A variation of constant formula for Caputo fractional stochastic differential equations

We establish and prove a variation of constant formula for Caputo fractional stochastic differential equations whose coefficients satisfy a standard Lipschitz condition. The main ingredient in the proof is to use Ito’s representation theorem and the known variation of constant formula for determinis...

Full description

Saved in:
Bibliographic Details
Published inStatistics & probability letters Vol. 145; pp. 351 - 358
Main Authors Anh, P.T., Doan, T.S., Huong, P.T.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We establish and prove a variation of constant formula for Caputo fractional stochastic differential equations whose coefficients satisfy a standard Lipschitz condition. The main ingredient in the proof is to use Ito’s representation theorem and the known variation of constant formula for deterministic Caputo fractional differential equations. As a consequence, for these systems we point out the coincidence between the notion of classical solutions introduced in Wang et al. (2016) and mild solutions introduced in Sakthivel et al. (2013).
AbstractList We establish and prove a variation of constant formula for Caputo fractional stochastic differential equations whose coefficients satisfy a standard Lipschitz condition. The main ingredient in the proof is to use Ito’s representation theorem and the known variation of constant formula for deterministic Caputo fractional differential equations. As a consequence, for these systems we point out the coincidence between the notion of classical solutions introduced in Wang et al. (2016) and mild solutions introduced in Sakthivel et al. (2013).
Author Huong, P.T.
Anh, P.T.
Doan, T.S.
Author_xml – sequence: 1
  givenname: P.T.
  surname: Anh
  fullname: Anh, P.T.
  email: phamtheanhhn@gmail.com
  organization: Le Quy Don Technical University, 236 Hoang QuocViet, Ha Noi, Viet Nam
– sequence: 2
  givenname: T.S.
  surname: Doan
  fullname: Doan, T.S.
  email: dtson@math.ac.vn
  organization: Institute of Mathematics, Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
– sequence: 3
  givenname: P.T.
  surname: Huong
  fullname: Huong, P.T.
  email: pthuong175@gmail.com
  organization: Le Quy Don Technical University, 236 Hoang QuocViet, Ha Noi, Viet Nam
BookMark eNp9kM1qwzAQhEVJoUnaB-hNL2BXK0eRTU8h9A8CvbT0KGR5RRUcK5XkQN--ctNzLzvsMjMs34LMBj8gIbfASmCwvtuX8diXnEGd95IBuyBzqGVTcGDVjMyzRxYSBL8iixj3jDEuBMzJx4aedHA6OT9Qb6nxQ0x6SNT6cBh7PSnd6uOYPLVBm8mnexqTN586Jmdo56zFgENy-Y5f429VvCaXVvcRb_50Sd4fH962z8Xu9ellu9kVhjcyFditRVOBkYKZ1pqmqSQKg9KCte1KctQrwZpWA7frPNraQF3Vum6Rc2FXrFoSOPea4GMMaNUxuIMO3wqYmsiovcpk1ERmOmUyOXN_zmB-7OQwqGgcDgY7F9Ak1Xn3T_oHl5tvww
CitedBy_id crossref_primary_10_3390_foundations3040043
crossref_primary_10_1016_j_chaos_2020_110253
crossref_primary_10_1016_j_chaos_2022_111996
crossref_primary_10_1007_s40306_023_00518_0
crossref_primary_10_1088_1402_4896_ad5917
crossref_primary_10_1093_imanum_drab047
crossref_primary_10_1016_j_spl_2022_109406
crossref_primary_10_1016_j_spl_2022_109768
crossref_primary_10_3390_math8010060
crossref_primary_10_3934_dcdsb_2021225
crossref_primary_10_1002_mma_8594
crossref_primary_10_1007_s40314_023_02248_3
crossref_primary_10_1080_00207160_2023_2186152
crossref_primary_10_1080_07362994_2021_1988856
crossref_primary_10_1007_s12190_022_01705_2
crossref_primary_10_3390_fractalfract8010057
crossref_primary_10_1016_j_cam_2020_112989
crossref_primary_10_1016_j_chaos_2022_111958
crossref_primary_10_1016_j_jcp_2022_111213
crossref_primary_10_3390_math12030365
crossref_primary_10_1016_j_physd_2023_133685
crossref_primary_10_3390_fractalfract6060307
crossref_primary_10_3390_fractalfract7060447
Cites_doi 10.1016/j.cam.2015.12.020
