Recent advances in non-noble metal electrocatalysts for nitrate reduction

[Display omitted] •Non-noble metal electrocatalysts for nitrate reduction are reviewed.•Mechanisms of nitrate electroreduction are discussed.•Strategies to improve electrochemical performance are presented.•Challenges and outlooks of non-noble metal electrocatalysts for nitrate reduction are given....

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 403; p. 126269
Main Authors Zhang, Xi, Wang, Yuting, Liu, Cuibo, Yu, Yifu, Lu, Siyu, Zhang, Bin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Non-noble metal electrocatalysts for nitrate reduction are reviewed.•Mechanisms of nitrate electroreduction are discussed.•Strategies to improve electrochemical performance are presented.•Challenges and outlooks of non-noble metal electrocatalysts for nitrate reduction are given. Nitrate pollution has become a serious global problem, threatening human health and ecosystems. The electrochemical reduction has emerged as an energy-efficient and environmental-friendly technology to remove nitrate from water. Recently, non-noble metal electrocatalysts have attracted increasing attention in nitrate reduction due to their great advantages in terms of low cost, high activity, and large-scale application potential. This review highlights the latest research progress in the area of non-noble metal materials for electrochemical nitrate reduction. The mechanistic insight into the electrochemical reduction of nitrate is briefly discussed. Meanwhile, numerous examples in this field are collected and analyzed. Some strategies employed to improve the performance of nitrate electroreduction are also presented. Finally, the challenges and prospects in this field are discussed. This review hopes to guide the design and development of efficient non-noble metal electrocatalysts for nitrate reduction on a large scale.
AbstractList [Display omitted] •Non-noble metal electrocatalysts for nitrate reduction are reviewed.•Mechanisms of nitrate electroreduction are discussed.•Strategies to improve electrochemical performance are presented.•Challenges and outlooks of non-noble metal electrocatalysts for nitrate reduction are given. Nitrate pollution has become a serious global problem, threatening human health and ecosystems. The electrochemical reduction has emerged as an energy-efficient and environmental-friendly technology to remove nitrate from water. Recently, non-noble metal electrocatalysts have attracted increasing attention in nitrate reduction due to their great advantages in terms of low cost, high activity, and large-scale application potential. This review highlights the latest research progress in the area of non-noble metal materials for electrochemical nitrate reduction. The mechanistic insight into the electrochemical reduction of nitrate is briefly discussed. Meanwhile, numerous examples in this field are collected and analyzed. Some strategies employed to improve the performance of nitrate electroreduction are also presented. Finally, the challenges and prospects in this field are discussed. This review hopes to guide the design and development of efficient non-noble metal electrocatalysts for nitrate reduction on a large scale.
ArticleNumber 126269
Author Zhang, Bin
Zhang, Xi
Liu, Cuibo
Yu, Yifu
Wang, Yuting
Lu, Siyu
Author_xml – sequence: 1
  givenname: Xi
  surname: Zhang
  fullname: Zhang, Xi
  organization: Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
– sequence: 2
  givenname: Yuting
  surname: Wang
  fullname: Wang, Yuting
  organization: Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
– sequence: 3
  givenname: Cuibo
  surname: Liu
  fullname: Liu, Cuibo
  email: cbliu@tju.edu.cn
  organization: Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
– sequence: 4
  givenname: Yifu
  surname: Yu
  fullname: Yu, Yifu
  email: yyu@tju.edu.cn
  organization: Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
– sequence: 5
  givenname: Siyu
  surname: Lu
  fullname: Lu, Siyu
  organization: Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
– sequence: 6
  givenname: Bin
  surname: Zhang
  fullname: Zhang, Bin
  email: bzhang@tju.edu.cn
  organization: Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
BookMark eNp9kE1LAzEQhoNUsK3-AG_5A7sm2WaT4EmKH4WCIHoO6ewsZNlmJYmF_ntT6slDTzPv4RnmfRZkFqaAhNxzVnPG24ehBhxqwUTJohWtuSJzrlVTNYKLWdkbLSttVuqGLFIaGGOt4WZONh8IGDJ13cEFwER9oOV0FabdiHSP2Y0UR4QcJ3AlHFNOtJ8iDT5Hl5FG7H4g-ynckuvejQnv_uaSfL08f67fqu3762b9tK1AGJUrhH4lHLidkkJAo40xQqPS3Qq0bIyUrpeAom8UMsWkK5-C7JxuAVvFnWuWhJ_vQpxSitjb7-j3Lh4tZ_bkwg62uLAnF_bsojDqHwM-u9PXpYQfL5KPZxJLpYPHaBN4LKY6H4sV203-Av0LbEJ7_A
CitedBy_id crossref_primary_10_1002_cplu_202100356
crossref_primary_10_1002_anie_202202604
crossref_primary_10_1002_adsu_202400507
crossref_primary_10_1039_D4DT01956C
crossref_primary_10_1002_adma_202205814
crossref_primary_10_1021_acsenergylett_3c01226
crossref_primary_10_1021_acscatal_3c02951
crossref_primary_10_1039_D4CC06290F
crossref_primary_10_1021_acsaenm_3c00334
crossref_primary_10_1016_j_apsusc_2023_156440
crossref_primary_10_1039_D1EE03097C
crossref_primary_10_1016_j_apsusc_2022_155057
crossref_primary_10_1021_acs_jpcc_2c07813
crossref_primary_10_1002_adsu_202400758
crossref_primary_10_1021_acsami_2c22399
crossref_primary_10_1021_acsami_3c07885
crossref_primary_10_1016_j_jhazmat_2024_136036
crossref_primary_10_1016_j_jece_2024_112686
crossref_primary_10_1016_j_jenvman_2024_120719
crossref_primary_10_1002_smll_202106961
crossref_primary_10_1039_D2QI01798A
crossref_primary_10_1039_D2TA00661H
crossref_primary_10_1002_eem2_12725
crossref_primary_10_2139_ssrn_3968857
crossref_primary_10_1039_D4NR02852J
crossref_primary_10_2139_ssrn_4172820
crossref_primary_10_1007_s11244_024_01949_1
crossref_primary_10_1016_j_jwpe_2023_104415
crossref_primary_10_1039_D2QI00489E
crossref_primary_10_1016_j_cej_2024_151883
crossref_primary_10_1016_j_nwnano_2024_100037
crossref_primary_10_1021_acs_iecr_4c04465
crossref_primary_10_1016_j_jtice_2024_105399
crossref_primary_10_1002_cnl2_8
crossref_primary_10_1039_D1TA07910G
crossref_primary_10_1021_acsmaterialslett_3c01144
crossref_primary_10_1016_j_apcatb_2023_122360
crossref_primary_10_1016_j_jelechem_2022_116325
crossref_primary_10_1039_D3CC00864A
crossref_primary_10_1021_acscatal_4c05730
crossref_primary_10_2139_ssrn_4172816
crossref_primary_10_1002_adfm_202106713
crossref_primary_10_1039_D2TA01772E
crossref_primary_10_1016_j_elecom_2021_107121
crossref_primary_10_1039_D2GC03083G
crossref_primary_10_6023_cjoc202312013
crossref_primary_10_1002_smll_202308311
crossref_primary_10_1021_acssuschemeng_2c03972
crossref_primary_10_1016_j_mcat_2023_113456
crossref_primary_10_1016_j_jece_2024_112348
crossref_primary_10_1016_j_watres_2021_117862
crossref_primary_10_1002_adma_202201670
crossref_primary_10_1002_cssc_202300202
crossref_primary_10_1002_celc_202300419
crossref_primary_10_1016_j_apcatb_2022_122193
crossref_primary_10_1002_ange_202411068
crossref_primary_10_1002_smtd_202200790
crossref_primary_10_1007_s41614_025_00189_4
crossref_primary_10_1007_s43979_023_00055_7
crossref_primary_10_2139_ssrn_4144002
crossref_primary_10_1016_j_jpowsour_2022_231832
crossref_primary_10_1021_acsami_2c16856
crossref_primary_10_1016_j_matre_2022_100163
crossref_primary_10_1016_j_surfin_2023_102751
crossref_primary_10_1016_j_cej_2025_159874
crossref_primary_10_1016_j_electacta_2020_137280
crossref_primary_10_1002_chem_202303249
crossref_primary_10_1039_D0CY02025G
crossref_primary_10_1021_acsaem_4c02975
crossref_primary_10_1039_D4NH00341A
crossref_primary_10_3390_ma17102419
crossref_primary_10_1016_j_cattod_2022_04_019
crossref_primary_10_1016_j_apcatb_2024_123836
crossref_primary_10_1039_D4QM00798K
crossref_primary_10_3390_pr11030838
crossref_primary_10_1016_j_cej_2024_151519
crossref_primary_10_3390_nano14010102
crossref_primary_10_1016_j_cej_2021_133190
crossref_primary_10_1063_5_0069736
crossref_primary_10_1016_j_cej_2022_134586
crossref_primary_10_1021_acs_inorgchem_4c04780
crossref_primary_10_1021_acssuschemeng_3c01084
crossref_primary_10_1039_D3DT00551H
crossref_primary_10_1002_cphc_202400738
crossref_primary_10_1039_D5MH00042D
crossref_primary_10_1039_D4EW01030B
crossref_primary_10_1016_j_apcatb_2022_122293
crossref_primary_10_1039_D1TA04743D
crossref_primary_10_1021_acsami_1c10946
crossref_primary_10_1007_s11581_024_05578_2
crossref_primary_10_1016_j_seppur_2024_126714
crossref_primary_10_1007_s10008_022_05279_8
crossref_primary_10_1016_j_apcatb_2025_125195
crossref_primary_10_1016_j_colsurfa_2023_132746
crossref_primary_10_2139_ssrn_4125795
crossref_primary_10_1002_ange_202308044
crossref_primary_10_1002_smll_202207743
crossref_primary_10_1039_D4TA07470J
crossref_primary_10_1007_s12274_024_6480_1
crossref_primary_10_1021_acsami_1c19412
crossref_primary_10_1039_D3EW00523B
crossref_primary_10_1039_D2TA07475C
crossref_primary_10_1016_j_chemosphere_2021_132732
crossref_primary_10_1016_j_jece_2025_116076
crossref_primary_10_1007_s11426_022_1411_0
crossref_primary_10_1002_adma_202304021
crossref_primary_10_1016_j_mtchem_2024_102326
crossref_primary_10_1021_acs_est_1c05841
crossref_primary_10_1021_acs_inorgchem_2c02499
crossref_primary_10_1016_j_chemosphere_2021_131501
crossref_primary_10_1002_advs_202404194
crossref_primary_10_1016_j_jcis_2023_06_073
crossref_primary_10_1002_ange_202217337
crossref_primary_10_1039_D2QI00002D
crossref_primary_10_1021_prechem_3c00107
crossref_primary_10_1016_j_jes_2024_01_007
crossref_primary_10_2139_ssrn_4052004
crossref_primary_10_3390_en16010027
crossref_primary_10_1021_acs_est_1c04363
crossref_primary_10_1002_smll_202308182
crossref_primary_10_1016_j_cej_2021_133680
crossref_primary_10_1016_j_jhazmat_2024_134261
crossref_primary_10_1016_j_seppur_2024_127694
crossref_primary_10_1002_ange_202303327
crossref_primary_10_1016_j_seppur_2024_129997
crossref_primary_10_1016_j_apcatb_2022_121291
crossref_primary_10_1016_j_cej_2024_157817
crossref_primary_10_1002_advs_202302623
crossref_primary_10_1016_j_apsusc_2023_158208
crossref_primary_10_1039_D2QI01791A
crossref_primary_10_1016_j_hazadv_2023_100313
crossref_primary_10_1016_j_surfin_2024_104294
crossref_primary_10_26599_NRE_2022_9120010
crossref_primary_10_1002_anie_202411068
crossref_primary_10_1021_jacs_3c10516
crossref_primary_10_1021_acsami_2c07818
crossref_primary_10_1016_j_scitotenv_2021_149645
crossref_primary_10_1021_acsami_2c04789
crossref_primary_10_1016_j_electacta_2020_137121
crossref_primary_10_1016_j_jcis_2024_06_020
crossref_primary_10_1016_j_jelechem_2022_116171
crossref_primary_10_1002_adma_202205767
crossref_primary_10_1038_s41467_022_29926_w
crossref_primary_10_1016_j_cej_2022_141237
crossref_primary_10_1016_j_apcata_2024_119650
crossref_primary_10_1016_j_ccr_2024_216061
crossref_primary_10_1039_D2EE03956G
crossref_primary_10_1016_j_apcatb_2023_122553
crossref_primary_10_1016_j_cej_2025_160393
crossref_primary_10_1016_j_elecom_2021_107094
crossref_primary_10_1039_D2CC00611A
crossref_primary_10_1021_acscatal_3c04264
crossref_primary_10_2166_wst_2021_215
crossref_primary_10_1002_smll_202311336
crossref_primary_10_1007_s12274_023_6204_y
crossref_primary_10_1007_s40899_022_00708_y
crossref_primary_10_1016_j_jece_2023_110927
crossref_primary_10_1016_j_jcis_2023_10_041
crossref_primary_10_1016_j_jcis_2024_02_211
crossref_primary_10_1039_D1SE01855H
crossref_primary_10_1039_D3QI00718A
crossref_primary_10_1016_j_jhazmat_2022_128351
crossref_primary_10_1016_j_seppur_2022_120721
crossref_primary_10_1002_smll_202310597
crossref_primary_10_1016_j_susmat_2024_e00917
crossref_primary_10_1039_D2NR03540E
crossref_primary_10_1002_ange_202202604
crossref_primary_10_1021_acs_inorgchem_3c01074
crossref_primary_10_1002_adma_202204306
crossref_primary_10_1021_acs_est_3c01268
crossref_primary_10_1002_ejic_202200727
crossref_primary_10_1039_D3EE00635B
crossref_primary_10_1016_j_apcatb_2023_122658
crossref_primary_10_1016_j_nanoen_2023_108901
crossref_primary_10_3390_pr12091798
crossref_primary_10_1021_acscatal_4c05465
crossref_primary_10_1039_D1CC06690K
crossref_primary_10_1016_j_jece_2024_112251
crossref_primary_10_1016_j_jwpe_2024_105320
crossref_primary_10_1016_j_esci_2022_04_008
crossref_primary_10_1016_j_jece_2024_114554
crossref_primary_10_1016_j_seppur_2021_119350
crossref_primary_10_1039_D2FD00145D
crossref_primary_10_1039_D2QI00827K
crossref_primary_10_1360_SSC_2023_0081
crossref_primary_10_1038_s44221_024_00278_7
crossref_primary_10_1016_j_jhazmat_2022_130661
crossref_primary_10_1016_j_apcatb_2023_122627
crossref_primary_10_1016_j_jelechem_2022_116022
crossref_primary_10_1016_j_apsusc_2024_162089
crossref_primary_10_1021_acssuschemeng_3c05833
crossref_primary_10_1039_D2CC00856D
crossref_primary_10_1021_acs_est_1c02278
crossref_primary_10_1016_j_chemosphere_2021_130832
crossref_primary_10_1016_j_apsusc_2023_158664
crossref_primary_10_1016_j_cej_2023_143314
crossref_primary_10_1039_D3CC02791K
crossref_primary_10_2139_ssrn_4008068
crossref_primary_10_1016_j_jwpe_2023_104067
crossref_primary_10_1016_j_apcata_2024_119695
crossref_primary_10_1016_j_apcatb_2021_121021
crossref_primary_10_20517_energymater_2023_67
crossref_primary_10_1016_j_jcis_2022_09_016
crossref_primary_10_1016_j_apsusc_2024_160908
crossref_primary_10_1021_acsami_2c14215
crossref_primary_10_1016_j_nxmate_2023_100040
crossref_primary_10_1016_j_seppur_2023_125129
crossref_primary_10_1016_j_ecoenv_2023_115691
crossref_primary_10_1039_D2CC00952H
crossref_primary_10_1016_j_cej_2023_145721
crossref_primary_10_1016_j_jece_2024_114694
crossref_primary_10_1007_s11708_023_0908_2
crossref_primary_10_3390_ma16114000
crossref_primary_10_1007_s12209_024_00416_y
crossref_primary_10_1016_j_checat_2023_100786
crossref_primary_10_1002_cssc_202402361
crossref_primary_10_1021_acssuschemeng_4c02310
crossref_primary_10_1021_acs_jpclett_1c00855
crossref_primary_10_1016_j_seppur_2024_126542
crossref_primary_10_1021_acsami_4c12144
crossref_primary_10_1016_j_jcis_2024_04_145
crossref_primary_10_1016_j_watres_2022_119118
crossref_primary_10_1039_D1GC01913A
crossref_primary_10_1039_D3QI01113E
crossref_primary_10_1016_j_apcatb_2022_122201
crossref_primary_10_1016_j_xcrp_2022_100961
crossref_primary_10_1039_D2TA06346H
crossref_primary_10_1016_j_envres_2022_115135
crossref_primary_10_1002_smtd_202300169
crossref_primary_10_1039_D2CC05333K
crossref_primary_10_1016_j_cej_2022_134641
crossref_primary_10_1016_j_nexres_2024_100081
crossref_primary_10_1021_acsami_2c12175
crossref_primary_10_1002_anie_202215782
crossref_primary_10_1016_j_jhazmat_2022_129653
crossref_primary_10_1016_j_seppur_2024_127867
crossref_primary_10_1002_advs_202417773
crossref_primary_10_1002_celc_202400605
crossref_primary_10_1016_j_cej_2023_145148
crossref_primary_10_1016_j_chemosphere_2023_139582
crossref_primary_10_1039_D2SE00830K
crossref_primary_10_1016_j_jhazmat_2022_129504
crossref_primary_10_1002_adma_202401221
crossref_primary_10_1016_j_surfin_2024_105308
crossref_primary_10_1016_j_ijbiomac_2021_02_183
crossref_primary_10_1016_j_ijhydene_2021_12_076
crossref_primary_10_2139_ssrn_3980075
crossref_primary_10_1002_ange_202215782
crossref_primary_10_1021_acs_jpcc_3c01242
crossref_primary_10_1039_D2DT03189B
crossref_primary_10_1016_j_seppur_2023_123775
crossref_primary_10_1016_j_mtphys_2020_100310
crossref_primary_10_1016_j_colsurfa_2022_130678
crossref_primary_10_1002_smll_202500641
crossref_primary_10_1016_j_mtcomm_2025_112058
crossref_primary_10_1016_j_ijhydene_2023_06_127
crossref_primary_10_1021_acs_jpcc_3c04855
crossref_primary_10_1038_s41467_024_54204_2
crossref_primary_10_1016_j_cej_2022_136287
crossref_primary_10_1007_s11708_024_0949_1
crossref_primary_10_1039_D3CY01441J
crossref_primary_10_6023_A23040133
crossref_primary_10_1021_acsnano_2c07911
crossref_primary_10_2139_ssrn_4103273
crossref_primary_10_1016_j_jelechem_2024_118633
crossref_primary_10_1016_j_jwpe_2025_106995
crossref_primary_10_1039_D1CC06215H
crossref_primary_10_1039_D3CC05801H
crossref_primary_10_1016_j_cej_2021_131317
crossref_primary_10_1002_cctc_202402050
crossref_primary_10_1002_ange_202305491
crossref_primary_10_1021_acsnano_4c09247
crossref_primary_10_1002_idm2_12152
crossref_primary_10_1038_s41467_022_28728_4
crossref_primary_10_1002_sstr_202200308
crossref_primary_10_1039_D2NR02545K
crossref_primary_10_1007_s42823_024_00790_6
crossref_primary_10_1002_asia_202000822
crossref_primary_10_1016_j_jelechem_2023_117377
crossref_primary_10_1021_jacs_4c06098
crossref_primary_10_1021_acsanm_3c04957
crossref_primary_10_2139_ssrn_4111910
crossref_primary_10_1016_j_jece_2024_115182
crossref_primary_10_1002_aic_18654
crossref_primary_10_1039_D2NR03767J
crossref_primary_10_1039_D4NR02387K
crossref_primary_10_1002_cssc_202401751
crossref_primary_10_1016_j_nanoen_2022_107124
crossref_primary_10_1039_D2QI01173E
crossref_primary_10_1021_acs_iecr_1c03072
crossref_primary_10_1038_s41467_022_33258_0
crossref_primary_10_1016_j_electacta_2024_144263
crossref_primary_10_1021_acs_chemrev_3c00332
crossref_primary_10_1002_anie_202305491
crossref_primary_10_1016_j_jwpe_2024_105590
crossref_primary_10_1088_1361_6528_ad64d9
crossref_primary_10_1039_D2CC05204K
crossref_primary_10_1021_acsmaterialslett_4c00691
crossref_primary_10_1002_adma_202207522
crossref_primary_10_1039_D3SE00901G
crossref_primary_10_1016_j_jelechem_2024_118533
crossref_primary_10_1039_D5CY00088B
crossref_primary_10_1021_acs_iecr_2c00107
crossref_primary_10_1016_j_nanoen_2021_106088
crossref_primary_10_1021_acscatal_3c04541
crossref_primary_10_1016_j_apsusc_2022_152556
crossref_primary_10_1002_smll_202303424
crossref_primary_10_1039_D3GC02018E
crossref_primary_10_1016_j_scitotenv_2022_154349
crossref_primary_10_1002_celc_202400525
crossref_primary_10_1016_j_chemosphere_2023_140016
crossref_primary_10_1021_acs_inorgchem_3c01046
crossref_primary_10_26599_NR_2025_94907265
crossref_primary_10_1016_j_cej_2024_155557
crossref_primary_10_1002_adsu_202400272
crossref_primary_10_1007_s40820_024_01555_6
crossref_primary_10_1002_ange_202303483
crossref_primary_10_1007_s12274_024_6478_8
crossref_primary_10_1002_anie_202217337
crossref_primary_10_1021_acssuschemeng_3c01514
crossref_primary_10_1149_1945_7111_accc57
crossref_primary_10_1016_j_cej_2023_144488
crossref_primary_10_1002_cctc_202401017
crossref_primary_10_1021_acssuschemeng_3c08282
crossref_primary_10_1016_j_jece_2022_109117
crossref_primary_10_1039_D4EE00715H
crossref_primary_10_26599_NR_2025_94907135
crossref_primary_10_1021_acs_langmuir_4c03626
crossref_primary_10_1016_j_esci_2025_100378
crossref_primary_10_1016_j_cej_2021_132666
crossref_primary_10_1021_acssuschemeng_3c03820
crossref_primary_10_1002_cctc_202301641
crossref_primary_10_1021_acsestengg_3c00507
crossref_primary_10_1002_adma_202402767
crossref_primary_10_1002_cssc_202102450
crossref_primary_10_1016_j_ces_2022_117735
crossref_primary_10_1016_j_apsusc_2022_153624
crossref_primary_10_1016_j_jece_2023_109418
crossref_primary_10_1016_j_cej_2023_146896
crossref_primary_10_1039_D4NJ00511B
crossref_primary_10_1021_acsami_2c08534
crossref_primary_10_1016_j_jallcom_2024_177180
crossref_primary_10_1680_jsuin_22_00040
crossref_primary_10_1007_s40820_023_01169_4
crossref_primary_10_1016_j_ccr_2024_215802
crossref_primary_10_1002_smll_202200436
crossref_primary_10_1016_j_electacta_2025_145681
crossref_primary_10_1016_j_cej_2022_139126
crossref_primary_10_1016_j_jece_2023_110971
crossref_primary_10_1007_s40843_023_2620_4
crossref_primary_10_1039_D4EY00245H
crossref_primary_10_1016_j_apcatb_2024_124387
crossref_primary_10_1039_D3QI01448G
crossref_primary_10_1016_j_apsusc_2024_161935
crossref_primary_10_1002_cctc_202400185
crossref_primary_10_1016_j_jece_2022_108362
crossref_primary_10_1039_D4SC05936K
crossref_primary_10_2139_ssrn_4049524
crossref_primary_10_1016_j_ccr_2022_214468
crossref_primary_10_1007_s12274_024_6530_8
crossref_primary_10_1038_s41467_023_43897_6
crossref_primary_10_1016_j_colsurfa_2023_131083
crossref_primary_10_1021_acsnano_4c03995
crossref_primary_10_1002_aesr_202300284
crossref_primary_10_1016_j_jcis_2022_10_050
crossref_primary_10_1016_j_cej_2024_153108
crossref_primary_10_1039_D3NR05254K
crossref_primary_10_1016_j_seppur_2023_124579
crossref_primary_10_1016_j_apcatb_2022_121862
crossref_primary_10_1016_j_apcatb_2022_121981
crossref_primary_10_1002_smll_202400505
crossref_primary_10_1039_D1CS00116G
crossref_primary_10_1021_acs_jpcc_3c00785
crossref_primary_10_1038_s41467_022_28740_8
crossref_primary_10_1039_D3QI00554B
crossref_primary_10_1039_D2TA02006H
crossref_primary_10_1016_j_cej_2022_135104
crossref_primary_10_1021_jacs_4c12240
crossref_primary_10_1007_s41918_024_00236_7
crossref_primary_10_1002_anie_202308044
crossref_primary_10_1039_D1CY01217G
crossref_primary_10_1021_acs_iecr_2c02495
crossref_primary_10_1016_j_surfin_2023_103230
crossref_primary_10_1021_acs_jpclett_2c00044
crossref_primary_10_1039_D4GC02069C
crossref_primary_10_1039_D3SE00681F
crossref_primary_10_1016_j_envres_2024_120422
crossref_primary_10_1016_j_cej_2024_158692
crossref_primary_10_1063_5_0230248
crossref_primary_10_1360_TB_2023_1349
