib9) 2011; 93 Deletombe (10.1016/j.tws.2020.107119_bib10) 2013; 37 |
References_xml | – volume: 36 start-page: 821 year: 2009 end-page: 829 ident: bib7 article-title: The hydrodynamic ram pressure generated by spherical projectiles[J] publication-title: Int. J. Impact Eng. – volume: 148 start-page: 106620 year: 2020 ident: bib24 article-title: Experimental and numerical investigation on the detailed buckling process of similar stiffened panels subjected to in-plane compressive load publication-title: Thin-Walled Struct. – year: 2020 ident: bib21 article-title: High velocity projectile impact of a composite rubber/aluminium fluid- filled container publication-title: Int. J. Lightweight Mater. Manuf. – volume: 172 year: 2009 ident: bib1 article-title: Ballistic impact on an industrial tank: study and modeling of consequences publication-title: J. Hazard Mater. – start-page: 143 year: 2019 ident: bib19 article-title: A Combined Experimental and Numerical Investigation on Projectiles Penetrating into Water-Filled Container – volume: 93 year: 2011 ident: bib9 article-title: Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact publication-title: Compos. Struct. – volume: 16 year: 2020 ident: bib13 article-title: Growth model of cavity generated by the projectile impacting liquid-filled tank publication-title: Defence Technol. – volume: 29 year: 2003 ident: bib20 article-title: Failure of fluid filled structures due to high velocity fragment impact publication-title: Int. J. Impact Eng. – year: 2020 ident: bib15 article-title: Study of liquid spurt caused by hydrodynamic ram in liquid-filled container publication-title: Int. J. Impact Eng. – start-page: 210 year: 2020 ident: bib12 article-title: An investigation into container constraint effects on the cavity characteristics due to high-speed projectile water entry[J] publication-title: Ocean Eng. – start-page: 40 year: 2008 end-page: 45 ident: bib26 article-title: Numerical analysis of perforation mechanism for a thin plate subjected to impact by hemispherical-nosed projectiles with low-velocity publication-title: J. Vib. Shock – year: 2014 ident: bib11 article-title: Investigation of Multiphase Flow Characteristics Induced by Water Entry of High-Speed Projectiles – volume: 178 year: 2010 ident: bib2 article-title: Experimental study of hydraulic ram effects on a liquid storage tank: analysis of overpressure and cavitation induced by a high-speed projectile publication-title: J. Hazard Mater. – volume: 38 start-page: 76 year: 2018 end-page: 84 ident: bib6 article-title: etc. Protection ability of liquid-filled structure subjected to penetration by high-velocity long-rod projectile publication-title: Explos. Shock Waves – volume: 36 start-page: 363 year: 2009 end-page: 374 ident: bib27 article-title: Numerical modelling of the hydrodynamic ram phenomenon[J] publication-title: Int. J. Impact Eng. – year: 2018 ident: bib14 article-title: Characteristics of Dragging Period Cavity Formation in Liquid Filling Container by Fragment Impacting – volume: 130 year: 2019 ident: bib28 article-title: Experimental study on the combined damage of liquid cabin structure subjected to charge explosion with preset fragments publication-title: Int. J. Impact Eng. – volume: 16 start-page: 1 year: 2009 end-page: 30 ident: bib3 article-title: A large-scale shadowgraph technique applied to hydrodynamic ram publication-title: J. Flow Visual. Image Process. – volume: 36 start-page: 1 year: 2016 end-page: 8 ident: bib5 article-title: Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration publication-title: Explos. Shock Waves – volume: 37 start-page: 1 year: 2013 end-page: 21 ident: bib10 article-title: Experimental analysis of 7.62 mm hydrodynamic ram in containers publication-title: J. Fluid Struct. – volume: 114 year: 2018 ident: bib23 article-title: Experimental study on the combined damage of multi-layered composite structures subjected to close-range explosion of simulated warheads publication-title: Int. J. Impact Eng. – volume: 10 start-page: 1282 year: 2017 end-page: 1290 ident: bib4 article-title: Experimental study on anti-penetration mechanism of ceramic/fluid cabin composite structure publication-title: J. Ship Mech. – volume: 36 start-page: 81 year: 2009 end-page: 91 ident: bib8 article-title: Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact publication-title: Int. J. Impact Eng. – volume: 155 year: 2018 ident: bib16 article-title: Experimental analysis of an attenuation method for Hydrodynamic Ram effects publication-title: Mater. Des. – volume: 16 start-page: 19 year: 2012 end-page: 28 ident: bib17 article-title: Numerical modelling of partially filled aircraft fuel tanks submitted to Hydrodynamic Ram publication-title: Aero. Sci. Technol. – year: 2011 ident: bib22 article-title: Study on the Effect of Projectiles High-Velocity Normal Penetrating into Concrete Targets – volume: 117 start-page: 153 year: 2018 end-page: 163 ident: bib18 article-title: Experimental investigation on dynamic failure of water-filled vessel subjected to projectile impact publication-title: Int. J. Impact Eng. – volume: 134 year: 2019 ident: bib25 article-title: FSI simulation of hydrodynamic ram event using LS-Dyna software publication-title: Thin-Walled Struct. – volume: 10 start-page: 1282 issue: 21 year: 2017 ident: 10.1016/j.tws.2020.107119_bib4 article-title: Experimental study on anti-penetration mechanism of ceramic/fluid cabin composite structure publication-title: J. Ship Mech. – volume: 37 start-page: 1 issue: Complete year: 2013 ident: 10.1016/j.tws.2020.107119_bib10 article-title: Experimental analysis of 7.62 mm hydrodynamic ram in containers publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2012.11.003 – start-page: 210 year: 2020 ident: 10.1016/j.tws.2020.107119_bib12 article-title: An investigation into container constraint effects on the cavity characteristics due to high-speed projectile water entry[J] publication-title: Ocean Eng. – volume: 36 start-page: 363 issue: 3 year: 2009 ident: 10.1016/j.tws.2020.107119_bib27 article-title: Numerical modelling of the hydrodynamic ram phenomenon[J] publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2008.07.020 – volume: 16 issue: 3 year: 2020 ident: 10.1016/j.tws.2020.107119_bib13 article-title: Growth model of cavity generated by the projectile impacting liquid-filled tank publication-title: Defence Technol. doi: 10.1016/j.dt.2019.09.013 – volume: 130 year: 2019 ident: 10.1016/j.tws.2020.107119_bib28 article-title: Experimental study on the combined damage of liquid cabin structure subjected to charge explosion with preset fragments publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2019.04.001 – year: 2014 ident: 10.1016/j.tws.2020.107119_bib11 – volume: 16 start-page: 19 issue: 1 year: 2012 ident: 10.1016/j.tws.2020.107119_bib17 article-title: Numerical modelling of partially filled aircraft fuel tanks submitted to Hydrodynamic Ram publication-title: Aero. Sci. Technol. doi: 10.1016/j.ast.2011.02.003 – volume: 16 start-page: 1 year: 2009 ident: 10.1016/j.tws.2020.107119_bib3 article-title: A large-scale shadowgraph technique applied to hydrodynamic ram publication-title: J. Flow Visual. Image Process. doi: 10.1615/JFlowVisImageProc.v16.i4.30 – volume: 114 year: 2018 ident: 10.1016/j.tws.2020.107119_bib23 article-title: Experimental study on the combined damage of multi-layered composite structures subjected to close-range explosion of simulated warheads publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2017.12.007 – volume: 134 year: 2019 ident: 10.1016/j.tws.2020.107119_bib25 article-title: FSI simulation of hydrodynamic ram event using LS-Dyna software publication-title: Thin-Walled Struct. – volume: 29 issue: 1 year: 2003 ident: 10.1016/j.tws.2020.107119_bib20 article-title: Failure of fluid filled structures due to high velocity fragment impact publication-title: Int. J. Impact Eng. – volume: 36 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.tws.2020.107119_bib5 article-title: Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration publication-title: Explos. Shock Waves – volume: 36 start-page: 81 issue: 1 year: 2009 ident: 10.1016/j.tws.2020.107119_bib8 article-title: Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2008.04.006 – volume: 172 issue: 2 year: 2009 ident: 10.1016/j.tws.2020.107119_bib1 article-title: Ballistic impact on an industrial tank: study and modeling of consequences publication-title: J. Hazard Mater. – volume: 36 start-page: 821 issue: 6 year: 2009 ident: 10.1016/j.tws.2020.107119_bib7 article-title: The hydrodynamic ram pressure generated by spherical projectiles[J] publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2008.12.009 – year: 2011 ident: 10.1016/j.tws.2020.107119_bib22 – volume: 117 start-page: 153 issue: JUL year: 2018 ident: 10.1016/j.tws.2020.107119_bib18 article-title: Experimental