10.14232/ejqtde.2016.1.39
10.1016/j.na.2012.10.009
10.1016/j.na.2016.01.020
10.1007/s11071-016-3002-z
10.1080/07362994.2018.1440243
10.3934/dcdsb.2017164
10.1016/j.aml.2011.05.035
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.spl.2018.10.010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1879-2103
EndPage 358
ExternalDocumentID 10_1016_j_spl_2018_10_010
S0167715218303262
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1OL
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYJJ
ABAOU
ABEHJ
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMJ
HVGLF
HX~
HZ~
H~9
IHE
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c297t-ed65931c750cbfc9937e5ce7f1ffb472ea4509ba12f6a12b8c1838a8be225f403
IEDL.DBID AIKHN
ISSN 0167-7152
IngestDate Thu Sep 26 18:22:01 EDT 2024
Fri Feb 23 02:22:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fractional stochastic differential equations
Mild solution
Classical solution
A variation of constant formula
Inhomogeneous linear systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-ed65931c750cbfc9937e5ce7f1ffb472ea4509ba12f6a12b8c1838a8be225f403
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_spl_2018_10_010
elsevier_sciencedirect_doi_10_1016_j_spl_2018_10_010
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationTitle Statistics & probability letters
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cong, Doan, Tuan, Siegmund (b4) 2016; 86
Li, Peng (b8) 2011; 24
Doan, Kloeden, Huong, Tuan (b7) 2018; 36
Cong, Doan, Tuan, Siegmund (b3) 2016; 39
Wang, Xu, Kloeden (b13) 2016; 135
Podlubny (b11) 1999
Cong, Doan, Tuan, Siegmund (b5) 2017; 22
Bandyopadhyay, Kamal (b1) 2015; vol. 317
Øksendal (b10) 2000
Diethelm (b6) 2010; vol. 2004
Sakthivel, Revathi, Ren (b12) 2013; 81
Mao (b9) 2008
Benchaabane, Sakthivel (b2) 2017; 312
Diethelm (10.1016/j.spl.2018.10.010_b6) 2010; vol. 2004
Wang (10.1016/j.spl.2018.10.010_b13) 2016; 135
Bandyopadhyay (10.1016/j.spl.2018.10.010_b1) 2015; vol. 317
Doan (10.1016/j.spl.2018.10.010_b7) 2018; 36
Cong (10.1016/j.spl.2018.10.010_b4) 2016; 86
Benchaabane (10.1016/j.spl.2018.10.010_b2) 2017; 312
Øksendal (10.1016/j.spl.2018.10.010_b10) 2000
Cong (10.1016/j.spl.2018.10.010_b3) 2016; 39
Mao (10.1016/j.spl.2018.10.010_b9) 2008
Sakthivel (10.1016/j.spl.2018.10.010_b12) 2013; 81
Li (10.1016/j.spl.2018.10.010_b8) 2011; 24
Podlubny (10.1016/j.spl.2018.10.010_b11) 1999
Cong (10.1016/j.spl.2018.10.010_b5) 2017; 22
References_xml – volume: 39
  start-page: 1
  year: 2016
  end-page: 13
  ident: b3
  article-title: Linearized asymptotic stability for fractional differential equations
  publication-title: Electron. J. Qual. Theory Differ. Equ.
  contributor:
    fullname: Siegmund
– volume: 36
  start-page: 654
  year: 2018
  end-page: 664
  ident: b7
  article-title: Asymptotic separation between solutions of caputo fractional stochastic differential equations
  publication-title: Stoch. Anal. Appl.
  contributor:
    fullname: Tuan
– volume: 24
  start-page: 2019
  year: 2011
  end-page: 2023
  ident: b8
  article-title: Laplace transform and fractional differential equations
  publication-title: Appl. Math. Lett.
  contributor:
    fullname: Peng
– year: 2000
  ident: b10
  article-title: Stochastic Differential Equations. An Introduction with Applications
  contributor:
    fullname: Øksendal
– volume: vol. 317
  year: 2015
  ident: b1
  article-title: Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach
  publication-title: Lecture Notes in Electrical Engineering
  contributor:
    fullname: Kamal
– volume: 81
  start-page: 70
  year: 2013
  end-page: 86
  ident: b12
  article-title: Existence of solutions for nonlinear fractional stochastic differential equations
  publication-title: Nonlinear Anal. TMA.
  contributor:
    fullname: Ren
– year: 2008
  ident: b9
  article-title: Stochastic Differential Equations and Applications
  contributor:
    fullname: Mao
– year: 1999
  ident: b11
  article-title: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, To Methods of Their Solution and Some of Their Applications
  contributor:
    fullname: Podlubny
– volume: vol. 2004
  year: 2010
  ident: b6
  article-title: The Analysis of Fractional Differential Equations. An Application–Oriented Exposition Using Differential Operators of Caputo Type
  publication-title: Lect. Notes Math.
  contributor:
    fullname: Diethelm
– volume: 135
  start-page: 205
  year: 2016
  end-page: 222
  ident: b13
  article-title: Asymptotic behavior of stochastic lattice systems with a caputo fractional time derivative
  publication-title: Nonlinear Anal.
  contributor:
    fullname: Kloeden
– volume: 86
  start-page: 1885
  year: 2016
  end-page: 1894
  ident: b4
  article-title: On stable manifolds for fractional differential equations in high-dimensional spaces
  publication-title: Nonlinear Dyn.
  contributor:
    fullname: Siegmund
– volume: 22
  start-page: 3079
  year: 2017
  end-page: 3090
  ident: b5
  article-title: An instability theorem for nonlinear fractional differential systems
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  contributor:
    fullname: Siegmund
– volume: 312
  start-page: 65
  year: 2017
  end-page: 73
  ident: b2
  article-title: Sobolev-type fractional stochastic differential equations with non-Lipschitz coefficients
  publication-title: J. Comput. Appl. Math.
  contributor:
    fullname: Sakthivel
– volume: 312
  start-page: 65
  year: 2017
  ident: 10.1016/j.spl.2018.10.010_b2
  article-title: Sobolev-type fractional stochastic differential equations with non-Lipschitz coefficients
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.12.020
  contributor:
    fullname: Benchaabane
– volume: 39
  start-page: 1
  year: 2016
  ident: 10.1016/j.spl.2018.10.010_b3
  article-title: Linearized asymptotic stability for fractional differential equations
  publication-title: Electron. J. Qual. Theory Differ. Equ.
  doi: 10.14232/ejqtde.2016.1.39
  contributor:
    fullname: Cong
– volume: 81
  start-page: 70
  year: 2013
  ident: 10.1016/j.spl.2018.10.010_b12
  article-title: Existence of solutions for nonlinear fractional stochastic differential equations
  publication-title: Nonlinear Anal. TMA.
  doi: 10.1016/j.na.2012.10.009
  contributor:
    fullname: Sakthivel
– volume: 135
  start-page: 205
  year: 2016
  ident: 10.1016/j.spl.2018.10.010_b13
  article-title: Asymptotic behavior of stochastic lattice systems with a caputo fractional time derivative
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2016.01.020
  contributor:
    fullname: Wang
– year: 1999
  ident: 10.1016/j.spl.2018.10.010_b11
  contributor:
    fullname: Podlubny
– volume: 86
  start-page: 1885
  year: 2016
  ident: 10.1016/j.spl.2018.10.010_b4
  article-title: On stable manifolds for fractional differential equations in high-dimensional spaces
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-3002-z
  contributor:
    fullname: Cong
– volume: vol. 2004
  year: 2010
  ident: 10.1016/j.spl.2018.10.010_b6
  article-title: The Analysis of Fractional Differential Equations. An Application–Oriented Exposition Using Differential Operators of Caputo Type
  contributor:
    fullname: Diethelm
– year: 2008
  ident: 10.1016/j.spl.2018.10.010_b9
  contributor:
    fullname: Mao
– volume: vol. 317
  year: 2015
  ident: 10.1016/j.spl.2018.10.010_b1
  article-title: Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach
  contributor:
    fullname: Bandyopadhyay
– volume: 36
  start-page: 654
  year: 2018
  ident: 10.1016/j.spl.2018.10.010_b7
  article-title: Asymptotic separation between solutions of caputo fractional stochastic differential equations
  publication-title: Stoch. Anal. Appl.