crossref_primary_10_1016_j_seppur_2024_129074
crossref_primary_10_1039_D2EW00346E
crossref_primary_10_1016_j_jcis_2023_12_129
crossref_primary_10_3390_catal11111413
crossref_primary_10_1016_j_checat_2025_101266
crossref_primary_10_1002_adfm_202304468
crossref_primary_10_1007_s11356_022_23517_4
crossref_primary_10_1002_anie_202303483
crossref_primary_10_1002_adfm_202208212
crossref_primary_10_1016_j_jece_2023_111462
crossref_primary_10_1016_j_cej_2023_141960
crossref_primary_10_1039_D2TA08027C
crossref_primary_10_1039_D2MA00685E
crossref_primary_10_1002_adma_202304508
crossref_primary_10_1002_aic_17969
crossref_primary_10_1016_j_nantod_2025_102707
crossref_primary_10_1016_j_jelechem_2024_118143
crossref_primary_10_1016_j_mtphys_2022_100619
crossref_primary_10_1007_s13738_024_03115_6
crossref_primary_10_1002_adfm_202312079
crossref_primary_10_1016_j_jhazmat_2023_132106
crossref_primary_10_1063_5_0092948
crossref_primary_10_1089_ees_2022_0375
crossref_primary_10_1007_s10311_022_01469_y
crossref_primary_10_1016_j_cej_2021_130759
crossref_primary_10_1016_j_scitotenv_2021_152279
crossref_primary_10_1002_smll_202203335
crossref_primary_10_1039_D2QI02290G
crossref_primary_10_1021_acscatal_3c02410
crossref_primary_10_1016_j_apsusc_2024_159397
crossref_primary_10_1002_adfm_202303480
crossref_primary_10_1007_s00253_023_12529_w
crossref_primary_10_1016_j_cej_2024_156495
crossref_primary_10_1016_j_jece_2024_112627
crossref_primary_10_1021_acsestengg_2c00052
crossref_primary_10_1007_s12678_023_00851_w
crossref_primary_10_1016_j_mtphys_2021_100431
crossref_primary_10_1021_acsnano_2c06441
crossref_primary_10_1039_D0EE03769A
crossref_primary_10_1039_D2CC02105F
crossref_primary_10_1016_j_cej_2024_148883
crossref_primary_10_1016_j_checat_2024_101060
crossref_primary_10_3389_fchem_2022_900962
crossref_primary_10_1039_D3QI01536J
crossref_primary_10_1016_j_coelec_2022_101193
crossref_primary_10_1007_s40843_023_2475_6
crossref_primary_10_1016_j_jwpe_2021_102174
crossref_primary_10_1016_j_cej_2022_138890
crossref_primary_10_1021_acsami_2c00436
crossref_primary_10_1016_j_scitotenv_2023_161444
crossref_primary_10_1021_jacs_3c13288
crossref_primary_10_1016_j_cej_2024_156005
crossref_primary_10_1021_acs_nanolett_2c04828
crossref_primary_10_1016_j_apcatb_2022_121811
crossref_primary_10_1016_j_apcatb_2023_123156
crossref_primary_10_1038_s41467_024_48035_4
crossref_primary_10_1002_smll_202404919
crossref_primary_10_1016_j_fuel_2024_133159
crossref_primary_10_1039_D3EN00403A
crossref_primary_10_1039_D4QI01296H
crossref_primary_10_1016_j_scitotenv_2022_153641
crossref_primary_10_1021_acsami_2c09357
crossref_primary_10_1016_j_apcatb_2023_123161
crossref_primary_10_1016_j_jcis_2024_08_105
crossref_primary_10_1002_celc_202400499
crossref_primary_10_1021_acsaem_3c03207
crossref_primary_10_1002_ntls_20220047
crossref_primary_10_1021_acssuschemeng_2c07114
crossref_primary_10_1021_acs_energyfuels_4c04978
crossref_primary_10_1039_D3QM00433C
crossref_primary_10_1002_sstr_202200202
crossref_primary_10_1039_D3TA00211J
crossref_primary_10_1039_D1CC02129J
crossref_primary_10_1039_D2QI01984A
crossref_primary_10_1002_anie_202303327
crossref_primary_10_1039_D1CY01369F
crossref_primary_10_1016_j_ese_2023_100383
crossref_primary_10_1021_acscentsci_1c00370
crossref_primary_10_1016_j_cej_2024_148952
crossref_primary_10_1039_D3CC03989G
crossref_primary_10_1021_acssuschemeng_2c06498
crossref_primary_10_15541_jim20240102
crossref_primary_10_1007_s12274_022_4863_8
crossref_primary_10_1016_j_cej_2024_156343
crossref_primary_10_1016_j_cej_2022_137341
crossref_primary_10_1039_D1CC02105B
crossref_primary_10_1002_smll_202307315
crossref_primary_10_1016_j_apsusc_2022_153213
crossref_primary_10_1007_s12274_024_6450_7
crossref_primary_10_1021_jacs_2c03487
crossref_primary_10_1021_jacsau_2c00502
crossref_primary_10_1039_D2NR02813A
crossref_primary_10_2166_wrd_2021_047
crossref_primary_10_1016_j_apsusc_2022_155872
crossref_primary_10_1016_j_jcis_2024_08_124
crossref_primary_10_1021_acscatal_4c03635
crossref_primary_10_1021_acsami_3c00511
crossref_primary_10_1016_j_checat_2024_101029
crossref_primary_10_1016_j_checat_2025_101328
crossref_primary_10_1016_j_coelec_2021_100721
crossref_primary_10_1021_acs_jpcc_3c05804
crossref_primary_10_53941_see_2024_100002
crossref_primary_10_1016_j_cogsc_2022_100681
crossref_primary_10_1002_advs_202308979
crossref_primary_10_1016_j_gee_2022_03_003
crossref_primary_10_1021_acsanm_4c05949
crossref_primary_10_1016_j_chemosphere_2021_130386
crossref_primary_10_1016_j_electacta_2021_139585
crossref_primary_10_1016_j_jenvman_2022_116405
crossref_primary_10_1002_cssc_202301050
crossref_primary_10_1016_j_cej_2023_147574
crossref_primary_10_1016_j_nanoen_2023_108543
Cites_doi 10.1016/j.jallcom.2018.07.004
10.1016/j.cej.2013.11.013
10.1021/jacs.0c00418
10.1016/j.electacta.2007.03.057
10.1016/j.cej.2019.123157
10.1016/j.electacta.2018.08.154
10.1016/j.memsci.2009.02.020
10.1126/science.aar6611
10.1016/j.electacta.2008.08.003
10.1016/j.jcat.2013.05.006
10.1016/j.watres.2019.05.104
10.1016/j.jelechem.2016.10.047
10.3390/catal9060536
10.1016/j.electacta.2018.03.005
10.1023/A:1005242600186
10.1021/acscatal.9b05260
10.1038/s41586-019-1260-x
10.1007/s10562-016-1894-3
10.1016/j.electacta.2012.11.074
10.1016/j.seppur.2019.116485
10.1016/S1381-1169(99)00375-1
10.1149/2.004311eel
10.1002/aenm.201300380
10.1016/j.biortech.2007.05.026
10.1016/j.electacta.2003.07.020
10.1016/j.jechem.2020.05.017
10.1093/nsr/nwz019
10.1007/s11783-018-1033-z
10.1016/j.apcatb.2019.118048
10.1039/C9NR10743F
10.1016/j.watres.2020.115596
10.1016/j.jelechem.2016.04.025
10.1021/ja071330n
10.1016/j.cej.2015.05.010
10.1016/j.jhazmat.2012.02.034
10.1016/j.cej.2011.01.103
10.1016/j.chemosphere.2018.03.063
10.1002/cctc.201200457
10.1016/j.electacta.2019.134846
10.1016/S0013-4686(98)00233-3
10.1021/acs.est.8b02740
10.1007/s12274-019-2310-2
10.1021/jacs.7b12774
10.1007/s40843-020-1365-0
10.1016/j.watres.2017.04.069
10.1016/j.apcatb.2019.05.016
10.1016/j.apcatb.2011.03.011
10.1016/j.chemosphere.2018.08.082
10.1016/j.watres.2019.03.078
10.1021/jacs.6b07127
10.1016/j.biortech.2008.03.048
10.1016/j.jhazmat.2011.05.054
10.1149/2.0821712jes
10.1002/smll.201907029
10.1016/j.chemosphere.2019.02.028
10.1016/j.apsusc.2019.05.358
10.1016/j.cej.2019.123034
10.1021/acs.est.7b04775
10.1071/CH15191
10.1021/ja1092503
10.1016/j.jclepro.2019.118569
10.1080/09593330.2012.696722
10.1021/es204087q
10.1021/cr8003696
10.1016/j.apcatb.2019.117909
10.1002/cite.330611023
10.1016/j.cej.2012.05.062
10.1016/j.apcatb.2020.119053
10.1016/j.jelechem.2016.10.048
10.1021/jacs.9b13347
10.1006/jcat.2001.3275
10.1016/j.jelechem.2013.04.001
10.1007/s10800-004-8349-z
10.1016/j.nanoen.2019.04.035
10.1016/j.jhazmat.2009.06.066
10.1002/smtd.201800388
10.1016/j.cej.2015.03.001
10.1016/j.chemosphere.2019.04.071
10.1021/acs.langmuir.5b00283
10.1016/j.jelechem.2006.06.012
10.1021/es503772x
10.1016/j.jelechem.2011.03.015
10.1002/anie.202002337
10.1002/elan.200302790
10.1016/j.jelechem.2003.08.011
10.1016/S0022-0728(02)01443-2
10.1149/2.1041506jes
10.1149/2.0081810jes
10.1007/s10562-015-1569-5
10.1016/j.apsusc.2017.08.171
10.20964/2016.10.49
10.1002/celc.201300237
10.1002/anie.201803543
10.1016/j.electacta.2014.04.048
10.1016/j.electacta.2008.03.048
10.1021/acscatal.9b02179
10.1016/j.seppur.2019.02.009
10.1016/j.nanoen.2016.06.024
10.1016/j.electacta.2007.04.050
10.1149/2.1391614jes
10.1016/j.apcatb.2015.06.028
10.1016/j.apsusc.2019.07.160
10.1016/j.joule.2019.05.001
10.1007/s11356-016-7563-7
10.2166/wst.2011.034
10.1016/j.chemosphere.2018.07.039
10.1039/C9CS00280D
10.1016/j.reactfunctpolym.2006.03.009
10.1039/C3CC49224A
10.1002/anie.201915992
10.1039/c2ee23062c
10.1016/j.scitotenv.2017.04.238
10.1016/j.watres.2005.07.032
10.1016/S0022-0728(01)00491-0
10.1016/j.electacta.2009.03.064
10.1080/00986445.2017.1413357
10.1016/j.jelechem.2006.11.005
10.1016/j.electacta.2018.08.127
10.1016/j.apcatb.2017.02.016
10.1016/j.electacta.2016.12.147
10.1016/j.apcatb.2018.05.041
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2020.126269
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2020_126269
S1385894720323974
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c297t-ecf42acab7522c3899928e78d4c853955af5ce2f37e0705a000c5da86ce671aa3
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Thu Apr 24 22:57:15 EDT 2025
Tue Jul 01 04:26:59 EDT 2025
Fri Feb 23 02:47:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrocatalysis
Water treatment
Non-noble metal materials
Nitrate reduction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-ecf42acab7522c3899928e78d4c853955af5ce2f37e0705a000c5da86ce671aa3
ParticipantIDs crossref_primary_10_1016_j_cej_2020_126269
crossref_citationtrail_10_1016_j_cej_2020_126269
elsevier_sciencedirect_doi_10_1016_j_cej_2020_126269
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Y. Wang, C. Liu, B. Zhang, Y. Yu, Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation, Sci. China Mater., doi: 10.1007/s40843-020-1365-0.
Simpson, Johnson (b0420) 2004; 16
Polatides, Kyriacou (b0370) 2005; 35
Zhang, Zhao, Chen, Wang, Wu, Wang (b0470) 2018; 291
Wang, Xu, Wang, Huang, Li, Li, Wicks, Luo, Nam, Tan, Ding, Wu, Lum, Dinh, Sinton, Zheng, Sargent (b0440) 2020; 142
Liu, Li, Wang, Lei, Wang, Liu (b0540) 2016; 163
Katsounaros, Kyriacou (b0335) 2007; 52
Zhang, He, Wang, Qi, Yan, Dong, Liu, Wang, Xia (b0585) 2019; 60
Dai, Gao, Yin, Feng, Zhou, Zhao, Zhang (b0395) 2019; 494
Comer, Fuentes, Dimkpa, Liu, Fernandez, Arora, Realff, Singh, Hatzell, Medford (b0020) 2019; 3
Gao, Jiang, Ni, Qi, Zhang, Oturan, Oturan (b0105) 2019; 254
Butcher, Gewirth (b0410) 2016; 29
Kuang, Natsui, Einaga (b0645) 2018; 210
Duca, Cucarella, Rodriguez, Koper (b0170) 2010; 132
Liu, Zhang, Guan, Zhao, Yang, Zhang (b0530) 2018; 427
Sun, Li, An, Li, Bond, Zhang (b0560) 2018; 269
Zhang, Wang, Tian, Yan, Xue, He, Liu, Wang, Chen, Xia (b0575) 2018; 57
Liu, Li, Wang, Lei, Liu, Wang (b0535) 2016; 11
Soares (b0090) 2000; 123
Shin, Jung, Bae, Lee, Kim (b0310) 2014; 48
Barrabés, Sá (b0085) 2011; 104
Ma, Li, Meng, Wang, Feng, Chen, Liu (b0490) 2018; 202
Taguchi, Feliu (b0165) 2007; 52
Gao, Jiang, Ni, Qi, Bi (b0295) 2020; 382
Wang, Li, Liu, Feng, Chen, Ma, Ding (b0485) 2017; 164
Rosca, Duca, de Groot, Koper (b0005) 2009; 109
Fernández-Nava, Marañón, Soons, Castrillón (b0040) 2008; 99
Yin, Liu, Song, Chen, Liu, Cai, Zhang (b0565) 2019; 324
Bandarenka, Koper (b0150) 2013; 308
USEPA, Ground Water and Drinking Water Table of Regulated Drinking Water Contaminants, (2017).