investigation on dynamic failure of water-filled vessel subjected to projectile impact publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2018.03.009 – volume: 38 start-page: 76 issue: 1 year: 2018 ident: 10.1016/j.tws.2020.107119_bib6 article-title: etc. Protection ability of liquid-filled structure subjected to penetration by high-velocity long-rod projectile publication-title: Explos. Shock Waves – start-page: 143 year: 2019 ident: 10.1016/j.tws.2020.107119_bib19 – volume: 155 year: 2018 ident: 10.1016/j.tws.2020.107119_bib16 article-title: Experimental analysis of an attenuation method for Hydrodynamic Ram effects publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.06.020 – volume: 93 issue: 10 year: 2011 ident: 10.1016/j.tws.2020.107119_bib9 article-title: Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2011.04.025 – start-page: 40 year: 2008 ident: 10.1016/j.tws.2020.107119_bib26 article-title: Numerical analysis of perforation mechanism for a thin plate subjected to impact by hemispherical-nosed projectiles with low-velocity publication-title: J. Vib. Shock – year: 2020 ident: 10.1016/j.tws.2020.107119_bib15 article-title: Study of liquid spurt caused by hydrodynamic ram in liquid-filled container publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2020.103658 – year: 2018 ident: 10.1016/j.tws.2020.107119_bib14 – year: 2020 ident: 10.1016/j.tws.2020.107119_bib21 article-title: High velocity projectile impact of a composite rubber/aluminium fluid- filled container publication-title: Int. J. Lightweight Mater. Manuf. – volume: 148 start-page: 106620 year: 2020 ident: 10.1016/j.tws.2020.107119_bib24 article-title: Experimental and numerical investigation on the detailed buckling process of similar stiffened panels subjected to in-plane compressive load publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2020.106620 – volume: 178 issue: 1 year: 2010 ident: 10.1016/j.tws.2020.107119_bib2 article-title: Experimental study of hydraulic ram effects on a liquid storage tank: analysis of overpressure and cavitation induced by a high-speed projectile publication-title: J. Hazard Mater. |
SSID | ssj0017194 |
Score | 2.3480718 |
Snippet | The objective of this paper is to study the dynamic response of a concave cell structure filled with liquid under the high-speed projectile penetration.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107119 |
SubjectTerms | Cavitation pressure load Dynamic response Hydrodynamic ram Liquid-filled concave cell |
Title | Investigation on dynamic response of liquid-filled concave cell structures subject to the penetration of high-speed projectiles |
URI | https://dx.doi.org/10.1016/j.tws.2020.107119 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4EuKaNm2W4xiO6WAHnbhbadIUKmOrrtOb_uu-148xQT0IgZLyUsp74X0k7_0eIZcSJKm7kWEiUl0mTDdiEKso5qpEI8oPVi9itsU4GD6Ku6k_bZB-XQuDaZWV7i91eqGtqzedipudLE07DxA9FJdYLt4SKA-L-ISQuMuvP9ZpHlzyohkiEjOkrm82ixyv_B0Ru12cS45gOz_Zpg17M9gju5WjSHvlv-yThp0fkJ0N-MBD8rkBkrGYUxhx2V-evpaZr5YuEjpLX1ZpzBIs-osphL8merMUD-xpCR67Amq6XGk8kaH5goJLSDNQgRWgLn4DQY3ZMgNLR6ujG1AmyyMyGdxM-kNWNVRgxlUyZwl3eexYwz3fWC5iR0OwZa0VMXelUpEPEoqlcYyrYQRe4Ak_llYGykpjjHdMmvPF3J4Q6iW-9iBWA29LCKONCjjMdSCko602Xos4NSdDU4GNY8-LWVhnlT2HwPwQmR-WzG-Rq_WSrETa-ItY1OIJv22XECzB78tO_7fsjGzjrMxiOSdNEI69AF8k1-1is7XJVu92NBzjc3T_NPoCp-bhlg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGxFOUpwcmJKt5OHE9IgQqtHShSGxR7DhSEEoLbWHkr3PXOKhIwIDkxYkviu6se_jO3wGcSZSk7qaGi1R1uTDdlGOsonigck0oP3R7kaothnHvQdw-Ro8NuKzvwlBZpdP9lU5faGv3pOO42ZkUReceo4dFEiugLIEK1Qq0CJ0qakLr4qbfG34lE6S_6IdI6zkR1MnNRZnX7J1AuwOaS5_wdn4yT0sm53oTNpyvyC6q39mChi23YX0JQXAHPpZwMsYlw5FVLebZa1X8atk4Z8_Fy7zIeE73_jKGEbBJ3yyjM3tW4cfOcTWbzjUdyrDZmKFXyCaoBR2mLn2DcI35dILGjrnTG9Qn010YXV-NLnvc9VTgJlByxnM_8DPPGj-MjPVF5mmMt6y1IvMDqVQaoZAyaTwTaBxxGIciyqSVsbLSGBPuQbMcl3YfWJhHOsRwDR0uIYw2KvZxrmMhPW21Cdvg1ZxMjMMbp7YXz0ldWPaUIPMTYn5SMb8N518kkwps46_FohZP8m3HJGgMfic7-B_ZKaz2RneDZHAz7B_CGr2pilqOoImCssfomsz0idt6n1LK4qQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+dynamic+response+of+liquid-filled+concave+cell+structures+subject+to+the+penetration+of+high-speed+projectiles&rft.jtitle=Thin-walled+structures&rft.au=Gao%2C+Shengzhi&rft.au=Li%2C+Dian&rft.au=Hou%2C+Hailiang&rft.au=Li%2C+Yongqing&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.eissn=1879-3223&rft.volume=157&rft_id=info:doi/10.1016%2Fj.tws.2020.107119&rft.externalDocID=S0263823120309939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon |