A variation of constant formula for Caputo fractional stochastic differential equations
We establish and prove a variation of constant formula for Caputo fractional stochastic differential equations whose coefficients satisfy a standard Lipschitz condition. The main ingredient in the proof is to use Ito’s representation theorem and the known variation of constant formula for determinis...
Saved in:
Published in | Statistics & probability letters Vol. 145; pp. 351 - 358 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We establish and prove a variation of constant formula for Caputo fractional stochastic differential equations whose coefficients satisfy a standard Lipschitz condition. The main ingredient in the proof is to use Ito’s representation theorem and the known variation of constant formula for deterministic Caputo fractional differential equations. As a consequence, for these systems we point out the coincidence between the notion of classical solutions introduced in Wang et al. (2016) and mild solutions introduced in Sakthivel et al. (2013). |
---|---|
AbstractList | We establish and prove a variation of constant formula for Caputo fractional stochastic differential equations whose coefficients satisfy a standard Lipschitz condition. The main ingredient in the proof is to use Ito’s representation theorem and the known variation of constant formula for deterministic Caputo fractional differential equations. As a consequence, for these systems we point out the coincidence between the notion of classical solutions introduced in Wang et al. (2016) and mild solutions introduced in Sakthivel et al. (2013). |
Author | Huong, P.T. Anh, P.T. Doan, T.S. |
Author_xml | – sequence: 1 givenname: P.T. surname: Anh fullname: Anh, P.T. email: phamtheanhhn@gmail.com organization: Le Quy Don Technical University, 236 Hoang QuocViet, Ha Noi, Viet Nam – sequence: 2 givenname: T.S. surname: Doan fullname: Doan, T.S. email: dtson@math.ac.vn organization: Institute of Mathematics, Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam – sequence: 3 givenname: P.T. surname: Huong fullname: Huong, P.T. email: pthuong175@gmail.com organization: Le Quy Don Technical University, 236 Hoang QuocViet, Ha Noi, Viet Nam |
BookMark | eNp9kM1qwzAQhEVJoUnaB-hNL2BXK0eRTU8h9A8CvbT0KGR5RRUcK5XkQN--ctNzLzvsMjMs34LMBj8gIbfASmCwvtuX8diXnEGd95IBuyBzqGVTcGDVjMyzRxYSBL8iixj3jDEuBMzJx4aedHA6OT9Qb6nxQ0x6SNT6cBh7PSnd6uOYPLVBm8mnexqTN586Jmdo56zFgENy-Y5f429VvCaXVvcRb_50Sd4fH962z8Xu9ellu9kVhjcyFditRVOBkYKZ1pqmqSQKg9KCte1KctQrwZpWA7frPNraQF3Vum6Rc2FXrFoSOPea4GMMaNUxuIMO3wqYmsiovcpk1ERmOmUyOXN_zmB-7OQwqGgcDgY7F9Ak1Xn3T_oHl5tvww |
CitedBy_id | crossref_primary_10_3390_foundations3040043 crossref_primary_10_1016_j_chaos_2020_110253 crossref_primary_10_1016_j_chaos_2022_111996 crossref_primary_10_1007_s40306_023_00518_0 crossref_primary_10_1088_1402_4896_ad5917 crossref_primary_10_1093_imanum_drab047 crossref_primary_10_1016_j_spl_2022_109406 crossref_primary_10_1016_j_spl_2022_109768 crossref_primary_10_3390_math8010060 crossref_primary_10_3934_dcdsb_2021225 crossref_primary_10_1002_mma_8594 crossref_primary_10_1007_s40314_023_02248_3 crossref_primary_10_1080_00207160_2023_2186152 crossref_primary_10_1080_07362994_2021_1988856 crossref_primary_10_1007_s12190_022_01705_2 crossref_primary_10_3390_fractalfract8010057 crossref_primary_10_1016_j_cam_2020_112989 crossref_primary_10_1016_j_chaos_2022_111958 crossref_primary_10_1016_j_jcp_2022_111213 crossref_primary_10_3390_math12030365 crossref_primary_10_1016_j_physd_2023_133685 crossref_primary_10_3390_fractalfract6060307 crossref_primary_10_3390_fractalfract7060447 |
Cites_doi | 10.1016/j.cam.2015.12.020 10.14232/ejqtde.2016.1.39 10.1016/j.na.2012.10.009 10.1016/j.na.2016.01.020 10.1007/s11071-016-3002-z 10.1080/07362994.2018.1440243 10.3934/dcdsb.2017164 10.1016/j.aml.2011.05.035 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spl.2018.10.010 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1879-2103 |
EndPage | 358 |
ExternalDocumentID | 10_1016_j_spl_2018_10_010 S0167715218303262 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1OL 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYJJ ABAOU ABEHJ ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADGUI ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMJ HVGLF HX~ HZ~ H~9 IHE J1W KOM LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SSW SSZ T5K TN5 WUQ XPP ZMT ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c297t-ed65931c750cbfc9937e5ce7f1ffb472ea4509ba12f6a12b8c1838a8be225f403 |
IEDL.DBID | AIKHN |
ISSN | 0167-7152 |
IngestDate | Thu Sep 26 18:22:01 EDT 2024 Fri Feb 23 02:22:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fractional stochastic differential equations Mild solution Classical solution A variation of constant formula Inhomogeneous linear systems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-ed65931c750cbfc9937e5ce7f1ffb472ea4509ba12f6a12b8c1838a8be225f403 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_spl_2018_10_010 elsevier_sciencedirect_doi_10_1016_j_spl_2018_10_010 |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationTitle | Statistics & probability letters |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cong, Doan, Tuan, Siegmund (b4) 2016; 86 Li, Peng (b8) 2011; 24 Doan, Kloeden, Huong, Tuan (b7) 2018; 36 Cong, Doan, Tuan, Siegmund (b3) 2016; 39 Wang, Xu, Kloeden (b13) 2016; 135 Podlubny (b11) 1999 Cong, Doan, Tuan, Siegmund (b5) 2017; 22 Bandyopadhyay, Kamal (b1) 2015; vol. 317 Øksendal (b10) 2000 Diethelm (b6) 2010; vol. 2004 Sakthivel, Revathi, Ren (b12) 2013; 81 Mao (b9) 2008 Benchaabane, Sakthivel (b2) 2017; 312 Diethelm (10.1016/j.spl.2018.10.010_b6) 2010; vol. 2004 Wang (10.1016/j.spl.2018.10.010_b13) 2016; 135 Bandyopadhyay (10.1016/j.spl.2018.10.010_b1) 2015; vol. 317 Doan (10.1016/j.spl.2018.10.010_b7) 2018; 36 Cong (10.1016/j.spl.2018.10.010_b4) 2016; 86 Benchaabane (10.1016/j.spl.2018.10.010_b2) 2017; 312 Øksendal (10.1016/j.spl.2018.10.010_b10) 2000 Cong (10.1016/j.spl.2018.10.010_b3) 2016; 39 Mao (10.1016/j.spl.2018.10.010_b9) 2008 Sakthivel (10.1016/j.spl.2018.10.010_b12) 2013; 81 Li (10.1016/j.spl.2018.10.010_b8) 2011; 24 Podlubny (10.1016/j.spl.2018.10.010_b11) 1999 Cong (10.1016/j.spl.2018.10.010_b5) 2017; 22 |
References_xml | – volume: 39 start-page: 1 year: 2016 end-page: 13 ident: b3 article-title: Linearized asymptotic stability for fractional differential equations publication-title: Electron. J. Qual. Theory Differ. Equ. contributor: fullname: Siegmund – volume: 36 start-page: 654 year: 2018 end-page: 664 ident: b7 article-title: Asymptotic separation between solutions of caputo fractional stochastic differential equations publication-title: Stoch. Anal. Appl. contributor: fullname: Tuan – volume: 24 start-page: 2019 year: 2011 end-page: 2023 ident: b8 article-title: Laplace transform and fractional differential equations publication-title: Appl. Math. Lett. contributor: fullname: Peng – year: 2000 ident: b10 article-title: Stochastic Differential Equations. An Introduction with Applications contributor: fullname: Øksendal – volume: vol. 317 year: 2015 ident: b1 article-title: Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach publication-title: Lecture Notes in Electrical Engineering contributor: fullname: Kamal – volume: 81 start-page: 70 year: 2013 end-page: 86 ident: b12 article-title: Existence of solutions for nonlinear fractional stochastic differential equations publication-title: Nonlinear Anal. TMA. contributor: fullname: Ren – year: 2008 ident: b9 article-title: Stochastic Differential Equations and Applications contributor: fullname: Mao – year: 1999 ident: b11 article-title: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, To Methods of Their Solution and Some of Their Applications contributor: fullname: Podlubny – volume: vol. 2004 year: 2010 ident: b6 article-title: The Analysis of Fractional Differential Equations. An Application–Oriented Exposition Using Differential Operators of Caputo Type publication-title: Lect. Notes Math. contributor: fullname: Diethelm – volume: 135 start-page: 205 year: 2016 end-page: 222 ident: b13 article-title: Asymptotic behavior of stochastic lattice systems with a caputo fractional time derivative publication-title: Nonlinear Anal. contributor: fullname: Kloeden – volume: 86 start-page: 1885 year: 2016 end-page: 1894 ident: b4 article-title: On stable manifolds for fractional differential equations in high-dimensional spaces publication-title: Nonlinear Dyn. contributor: fullname: Siegmund – volume: 22 start-page: 3079 year: 2017 end-page: 3090 ident: b5 article-title: An instability theorem for nonlinear fractional differential systems publication-title: Discrete Contin. Dyn. Syst. Ser. B contributor: fullname: Siegmund – volume: 312 start-page: 65 year: 2017 end-page: 73 ident: b2 article-title: Sobolev-type fractional stochastic differential equations with non-Lipschitz coefficients publication-title: J. Comput. Appl. Math. contributor: fullname: Sakthivel – volume: 312 start-page: 65 year: 2017 ident: 10.1016/j.spl.2018.10.010_b2 article-title: Sobolev-type fractional stochastic differential equations with non-Lipschitz coefficients publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.12.020 contributor: fullname: Benchaabane – volume: 39 start-page: 1 year: 2016 ident: 10.1016/j.spl.2018.10.010_b3 article-title: Linearized asymptotic stability for fractional differential equations publication-title: Electron. J. Qual. Theory Differ. Equ. doi: 10.14232/ejqtde.2016.1.39 contributor: fullname: Cong – volume: 81 start-page: 70 year: 2013 ident: 10.1016/j.spl.2018.10.010_b12 article-title: Existence of solutions for nonlinear fractional stochastic differential equations publication-title: Nonlinear Anal. TMA. doi: 10.1016/j.na.2012.10.009 contributor: fullname: Sakthivel – volume: 135 start-page: 205 year: 2016 ident: 10.1016/j.spl.2018.10.010_b13 article-title: Asymptotic behavior of stochastic lattice systems with a caputo fractional time derivative publication-title: Nonlinear Anal. doi: 10.1016/j.na.2016.01.020 contributor: fullname: Wang – year: 1999 ident: 10.1016/j.spl.2018.10.010_b11 contributor: fullname: Podlubny – volume: 86 start-page: 1885 year: 2016 ident: 10.1016/j.spl.2018.10.010_b4 article-title: On stable manifolds for fractional differential equations in high-dimensional spaces publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-3002-z contributor: fullname: Cong – volume: vol. 2004 year: 2010 ident: 10.1016/j.spl.2018.10.010_b6 article-title: The Analysis of Fractional Differential Equations. An Application–Oriented Exposition Using Differential Operators of Caputo Type contributor: fullname: Diethelm – year: 2008 ident: 10.1016/j.spl.2018.10.010_b9 contributor: fullname: Mao – volume: vol. 317 year: 2015 ident: 10.1016/j.spl.2018.10.010_b1 article-title: Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach contributor: fullname: Bandyopadhyay – volume: 36 start-page: 654 year: 2018 ident: 10.1016/j.spl.2018.10.010_b7 article-title: Asymptotic separation between solutions of caputo fractional stochastic differential equations publication-title: Stoch. Anal. Appl. doi: 10.1080/07362994.2018.1440243 contributor: fullname: Doan – volume: 22 start-page: 3079 year: 2017 ident: 10.1016/j.spl.2018.10.010_b5 article-title: An instability theorem for nonlinear fractional differential systems publication-title: Discrete Contin. Dyn. Syst. Ser. B doi: 10.3934/dcdsb.2017164 contributor: fullname: Cong – year: 2000 ident: 10.1016/j.spl.2018.10.010_b10 contributor: fullname: Øksendal – volume: 24 start-page: 2019 year: 2011 ident: 10.1016/j.spl.2018.10.010_b8 article-title: Laplace transform and fractional differential equations publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2011.05.035 contributor: fullname: Li |
SSID | ssj0002551 |
Score | 2.3871162 |
Snippet | We establish and prove a variation of constant formula for Caputo fractional stochastic differential equations whose coefficients satisfy a standard Lipschitz... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 351 |
SubjectTerms | A variation of constant formula Classical solution Fractional stochastic differential equations Inhomogeneous linear systems Mild solution |
Title | A variation of constant formula for Caputo fractional stochastic differential equations |
URI | https://dx.doi.org/10.1016/j.spl.2018.10.010 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LTwIxEMcnCBc8GEWN-CA9eDJZYLtPjoRIUAIHlcBt05Y2YgissHj0szuzD6KJXrxss03abP67nfl1O50C3NrKkQLB29JCh5ZruGcJPg9wqqIR3z2DPon-d4zG_mDiPs68WQl6xV4YCqvMbX9m01Nrnde0cjVb8WLReqYA-oDcT4hmmJMdrqSLRGWodB-Gg_HeICM120WKb2pQLG6mYV7bmBYg7LBJMV60j_Y39_TN5fSP4ShnRdbNHucESnpVg8PRPtHqtgZVgsUs1_IpTLvsA6e-qdZsbZjK2C9hBKa7paCS9US8S9bMbLIdDdg_4p96FdQHK45LwWG_ZPo9SwO-PYNJ__6lN7DygxMsxTtBYum573UcWyENKGkUIYj2lA6MbYx0A66Fi5wghc2NjxcZKtQwFKHUOLqN23bOobxar_QFMOXwQHrttmwr4c4RyKRjOBfc034okT3qcFfoFcVZfoyoCBx7i1DciMSlKhS3Dm6haPTjJUdov_9udvm_ZldQxbtOFmJ9DeVks9M3SBCJbMBB89Nu5N8JlcOn6fALpgrHeg |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT8IwFMdfCBzEg1HUiD978GQy2brfR0IkQ35chMhtaUsbMQQmDP9-X-lGNNGLly3p0mb5rn3v0_X1FeDeES5nCN6WZDKyPEV9i9FZiFMVifjuK_RJ-n_HcBQkE-956k8r0Cn3wuiwysL2G5u-s9ZFSatQs5XN560XHUAfavcToRmm2g7XkAZi7Oy1dq-fjPYGGanZKVN86wrl4uYuzGuT6QUIJ3rUMV56H-1v7umby-kew1HBiqRtXucEKnLZgMPhPtHqpgF1DYsm1_IpvLbJJ059d1qTlSLCsF9ONJhuF0zfSYdl23xF1NrsaMD2Ef_EG9NtkPK4FBz2CyI_TBrwzRlMuk_jTmIVBydYgsZhbslZ4MeuI5AGBFdCI4j0hQyVoxT3QiqZh5zAmUNVgBceCdQwYhGXOLqVZ7vnUF2ulvICiHBpyH3b5rZg3gyBjLuKUkZ9GUQc2aMJD6VeaWbyY6Rl4Nh7iuKmWlxdhOI2wSsVTX985BTt99_VLv9X7Q4OkvFwkA56o_4V1PFJbMKtr6Gar7fyBmki57dFb_kCU4DH1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variation+of+constant+formula+for+Caputo+fractional+stochastic+differential+equations&rft.jtitle=Statistics+%26+probability+letters&rft.au=Anh%2C+P.T.&rft.au=Doan%2C+T.S.&rft.au=Huong%2C+P.T.&rft.date=2019-02-01&rft.pub=Elsevier+B.V&rft.issn=0167-7152&rft.eissn=1879-2103&rft.volume=145&rft.spage=351&rft.epage=358&rft_id=info:doi/10.1016%2Fj.spl.2018.10.010&rft.externalDocID=S0167715218303262 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7152&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7152&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7152&client=summon |