Nakayama, Takahashi (b0095) 2015; 145
Chaplin, Reinhard, Schneider, Schüth, Shapley, Strathmann, Werth (b0320) 2012; 46
Wang, Zhu, Zeng, Liu, Fang, Li (b0400) 2020; 12
Long, Chen, Zhang, Guo, Fu, Deng, Xiao (b0270) 2020; 59
Li, Yun, Zhang, Huang, Xu (b0430) 2018; 766
de Groot, Koper (b0230) 2004; 562
Andersen, Čolić, Yang, Schwalbe, Nielander, McEnaney, Enemark-Rasmussen, Baker, Singh, Rohr, Statt, Blair, Mezzavilla, Kibsgaard, Vesborg, Cargnello, Bent, Jaramillo, Stephens, Nørskov, Chorkendorff (b0140) 2019; 570
Garcia-Segura, Lanzarini-Lopes, Hristovski, Westerhoff (b0260) 2018; 236
Reyter, Chamoulaud, Bélanger, Roué (b0375) 2006; 596
Jiang, Tang, Tay, Zhang, Malyi, Wang, Deng, Lai, Zhou, Chen, Dong, Chen (b0495) 2013; 3
Martínez, Ortiz, Ortiz (b0045) 2017; 207
Zhu, Zhang, Yin, Qin, Zhang, Wang (b0620) 2018; 291
Ghazouani, Akrout, Bousselmi (b0630) 2017; 24
Dortsiou, Katsounaros, Polatides, Kyriacou (b0330) 2013; 34
Yao, Yang, Zhong, Shu, Chen, Sun, Ma, Fu, Wang, Li (b0110) 2019; 157
Tugaoen, Garcia-Segura, Hristovski, Westerhoff (b0030) 2017; 599–600
Su, Kuan, Liu, Huang (b0225) 2019; 257
Shih, Wu, Huang, Huang (b0465) 2020; 383
Kim, Pak (b0500) 2019; 228
Ma, Li, Feng, Hu, Wang, Liu (b0355) 2016; 782
Georgeaud, Diamand, Borrut, Grange, Coste (b0625) 2011; 63
Ghazouani, Akrout, Jomaa, Jellali, Bousselmi (b0640) 2016; 783
Kamiya, Hashimoto, Nakanishi (b0610) 2014; 1
Zhang, Shuai, Guy, Shapley, Strathmann, Werth (b0290) 2013; 5
de Vooys, Koper, van Santen, van Veen (b0275) 2001; 202
Li, Zhan, Yang, Quan, Mao, Liu, Wang, Lei, Li, Chan, Xu, Shi, Du, Hao, Wong, Wang, Dou, Zhang, Yu (b0180) 2020; 142
Su, Ruzybayev, Shah, Huang (b0195) 2016; 180
Alikhani, Moghbeli (b0065) 2014; 239
Mattarozzi, Cattarin, Comisso, Gerbasi, Guerriero, Musiani, Vazquez-Gomez, Verlato (b0445) 2013; 2
Liu, Richards, Singh, Goldsmith (b0235) 2019; 9
Bae, Stewart, Gewirth (b0405) 2007; 129
Wu, Kong, Tong, Chen, Liu, Tang, Yang, Chen, Wan (b0345) 2019; 489
He, Li, Ooka, Go, Jin, Kim, Nakamura (b0515) 2018; 140
Ding, Li, Zhao, Wang, Zheng, Gao (b0605) 2015; 271
Yang, Duca, Schouten, Koper (b0285) 2011; 662
Pérez, Ibáñez, Urtiaga, Ortiz (b0340) 2012; 197
Liu, Liu, Li, Hu, Li, Lei, Liu (b0155) 2019; 223
Gennero de Chialvo, Chialvo (b0300) 1998; 44
Liu, Dong, Zou, Ding, Yu, Zhang, Shan, Gao, Pan (b0550) 2020; 173
Mattarozzi, Cattarin, Comisso, Gerbasi, Guerriero, Musiani, Vázquez-Gómez, Verlato (b0455) 2015; 162
Tang, Qiao (b0135) 2019; 48
Mattarozzi, Cattarin, Comisso, Guerriero, Musiani, Vázquez-Gómez, Verlato (b0435) 2013; 89
Reyter, Bélanger, Roué (b0425) 2011; 192
Yang, Sebastian, Duca, Hoogenboom, Koper (b0175) 2014; 50
Soto-Hernández, Santiago-Ramirez, Ramirez-Meneses, Luna-Trujillo, Wang, Lartundo-Rojas, Manzo-Robledo (b0200) 2019; 259
Mattarozzi, Cattarin, Comisso, Gambirasi, Guerriero, Musiani, Vázquez-Gómez, Verlato (b0450) 2014; 140
Jonoush, Rezaee, Ghaffarinejad (b0595) 2020; 242
Li, Go, Ooka, He, Jin, Kim, Nakamura (b0525) 2020
Shih, Wu, Lin, Huang, Huang (b0205) 2020; 273
Lei, Liu, Li, Ma, Wang, Zhang (b0120) 2018; 212
Xu, Li, Yin, Ji, Niu, Yu (b0080) 2018; 12
Liu, Zhao, Zhao, He, Lai, Shan, Bekana, Li, Liu (b0315) 2018; 52
Ghazouani, Akrout, Bousselmi (b0635) 2014; 53
Rao, Shao, Xu, Yi, Qiao, Li, Wang, Chien, Inoue, Liu, Zhang (b0615) 2019; 216
Chen, Li, Ma, Koper (b0210) 2015; 31
Wang, Li, Feng, Hu, Ding, Chen, Liu (b0480) 2016; 773
Bhatnagar, Sillanpää (b0015) 2011; 168
Dash, Chaudhari (b0145) 2005; 39
Lacasa, Canizares, Llanos, Rodrigo (b0600) 2012; 213–214
Öznülüer, Özdurak, Öztürk Doğan (b0555) 2013; 699
Wang, Yu, Jia, Zhang, Zhang (b0130) 2019; 6
Li, Feng, Zhang, Lei, Chen, Yang, Sugiura (b0100) 2009; 171
Li, Feng, Zhang, Sugiura (b0380) 2009; 54
Chen, Crooks, Seefeldt, Bren, Bullock, Darensbourg, Holland, Hoffman, Janik, Jones, Kanatzidis, King, Lancaster, Lymar, Pfromm, Schneider, Schrock (b0035) 2018; 360
Dima, de Vooys, Koper (b0265) 2003; 554–555
Epsztein, Nir, Lahav, Green (b0070) 2015; 279
Jia, Wang, Wang, Ling, Yu, Zhang (b0505) 2020; 10
Schmid, Delfs (b0250) 1959; 63
de Vooys, van Santen, van Veen (b0190) 2000; 154
Ghafari, Hasan, Aroua (b0025) 2008; 99
de Vooys, Beltramo, van Riet, van Veen, Koper (b0280) 2004; 49
WHO, Nitrate and Nitrite in Drinking-Water, (2016).
Samatya, Kabay, Yüksel, Arda, Yüksel (b0060) 2006; 66
Badea (b0125) 2009; 54
Shimazu, Goto, Piao, Kayama, Nakata, Yoshinaga (b0220) 2007; 601
de Vooys, Koper, van Santen, van Veen (b0305) 2001; 506
Su, Li, Zhang, Fan, Ying, Sun, Wang, Jia (b0360) 2017; 120
Duca, Koper (b0010) 2012; 5
Schmid (b0255) 1961; 65
Schmid (b0245) 1959; 63
Vetter (b0240) 1959; 63
Balkis, O'Mullane (b0385) 2015; 68
Wang, Zhang (b0520) 2021; 53
Teng, Bai, Liu, Liu, Fan, Zhang (b0545) 2018; 52
Zhang, Zhao, Chen, Wang, Zhou, Wu, Wang, Ou (b0475) 2018; 165
Chen, Li, Li, Zhao, Shi, Jiang, Ma (b0215) 2019; 9
You, Liu, Jiang, Sun (b0580) 2016; 138
Li, Xiao, Zhao, Zhao, Fan, Xue (b0350) 2016; 146
Wang, Zou, Tao, Wang, Huang, Du, Wang (b0570) 2019; 12
Vorlop, Tacke (b0185) 1989; 61
Guo, Mao, Huang, Wang, Zhang, Hu, Dong, Sathasivam, Zhao, Xing, Pan, Lai, Tang (b0390) 2020; 16
Banasiak, Schäfer (b0075) 2009; 334
Pérez-Gallent, Figueiredo, Katsounaros, Koper (b0415) 2017; 227
Duan, Li, Lei, Zhu, Xue, Wei, Feng (b0365) 2019; 161
Wang, Zhou, Jia, Yu, Zhang (b0115) 2020; 59
Hou, Pu, Qi, Tang, Wan, Yang, Song, Fisher (b0460) 2018; 205
Reyter, Bélanger, Roué (b0325) 2008; 53
Li, Li, Chen, Tang, Sun, Jia (b0510) 2020; 237
Li, Huang, Low, Gao, Long, Xiong (b0160) 2019; 3
Balkis (10.1016/j.cej.2020.126269_b0385) 2015; 68
10.1016/j.cej.2020.126269_b0590
Su (10.1016/j.cej.2020.126269_b0195) 2016; 180
Mattarozzi (10.1016/j.cej.2020.126269_b0445) 2013; 2
Li (10.1016/j.cej.2020.126269_b0525) 2020
Wang (10.1016/j.cej.2020.126269_b0400) 2020; 12
Yin (10.1016/j.cej.2020.126269_b0565) 2019; 324
Nakayama (10.1016/j.cej.2020.126269_b0095) 2015; 145
Soto-Hernández (10.1016/j.cej.2020.126269_b0200) 2019; 259
Zhang (10.1016/j.cej.2020.126269_b0290) 2013; 5
Butcher (10.1016/j.cej.2020.126269_b0410) 2016; 29
Chen (10.1016/j.cej.2020.126269_b0210) 2015; 31
Su (10.1016/j.cej.2020.126269_b0225) 2019; 257
Yang (10.1016/j.cej.2020.126269_b0285) 2011; 662
Rosca (10.1016/j.cej.2020.126269_b0005) 2009; 109
Gennero de Chialvo (10.1016/j.cej.2020.126269_b0300) 1998; 44
Dai (10.1016/j.cej.2020.126269_b0395) 2019; 494
Yao (10.1016/j.cej.2020.126269_b0110) 2019; 157
Reyter (10.1016/j.cej.2020.126269_b0375) 2006; 596
Liu (10.1016/j.cej.2020.126269_b0535) 2016; 11
Wang (10.1016/j.cej.2020.126269_b0485) 2017; 164
Bandarenka (10.1016/j.cej.2020.126269_b0150) 2013; 308
Liu (10.1016/j.cej.2020.126269_b0550) 2020; 173
Zhang (10.1016/j.cej.2020.126269_b0470) 2018; 291
Kim (10.1016/j.cej.2020.126269_b0500) 2019; 228
Vetter (10.1016/j.cej.2020.126269_b0240) 1959; 63
Schmid (10.1016/j.cej.2020.126269_b0250) 1959; 63
Rao (10.1016/j.cej.2020.126269_b0615) 2019; 216
Simpson (10.1016/j.cej.2020.126269_b0420) 2004; 16
Jonoush (10.1016/j.cej.2020.126269_b0595) 2020; 242
Pérez (10.1016/j.cej.2020.126269_b0340) 2012; 197
Georgeaud (10.1016/j.cej.2020.126269_b0625) 2011; 63
Yang (10.1016/j.cej.2020.126269_b0175) 2014; 50
Shimazu (10.1016/j.cej.2020.126269_b0220) 2007; 601
Liu (10.1016/j.cej.2020.126269_b0315) 2018; 52
Guo (10.1016/j.cej.2020.126269_b0390) 2020; 16
Ghazouani (10.1016/j.cej.2020.126269_b0630) 2017; 24
Epsztein (10.1016/j.cej.2020.126269_b0070) 2015; 279
Mattarozzi (10.1016/j.cej.2020.126269_b0450) 2014; 140
Li (10.1016/j.cej.2020.126269_b0510) 2020; 237
10.1016/j.cej.2020.126269_b0050
Gao (10.1016/j.cej.2020.126269_b0105) 2019; 254
Badea (10.1016/j.cej.2020.126269_b0125) 2009; 54
10.1016/j.cej.2020.126269_b0055
Dash (10.1016/j.cej.2020.126269_b0145) 2005; 39
Hou (10.1016/j.cej.2020.126269_b0460) 2018; 205
Liu (10.1016/j.cej.2020.126269_b0155) 2019; 223
de Groot (10.1016/j.cej.2020.126269_b0230) 2004; 562
Li (10.1016/j.cej.2020.126269_b0160) 2019; 3
Jiang (10.1016/j.cej.2020.126269_b0495) 2013; 3
Gao (10.1016/j.cej.2020.126269_b0295) 2020; 382
Wu (10.1016/j.cej.2020.126269_b0345) 2019; 489
Duan (10.1016/j.cej.2020.126269_b0365) 2019; 161
Taguchi (10.1016/j.cej.2020.126269_b0165) 2007; 52
de Vooys (10.1016/j.cej.2020.126269_b0190) 2000; 154
Sun (10.1016/j.cej.2020.126269_b0560) 2018; 269
Liu (10.1016/j.cej.2020.126269_b0235) 2019; 9
Tugaoen (10.1016/j.cej.2020.126269_b0030) 2017; 599–600
Kuang (10.1016/j.cej.2020.126269_b0645) 2018; 210
Shih (10.1016/j.cej.2020.126269_b0465) 2020; 383
Xu (10.1016/j.cej.2020.126269_b0080) 2018; 12
Shih (10.1016/j.cej.2020.126269_b0205) 2020; 273
Duca (10.1016/j.cej.2020.126269_b0170) 2010; 132
Soares (10.1016/j.cej.2020.126269_b0090) 2000; 123
Comer (10.1016/j.cej.2020.126269_b0020) 2019; 3
Ma (10.1016/j.cej.2020.126269_b0490) 2018; 202
Chen (10.1016/j.cej.2020.126269_b0035) 2018; 360
Chen (10.1016/j.cej.2020.126269_b0215) 2019; 9
Chaplin (10.1016/j.cej.2020.126269_b0320) 2012; 46
Schmid (10.1016/j.cej.2020.126269_b0245) 1959; 63
You (10.1016/j.cej.2020.126269_b0580) 2016; 138
Duca (10.1016/j.cej.2020.126269_b0010) 2012; 5
Garcia-Segura (10.1016/j.cej.2020.126269_b0260) 2018; 236
Mattarozzi (10.1016/j.cej.2020.126269_b0435) 2013; 89
Schmid (10.1016/j.cej.2020.126269_b0255) 1961; 65
Ghazouani (10.1016/j.cej.2020.126269_b0640) 2016; 783
Wang (10.1016/j.cej.2020.126269_b0480) 2016; 773
Wang (10.1016/j.cej.2020.126269_b0115) 2020; 59
Tang (10.1016/j.cej.2020.126269_b0135) 2019; 48
Liu (10.1016/j.cej.2020.126269_b0530) 2018; 427
Wang (10.1016/j.cej.2020.126269_b0440) 2020; 142
Vorlop (10.1016/j.cej.2020.126269_b0185) 1989; 61
Teng (10.1016/j.cej.2020.126269_b0545) 2018; 52
Reyter (10.1016/j.cej.2020.126269_b0325) 2008; 53
Barrabés (10.1016/j.cej.2020.126269_b0085) 2011; 104
de Vooys (10.1016/j.cej.2020.126269_b0305) 2001; 506
Li (10.1016/j.cej.2020.126269_b0430) 2018; 766
Ma (10.1016/j.cej.2020.126269_b0355) 2016; 782
Mattarozzi (10.1016/j.cej.2020.126269_b0455) 2015; 162
Pérez-Gallent (10.1016/j.cej.2020.126269_b0415) 2017; 227
Dortsiou (10.1016/j.cej.2020.126269_b0330) 2013; 34
Polatides (10.1016/j.cej.2020.126269_b0370) 2005; 35
Bhatnagar (10.1016/j.cej.2020.126269_b0015) 2011; 168
Öznülüer (10.1016/j.cej.2020.126269_b0555) 2013; 699
de Vooys (10.1016/j.cej.2020.126269_b0275) 2001; 202
Lei (10.1016/j.cej.2020.126269_b0120) 2018; 212
Andersen (10.1016/j.cej.2020.126269_b0140) 2019; 570
Su (10.1016/j.cej.2020.126269_b0360) 2017; 120
Zhang (10.1016/j.cej.2020.126269_b0575) 2018; 57
Lacasa (10.1016/j.cej.2020.126269_b0600) 2012; 213–214
de Vooys (10.1016/j.cej.2020.126269_b0280) 2004; 49
Shin (10.1016/j.cej.2020.126269_b0310) 2014; 48
Li (10.1016/j.cej.2020.126269_b0180) 2020; 142
Zhu (10.1016/j.cej.2020.126269_b0620) 2018; 291
Bae (10.1016/j.cej.2020.126269_b0405) 2007; 129
Wang (10.1016/j.cej.2020.126269_b0520) 2021; 53
Ghafari (10.1016/j.cej.2020.126269_b0025) 2008; 99
Kamiya (10.1016/j.cej.2020.126269_b0610) 2014; 1
Katsounaros (10.1016/j.cej.2020.126269_b0335) 2007; 52
Zhang (10.1016/j.cej.2020.126269_b0585) 2019; 60
Li (10.1016/j.cej.2020.126269_b0380) 2009; 54
Wang (10.1016/j.cej.2020.126269_b0130) 2019; 6
Samatya (10.1016/j.cej.2020.126269_b0060) 2006; 66
Ghazouani (10.1016/j.cej.2020.126269_b0635) 2014; 53
Alikhani (10.1016/j.cej.2020.126269_b0065) 2014; 239
Li (10.1016/j.cej.2020.126269_b0100) 2009; 171
Liu (10.1016/j.cej.2020.126269_b0540) 2016; 163
Zhang (10.1016/j.cej.2020.126269_b0475) 2018; 165
Banasiak (10.1016/j.cej.2020.126269_b0075) 2009; 334
Fernández-Nava (10.1016/j.cej.2020.126269_b0040) 2008; 99
Martínez (10.1016/j.cej.2020.126269_b0045) 2017; 207
Long (10.1016/j.cej.2020.126269_b0270) 2020; 59
Reyter (10.1016/j.cej.2020.126269_b0425) 2011; 192
Jia (10.1016/j.cej.2020.126269_b0505) 2020; 10
Wang (10.1016/j.cej.2020.126269_b0570) 2019; 12
Dima (10.1016/j.cej.2020.126269_b0265) 2003; 554–555
Ding (10.1016/j.cej.2020.126269_b0605) 2015; 271
He (10.1016/j.cej.2020.126269_b0515) 2018; 140
Li (10.1016/j.cej.2020.126269_b0350) 2016; 146
References_xml – volume: 360
  start-page: eaar6611
  year: 2018
  ident: b0035
  article-title: Beyond fossil fuel-driven nitrogen transformations
  publication-title: Science
– volume: 212
  start-page: 237
  year: 2018
  end-page: 244
  ident: b0120
  article-title: Fabrication and characterization of a Cu-Pd-TNPs polymetallic nanoelectrode for electrochemically removing nitrate from groundwater
  publication-title: Chemosphere
– volume: 3
  start-page: 1800388
  year: 2019
  ident: b0160
  article-title: Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction
  publication-title: Small Methods
– volume: 157
  start-page: 191
  year: 2019
  end-page: 200
  ident: b0110
  article-title: Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: factors, kinetics, and mechanism
  publication-title: Water Res.
– volume: 48
  start-page: 3166
  year: 2019
  end-page: 3180
  ident: b0135
  article-title: How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully
  publication-title: Chem. Soc. Rev.
– volume: 207
  start-page: 42
  year: 2017
  end-page: 59
  ident: b0045
  article-title: State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates
  publication-title: Appl. Catal., B
– volume: 2
  start-page: D58
  year: 2013
  end-page: D60
  ident: b0445
  article-title: Electrodeposition of Cu-Ni alloy electrodes with bimodal porosity and their use for nitrate reduction
  publication-title: ECS Electrochem. Lett.
– volume: 63
  start-page: 1192
  year: 1959
  end-page: 1197
  ident: b0250
  article-title: Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure II. Der galvanostatische Einschaltvorgang
  publication-title: Z. Elektrochem.
– volume: 63
  start-page: 1189
  year: 1959
  end-page: 1191
  ident: b0240
  article-title: Entgegnung auf die vorstehende Arbeit von G. Schmid über “Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure”
  publication-title: Z. Elektrochem.
– reference: WHO, Nitrate and Nitrite in Drinking-Water, (2016).
– volume: 154
  start-page: 203
  year: 2000
  end-page: 215
  ident: b0190
  article-title: Electrocatalytic reduction of NO
  publication-title: J. Mol. Catal. A: Chem.
– volume: 52
  start-page: 230
  year: 2018
  end-page: 236
  ident: b0545
  article-title: Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon
  publication-title: Environ. Sci. Technol.
– volume: 16
  start-page: 532
  year: 2004
  end-page: 538
  ident: b0420
  article-title: Electrocatalysis of nitrate reduction at copper-nickel alloy electrodes in acidic media
  publication-title: Electroanalysis
– volume: 53
  start-page: 90
  year: 2021
  end-page: 92
  ident: b0520
  article-title: Unveiling enzyme-mimetic active intermediate of a bioinspired oxo-MoS
  publication-title: J. Energy Chem.
– volume: 59
  start-page: 5350
  year: 2020
  end-page: 5354
  ident: b0115
  article-title: Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 9992
  year: 2018
  end-page: 10002
  ident: b0315
  article-title: Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*
  publication-title: Environ. Sci. Technol.
– volume: 34
  start-page: 373
  year: 2013
  end-page: 381
  ident: b0330
  article-title: Influence of the electrode and the pH on the rate and the product distribution of the electrochemical removal of nitrate
  publication-title: Environ. Technol.
– volume: 773
  start-page: 13
  year: 2016
  end-page: 21
  ident: b0480
  article-title: Ti nano electrode fabrication for electrochemical denitrification using Box-Behnken design
  publication-title: J. Electroanal. Chem.
– volume: 236
  start-page: 546
  year: 2018
  end-page: 568
  ident: b0260
  article-title: Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications
  publication-title: Appl. Catal., B
– volume: 5
  start-page: 313
  year: 2013
  end-page: 321
  ident: b0290
  article-title: Elucidation of nitrate reduction mechanisms on a Pd-In bimetallic catalyst using isotope labeled nitrogen species
  publication-title: ChemCatChem
– volume: 308
  start-page: 11
  year: 2013
  end-page: 24
  ident: b0150
  article-title: Structural and electronic effects in heterogeneous electrocatalysis: Toward a rational design of electrocatalysts
  publication-title: J. Catal.
– volume: 46
  start-page: 3655
  year: 2012
  end-page: 3670
  ident: b0320
  article-title: Critical review of Pd-based catalytic treatment of priority contaminants in water
  publication-title: Environ. Sci. Technol.
– volume: 162
  start-page: D236
  year: 2015
  end-page: D241
  ident: b0455
  article-title: Electrodeposition of compact and porous Cu-Zn alloy electrodes and their use in the cathodic reduction of nitrate
  publication-title: J. Electrochem. Soc.
– volume: 506
  start-page: 127
  year: 2001
  end-page: 137
  ident: b0305
  article-title: The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes
  publication-title: J. Electroanal. Chem.
– volume: 9
  start-page: 536
  year: 2019
  ident: b0215
  article-title: Cu modified Pt nanoflowers with preferential (100) surfaces for selective electroreduction of nitrate
  publication-title: Catalysts
– volume: 554–555
  start-page: 15
  year: 2003
  end-page: 23
  ident: b0265
  article-title: Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions
  publication-title: J. Electroanal. Chem.
– volume: 269
  start-page: 733
  year: 2018
  end-page: 741
  ident: b0560
  article-title: Facile electrochemical co-deposition of metal (Cu, Pd, Pt, Rh) nanoparticles on reduced graphene oxide for electrocatalytic reduction of nitrate/nitrite
  publication-title: Electrochim. Acta
– volume: 202
  start-page: 387
  year: 2001
  end-page: 394
  ident: b0275
  article-title: Mechanistic study on the electrocatalytic reduction of nitric oxide on transition-metal electrodes
  publication-title: J. Catal.
– volume: 12
  start-page: 9
  year: 2018
  ident: b0080
  article-title: Electrochemical removal of nitrate in industrial wastewater
  publication-title: Front. Environ. Sci. Eng.
– volume: 227
  start-page: 77
  year: 2017
  end-page: 84
  ident: b0415
  article-title: Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions
  publication-title: Electrochim. Acta
– volume: 57
  start-page: 7649
  year: 2018
  end-page: 7653
  ident: b0575
  article-title: Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode
  publication-title: Angew. Chem. Int. Ed.
– volume: 699
  start-page: 1
  year: 2013
  end-page: 5
  ident: b0555
  article-title: Electrochemical reduction of nitrate on graphene modified copper electrodes in alkaline media
  publication-title: J. Electroanal. Chem.
– volume: 99
  start-page: 3965
  year: 2008
  end-page: 3974
  ident: b0025
  article-title: Bio-electrochemical removal of nitrate from water and wastewater—a review
  publication-title: Bioresour. Technol.
– volume: 291
  start-page: 151
  year: 2018
  end-page: 160
  ident: b0470
  article-title: Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: High efficiency and N
  publication-title: Electrochim. Acta
– volume: 165
  start-page: E420
  year: 2018
  end-page: E428
  ident: b0475
  article-title: Fe/Cu composite electrode prepared by electrodeposition and its excellent behavior in nitrate electrochemical removal
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 3533
  year: 2020
  end-page: 3540
  ident: b0505
  article-title: Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO
  publication-title: ACS Catal.
– volume: 223
  start-page: 560
  year: 2019
  end-page: 568
  ident: b0155
  article-title: Fabrication and characterization of a Ni-TNTA bimetallic nanoelectrode to electrochemically remove nitrate from groundwater
  publication-title: Chemosphere
– volume: 334
  start-page: 101
  year: 2009
  end-page: 109
  ident: b0075
  article-title: Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter
  publication-title: J. Membr. Sci.
– volume: 6
  start-page: 730
  year: 2019
  end-page: 738
  ident: b0130
  article-title: Electrochemical synthesis of nitric acid from air and ammonia through waste utilization
  publication-title: Natl. Sci. Rev.
– volume: 50
  start-page: 2148
  year: 2014
  end-page: 2151
  ident: b0175
  article-title: pH dependence of the electroreduction of nitrate on Rh and Pt polycrystalline electrodes
  publication-title: Chem. Commun.
– volume: 11
  start-page: 8308
  year: 2016
  end-page: 8322
  ident: b0535
  article-title: Fabrication and characterization of Cu/Ti bilayer nanoelectrode for electrochemical denitrification
  publication-title: Int. J. Electrochem. Sci.
– volume: 140
  start-page: 2012
  year: 2018
  end-page: 2015
  ident: b0515
  article-title: Selective electrocatalytic reduction of nitrite to dinitrogen based on decoupled proton-electron transfer
  publication-title: J. Am. Chem. Soc.
– volume: 259
  year: 2019
  ident: b0200
  article-title: Electrochemical reduction of NO
  publication-title: Appl. Catal., B
– volume: 383
  year: 2020
  ident: b0465
  article-title: Electrochemical nitrate reduction as affected by the crystal morphology and facet of copper nanoparticles supported on nickel foam electrodes (Cu/Ni)
  publication-title: Chem. Eng. J.
– volume: 24
  start-page: 9895
  year: 2017
  end-page: 9906
  ident: b0630
  article-title: Nitrate and carbon matter removals from real effluents using Si/BDD electrode
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 228
  start-page: 611
  year: 2019
  end-page: 618
  ident: b0500
  article-title: Ti plate with TiO
  publication-title: Chemosphere
– volume: 109
  start-page: 2209
  year: 2009
  end-page: 2244
  ident: b0005
  article-title: Nitrogen cycle electrocatalysis
  publication-title: Chem. Rev.
– volume: 5
  start-page: 9726
  year: 2012
  end-page: 9742
  ident: b0010
  article-title: Powering denitrification: the perspectives of electrocatalytic nitrate reduction
  publication-title: Energy Environ. Sci.
– volume: 782
  start-page: 270
  year: 2016
  end-page: 277
  ident: b0355
  article-title: Development and reaction mechanism of efficient nano titanium electrode: Reconstructed nanostructure and enhanced nitrate removal efficiency
  publication-title: J. Electroanal. Chem.
– volume: 202
  start-page: 177
  year: 2018
  end-page: 183
  ident: b0490
  article-title: Efficient nano titanium electrode via a two-step electrochemical anodization with reconstructed nanotubes: Electrochemical activity and stability
  publication-title: Chemosphere
– volume: 52
  start-page: 6412
  year: 2007
  end-page: 6420
  ident: b0335
  article-title: Influence of the concentration and the nature of the supporting electrolyte on the electrochemical reduction of nitrate on tin cathode
  publication-title: Electrochim. Acta
– volume: 65
  start-page: 531
  year: 1961
  end-page: 534
  ident: b0255
  article-title: Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure: III Mathematische Behandlung einer autokatalytischen Elektrodenreaktion 1. Ordnung
  publication-title: Z. Elektrochem.
– volume: 273
  year: 2020
  ident: b0205
  article-title: Manipulating the crystalline morphology and facet orientation of copper and copper-palladium nanocatalysts supported on stainless steel mesh with the aid of cationic surfactant to improve the electrochemical reduction of nitrate and N
  publication-title: Appl. Catal., B
– year: 2020
  ident: b0525
  article-title: Enzyme mimetic active intermediates for nitrate reduction in neutral aqueous media
  publication-title: Angew. Chem. Int. Ed.
– volume: 63
  start-page: 1183
  year: 1959
  end-page: 1188
  ident: b0245
  article-title: Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure I. Zur Deutung stationärer strom-Spannungs-Kurven
  publication-title: Z. Elektrochem.
– volume: 29
  start-page: 457
  year: 2016
  end-page: 465
  ident: b0410
  article-title: Nitrate reduction pathways on Cu single crystal surfaces: effect of oxide and Cl
  publication-title: Nano Energy
– volume: 164
  start-page: E326
  year: 2017
  end-page: E331
  ident: b0485
  article-title: Electrochemical behavior of Ti-based nano-electrode for highly efficient denitrification in synthetic groundwater
  publication-title: J. Electrochem. Soc.
– volume: 197
  start-page: 475
  year: 2012
  end-page: 482
  ident: b0340
  article-title: Kinetic study of the simultaneous electrochemical removal of aqueous nitrogen compounds using BDD electrodes
  publication-title: Chem. Eng. J.
– volume: 60
  start-page: 894
  year: 2019
  end-page: 902
  ident: b0585
  article-title: Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array
  publication-title: Nano Energy
– volume: 99
  start-page: 7976
  year: 2008
  end-page: 7981
  ident: b0040
  article-title: Denitrification of wastewater containing high nitrate and calcium concentrations
  publication-title: Bioresour. Technol.
– volume: 324
  year: 2019
  ident: b0565
  article-title: In situ growth of copper/reduced graphene oxide on graphite surfaces for the electrocatalytic reduction of nitrate
  publication-title: Electrochim. Acta
– volume: 59
  start-page: 9711
  year: 2020
  end-page: 9718
  ident: b0270
  article-title: Direct electrochemical ammonia synthesis from nitric oxide
  publication-title: Angew. Chem. Int. Ed.
– volume: 599–600
  start-page: 1524
  year: 2017
  end-page: 1551
  ident: b0030
  article-title: Challenges in photocatalytic reduction of nitrate as a water treatment technology
  publication-title: Sci. Total. Environ.
– volume: 44
  start-page: 841
  year: 1998
  end-page: 851
  ident: b0300
  article-title: Kinetics of hydrogen evolution reaction with Frumkin adsorption: re-examination of the Volmer-Heyrovsky and Volmer-Tafel routes
  publication-title: Electrochim. Acta
– volume: 239
  start-page: 93
  year: 2014
  end-page: 104
  ident: b0065
  article-title: Ion-exchange polyHIPE type membrane for removing nitrate ions: preparation, characterization, kinetics and adsorption studies
  publication-title: Chem. Eng. J.
– volume: 63
  start-page: 206
  year: 2011
  end-page: 212
  ident: b0625
  article-title: Electrochemical treatment of wastewater polluted by nitrate: selective reduction to N
  publication-title: Water Sci. Technol.
– volume: 66
  start-page: 1206
  year: 2006
  end-page: 1214
  ident: b0060
  article-title: Removal of nitrate from aqueous solution by nitrate selective ion exchange resins
  publication-title: React. Funct. Polym.
– volume: 382
  year: 2020
  ident: b0295
  article-title: Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co
  publication-title: Chem. Eng. J.
– volume: 146
  start-page: 2585
  year: 2016
  end-page: 2595
  ident: b0350
  article-title: Electrochemical reduction of high-concentrated nitrate using Ti/TiO
  publication-title: Catal. Lett.
– volume: 142
  start-page: 7036
  year: 2020
  end-page: 7046
  ident: b0180
  article-title: Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters
  publication-title: J. Am. Chem. Soc.
– volume: 163
  start-page: E421
  year: 2016
  end-page: E427
  ident: b0540
  article-title: Fabrication and characterization of a Cu-Zn-TiO
  publication-title: J. Electrochem. Soc.
– volume: 173
  year: 2020
  ident: b0550
  article-title: Electrochemically mediated nitrate reduction on nanoconfined zerovalent iron: properties and mechanism
  publication-title: Water Res.
– volume: 213–214
  start-page: 478
  year: 2012
  end-page: 484
  ident: b0600
  article-title: Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media
  publication-title: J. Hazard. Mater.
– volume: 48
  start-page: 12768
  year: 2014
  end-page: 12774
  ident: b0310
  article-title: Nitrite reduction mechanism on a Pd surface
  publication-title: Environ. Sci. Technol.
– volume: 427
  start-page: 106
  year: 2018
  end-page: 113
  ident: b0530
  article-title: Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane
  publication-title: Appl. Surf. Sci.
– volume: 257
  year: 2019
  ident: b0225
  article-title: Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity
  publication-title: Appl. Catal., B
– volume: 489
  start-page: 321
  year: 2019
  end-page: 329
  ident: b0345
  article-title: Self-supported Cu nanosheets derived from CuCl-CuO for highly efficient electrochemical degradation of NO
  publication-title: Appl. Surf. Sci.
– volume: 3
  start-page: 1578
  year: 2019
  end-page: 1605
  ident: b0020
  article-title: Prospects and challenges for solar fertilizers
  publication-title: Joule
– volume: 39
  start-page: 4065
  year: 2005
  end-page: 4072
  ident: b0145
  article-title: Electrochemical denitrificaton of simulated ground water
  publication-title: Water Res.
– volume: 35
  start-page: 421
  year: 2005
  end-page: 427
  ident: b0370
  article-title: Electrochemical reduction of nitrate ion on various cathodes–reaction kinetics on bronze cathode
  publication-title: J. Appl. Electrochem.
– volume: 291
  start-page: 328
  year: 2018
  end-page: 334
  ident: b0620
  article-title: In-situ electrochemical activation of carbon fiber paper for the highly efficient electroreduction of concentrated nitric acid
  publication-title: Electrochim. Acta
– volume: 168
  start-page: 493
  year: 2011
  end-page: 504
  ident: b0015
  article-title: A review of emerging adsorbents for nitrate removal from water
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 7052
  year: 2019
  end-page: 7064
  ident: b0235
  article-title: Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals
  publication-title: ACS Catal.
– volume: 662
  start-page: 87
  year: 2011
  end-page: 92
  ident: b0285
  article-title: Formation of volatile products during nitrate reduction on a Sn-modified Pt electrode in acid solution
  publication-title: J. Electroanal. Chem.
– volume: 61
  start-page: 836
  year: 1989
  end-page: 837
  ident: b0185
  article-title: Erste Schritte auf dem Weg zur edelmetallkatalysierten Nitrat- und Nitrit-Entfernung aus Trinkwasser
  publication-title: Chem. Ing. Tech.
– volume: 237
  year: 2020
  ident: b0510
  article-title: Electrochemical removal of nitrate using a nanosheet structured Co
  publication-title: Sep. Purif. Technol.
– volume: 180
  start-page: 199
  year: 2016
  end-page: 209
  ident: b0195
  article-title: The electrochemical reduction of nitrate over micro-architectured metal electrodes with stainless steel scaffold
  publication-title: Appl. Catal., B
– volume: 104
  start-page: 1
  year: 2011
  end-page: 5
  ident: b0085
  article-title: Catalytic nitrate removal from water, past, present and future perspectives
  publication-title: Appl. Catal., B
– volume: 494
  start-page: 22
  year: 2019
  end-page: 28
  ident: b0395
  article-title: Bifunctional self-assembled Ni
  publication-title: Appl. Surf. Sci.
– volume: 16
  start-page: 1907029
  year: 2020
  ident: b0390
  article-title: Oxygen evolution reaction kinetics: reducing oxygen evolution reaction overpotential in cobalt-based electrocatalysts via optimizing the “microparticles-in-spider web” electrode configurations
  publication-title: Small
– volume: 192
  start-page: 507
  year: 2011
  end-page: 513
  ident: b0425
  article-title: Optimization of the cathode material for nitrate removal by a paired electrolysis process
  publication-title: J. Hazard. Mater.
– volume: 53
  start-page: 1107
  year: 2014
  end-page: 1117
  ident: b0635
  article-title: Efficiency of electrochemical denitrification using electrolysis cell containing BDD electrode
  publication-title: Desalin. Water Treat.
– volume: 171
  start-page: 724
  year: 2009
  end-page: 730
  ident: b0100
  article-title: Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method
  publication-title: J. Hazard. Mater.
– volume: 766
  start-page: 157
  year: 2018
  end-page: 160
  ident: b0430
  article-title: Electrolytic reduction of nitrate on copper and its binary composite electrodes
  publication-title: J. Alloys Compd.
– volume: 49
  start-page: 1307
  year: 2004
  end-page: 1314
  ident: b0280
  article-title: Mechanisms of electrochemical reduction and oxidation of nitric oxide
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 996
  year: 2009
  end-page: 1001
  ident: b0125
  article-title: Electrocatalytic reduction of nitrate on copper electrode in alkaline solution
  publication-title: Electrochim. Acta
– volume: 89
  start-page: 488
  year: 2013
  end-page: 496
  ident: b0435
  article-title: Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes
  publication-title: Electrochim. Acta
– volume: 68
  start-page: 1213
  year: 2015
  end-page: 1220
  ident: b0385
  article-title: Electrochemical restructuring of copper surfaces using organic additives and its effect on the electrocatalytic reduction of nitrate ions
  publication-title: Aust. J. Chem.
– reference: USEPA, Ground Water and Drinking Water Table of Regulated Drinking Water Contaminants, (2017).
– volume: 601
  start-page: 161
  year: 2007
  end-page: 168
  ident: b0220
  article-title: Reduction of nitrate ions on tin-modified palladium thin film electrodes
  publication-title: J. Electroanal. Chem.
– volume: 205
  start-page: 706
  year: 2018
  end-page: 715
  ident: b0460
  article-title: Enhanced electrocatalytic reduction of aqueous nitrate by modified copper catalyst through electrochemical deposition and annealing treatment
  publication-title: Chem. Eng. Commun.
– volume: 31
  start-page: 3277
  year: 2015
  end-page: 3281
  ident: b0210
  article-title: Surface modification of Pt(100) for electrocatalytic nitrate reduction to dinitrogen in alkaline solution
  publication-title: Langmuir
– volume: 132
  start-page: 18042
  year: 2010
  end-page: 18044
  ident: b0170
  article-title: Direct reduction of nitrite to N
  publication-title: J. Am. Chem. Soc.
– volume: 562
  start-page: 81
  year: 2004
  end-page: 94
  ident: b0230
  article-title: The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum
  publication-title: J. Electroanal. Chem.
– volume: 54
  start-page: 4600
  year: 2009
  end-page: 4606
  ident: b0380
  article-title: Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO
  publication-title: Electrochim. Acta
– volume: 120
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0360
  article-title: Electrochemical nitrate reduction by using a novel Co
  publication-title: Water Res.
– volume: 12
  start-page: 2055
  year: 2019
  end-page: 2066
  ident: b0570
  article-title: Rational design of three-phase interfaces for electrocatalysis
  publication-title: Nano Res.
– volume: 161
  start-page: 126
  year: 2019
  end-page: 135
  ident: b0365
  article-title: Highly active and durable carbon electrocatalyst for nitrate reduction reaction
  publication-title: Water Res.
– volume: 12
  start-page: 9385
  year: 2020
  end-page: 9391
  ident: b0400
  article-title: A three-dimensional Cu nanobelt cathode for highly efficient electrocatalytic nitrate reduction
  publication-title: Nanoscale
– reference: Y. Wang, C. Liu, B. Zhang, Y. Yu, Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation, Sci. China Mater., doi: 10.1007/s40843-020-1365-0.
– volume: 279
  start-page: 372
  year: 2015
  end-page: 378
  ident: b0070
  article-title: Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme
  publication-title: Chem. Eng. J.
– volume: 142
  start-page: 5702
  year: 2020
  end-page: 5708
  ident: b0440
  article-title: Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption
  publication-title: J. Am. Chem. Soc.
– volume: 271
  start-page: 252
  year: 2015
  end-page: 259
  ident: b0605
  article-title: Electroreduction of nitrate in water: Role of cathode and cell configuration
  publication-title: Chem. Eng. J.
– volume: 254
  start-page: 391
  year: 2019
  end-page: 402
  ident: b0105
  article-title: Non-precious Co
  publication-title: Appl. Catal., B
– volume: 242
  year: 2020
  ident: b0595
  article-title: Electrocatalytic nitrate reduction using Fe
  publication-title: J. Cleaner Prod.
– volume: 3
  start-page: 1368
  year: 2013
  end-page: 1380
  ident: b0495
  article-title: Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts
  publication-title: Adv. Energy Mater.
– volume: 783
  start-page: 28
  year: 2016
  end-page: 40
  ident: b0640
  article-title: Enhancing removal of nitrates from highly concentrated synthetic wastewaters using bipolar Si/BDD cell: optimization and mechanism study
  publication-title: J. Electroanal. Chem.
– volume: 140
  start-page: 337
  year: 2014
  end-page: 344
  ident: b0450
  article-title: Hydrogen evolution assisted electrodeposition of porous Cu-Ni alloy electrodes and their use for nitrate reduction in alkali
  publication-title: Electrochim. Acta
– volume: 216
  start-page: 158
  year: 2019
  end-page: 165
  ident: b0615
  article-title: Efficient nitrate removal from water using selected cathodes and Ti/PbO
  publication-title: Sep. Purif. Technol.
– volume: 123
  start-page: 183
  year: 2000
  end-page: 193
  ident: b0090
  article-title: Biological denitrification of groundwater
  publication-title: Water, Air, Soil Pollut.
– volume: 138
  start-page: 13639
  year: 2016
  end-page: 13646
  ident: b0580
  article-title: A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 858
  year: 2014
  end-page: 862
  ident: b0610
  article-title: Graphene defects as active catalytic sites that are superior to platinum catalysts in electrochemical nitrate reduction
  publication-title: ChemElectroChem
– volume: 210
  start-page: 524
  year: 2018
  end-page: 530
  ident: b0645
  article-title: Comparison of performance between boron-doped diamond and copper electrodes for selective nitrogen gas formation by the electrochemical reduction of nitrate
  publication-title: Chemosphere
– volume: 596
  start-page: 13
  year: 2006
  end-page: 24
  ident: b0375
  article-title: Electrocatalytic reduction of nitrate on copper electrodes prepared by high-energy ball milling
  publication-title: J. Electroanal. Chem.
– volume: 129
  start-page: 10171
  year: 2007
  end-page: 10180
  ident: b0405
  article-title: Nitrate adsorption and reduction on Cu(100) in acidic solution
  publication-title: J. Am. Chem. Soc.
– volume: 570
  start-page: 504
  year: 2019
  end-page: 508
  ident: b0140
  article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
  publication-title: Nature
– volume: 52
  start-page: 6023
  year: 2007
  end-page: 6033
  ident: b0165
  article-title: Electrochemical reduction of nitrate on Pt(S)[n(111)×(111)] electrodes in perchloric acid solution
  publication-title: Electrochim. Acta
– volume: 145
  start-page: 1756
  year: 2015
  end-page: 1763
  ident: b0095
  article-title: Catalytic hydrogenation of nitrate in water using a Pd–Cu/Al
  publication-title: Catal. Lett.