  doi: 10.1080/07362994.2018.1440243
  contributor:
    fullname: Doan
– volume: 22
  start-page: 3079
  year: 2017
  ident: 10.1016/j.spl.2018.10.010_b5
  article-title: An instability theorem for nonlinear fractional differential systems
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  doi: 10.3934/dcdsb.2017164
  contributor:
    fullname: Cong
– year: 2000
  ident: 10.1016/j.spl.2018.10.010_b10
  contributor:
    fullname: Øksendal
– volume: 24
  start-page: 2019
  year: 2011
  ident: 10.1016/j.spl.2018.10.010_b8
  article-title: Laplace transform and fractional differential equations
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2011.05.035
  contributor:
    fullname: Li
SSID ssj0002551
Score 2.3871162
Snippet We establish and prove a variation of constant formula for Caputo fractional stochastic differential equations whose coefficients satisfy a standard Lipschitz...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 351
SubjectTerms A variation of constant formula
Classical solution
Fractional stochastic differential equations
Inhomogeneous linear systems
Mild solution
Title A variation of constant formula for Caputo fractional stochastic differential equations
URI https://dx.doi.org/10.1016/j.spl.2018.10.010
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LTwIxEMcnCBc8GEWN-CA9eDJZYLtPjoRIUAIHlcBt05Y2YgissHj0szuzD6KJXrxss03abP67nfl1O50C3NrKkQLB29JCh5ZruGcJPg9wqqIR3z2DPon-d4zG_mDiPs68WQl6xV4YCqvMbX9m01Nrnde0cjVb8WLReqYA-oDcT4hmmJMdrqSLRGWodB-Gg_HeICM120WKb2pQLG6mYV7bmBYg7LBJMV60j_Y39_TN5fSP4ShnRdbNHucESnpVg8PRPtHqtgZVgsUs1_IpTLvsA6e-qdZsbZjK2C9hBKa7paCS9US8S9bMbLIdDdg_4p96FdQHK45LwWG_ZPo9SwO-PYNJ__6lN7DygxMsxTtBYum573UcWyENKGkUIYj2lA6MbYx0A66Fi5wghc2NjxcZKtQwFKHUOLqN23bOobxar_QFMOXwQHrttmwr4c4RyKRjOBfc034okT3qcFfoFcVZfoyoCBx7i1DciMSlKhS3Dm6haPTjJUdov_9udvm_ZldQxbtOFmJ9DeVks9M3SBCJbMBB89Nu5N8JlcOn6fALpgrHeg
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT8IwFMdfCBzEg1HUiD978GQy2brfR0IkQ35chMhtaUsbMQQmDP9-X-lGNNGLly3p0mb5rn3v0_X1FeDeES5nCN6WZDKyPEV9i9FZiFMVifjuK_RJ-n_HcBQkE-956k8r0Cn3wuiwysL2G5u-s9ZFSatQs5XN560XHUAfavcToRmm2g7XkAZi7Oy1dq-fjPYGGanZKVN86wrl4uYuzGuT6QUIJ3rUMV56H-1v7umby-kew1HBiqRtXucEKnLZgMPhPtHqpgF1DYsm1_IpvLbJJ059d1qTlSLCsF9ONJhuF0zfSYdl23xF1NrsaMD2Ef_EG9NtkPK4FBz2CyI_TBrwzRlMuk_jTmIVBydYgsZhbslZ4MeuI5AGBFdCI4j0hQyVoxT3QiqZh5zAmUNVgBceCdQwYhGXOLqVZ7vnUF2ulvICiHBpyH3b5rZg3gyBjLuKUkZ9GUQc2aMJD6VeaWbyY6Rl4Nh7iuKmWlxdhOI2wSsVTX985BTt99_VLv9X7Q4OkvFwkA56o_4V1PFJbMKtr6Gar7fyBmki57dFb_kCU4DH1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variation+of+constant+formula+for+Caputo+fractional+stochastic+differential+equations&rft.jtitle=Statistics+%26+probability+letters&rft.au=Anh%2C+P.T.&rft.au=Doan%2C+T.S.&rft.au=Huong%2C+P.T.&rft.date=2019-02-01&rft.pub=Elsevier+B.V&rft.issn=0167-7152&rft.eissn=1879-2103&rft.volume=145&rft.spage=351&rft.epage=358&rft_id=info:doi/10.1016%2Fj.spl.2018.10.010&rft.externalDocID=S0167715218303262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7152&client=summon