– volume: 53
  start-page: 5977
  year: 2008
  end-page: 5984
  ident: b0325
  article-title: Study of the electroreduction of nitrate on copper in alkaline solution
  publication-title: Electrochim. Acta
– volume: 766
  start-page: 157
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0430
  article-title: Electrolytic reduction of nitrate on copper and its binary composite electrodes
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.07.004
– volume: 239
  start-page: 93
  year: 2014
  ident: 10.1016/j.cej.2020.126269_b0065
  article-title: Ion-exchange polyHIPE type membrane for removing nitrate ions: preparation, characterization, kinetics and adsorption studies
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.11.013
– volume: 142
  start-page: 7036
  year: 2020
  ident: 10.1016/j.cej.2020.126269_b0180
  article-title: Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00418
– volume: 52
  start-page: 6023
  year: 2007
  ident: 10.1016/j.cej.2020.126269_b0165
  article-title: Electrochemical reduction of nitrate on Pt(S)[n(111)×(111)] electrodes in perchloric acid solution
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.03.057
– volume: 383
  year: 2020
  ident: 10.1016/j.cej.2020.126269_b0465
  article-title: Electrochemical nitrate reduction as affected by the crystal morphology and facet of copper nanoparticles supported on nickel foam electrodes (Cu/Ni)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123157
– volume: 291
  start-page: 151
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0470
  article-title: Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: High efficiency and N2 selectivity
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.154
– volume: 334
  start-page: 101
  year: 2009
  ident: 10.1016/j.cej.2020.126269_b0075
  article-title: Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.02.020
– volume: 53
  start-page: 1107
  year: 2014
  ident: 10.1016/j.cej.2020.126269_b0635
  article-title: Efficiency of electrochemical denitrification using electrolysis cell containing BDD electrode
  publication-title: Desalin. Water Treat.
– volume: 360
  start-page: eaar6611
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0035
  article-title: Beyond fossil fuel-driven nitrogen transformations
  publication-title: Science
  doi: 10.1126/science.aar6611
– volume: 54
  start-page: 996
  year: 2009
  ident: 10.1016/j.cej.2020.126269_b0125
  article-title: Electrocatalytic reduction of nitrate on copper electrode in alkaline solution
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.08.003
– volume: 308
  start-page: 11
  year: 2013
  ident: 10.1016/j.cej.2020.126269_b0150
  article-title: Structural and electronic effects in heterogeneous electrocatalysis: Toward a rational design of electrocatalysts
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2013.05.006
– ident: 10.1016/j.cej.2020.126269_b0050
– volume: 161
  start-page: 126
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0365
  article-title: Highly active and durable carbon electrocatalyst for nitrate reduction reaction
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.05.104
– volume: 782
  start-page: 270
  year: 2016
  ident: 10.1016/j.cej.2020.126269_b0355
  article-title: Development and reaction mechanism of efficient nano titanium electrode: Reconstructed nanostructure and enhanced nitrate removal efficiency
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.10.047
– volume: 9
  start-page: 536
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0215
  article-title: Cu modified Pt nanoflowers with preferential (100) surfaces for selective electroreduction of nitrate
  publication-title: Catalysts
  doi: 10.3390/catal9060536
– volume: 269
  start-page: 733
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0560
  article-title: Facile electrochemical co-deposition of metal (Cu, Pd, Pt, Rh) nanoparticles on reduced graphene oxide for electrocatalytic reduction of nitrate/nitrite
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.03.005
– volume: 123
  start-page: 183
  year: 2000
  ident: 10.1016/j.cej.2020.126269_b0090
  article-title: Biological denitrification of groundwater
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1023/A:1005242600186
– volume: 10
  start-page: 3533
  year: 2020
  ident: 10.1016/j.cej.2020.126269_b0505
  article-title: Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05260
– volume: 570
  start-page: 504
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0140
  article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
  publication-title: Nature
  doi: 10.1038/s41586-019-1260-x
– volume: 146
  start-page: 2585
  year: 2016
  ident: 10.1016/j.cej.2020.126269_b0350
  article-title: Electrochemical reduction of high-concentrated nitrate using Ti/TiO2 nanotube array anode and Fe cathode in dual-chamber cell
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-016-1894-3
– volume: 89
  start-page: 488
  year: 2013
  ident: 10.1016/j.cej.2020.126269_b0435
  article-title: Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.11.074
– volume: 237
  year: 2020
  ident: 10.1016/j.cej.2020.126269_b0510
  article-title: Electrochemical removal of nitrate using a nanosheet structured Co3O4/Ti cathode: effects of temperature, current and pH adjusting
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.116485
– volume: 154
  start-page: 203
  year: 2000
  ident: 10.1016/j.cej.2020.126269_b0190
  article-title: Electrocatalytic reduction of NO3− on palladium/copper electrodes
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/S1381-1169(99)00375-1
– volume: 63
  start-page: 1192
  year: 1959
  ident: 10.1016/j.cej.2020.126269_b0250
  article-title: Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure II. Der galvanostatische Einschaltvorgang
  publication-title: Z. Elektrochem.
– volume: 2
  start-page: D58
  year: 2013
  ident: 10.1016/j.cej.2020.126269_b0445
  article-title: Electrodeposition of Cu-Ni alloy electrodes with bimodal porosity and their use for nitrate reduction
  publication-title: ECS Electrochem. Lett.
  doi: 10.1149/2.004311eel
– volume: 3
  start-page: 1368
  year: 2013
  ident: 10.1016/j.cej.2020.126269_b0495
  article-title: Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300380
– volume: 99
  start-page: 3965
  year: 2008
  ident: 10.1016/j.cej.2020.126269_b0025
  article-title: Bio-electrochemical removal of nitrate from water and wastewater—a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.05.026
– volume: 49
  start-page: 1307
  year: 2004
  ident: 10.1016/j.cej.2020.126269_b0280
  article-title: Mechanisms of electrochemical reduction and oxidation of nitric oxide
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2003.07.020
– volume: 53
  start-page: 90
  year: 2021
  ident: 10.1016/j.cej.2020.126269_b0520
  article-title: Unveiling enzyme-mimetic active intermediate of a bioinspired oxo-MoSx electrocatalyst for aqueous nitrate reduction
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.05.017
– volume: 6
  start-page: 730
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0130
  article-title: Electrochemical synthesis of nitric acid from air and ammonia through waste utilization
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwz019
– ident: 10.1016/j.cej.2020.126269_b0055
– volume: 12
  start-page: 9
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0080
  article-title: Electrochemical removal of nitrate in industrial wastewater
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-018-1033-z
– volume: 259
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0200
  article-title: Electrochemical reduction of NOx species at the interface of nanostructured Pd and PdCu catalysts in alkaline conditions
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118048
– volume: 12
  start-page: 9385
  year: 2020
  ident: 10.1016/j.cej.2020.126269_b0400
  article-title: A three-dimensional Cu nanobelt cathode for highly efficient electrocatalytic nitrate reduction
  publication-title: Nanoscale
  doi: 10.1039/C9NR10743F
– volume: 173
  year: 2020
  ident: 10.1016/j.cej.2020.126269_b0550
  article-title: Electrochemically mediated nitrate reduction on nanoconfined zerovalent iron: properties and mechanism
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115596
– volume: 63
  start-page: 1183
  year: 1959
  ident: 10.1016/j.cej.2020.126269_b0245
  article-title: Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure I. Zur Deutung stationärer strom-Spannungs-Kurven
  publication-title: Z. Elektrochem.
– volume: 773
  start-page: 13
  year: 2016
  ident: 10.1016/j.cej.2020.126269_b0480
  article-title: Ti nano electrode fabrication for electrochemical denitrification using Box-Behnken design
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.04.025
– volume: 129
  start-page: 10171
  year: 2007
  ident: 10.1016/j.cej.2020.126269_b0405
  article-title: Nitrate adsorption and reduction on Cu(100) in acidic solution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071330n
– volume: 279
  start-page: 372
  year: 2015
  ident: 10.1016/j.cej.2020.126269_b0070
  article-title: Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.05.010
– volume: 213–214
  start-page: 478
  year: 2012
  ident: 10.1016/j.cej.2020.126269_b0600
  article-title: Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.02.034
– volume: 168
  start-page: 493
  year: 2011
  ident: 10.1016/j.cej.2020.126269_b0015
  article-title: A review of emerging adsorbents for nitrate removal from water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.01.103
– volume: 202
  start-page: 177
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0490
  article-title: Efficient nano titanium electrode via a two-step electrochemical anodization with reconstructed nanotubes: Electrochemical activity and stability
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.03.063
– volume: 5
  start-page: 313
  year: 2013
  ident: 10.1016/j.cej.2020.126269_b0290
  article-title: Elucidation of nitrate reduction mechanisms on a Pd-In bimetallic catalyst using isotope labeled nitrogen species
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201200457
– volume: 324
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0565
  article-title: In situ growth of copper/reduced graphene oxide on graphite surfaces for the electrocatalytic reduction of nitrate
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.134846
– volume: 44
  start-page: 841
  year: 1998
  ident: 10.1016/j.cej.2020.126269_b0300
  article-title: Kinetics of hydrogen evolution reaction with Frumkin adsorption: re-examination of the Volmer-Heyrovsky and Volmer-Tafel routes
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(98)00233-3
– volume: 52
  start-page: 9992
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0315
  article-title: Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02740
– volume: 12
  start-page: 2055
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0570
  article-title: Rational design of three-phase interfaces for electrocatalysis
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2310-2
– volume: 140
  start-page: 2012
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0515
  article-title: Selective electrocatalytic reduction of nitrite to dinitrogen based on decoupled proton-electron transfer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12774
– ident: 10.1016/j.cej.2020.126269_b0590
  doi: 10.1007/s40843-020-1365-0
– volume: 120
  start-page: 1
  year: 2017
  ident: 10.1016/j.cej.2020.126269_b0360
  article-title: Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.04.069
– volume: 254
  start-page: 391
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0105
  article-title: Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: preparation, performance and mechanism
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.05.016
– volume: 104
  start-page: 1
  year: 2011
  ident: 10.1016/j.cej.2020.126269_b0085
  article-title: Catalytic nitrate removal from water, past, present and future perspectives
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2011.03.011
– volume: 212
  start-page: 237
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0120
  article-title: Fabrication and characterization of a Cu-Pd-TNPs polymetallic nanoelectrode for electrochemically removing nitrate from groundwater
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.08.082
– volume: 157
  start-page: 191
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0110
  article-title: Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: factors, kinetics, and mechanism
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.03.078
– volume: 138
  start-page: 13639
  year: 2016
  ident: 10.1016/j.cej.2020.126269_b0580
  article-title: A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07127
– volume: 99
  start-page: 7976
  year: 2008
  ident: 10.1016/j.cej.2020.126269_b0040
  article-title: Denitrification of wastewater containing high nitrate and calcium concentrations
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.03.048
– volume: 192
  start-page: 507
  year: 2011
  ident: 10.1016/j.cej.2020.126269_b0425
  article-title: Optimization of the cathode material for nitrate removal by a paired electrolysis process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.05.054
– volume: 164
  start-page: E326
  year: 2017
  ident: 10.1016/j.cej.2020.126269_b0485
  article-title: Electrochemical behavior of Ti-based nano-electrode for highly efficient denitrification in synthetic groundwater
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0821712jes
– volume: 16
  start-page: 1907029
  year: 2020
  ident: 10.1016/j.cej.2020.126269_b0390
  article-title: Oxygen evolution reaction kinetics: reducing oxygen evolution reaction overpotential in cobalt-based electrocatalysts via optimizing the “microparticles-in-spider web” electrode configurations
  publication-title: Small
  doi: 10.1002/smll.201907029
– volume: 223
  start-page: 560
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0155
  article-title: Fabrication and characterization of a Ni-TNTA bimetallic nanoelectrode to electrochemically remove nitrate from groundwater
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.02.028
– volume: 489
  start-page: 321
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0345
  article-title: Self-supported Cu nanosheets derived from CuCl-CuO for highly efficient electrochemical degradation of NO3−
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.05.358
– volume: 382
  year: 2020
  ident: 10.1016/j.cej.2020.126269_b0295
  article-title: Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: Mechanism exploration from both experimental and DFT studies
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123034
– volume: 52
  start-page: 230
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0545
  article-title: Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04775
– volume: 68
  start-page: 1213
  year: 2015
  ident: 10.1016/j.cej.2020.126269_b0385
  article-title: Electrochemical restructuring of copper surfaces using organic additives and its effect on the electrocatalytic reduction of nitrate ions
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH15191
– volume: 132
  start-page: 18042
  year: 2010
  ident: 10.1016/j.cej.2020.126269_b0170
  article-title: Direct reduction of nitrite to N2 on a Pt(100) electrode in alkaline media
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1092503
– volume: 242
  year: 2020
  ident: 10.1016/j.cej.2020.126269_b0595
  article-title: Electrocatalytic nitrate reduction using Fe0/Fe3O4 nanoparticles immobilized on nickel foam: Selectivity and energy consumption studies
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.118569
– volume: 34
  start-page: 373
  year: 2013
  ident: 10.1016/j.cej.2020.126269_b0330
  article-title: Influence of the electrode and the pH on the rate and the product distribution of the electrochemical removal of nitrate
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2012.696722
– volume: 46
  start-page: 3655
  year: 2012
  ident: 10.1016/j.cej.2020.126269_b0320
  article-title: Critical review of Pd-based catalytic treatment of priority contaminants in water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es204087q
– volume: 109
  start-page: 2209
  year: 2009
  ident: 10.1016/j.cej.2020.126269_b0005
  article-title: Nitrogen cycle electrocatalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr8003696
– volume: 257
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0225
  article-title: Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.117909
– volume: 61
  start-page: 836
  year: 1989
  ident: 10.1016/j.cej.2020.126269_b0185
  article-title: Erste Schritte auf dem Weg zur edelmetallkatalysierten Nitrat- und Nitrit-Entfernung aus Trinkwasser
  publication-title: Chem. Ing. Tech.
  doi: 10.1002/cite.330611023
– volume: 197
  start-page: 475
  year: 2012
  ident: 10.1016/j.cej.2020.126269_b0340
  article-title: Kinetic study of the simultaneous electrochemical removal of aqueous nitrogen compounds using BDD electrodes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.05.062
– volume: 273
  year: 2020
  ident: 10.1016/j.cej.2020.126269_b0205
  article-title: Manipulating the crystalline morphology and facet orientation of copper and copper-palladium nanocatalysts supported on stainless steel mesh with the aid of cationic surfactant to improve the electrochemical reduction of nitrate and N2 selectivity
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119053
– volume: 783
  start-page: 28
  year: 2016
  ident: 10.1016/j.cej.2020.126269_b0640
  article-title: Enhancing removal of nitrates from highly concentrated synthetic wastewaters using bipolar Si/BDD cell: optimization and mechanism study
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.10.048
– volume: 142
  start-page: 5702
  year: 2020
  ident: 10.1016/j.cej.2020.126269_b0440
  article-title: Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13347
– volume: 202
  start-page: 387
  year: 2001
  ident: 10.1016/j.cej.2020.126269_b0275
  article-title: Mechanistic study on the electrocatalytic reduction of nitric oxide on transition-metal electrodes
  publication-title: J. Catal.
  doi: 10.1006/jcat.2001.3275
– volume: 699
  start-page: 1
  year: 2013
  ident: 10.1016/j.cej.2020.126269_b0555
  article-title: Electrochemical reduction of nitrate on graphene modified copper electrodes in alkaline media
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2013.04.001
– volume: 65
  start-page: 531
  year: 1961
  ident: 10.1016/j.cej.2020.126269_b0255
  article-title: Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure: III Mathematische Behandlung einer autokatalytischen Elektrodenreaktion 1. Ordnung
  publication-title: Z. Elektrochem.
– volume: 35
  start-page: 421
  year: 2005
  ident: 10.1016/j.cej.2020.126269_b0370
  article-title: Electrochemical reduction of nitrate ion on various cathodes–reaction kinetics on bronze cathode
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-004-8349-z
– volume: 60
  start-page: 894
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0585
  article-title: Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.035
– volume: 171
  start-page: 724
  year: 2009
  ident: 10.1016/j.cej.2020.126269_b0100
  article-title: Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.06.066
– volume: 3
  start-page: 1800388
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0160
  article-title: Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction
  publication-title: Small Methods
  doi: 10.1002/smtd.201800388
– volume: 271
  start-page: 252
  year: 2015
  ident: 10.1016/j.cej.2020.126269_b0605
  article-title: Electroreduction of nitrate in water: Role of cathode and cell configuration
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.03.001
– volume: 228
  start-page: 611
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0500
  article-title: Ti plate with TiO2 nanotube arrays as a novel cathode for nitrate reduction
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.04.071
– volume: 31
  start-page: 3277
  year: 2015
  ident: 10.1016/j.cej.2020.126269_b0210
  article-title: Surface modification of Pt(100) for electrocatalytic nitrate reduction to dinitrogen in alkaline solution
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b00283
– volume: 596
  start-page: 13
  year: 2006
  ident: 10.1016/j.cej.2020.126269_b0375
  article-title: Electrocatalytic reduction of nitrate on copper electrodes prepared by high-energy ball milling
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.06.012
– volume: 48
  start-page: 12768
  year: 2014
  ident: 10.1016/j.cej.2020.126269_b0310
  article-title: Nitrite reduction mechanism on a Pd surface
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es503772x
– volume: 662
  start-page: 87
  year: 2011
  ident: 10.1016/j.cej.2020.126269_b0285
  article-title: Formation of volatile products during nitrate reduction on a Sn-modified Pt electrode in acid solution
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2011.03.015
– volume: 59
  start-page: 9711
  year: 2020
  ident: 10.1016/j.cej.2020.126269_b0270
  article-title: Direct electrochemical ammonia synthesis from nitric oxide
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202002337
– volume: 16
  start-page: 532
  year: 2004
  ident: 10.1016/j.cej.2020.126269_b0420
  article-title: Electrocatalysis of nitrate reduction at copper-nickel alloy electrodes in acidic media
  publication-title: Electroanalysis
  doi: 10.1002/elan.200302790
– volume: 562
  start-page: 81
  year: 2004
  ident: 10.1016/j.cej.2020.126269_b0230
  article-title: The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2003.08.011
– volume: 554–555
  start-page: 15
  year: 2003
  ident: 10.1016/j.cej.2020.126269_b0265
  article-title: Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(02)01443-2
– volume: 162
  start-page: D236
  year: 2015
  ident: 10.1016/j.cej.2020.126269_b0455
  article-title: Electrodeposition of compact and porous Cu-Zn alloy electrodes and their use in the cathodic reduction of nitrate
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1041506jes
– volume: 165
  start-page: E420
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0475
  article-title: Fe/Cu composite electrode prepared by electrodeposition and its excellent behavior in nitrate electrochemical removal
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0081810jes
– volume: 145
  start-page: 1756
  year: 2015
  ident: 10.1016/j.cej.2020.126269_b0095
  article-title: Catalytic hydrogenation of nitrate in water using a Pd–Cu/Al2O3 catalyst and dilute H2 microbubbles
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-015-1569-5
– volume: 427
  start-page: 106
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0530
  article-title: Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.08.171
– volume: 11
  start-page: 8308
  year: 2016
  ident: 10.1016/j.cej.2020.126269_b0535
  article-title: Fabrication and characterization of Cu/Ti bilayer nanoelectrode for electrochemical denitrification
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2016.10.49
– volume: 1
  start-page: 858
  year: 2014
  ident: 10.1016/j.cej.2020.126269_b0610
  article-title: Graphene defects as active catalytic sites that are superior to platinum catalysts in electrochemical nitrate reduction
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201300237
– volume: 57
  start-page: 7649
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0575
  article-title: Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803543
– year: 2020
  ident: 10.1016/j.cej.2020.126269_b0525
  article-title: Enzyme mimetic active intermediates for nitrate reduction in neutral aqueous media
  publication-title: Angew. Chem. Int. Ed.
– volume: 140
  start-page: 337
  year: 2014
  ident: 10.1016/j.cej.2020.126269_b0450
  article-title: Hydrogen evolution assisted electrodeposition of porous Cu-Ni alloy electrodes and their use for nitrate reduction in alkali
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.04.048
– volume: 53
  start-page: 5977
  year: 2008
  ident: 10.1016/j.cej.2020.126269_b0325
  article-title: Study of the electroreduction of nitrate on copper in alkaline solution
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.03.048
– volume: 9
  start-page: 7052
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0235
  article-title: Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02179
– volume: 216
  start-page: 158
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0615
  article-title: Efficient nitrate removal from water using selected cathodes and Ti/PbO2 anode: Experimental study and mechanism verification
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.02.009
– volume: 29
  start-page: 457
  year: 2016
  ident: 10.1016/j.cej.2020.126269_b0410
  article-title: Nitrate reduction pathways on Cu single crystal surfaces: effect of oxide and Cl−
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.024
– volume: 52
  start-page: 6412
  year: 2007
  ident: 10.1016/j.cej.2020.126269_b0335
  article-title: Influence of the concentration and the nature of the supporting electrolyte on the electrochemical reduction of nitrate on tin cathode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.04.050
– volume: 163
  start-page: E421
  year: 2016
  ident: 10.1016/j.cej.2020.126269_b0540
  article-title: Fabrication and characterization of a Cu-Zn-TiO2 nanotube array polymetallic nanoelectrode for electrochemically removing nitrate from groundwater
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1391614jes
– volume: 180
  start-page: 199
  year: 2016
  ident: 10.1016/j.cej.2020.126269_b0195
  article-title: The electrochemical reduction of nitrate over micro-architectured metal electrodes with stainless steel scaffold
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.06.028
– volume: 494
  start-page: 22
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0395
  article-title: Bifunctional self-assembled Ni0.7Co0.3P nanoflowers for efficient electrochemical water splitting in alkaline media
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.160
– volume: 3
  start-page: 1578
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0020
  article-title: Prospects and challenges for solar fertilizers
  publication-title: Joule
  doi: 10.1016/j.joule.2019.05.001
– volume: 24
  start-page: 9895
  year: 2017
  ident: 10.1016/j.cej.2020.126269_b0630
  article-title: Nitrate and carbon matter removals from real effluents using Si/BDD electrode
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-016-7563-7
– volume: 63
  start-page: 1189
  year: 1959
  ident: 10.1016/j.cej.2020.126269_b0240
  article-title: Entgegnung auf die vorstehende Arbeit von G. Schmid über “Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure”
  publication-title: Z. Elektrochem.
– volume: 63
  start-page: 206
  year: 2011
  ident: 10.1016/j.cej.2020.126269_b0625
  article-title: Electrochemical treatment of wastewater polluted by nitrate: selective reduction to N2 on boron-doped diamond cathode
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2011.034
– volume: 210
  start-page: 524
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0645
  article-title: Comparison of performance between boron-doped diamond and copper electrodes for selective nitrogen gas formation by the electrochemical reduction of nitrate
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.07.039
– volume: 48
  start-page: 3166
  year: 2019
  ident: 10.1016/j.cej.2020.126269_b0135
  article-title: How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00280D
– volume: 66
  start-page: 1206
  year: 2006
  ident: 10.1016/j.cej.2020.126269_b0060
  article-title: Removal of nitrate from aqueous solution by nitrate selective ion exchange resins
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2006.03.009
– volume: 50
  start-page: 2148
  year: 2014
  ident: 10.1016/j.cej.2020.126269_b0175
  article-title: pH dependence of the electroreduction of nitrate on Rh and Pt polycrystalline electrodes
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC49224A
– volume: 59
  start-page: 5350
  year: 2020
  ident: 10.1016/j.cej.2020.126269_b0115
  article-title: Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915992
– volume: 5
  start-page: 9726
  year: 2012
  ident: 10.1016/j.cej.2020.126269_b0010
  article-title: Powering denitrification: the perspectives of electrocatalytic nitrate reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23062c
– volume: 599–600
  start-page: 1524
  year: 2017
  ident: 10.1016/j.cej.2020.126269_b0030
  article-title: Challenges in photocatalytic reduction of nitrate as a water treatment technology
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2017.04.238
– volume: 39
  start-page: 4065
  year: 2005
  ident: 10.1016/j.cej.2020.126269_b0145
  article-title: Electrochemical denitrificaton of simulated ground water
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.07.032
– volume: 506
  start-page: 127
  year: 2001
  ident: 10.1016/j.cej.2020.126269_b0305
  article-title: The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(01)00491-0
– volume: 54
  start-page: 4600
  year: 2009
  ident: 10.1016/j.cej.2020.126269_b0380
  article-title: Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2–Pt anode and different cathodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.03.064
– volume: 205
  start-page: 706
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0460
  article-title: Enhanced electrocatalytic reduction of aqueous nitrate by modified copper catalyst through electrochemical deposition and annealing treatment
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986445.2017.1413357
– volume: 601
  start-page: 161
  year: 2007
  ident: 10.1016/j.cej.2020.126269_b0220
  article-title: Reduction of nitrate ions on tin-modified palladium thin film electrodes
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.11.005
– volume: 291
  start-page: 328
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0620
  article-title: In-situ electrochemical activation of carbon fiber paper for the highly efficient electroreduction of concentrated nitric acid
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.127
– volume: 207
  start-page: 42
  year: 2017
  ident: 10.1016/j.cej.2020.126269_b0045
  article-title: State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.02.016
– volume: 227
  start-page: 77
  year: 2017
  ident: 10.1016/j.cej.2020.126269_b0415
  article-title: Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.147
– volume: 236
  start-page: 546
  year: 2018
  ident: 10.1016/j.cej.2020.126269_b0260
  article-title: Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.05.041
SSID ssj0006919
Score 2.7118995
SecondaryResourceType review_article
Snippet [Display omitted] •Non-noble metal electrocatalysts for nitrate reduction are reviewed.•Mechanisms of nitrate electroreduction are discussed.•Strategies to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126269
SubjectTerms Electrocatalysis
Nitrate reduction
Non-noble metal materials
Water treatment
Title Recent advances in non-noble metal electrocatalysts for nitrate reduction
URI https://dx.doi.org/10.1016/j.cej.2020.126269
Volume 403
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sSfIwdPQlybpU1zHMOxOdhBHe5W0jSBDR1jqwcv_u2-16Y6QT14KpSkhC_Je1_yXr9HyJVJnNFJbBhQ2YAJrgVLQmtYkDuXBzYBCltm-Y7jwUTcTaNpg_Tqf2EwrdLb_sqml9bav2l7NNvL2az9EGJMSwmMI3LwqqgJKoTEVX7z_pXmEauyuAc2Zti6jmyWOV7GzuGIyFFjAYi9-tk3bfib_h7Z9USRdqux7JOGXRyQnQ35wEMyBM4HPoP6OP6azhYUTvNsgTVi6IsFXk19mZvyluZtXawpkFQK2xgVIugKdVtxZo7IpH_72BswXxqBGa5kwaxxgKvRmQT-ZFAjT_HEyiQXBvyviiLtImO560gLezrSAISJcpwUG8tQ684xacKA7AmhmQljh9E-5-BoFCc6FIZLlXdkBl8KxSkJalBS43XDsXzFc1oniM1TwDFFHNMKx1Ny_dllWYlm_NVY1Ein32Y-BaP-e7ez_3U7J9scs1LKS5QL0ixWr_YSaEWRtcp10yJb3eFoMMbn6P5p9AEBoM0A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIAD4ine5AAXpLA1S18HDgiYNja4sEncSpcm0iYoaCtCu_Cn-IPYXQpDAg5Iu1ZN5Liu_bn-agMcqsCoOPAURyhb4VLEkgeOVrySGJNUdIAQNmf53nj1jry6c-9m4L34F4Zoldb3j3167q3tlbLVZvm51yvfOlTTCiXVEQVGVWmZlU09esW8bXjauMCHfCRE7bJ9Xud2tABXIvQzrpVBuVTc9RF_KOoxF4pA-0EiFcav0HVj4yotTNXX-E64MToO5SZ0KO35ThxXcd9ZmJPoLmhswsnbF6_EC_NpIiQdJ_GKUmpOKlO6jzmpoKYOmEmEPwfDiQBXW4Yli0zZ2fjwKzCj01VYnOhXuAYNBJkYpJglDgxZL2XpU8pTGkrDHjUCeWbn6uSfhUbDbMgQFTP0G9SSgg2oUSyZwjp0pqKwDSihQHoTWFc5nqHyojGYi3lB7Egl_DCp-l3cyZFbUCmUEinbqJzmZTxEBSOtH6EeI9JjNNbjFhx_Lnked-n462ZZaDr6ZmoRRpHfl23_b9kBzNfb162o1bhp7sCCIEpM_gVnF0rZ4EXvIabJuvu5DTG4n7bRfgBU8AdK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+non-noble+metal+electrocatalysts+for+nitrate+reduction&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhang%2C+Xi&rft.au=Wang%2C+Yuting&rft.au=Liu%2C+Cuibo&rft.au=Yu%2C+Yifu&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=403&rft_id=info:doi/10.1016%2Fj.cej.2020.126269&rft.externalDocID=S1385894720323974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon