Recent advances in non-noble metal electrocatalysts for nitrate reduction
[Display omitted] •Non-noble metal electrocatalysts for nitrate reduction are reviewed.•Mechanisms of nitrate electroreduction are discussed.•Strategies to improve electrochemical performance are presented.•Challenges and outlooks of non-noble metal electrocatalysts for nitrate reduction are given....
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 403; p. 126269 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Non-noble metal electrocatalysts for nitrate reduction are reviewed.•Mechanisms of nitrate electroreduction are discussed.•Strategies to improve electrochemical performance are presented.•Challenges and outlooks of non-noble metal electrocatalysts for nitrate reduction are given.
Nitrate pollution has become a serious global problem, threatening human health and ecosystems. The electrochemical reduction has emerged as an energy-efficient and environmental-friendly technology to remove nitrate from water. Recently, non-noble metal electrocatalysts have attracted increasing attention in nitrate reduction due to their great advantages in terms of low cost, high activity, and large-scale application potential. This review highlights the latest research progress in the area of non-noble metal materials for electrochemical nitrate reduction. The mechanistic insight into the electrochemical reduction of nitrate is briefly discussed. Meanwhile, numerous examples in this field are collected and analyzed. Some strategies employed to improve the performance of nitrate electroreduction are also presented. Finally, the challenges and prospects in this field are discussed. This review hopes to guide the design and development of efficient non-noble metal electrocatalysts for nitrate reduction on a large scale. |
---|---|
AbstractList | [Display omitted]
•Non-noble metal electrocatalysts for nitrate reduction are reviewed.•Mechanisms of nitrate electroreduction are discussed.•Strategies to improve electrochemical performance are presented.•Challenges and outlooks of non-noble metal electrocatalysts for nitrate reduction are given.
Nitrate pollution has become a serious global problem, threatening human health and ecosystems. The electrochemical reduction has emerged as an energy-efficient and environmental-friendly technology to remove nitrate from water. Recently, non-noble metal electrocatalysts have attracted increasing attention in nitrate reduction due to their great advantages in terms of low cost, high activity, and large-scale application potential. This review highlights the latest research progress in the area of non-noble metal materials for electrochemical nitrate reduction. The mechanistic insight into the electrochemical reduction of nitrate is briefly discussed. Meanwhile, numerous examples in this field are collected and analyzed. Some strategies employed to improve the performance of nitrate electroreduction are also presented. Finally, the challenges and prospects in this field are discussed. This review hopes to guide the design and development of efficient non-noble metal electrocatalysts for nitrate reduction on a large scale. |
ArticleNumber | 126269 |
Author | Zhang, Bin Zhang, Xi Liu, Cuibo Yu, Yifu Wang, Yuting Lu, Siyu |
Author_xml | – sequence: 1 givenname: Xi surname: Zhang fullname: Zhang, Xi organization: Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China – sequence: 2 givenname: Yuting surname: Wang fullname: Wang, Yuting organization: Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China – sequence: 3 givenname: Cuibo surname: Liu fullname: Liu, Cuibo email: cbliu@tju.edu.cn organization: Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China – sequence: 4 givenname: Yifu surname: Yu fullname: Yu, Yifu email: yyu@tju.edu.cn organization: Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China – sequence: 5 givenname: Siyu surname: Lu fullname: Lu, Siyu organization: Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450000, China – sequence: 6 givenname: Bin surname: Zhang fullname: Zhang, Bin email: bzhang@tju.edu.cn organization: Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China |
BookMark | eNp9kE1LAzEQhoNUsK3-AG_5A7sm2WaT4EmKH4WCIHoO6ewsZNlmJYmF_ntT6slDTzPv4RnmfRZkFqaAhNxzVnPG24ehBhxqwUTJohWtuSJzrlVTNYKLWdkbLSttVuqGLFIaGGOt4WZONh8IGDJ13cEFwER9oOV0FabdiHSP2Y0UR4QcJ3AlHFNOtJ8iDT5Hl5FG7H4g-ynckuvejQnv_uaSfL08f67fqu3762b9tK1AGJUrhH4lHLidkkJAo40xQqPS3Qq0bIyUrpeAom8UMsWkK5-C7JxuAVvFnWuWhJ_vQpxSitjb7-j3Lh4tZ_bkwg62uLAnF_bsojDqHwM-u9PXpYQfL5KPZxJLpYPHaBN4LKY6H4sV203-Av0LbEJ7_A |
CitedBy_id | crossref_primary_10_1002_cplu_202100356 crossref_primary_10_1002_anie_202202604 crossref_primary_10_1002_adsu_202400507 crossref_primary_10_1039_D4DT01956C crossref_primary_10_1002_adma_202205814 crossref_primary_10_1021_acsenergylett_3c01226 crossref_primary_10_1021_acscatal_3c02951 crossref_primary_10_1039_D4CC06290F crossref_primary_10_1021_acsaenm_3c00334 crossref_primary_10_1016_j_apsusc_2023_156440 crossref_primary_10_1039_D1EE03097C crossref_primary_10_1016_j_apsusc_2022_155057 crossref_primary_10_1021_acs_jpcc_2c07813 crossref_primary_10_1002_adsu_202400758 crossref_primary_10_1021_acsami_2c22399 crossref_primary_10_1021_acsami_3c07885 crossref_primary_10_1016_j_jhazmat_2024_136036 crossref_primary_10_1016_j_jece_2024_112686 crossref_primary_10_1016_j_jenvman_2024_120719 crossref_primary_10_1002_smll_202106961 crossref_primary_10_1039_D2QI01798A crossref_primary_10_1039_D2TA00661H crossref_primary_10_1002_eem2_12725 crossref_primary_10_2139_ssrn_3968857 crossref_primary_10_1039_D4NR02852J crossref_primary_10_2139_ssrn_4172820 crossref_primary_10_1007_s11244_024_01949_1 crossref_primary_10_1016_j_jwpe_2023_104415 crossref_primary_10_1039_D2QI00489E crossref_primary_10_1016_j_cej_2024_151883 crossref_primary_10_1016_j_nwnano_2024_100037 crossref_primary_10_1021_acs_iecr_4c04465 crossref_primary_10_1016_j_jtice_2024_105399 crossref_primary_10_1002_cnl2_8 crossref_primary_10_1039_D1TA07910G crossref_primary_10_1021_acsmaterialslett_3c01144 crossref_primary_10_1016_j_apcatb_2023_122360 crossref_primary_10_1016_j_jelechem_2022_116325 crossref_primary_10_1039_D3CC00864A crossref_primary_10_1021_acscatal_4c05730 crossref_primary_10_2139_ssrn_4172816 crossref_primary_10_1002_adfm_202106713 crossref_primary_10_1039_D2TA01772E crossref_primary_10_1016_j_elecom_2021_107121 crossref_primary_10_1039_D2GC03083G crossref_primary_10_6023_cjoc202312013 crossref_primary_10_1002_smll_202308311 crossref_primary_10_1021_acssuschemeng_2c03972 crossref_primary_10_1016_j_mcat_2023_113456 crossref_primary_10_1016_j_jece_2024_112348 crossref_primary_10_1016_j_watres_2021_117862 crossref_primary_10_1002_adma_202201670 crossref_primary_10_1002_cssc_202300202 crossref_primary_10_1002_celc_202300419 crossref_primary_10_1016_j_apcatb_2022_122193 crossref_primary_10_1002_ange_202411068 crossref_primary_10_1002_smtd_202200790 crossref_primary_10_1007_s41614_025_00189_4 crossref_primary_10_1007_s43979_023_00055_7 crossref_primary_10_2139_ssrn_4144002 crossref_primary_10_1016_j_jpowsour_2022_231832 crossref_primary_10_1021_acsami_2c16856 crossref_primary_10_1016_j_matre_2022_100163 crossref_primary_10_1016_j_surfin_2023_102751 crossref_primary_10_1016_j_cej_2025_159874 crossref_primary_10_1016_j_electacta_2020_137280 crossref_primary_10_1002_chem_202303249 crossref_primary_10_1039_D0CY02025G crossref_primary_10_1021_acsaem_4c02975 crossref_primary_10_1039_D4NH00341A crossref_primary_10_3390_ma17102419 crossref_primary_10_1016_j_cattod_2022_04_019 crossref_primary_10_1016_j_apcatb_2024_123836 crossref_primary_10_1039_D4QM00798K crossref_primary_10_3390_pr11030838 crossref_primary_10_1016_j_cej_2024_151519 crossref_primary_10_3390_nano14010102 crossref_primary_10_1016_j_cej_2021_133190 crossref_primary_10_1063_5_0069736 crossref_primary_10_1016_j_cej_2022_134586 crossref_primary_10_1021_acs_inorgchem_4c04780 crossref_primary_10_1021_acssuschemeng_3c01084 crossref_primary_10_1039_D3DT00551H crossref_primary_10_1002_cphc_202400738 crossref_primary_10_1039_D5MH00042D crossref_primary_10_1039_D4EW01030B crossref_primary_10_1016_j_apcatb_2022_122293 crossref_primary_10_1039_D1TA04743D crossref_primary_10_1021_acsami_1c10946 crossref_primary_10_1007_s11581_024_05578_2 crossref_primary_10_1016_j_seppur_2024_126714 crossref_primary_10_1007_s10008_022_05279_8 crossref_primary_10_1016_j_apcatb_2025_125195 crossref_primary_10_1016_j_colsurfa_2023_132746 crossref_primary_10_2139_ssrn_4125795 crossref_primary_10_1002_ange_202308044 crossref_primary_10_1002_smll_202207743 crossref_primary_10_1039_D4TA07470J crossref_primary_10_1007_s12274_024_6480_1 crossref_primary_10_1021_acsami_1c19412 crossref_primary_10_1039_D3EW00523B crossref_primary_10_1039_D2TA07475C crossref_primary_10_1016_j_chemosphere_2021_132732 crossref_primary_10_1016_j_jece_2025_116076 crossref_primary_10_1007_s11426_022_1411_0 crossref_primary_10_1002_adma_202304021 crossref_primary_10_1016_j_mtchem_2024_102326 crossref_primary_10_1021_acs_est_1c05841 crossref_primary_10_1021_acs_inorgchem_2c02499 crossref_primary_10_1016_j_chemosphere_2021_131501 crossref_primary_10_1002_advs_202404194 crossref_primary_10_1016_j_jcis_2023_06_073 crossref_primary_10_1002_ange_202217337 crossref_primary_10_1039_D2QI00002D crossref_primary_10_1021_prechem_3c00107 crossref_primary_10_1016_j_jes_2024_01_007 crossref_primary_10_2139_ssrn_4052004 crossref_primary_10_3390_en16010027 crossref_primary_10_1021_acs_est_1c04363 crossref_primary_10_1002_smll_202308182 crossref_primary_10_1016_j_cej_2021_133680 crossref_primary_10_1016_j_jhazmat_2024_134261 crossref_primary_10_1016_j_seppur_2024_127694 crossref_primary_10_1002_ange_202303327 crossref_primary_10_1016_j_seppur_2024_129997 crossref_primary_10_1016_j_apcatb_2022_121291 crossref_primary_10_1016_j_cej_2024_157817 crossref_primary_10_1002_advs_202302623 crossref_primary_10_1016_j_apsusc_2023_158208 crossref_primary_10_1039_D2QI01791A crossref_primary_10_1016_j_hazadv_2023_100313 crossref_primary_10_1016_j_surfin_2024_104294 crossref_primary_10_26599_NRE_2022_9120010 crossref_primary_10_1002_anie_202411068 crossref_primary_10_1021_jacs_3c10516 crossref_primary_10_1021_acsami_2c07818 crossref_primary_10_1016_j_scitotenv_2021_149645 crossref_primary_10_1021_acsami_2c04789 crossref_primary_10_1016_j_electacta_2020_137121 crossref_primary_10_1016_j_jcis_2024_06_020 crossref_primary_10_1016_j_jelechem_2022_116171 crossref_primary_10_1002_adma_202205767 crossref_primary_10_1038_s41467_022_29926_w crossref_primary_10_1016_j_cej_2022_141237 crossref_primary_10_1016_j_apcata_2024_119650 crossref_primary_10_1016_j_ccr_2024_216061 crossref_primary_10_1039_D2EE03956G crossref_primary_10_1016_j_apcatb_2023_122553 crossref_primary_10_1016_j_cej_2025_160393 crossref_primary_10_1016_j_elecom_2021_107094 crossref_primary_10_1039_D2CC00611A crossref_primary_10_1021_acscatal_3c04264 crossref_primary_10_2166_wst_2021_215 crossref_primary_10_1002_smll_202311336 crossref_primary_10_1007_s12274_023_6204_y crossref_primary_10_1007_s40899_022_00708_y crossref_primary_10_1016_j_jece_2023_110927 crossref_primary_10_1016_j_jcis_2023_10_041 crossref_primary_10_1016_j_jcis_2024_02_211 crossref_primary_10_1039_D1SE01855H crossref_primary_10_1039_D3QI00718A crossref_primary_10_1016_j_jhazmat_2022_128351 crossref_primary_10_1016_j_seppur_2022_120721 crossref_primary_10_1002_smll_202310597 crossref_primary_10_1016_j_susmat_2024_e00917 crossref_primary_10_1039_D2NR03540E crossref_primary_10_1002_ange_202202604 crossref_primary_10_1021_acs_inorgchem_3c01074 crossref_primary_10_1002_adma_202204306 crossref_primary_10_1021_acs_est_3c01268 crossref_primary_10_1002_ejic_202200727 crossref_primary_10_1039_D3EE00635B crossref_primary_10_1016_j_apcatb_2023_122658 crossref_primary_10_1016_j_nanoen_2023_108901 crossref_primary_10_3390_pr12091798 crossref_primary_10_1021_acscatal_4c05465 crossref_primary_10_1039_D1CC06690K crossref_primary_10_1016_j_jece_2024_112251 crossref_primary_10_1016_j_jwpe_2024_105320 crossref_primary_10_1016_j_esci_2022_04_008 crossref_primary_10_1016_j_jece_2024_114554 crossref_primary_10_1016_j_seppur_2021_119350 crossref_primary_10_1039_D2FD00145D crossref_primary_10_1039_D2QI00827K crossref_primary_10_1360_SSC_2023_0081 crossref_primary_10_1038_s44221_024_00278_7 crossref_primary_10_1016_j_jhazmat_2022_130661 crossref_primary_10_1016_j_apcatb_2023_122627 crossref_primary_10_1016_j_jelechem_2022_116022 crossref_primary_10_1016_j_apsusc_2024_162089 crossref_primary_10_1021_acssuschemeng_3c05833 crossref_primary_10_1039_D2CC00856D crossref_primary_10_1021_acs_est_1c02278 crossref_primary_10_1016_j_chemosphere_2021_130832 crossref_primary_10_1016_j_apsusc_2023_158664 crossref_primary_10_1016_j_cej_2023_143314 crossref_primary_10_1039_D3CC02791K crossref_primary_10_2139_ssrn_4008068 crossref_primary_10_1016_j_jwpe_2023_104067 crossref_primary_10_1016_j_apcata_2024_119695 crossref_primary_10_1016_j_apcatb_2021_121021 crossref_primary_10_20517_energymater_2023_67 crossref_primary_10_1016_j_jcis_2022_09_016 crossref_primary_10_1016_j_apsusc_2024_160908 crossref_primary_10_1021_acsami_2c14215 crossref_primary_10_1016_j_nxmate_2023_100040 crossref_primary_10_1016_j_seppur_2023_125129 crossref_primary_10_1016_j_ecoenv_2023_115691 crossref_primary_10_1039_D2CC00952H crossref_primary_10_1016_j_cej_2023_145721 crossref_primary_10_1016_j_jece_2024_114694 crossref_primary_10_1007_s11708_023_0908_2 crossref_primary_10_3390_ma16114000 crossref_primary_10_1007_s12209_024_00416_y crossref_primary_10_1016_j_checat_2023_100786 crossref_primary_10_1002_cssc_202402361 crossref_primary_10_1021_acssuschemeng_4c02310 crossref_primary_10_1021_acs_jpclett_1c00855 crossref_primary_10_1016_j_seppur_2024_126542 crossref_primary_10_1021_acsami_4c12144 crossref_primary_10_1016_j_jcis_2024_04_145 crossref_primary_10_1016_j_watres_2022_119118 crossref_primary_10_1039_D1GC01913A crossref_primary_10_1039_D3QI01113E crossref_primary_10_1016_j_apcatb_2022_122201 crossref_primary_10_1016_j_xcrp_2022_100961 crossref_primary_10_1039_D2TA06346H crossref_primary_10_1016_j_envres_2022_115135 crossref_primary_10_1002_smtd_202300169 crossref_primary_10_1039_D2CC05333K crossref_primary_10_1016_j_cej_2022_134641 crossref_primary_10_1016_j_nexres_2024_100081 crossref_primary_10_1021_acsami_2c12175 crossref_primary_10_1002_anie_202215782 crossref_primary_10_1016_j_jhazmat_2022_129653 crossref_primary_10_1016_j_seppur_2024_127867 crossref_primary_10_1002_advs_202417773 crossref_primary_10_1002_celc_202400605 crossref_primary_10_1016_j_cej_2023_145148 crossref_primary_10_1016_j_chemosphere_2023_139582 crossref_primary_10_1039_D2SE00830K crossref_primary_10_1016_j_jhazmat_2022_129504 crossref_primary_10_1002_adma_202401221 crossref_primary_10_1016_j_surfin_2024_105308 crossref_primary_10_1016_j_ijbiomac_2021_02_183 crossref_primary_10_1016_j_ijhydene_2021_12_076 crossref_primary_10_2139_ssrn_3980075 crossref_primary_10_1002_ange_202215782 crossref_primary_10_1021_acs_jpcc_3c01242 crossref_primary_10_1039_D2DT03189B crossref_primary_10_1016_j_seppur_2023_123775 crossref_primary_10_1016_j_mtphys_2020_100310 crossref_primary_10_1016_j_colsurfa_2022_130678 crossref_primary_10_1002_smll_202500641 crossref_primary_10_1016_j_mtcomm_2025_112058 crossref_primary_10_1016_j_ijhydene_2023_06_127 crossref_primary_10_1021_acs_jpcc_3c04855 crossref_primary_10_1038_s41467_024_54204_2 crossref_primary_10_1016_j_cej_2022_136287 crossref_primary_10_1007_s11708_024_0949_1 crossref_primary_10_1039_D3CY01441J crossref_primary_10_6023_A23040133 crossref_primary_10_1021_acsnano_2c07911 crossref_primary_10_2139_ssrn_4103273 crossref_primary_10_1016_j_jelechem_2024_118633 crossref_primary_10_1016_j_jwpe_2025_106995 crossref_primary_10_1039_D1CC06215H crossref_primary_10_1039_D3CC05801H crossref_primary_10_1016_j_cej_2021_131317 crossref_primary_10_1002_cctc_202402050 crossref_primary_10_1002_ange_202305491 crossref_primary_10_1021_acsnano_4c09247 crossref_primary_10_1002_idm2_12152 crossref_primary_10_1038_s41467_022_28728_4 crossref_primary_10_1002_sstr_202200308 crossref_primary_10_1039_D2NR02545K crossref_primary_10_1007_s42823_024_00790_6 crossref_primary_10_1002_asia_202000822 crossref_primary_10_1016_j_jelechem_2023_117377 crossref_primary_10_1021_jacs_4c06098 crossref_primary_10_1021_acsanm_3c04957 crossref_primary_10_2139_ssrn_4111910 crossref_primary_10_1016_j_jece_2024_115182 crossref_primary_10_1002_aic_18654 crossref_primary_10_1039_D2NR03767J crossref_primary_10_1039_D4NR02387K crossref_primary_10_1002_cssc_202401751 crossref_primary_10_1016_j_nanoen_2022_107124 crossref_primary_10_1039_D2QI01173E crossref_primary_10_1021_acs_iecr_1c03072 crossref_primary_10_1038_s41467_022_33258_0 crossref_primary_10_1016_j_electacta_2024_144263 crossref_primary_10_1021_acs_chemrev_3c00332 crossref_primary_10_1002_anie_202305491 crossref_primary_10_1016_j_jwpe_2024_105590 crossref_primary_10_1088_1361_6528_ad64d9 crossref_primary_10_1039_D2CC05204K crossref_primary_10_1021_acsmaterialslett_4c00691 crossref_primary_10_1002_adma_202207522 crossref_primary_10_1039_D3SE00901G crossref_primary_10_1016_j_jelechem_2024_118533 crossref_primary_10_1039_D5CY00088B crossref_primary_10_1021_acs_iecr_2c00107 crossref_primary_10_1016_j_nanoen_2021_106088 crossref_primary_10_1021_acscatal_3c04541 crossref_primary_10_1016_j_apsusc_2022_152556 crossref_primary_10_1002_smll_202303424 crossref_primary_10_1039_D3GC02018E crossref_primary_10_1016_j_scitotenv_2022_154349 crossref_primary_10_1002_celc_202400525 crossref_primary_10_1016_j_chemosphere_2023_140016 crossref_primary_10_1021_acs_inorgchem_3c01046 crossref_primary_10_26599_NR_2025_94907265 crossref_primary_10_1016_j_cej_2024_155557 crossref_primary_10_1002_adsu_202400272 crossref_primary_10_1007_s40820_024_01555_6 crossref_primary_10_1002_ange_202303483 crossref_primary_10_1007_s12274_024_6478_8 crossref_primary_10_1002_anie_202217337 crossref_primary_10_1021_acssuschemeng_3c01514 crossref_primary_10_1149_1945_7111_accc57 crossref_primary_10_1016_j_cej_2023_144488 crossref_primary_10_1002_cctc_202401017 crossref_primary_10_1021_acssuschemeng_3c08282 crossref_primary_10_1016_j_jece_2022_109117 crossref_primary_10_1039_D4EE00715H crossref_primary_10_26599_NR_2025_94907135 crossref_primary_10_1021_acs_langmuir_4c03626 crossref_primary_10_1016_j_esci_2025_100378 crossref_primary_10_1016_j_cej_2021_132666 crossref_primary_10_1021_acssuschemeng_3c03820 crossref_primary_10_1002_cctc_202301641 crossref_primary_10_1021_acsestengg_3c00507 crossref_primary_10_1002_adma_202402767 crossref_primary_10_1002_cssc_202102450 crossref_primary_10_1016_j_ces_2022_117735 crossref_primary_10_1016_j_apsusc_2022_153624 crossref_primary_10_1016_j_jece_2023_109418 crossref_primary_10_1016_j_cej_2023_146896 crossref_primary_10_1039_D4NJ00511B crossref_primary_10_1021_acsami_2c08534 crossref_primary_10_1016_j_jallcom_2024_177180 crossref_primary_10_1680_jsuin_22_00040 crossref_primary_10_1007_s40820_023_01169_4 crossref_primary_10_1016_j_ccr_2024_215802 crossref_primary_10_1002_smll_202200436 crossref_primary_10_1016_j_electacta_2025_145681 crossref_primary_10_1016_j_cej_2022_139126 crossref_primary_10_1016_j_jece_2023_110971 crossref_primary_10_1007_s40843_023_2620_4 crossref_primary_10_1039_D4EY00245H crossref_primary_10_1016_j_apcatb_2024_124387 crossref_primary_10_1039_D3QI01448G crossref_primary_10_1016_j_apsusc_2024_161935 crossref_primary_10_1002_cctc_202400185 crossref_primary_10_1016_j_jece_2022_108362 crossref_primary_10_1039_D4SC05936K crossref_primary_10_2139_ssrn_4049524 crossref_primary_10_1016_j_ccr_2022_214468 crossref_primary_10_1007_s12274_024_6530_8 crossref_primary_10_1038_s41467_023_43897_6 crossref_primary_10_1016_j_colsurfa_2023_131083 crossref_primary_10_1021_acsnano_4c03995 crossref_primary_10_1002_aesr_202300284 crossref_primary_10_1016_j_jcis_2022_10_050 crossref_primary_10_1016_j_cej_2024_153108 crossref_primary_10_1039_D3NR05254K crossref_primary_10_1016_j_seppur_2023_124579 crossref_primary_10_1016_j_apcatb_2022_121862 crossref_primary_10_1016_j_apcatb_2022_121981 crossref_primary_10_1002_smll_202400505 crossref_primary_10_1039_D1CS00116G crossref_primary_10_1021_acs_jpcc_3c00785 crossref_primary_10_1038_s41467_022_28740_8 crossref_primary_10_1039_D3QI00554B crossref_primary_10_1039_D2TA02006H crossref_primary_10_1016_j_cej_2022_135104 crossref_primary_10_1021_jacs_4c12240 crossref_primary_10_1007_s41918_024_00236_7 crossref_primary_10_1002_anie_202308044 crossref_primary_10_1039_D1CY01217G crossref_primary_10_1021_acs_iecr_2c02495 crossref_primary_10_1016_j_surfin_2023_103230 crossref_primary_10_1021_acs_jpclett_2c00044 crossref_primary_10_1039_D4GC02069C crossref_primary_10_1039_D3SE00681F crossref_primary_10_1016_j_envres_2024_120422 crossref_primary_10_1016_j_cej_2024_158692 crossref_primary_10_1063_5_0230248 crossref_primary_10_1360_TB_2023_1349 crossref_primary_10_1016_j_seppur_2024_129074 crossref_primary_10_1039_D2EW00346E crossref_primary_10_1016_j_jcis_2023_12_129 crossref_primary_10_3390_catal11111413 crossref_primary_10_1016_j_checat_2025_101266 crossref_primary_10_1002_adfm_202304468 crossref_primary_10_1007_s11356_022_23517_4 crossref_primary_10_1002_anie_202303483 crossref_primary_10_1002_adfm_202208212 crossref_primary_10_1016_j_jece_2023_111462 crossref_primary_10_1016_j_cej_2023_141960 crossref_primary_10_1039_D2TA08027C crossref_primary_10_1039_D2MA00685E crossref_primary_10_1002_adma_202304508 crossref_primary_10_1002_aic_17969 crossref_primary_10_1016_j_nantod_2025_102707 crossref_primary_10_1016_j_jelechem_2024_118143 crossref_primary_10_1016_j_mtphys_2022_100619 crossref_primary_10_1007_s13738_024_03115_6 crossref_primary_10_1002_adfm_202312079 crossref_primary_10_1016_j_jhazmat_2023_132106 crossref_primary_10_1063_5_0092948 crossref_primary_10_1089_ees_2022_0375 crossref_primary_10_1007_s10311_022_01469_y crossref_primary_10_1016_j_cej_2021_130759 crossref_primary_10_1016_j_scitotenv_2021_152279 crossref_primary_10_1002_smll_202203335 crossref_primary_10_1039_D2QI02290G crossref_primary_10_1021_acscatal_3c02410 crossref_primary_10_1016_j_apsusc_2024_159397 crossref_primary_10_1002_adfm_202303480 crossref_primary_10_1007_s00253_023_12529_w crossref_primary_10_1016_j_cej_2024_156495 crossref_primary_10_1016_j_jece_2024_112627 crossref_primary_10_1021_acsestengg_2c00052 crossref_primary_10_1007_s12678_023_00851_w crossref_primary_10_1016_j_mtphys_2021_100431 crossref_primary_10_1021_acsnano_2c06441 crossref_primary_10_1039_D0EE03769A crossref_primary_10_1039_D2CC02105F crossref_primary_10_1016_j_cej_2024_148883 crossref_primary_10_1016_j_checat_2024_101060 crossref_primary_10_3389_fchem_2022_900962 crossref_primary_10_1039_D3QI01536J crossref_primary_10_1016_j_coelec_2022_101193 crossref_primary_10_1007_s40843_023_2475_6 crossref_primary_10_1016_j_jwpe_2021_102174 crossref_primary_10_1016_j_cej_2022_138890 crossref_primary_10_1021_acsami_2c00436 crossref_primary_10_1016_j_scitotenv_2023_161444 crossref_primary_10_1021_jacs_3c13288 crossref_primary_10_1016_j_cej_2024_156005 crossref_primary_10_1021_acs_nanolett_2c04828 crossref_primary_10_1016_j_apcatb_2022_121811 crossref_primary_10_1016_j_apcatb_2023_123156 crossref_primary_10_1038_s41467_024_48035_4 crossref_primary_10_1002_smll_202404919 crossref_primary_10_1016_j_fuel_2024_133159 crossref_primary_10_1039_D3EN00403A crossref_primary_10_1039_D4QI01296H crossref_primary_10_1016_j_scitotenv_2022_153641 crossref_primary_10_1021_acsami_2c09357 crossref_primary_10_1016_j_apcatb_2023_123161 crossref_primary_10_1016_j_jcis_2024_08_105 crossref_primary_10_1002_celc_202400499 crossref_primary_10_1021_acsaem_3c03207 crossref_primary_10_1002_ntls_20220047 crossref_primary_10_1021_acssuschemeng_2c07114 crossref_primary_10_1021_acs_energyfuels_4c04978 crossref_primary_10_1039_D3QM00433C crossref_primary_10_1002_sstr_202200202 crossref_primary_10_1039_D3TA00211J crossref_primary_10_1039_D1CC02129J crossref_primary_10_1039_D2QI01984A crossref_primary_10_1002_anie_202303327 crossref_primary_10_1039_D1CY01369F crossref_primary_10_1016_j_ese_2023_100383 crossref_primary_10_1021_acscentsci_1c00370 crossref_primary_10_1016_j_cej_2024_148952 crossref_primary_10_1039_D3CC03989G crossref_primary_10_1021_acssuschemeng_2c06498 crossref_primary_10_15541_jim20240102 crossref_primary_10_1007_s12274_022_4863_8 crossref_primary_10_1016_j_cej_2024_156343 crossref_primary_10_1016_j_cej_2022_137341 crossref_primary_10_1039_D1CC02105B crossref_primary_10_1002_smll_202307315 crossref_primary_10_1016_j_apsusc_2022_153213 crossref_primary_10_1007_s12274_024_6450_7 crossref_primary_10_1021_jacs_2c03487 crossref_primary_10_1021_jacsau_2c00502 crossref_primary_10_1039_D2NR02813A crossref_primary_10_2166_wrd_2021_047 crossref_primary_10_1016_j_apsusc_2022_155872 crossref_primary_10_1016_j_jcis_2024_08_124 crossref_primary_10_1021_acscatal_4c03635 crossref_primary_10_1021_acsami_3c00511 crossref_primary_10_1016_j_checat_2024_101029 crossref_primary_10_1016_j_checat_2025_101328 crossref_primary_10_1016_j_coelec_2021_100721 crossref_primary_10_1021_acs_jpcc_3c05804 crossref_primary_10_53941_see_2024_100002 crossref_primary_10_1016_j_cogsc_2022_100681 crossref_primary_10_1002_advs_202308979 crossref_primary_10_1016_j_gee_2022_03_003 crossref_primary_10_1021_acsanm_4c05949 crossref_primary_10_1016_j_chemosphere_2021_130386 crossref_primary_10_1016_j_electacta_2021_139585 crossref_primary_10_1016_j_jenvman_2022_116405 crossref_primary_10_1002_cssc_202301050 crossref_primary_10_1016_j_cej_2023_147574 crossref_primary_10_1016_j_nanoen_2023_108543 |
Cites_doi | 10.1016/j.jallcom.2018.07.004 10.1016/j.cej.2013.11.013 10.1021/jacs.0c00418 10.1016/j.electacta.2007.03.057 10.1016/j.cej.2019.123157 10.1016/j.electacta.2018.08.154 10.1016/j.memsci.2009.02.020 10.1126/science.aar6611 10.1016/j.electacta.2008.08.003 10.1016/j.jcat.2013.05.006 10.1016/j.watres.2019.05.104 10.1016/j.jelechem.2016.10.047 10.3390/catal9060536 10.1016/j.electacta.2018.03.005 10.1023/A:1005242600186 10.1021/acscatal.9b05260 10.1038/s41586-019-1260-x 10.1007/s10562-016-1894-3 10.1016/j.electacta.2012.11.074 10.1016/j.seppur.2019.116485 10.1016/S1381-1169(99)00375-1 10.1149/2.004311eel 10.1002/aenm.201300380 10.1016/j.biortech.2007.05.026 10.1016/j.electacta.2003.07.020 10.1016/j.jechem.2020.05.017 10.1093/nsr/nwz019 10.1007/s11783-018-1033-z 10.1016/j.apcatb.2019.118048 10.1039/C9NR10743F 10.1016/j.watres.2020.115596 10.1016/j.jelechem.2016.04.025 10.1021/ja071330n 10.1016/j.cej.2015.05.010 10.1016/j.jhazmat.2012.02.034 10.1016/j.cej.2011.01.103 10.1016/j.chemosphere.2018.03.063 10.1002/cctc.201200457 10.1016/j.electacta.2019.134846 10.1016/S0013-4686(98)00233-3 10.1021/acs.est.8b02740 10.1007/s12274-019-2310-2 10.1021/jacs.7b12774 10.1007/s40843-020-1365-0 10.1016/j.watres.2017.04.069 10.1016/j.apcatb.2019.05.016 10.1016/j.apcatb.2011.03.011 10.1016/j.chemosphere.2018.08.082 10.1016/j.watres.2019.03.078 10.1021/jacs.6b07127 10.1016/j.biortech.2008.03.048 10.1016/j.jhazmat.2011.05.054 10.1149/2.0821712jes 10.1002/smll.201907029 10.1016/j.chemosphere.2019.02.028 10.1016/j.apsusc.2019.05.358 10.1016/j.cej.2019.123034 10.1021/acs.est.7b04775 10.1071/CH15191 10.1021/ja1092503 10.1016/j.jclepro.2019.118569 10.1080/09593330.2012.696722 10.1021/es204087q 10.1021/cr8003696 10.1016/j.apcatb.2019.117909 10.1002/cite.330611023 10.1016/j.cej.2012.05.062 10.1016/j.apcatb.2020.119053 10.1016/j.jelechem.2016.10.048 10.1021/jacs.9b13347 10.1006/jcat.2001.3275 10.1016/j.jelechem.2013.04.001 10.1007/s10800-004-8349-z 10.1016/j.nanoen.2019.04.035 10.1016/j.jhazmat.2009.06.066 10.1002/smtd.201800388 10.1016/j.cej.2015.03.001 10.1016/j.chemosphere.2019.04.071 10.1021/acs.langmuir.5b00283 10.1016/j.jelechem.2006.06.012 10.1021/es503772x 10.1016/j.jelechem.2011.03.015 10.1002/anie.202002337 10.1002/elan.200302790 10.1016/j.jelechem.2003.08.011 10.1016/S0022-0728(02)01443-2 10.1149/2.1041506jes 10.1149/2.0081810jes 10.1007/s10562-015-1569-5 10.1016/j.apsusc.2017.08.171 10.20964/2016.10.49 10.1002/celc.201300237 10.1002/anie.201803543 10.1016/j.electacta.2014.04.048 10.1016/j.electacta.2008.03.048 10.1021/acscatal.9b02179 10.1016/j.seppur.2019.02.009 10.1016/j.nanoen.2016.06.024 10.1016/j.electacta.2007.04.050 10.1149/2.1391614jes 10.1016/j.apcatb.2015.06.028 10.1016/j.apsusc.2019.07.160 10.1016/j.joule.2019.05.001 10.1007/s11356-016-7563-7 10.2166/wst.2011.034 10.1016/j.chemosphere.2018.07.039 10.1039/C9CS00280D 10.1016/j.reactfunctpolym.2006.03.009 10.1039/C3CC49224A 10.1002/anie.201915992 10.1039/c2ee23062c 10.1016/j.scitotenv.2017.04.238 10.1016/j.watres.2005.07.032 10.1016/S0022-0728(01)00491-0 10.1016/j.electacta.2009.03.064 10.1080/00986445.2017.1413357 10.1016/j.jelechem.2006.11.005 10.1016/j.electacta.2018.08.127 10.1016/j.apcatb.2017.02.016 10.1016/j.electacta.2016.12.147 10.1016/j.apcatb.2018.05.041 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2020.126269 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2020_126269 S1385894720323974 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-ecf42acab7522c3899928e78d4c853955af5ce2f37e0705a000c5da86ce671aa3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 22:57:15 EDT 2025 Tue Jul 01 04:26:59 EDT 2025 Fri Feb 23 02:47:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrocatalysis Water treatment Non-noble metal materials Nitrate reduction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-ecf42acab7522c3899928e78d4c853955af5ce2f37e0705a000c5da86ce671aa3 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2020_126269 crossref_citationtrail_10_1016_j_cej_2020_126269 elsevier_sciencedirect_doi_10_1016_j_cej_2020_126269 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 2021-01-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Y. Wang, C. Liu, B. Zhang, Y. Yu, Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation, Sci. China Mater., doi: 10.1007/s40843-020-1365-0. Simpson, Johnson (b0420) 2004; 16 Polatides, Kyriacou (b0370) 2005; 35 Zhang, Zhao, Chen, Wang, Wu, Wang (b0470) 2018; 291 Wang, Xu, Wang, Huang, Li, Li, Wicks, Luo, Nam, Tan, Ding, Wu, Lum, Dinh, Sinton, Zheng, Sargent (b0440) 2020; 142 Liu, Li, Wang, Lei, Wang, Liu (b0540) 2016; 163 Katsounaros, Kyriacou (b0335) 2007; 52 Zhang, He, Wang, Qi, Yan, Dong, Liu, Wang, Xia (b0585) 2019; 60 Dai, Gao, Yin, Feng, Zhou, Zhao, Zhang (b0395) 2019; 494 Comer, Fuentes, Dimkpa, Liu, Fernandez, Arora, Realff, Singh, Hatzell, Medford (b0020) 2019; 3 Gao, Jiang, Ni, Qi, Zhang, Oturan, Oturan (b0105) 2019; 254 Butcher, Gewirth (b0410) 2016; 29 Kuang, Natsui, Einaga (b0645) 2018; 210 Duca, Cucarella, Rodriguez, Koper (b0170) 2010; 132 Liu, Zhang, Guan, Zhao, Yang, Zhang (b0530) 2018; 427 Sun, Li, An, Li, Bond, Zhang (b0560) 2018; 269 Zhang, Wang, Tian, Yan, Xue, He, Liu, Wang, Chen, Xia (b0575) 2018; 57 Liu, Li, Wang, Lei, Liu, Wang (b0535) 2016; 11 Soares (b0090) 2000; 123 Shin, Jung, Bae, Lee, Kim (b0310) 2014; 48 Barrabés, Sá (b0085) 2011; 104 Ma, Li, Meng, Wang, Feng, Chen, Liu (b0490) 2018; 202 Taguchi, Feliu (b0165) 2007; 52 Gao, Jiang, Ni, Qi, Bi (b0295) 2020; 382 Wang, Li, Liu, Feng, Chen, Ma, Ding (b0485) 2017; 164 Rosca, Duca, de Groot, Koper (b0005) 2009; 109 Fernández-Nava, Marañón, Soons, Castrillón (b0040) 2008; 99 Yin, Liu, Song, Chen, Liu, Cai, Zhang (b0565) 2019; 324 Bandarenka, Koper (b0150) 2013; 308 USEPA, Ground Water and Drinking Water Table of Regulated Drinking Water Contaminants, (2017). Nakayama, Takahashi (b0095) 2015; 145 Chaplin, Reinhard, Schneider, Schüth, Shapley, Strathmann, Werth (b0320) 2012; 46 Wang, Zhu, Zeng, Liu, Fang, Li (b0400) 2020; 12 Long, Chen, Zhang, Guo, Fu, Deng, Xiao (b0270) 2020; 59 Li, Yun, Zhang, Huang, Xu (b0430) 2018; 766 de Groot, Koper (b0230) 2004; 562 Andersen, Čolić, Yang, Schwalbe, Nielander, McEnaney, Enemark-Rasmussen, Baker, Singh, Rohr, Statt, Blair, Mezzavilla, Kibsgaard, Vesborg, Cargnello, Bent, Jaramillo, Stephens, Nørskov, Chorkendorff (b0140) 2019; 570 Garcia-Segura, Lanzarini-Lopes, Hristovski, Westerhoff (b0260) 2018; 236 Reyter, Chamoulaud, Bélanger, Roué (b0375) 2006; 596 Jiang, Tang, Tay, Zhang, Malyi, Wang, Deng, Lai, Zhou, Chen, Dong, Chen (b0495) 2013; 3 Martínez, Ortiz, Ortiz (b0045) 2017; 207 Zhu, Zhang, Yin, Qin, Zhang, Wang (b0620) 2018; 291 Ghazouani, Akrout, Bousselmi (b0630) 2017; 24 Dortsiou, Katsounaros, Polatides, Kyriacou (b0330) 2013; 34 Yao, Yang, Zhong, Shu, Chen, Sun, Ma, Fu, Wang, Li (b0110) 2019; 157 Tugaoen, Garcia-Segura, Hristovski, Westerhoff (b0030) 2017; 599–600 Su, Kuan, Liu, Huang (b0225) 2019; 257 Shih, Wu, Huang, Huang (b0465) 2020; 383 Kim, Pak (b0500) 2019; 228 Ma, Li, Feng, Hu, Wang, Liu (b0355) 2016; 782 Georgeaud, Diamand, Borrut, Grange, Coste (b0625) 2011; 63 Ghazouani, Akrout, Jomaa, Jellali, Bousselmi (b0640) 2016; 783 Kamiya, Hashimoto, Nakanishi (b0610) 2014; 1 Zhang, Shuai, Guy, Shapley, Strathmann, Werth (b0290) 2013; 5 de Vooys, Koper, van Santen, van Veen (b0275) 2001; 202 Li, Zhan, Yang, Quan, Mao, Liu, Wang, Lei, Li, Chan, Xu, Shi, Du, Hao, Wong, Wang, Dou, Zhang, Yu (b0180) 2020; 142 Su, Ruzybayev, Shah, Huang (b0195) 2016; 180 Alikhani, Moghbeli (b0065) 2014; 239 Mattarozzi, Cattarin, Comisso, Gerbasi, Guerriero, Musiani, Vazquez-Gomez, Verlato (b0445) 2013; 2 Liu, Richards, Singh, Goldsmith (b0235) 2019; 9 Bae, Stewart, Gewirth (b0405) 2007; 129 Wu, Kong, Tong, Chen, Liu, Tang, Yang, Chen, Wan (b0345) 2019; 489 He, Li, Ooka, Go, Jin, Kim, Nakamura (b0515) 2018; 140 Ding, Li, Zhao, Wang, Zheng, Gao (b0605) 2015; 271 Yang, Duca, Schouten, Koper (b0285) 2011; 662 Pérez, Ibáñez, Urtiaga, Ortiz (b0340) 2012; 197 Liu, Liu, Li, Hu, Li, Lei, Liu (b0155) 2019; 223 Gennero de Chialvo, Chialvo (b0300) 1998; 44 Liu, Dong, Zou, Ding, Yu, Zhang, Shan, Gao, Pan (b0550) 2020; 173 Mattarozzi, Cattarin, Comisso, Gerbasi, Guerriero, Musiani, Vázquez-Gómez, Verlato (b0455) 2015; 162 Tang, Qiao (b0135) 2019; 48 Mattarozzi, Cattarin, Comisso, Guerriero, Musiani, Vázquez-Gómez, Verlato (b0435) 2013; 89 Reyter, Bélanger, Roué (b0425) 2011; 192 Yang, Sebastian, Duca, Hoogenboom, Koper (b0175) 2014; 50 Soto-Hernández, Santiago-Ramirez, Ramirez-Meneses, Luna-Trujillo, Wang, Lartundo-Rojas, Manzo-Robledo (b0200) 2019; 259 Mattarozzi, Cattarin, Comisso, Gambirasi, Guerriero, Musiani, Vázquez-Gómez, Verlato (b0450) 2014; 140 Jonoush, Rezaee, Ghaffarinejad (b0595) 2020; 242 Li, Go, Ooka, He, Jin, Kim, Nakamura (b0525) 2020 Shih, Wu, Lin, Huang, Huang (b0205) 2020; 273 Lei, Liu, Li, Ma, Wang, Zhang (b0120) 2018; 212 Xu, Li, Yin, Ji, Niu, Yu (b0080) 2018; 12 Liu, Zhao, Zhao, He, Lai, Shan, Bekana, Li, Liu (b0315) 2018; 52 Ghazouani, Akrout, Bousselmi (b0635) 2014; 53 Rao, Shao, Xu, Yi, Qiao, Li, Wang, Chien, Inoue, Liu, Zhang (b0615) 2019; 216 Chen, Li, Ma, Koper (b0210) 2015; 31 Wang, Li, Feng, Hu, Ding, Chen, Liu (b0480) 2016; 773 Bhatnagar, Sillanpää (b0015) 2011; 168 Dash, Chaudhari (b0145) 2005; 39 Lacasa, Canizares, Llanos, Rodrigo (b0600) 2012; 213–214 Öznülüer, Özdurak, Öztürk Doğan (b0555) 2013; 699 Wang, Yu, Jia, Zhang, Zhang (b0130) 2019; 6 Li, Feng, Zhang, Lei, Chen, Yang, Sugiura (b0100) 2009; 171 Li, Feng, Zhang, Sugiura (b0380) 2009; 54 Chen, Crooks, Seefeldt, Bren, Bullock, Darensbourg, Holland, Hoffman, Janik, Jones, Kanatzidis, King, Lancaster, Lymar, Pfromm, Schneider, Schrock (b0035) 2018; 360 Dima, de Vooys, Koper (b0265) 2003; 554–555 Epsztein, Nir, Lahav, Green (b0070) 2015; 279 Jia, Wang, Wang, Ling, Yu, Zhang (b0505) 2020; 10 Schmid, Delfs (b0250) 1959; 63 de Vooys, van Santen, van Veen (b0190) 2000; 154 Ghafari, Hasan, Aroua (b0025) 2008; 99 de Vooys, Beltramo, van Riet, van Veen, Koper (b0280) 2004; 49 WHO, Nitrate and Nitrite in Drinking-Water, (2016). Samatya, Kabay, Yüksel, Arda, Yüksel (b0060) 2006; 66 Badea (b0125) 2009; 54 Shimazu, Goto, Piao, Kayama, Nakata, Yoshinaga (b0220) 2007; 601 de Vooys, Koper, van Santen, van Veen (b0305) 2001; 506 Su, Li, Zhang, Fan, Ying, Sun, Wang, Jia (b0360) 2017; 120 Duca, Koper (b0010) 2012; 5 Schmid (b0255) 1961; 65 Schmid (b0245) 1959; 63 Vetter (b0240) 1959; 63 Balkis, O'Mullane (b0385) 2015; 68 Wang, Zhang (b0520) 2021; 53 Teng, Bai, Liu, Liu, Fan, Zhang (b0545) 2018; 52 Zhang, Zhao, Chen, Wang, Zhou, Wu, Wang, Ou (b0475) 2018; 165 Chen, Li, Li, Zhao, Shi, Jiang, Ma (b0215) 2019; 9 You, Liu, Jiang, Sun (b0580) 2016; 138 Li, Xiao, Zhao, Zhao, Fan, Xue (b0350) 2016; 146 Wang, Zou, Tao, Wang, Huang, Du, Wang (b0570) 2019; 12 Vorlop, Tacke (b0185) 1989; 61 Guo, Mao, Huang, Wang, Zhang, Hu, Dong, Sathasivam, Zhao, Xing, Pan, Lai, Tang (b0390) 2020; 16 Banasiak, Schäfer (b0075) 2009; 334 Pérez-Gallent, Figueiredo, Katsounaros, Koper (b0415) 2017; 227 Duan, Li, Lei, Zhu, Xue, Wei, Feng (b0365) 2019; 161 Wang, Zhou, Jia, Yu, Zhang (b0115) 2020; 59 Hou, Pu, Qi, Tang, Wan, Yang, Song, Fisher (b0460) 2018; 205 Reyter, Bélanger, Roué (b0325) 2008; 53 Li, Li, Chen, Tang, Sun, Jia (b0510) 2020; 237 Li, Huang, Low, Gao, Long, Xiong (b0160) 2019; 3 Balkis (10.1016/j.cej.2020.126269_b0385) 2015; 68 10.1016/j.cej.2020.126269_b0590 Su (10.1016/j.cej.2020.126269_b0195) 2016; 180 Mattarozzi (10.1016/j.cej.2020.126269_b0445) 2013; 2 Li (10.1016/j.cej.2020.126269_b0525) 2020 Wang (10.1016/j.cej.2020.126269_b0400) 2020; 12 Yin (10.1016/j.cej.2020.126269_b0565) 2019; 324 Nakayama (10.1016/j.cej.2020.126269_b0095) 2015; 145 Soto-Hernández (10.1016/j.cej.2020.126269_b0200) 2019; 259 Zhang (10.1016/j.cej.2020.126269_b0290) 2013; 5 Butcher (10.1016/j.cej.2020.126269_b0410) 2016; 29 Chen (10.1016/j.cej.2020.126269_b0210) 2015; 31 Su (10.1016/j.cej.2020.126269_b0225) 2019; 257 Yang (10.1016/j.cej.2020.126269_b0285) 2011; 662 Rosca (10.1016/j.cej.2020.126269_b0005) 2009; 109 Gennero de Chialvo (10.1016/j.cej.2020.126269_b0300) 1998; 44 Dai (10.1016/j.cej.2020.126269_b0395) 2019; 494 Yao (10.1016/j.cej.2020.126269_b0110) 2019; 157 Reyter (10.1016/j.cej.2020.126269_b0375) 2006; 596 Liu (10.1016/j.cej.2020.126269_b0535) 2016; 11 Wang (10.1016/j.cej.2020.126269_b0485) 2017; 164 Bandarenka (10.1016/j.cej.2020.126269_b0150) 2013; 308 Liu (10.1016/j.cej.2020.126269_b0550) 2020; 173 Zhang (10.1016/j.cej.2020.126269_b0470) 2018; 291 Kim (10.1016/j.cej.2020.126269_b0500) 2019; 228 Vetter (10.1016/j.cej.2020.126269_b0240) 1959; 63 Schmid (10.1016/j.cej.2020.126269_b0250) 1959; 63 Rao (10.1016/j.cej.2020.126269_b0615) 2019; 216 Simpson (10.1016/j.cej.2020.126269_b0420) 2004; 16 Jonoush (10.1016/j.cej.2020.126269_b0595) 2020; 242 Pérez (10.1016/j.cej.2020.126269_b0340) 2012; 197 Georgeaud (10.1016/j.cej.2020.126269_b0625) 2011; 63 Yang (10.1016/j.cej.2020.126269_b0175) 2014; 50 Shimazu (10.1016/j.cej.2020.126269_b0220) 2007; 601 Liu (10.1016/j.cej.2020.126269_b0315) 2018; 52 Guo (10.1016/j.cej.2020.126269_b0390) 2020; 16 Ghazouani (10.1016/j.cej.2020.126269_b0630) 2017; 24 Epsztein (10.1016/j.cej.2020.126269_b0070) 2015; 279 Mattarozzi (10.1016/j.cej.2020.126269_b0450) 2014; 140 Li (10.1016/j.cej.2020.126269_b0510) 2020; 237 10.1016/j.cej.2020.126269_b0050 Gao (10.1016/j.cej.2020.126269_b0105) 2019; 254 Badea (10.1016/j.cej.2020.126269_b0125) 2009; 54 10.1016/j.cej.2020.126269_b0055 Dash (10.1016/j.cej.2020.126269_b0145) 2005; 39 Hou (10.1016/j.cej.2020.126269_b0460) 2018; 205 Liu (10.1016/j.cej.2020.126269_b0155) 2019; 223 de Groot (10.1016/j.cej.2020.126269_b0230) 2004; 562 Li (10.1016/j.cej.2020.126269_b0160) 2019; 3 Jiang (10.1016/j.cej.2020.126269_b0495) 2013; 3 Gao (10.1016/j.cej.2020.126269_b0295) 2020; 382 Wu (10.1016/j.cej.2020.126269_b0345) 2019; 489 Duan (10.1016/j.cej.2020.126269_b0365) 2019; 161 Taguchi (10.1016/j.cej.2020.126269_b0165) 2007; 52 de Vooys (10.1016/j.cej.2020.126269_b0190) 2000; 154 Sun (10.1016/j.cej.2020.126269_b0560) 2018; 269 Liu (10.1016/j.cej.2020.126269_b0235) 2019; 9 Tugaoen (10.1016/j.cej.2020.126269_b0030) 2017; 599–600 Kuang (10.1016/j.cej.2020.126269_b0645) 2018; 210 Shih (10.1016/j.cej.2020.126269_b0465) 2020; 383 Xu (10.1016/j.cej.2020.126269_b0080) 2018; 12 Shih (10.1016/j.cej.2020.126269_b0205) 2020; 273 Duca (10.1016/j.cej.2020.126269_b0170) 2010; 132 Soares (10.1016/j.cej.2020.126269_b0090) 2000; 123 Comer (10.1016/j.cej.2020.126269_b0020) 2019; 3 Ma (10.1016/j.cej.2020.126269_b0490) 2018; 202 Chen (10.1016/j.cej.2020.126269_b0035) 2018; 360 Chen (10.1016/j.cej.2020.126269_b0215) 2019; 9 Chaplin (10.1016/j.cej.2020.126269_b0320) 2012; 46 Schmid (10.1016/j.cej.2020.126269_b0245) 1959; 63 You (10.1016/j.cej.2020.126269_b0580) 2016; 138 Duca (10.1016/j.cej.2020.126269_b0010) 2012; 5 Garcia-Segura (10.1016/j.cej.2020.126269_b0260) 2018; 236 Mattarozzi (10.1016/j.cej.2020.126269_b0435) 2013; 89 Schmid (10.1016/j.cej.2020.126269_b0255) 1961; 65 Ghazouani (10.1016/j.cej.2020.126269_b0640) 2016; 783 Wang (10.1016/j.cej.2020.126269_b0480) 2016; 773 Wang (10.1016/j.cej.2020.126269_b0115) 2020; 59 Tang (10.1016/j.cej.2020.126269_b0135) 2019; 48 Liu (10.1016/j.cej.2020.126269_b0530) 2018; 427 Wang (10.1016/j.cej.2020.126269_b0440) 2020; 142 Vorlop (10.1016/j.cej.2020.126269_b0185) 1989; 61 Teng (10.1016/j.cej.2020.126269_b0545) 2018; 52 Reyter (10.1016/j.cej.2020.126269_b0325) 2008; 53 Barrabés (10.1016/j.cej.2020.126269_b0085) 2011; 104 de Vooys (10.1016/j.cej.2020.126269_b0305) 2001; 506 Li (10.1016/j.cej.2020.126269_b0430) 2018; 766 Ma (10.1016/j.cej.2020.126269_b0355) 2016; 782 Mattarozzi (10.1016/j.cej.2020.126269_b0455) 2015; 162 Pérez-Gallent (10.1016/j.cej.2020.126269_b0415) 2017; 227 Dortsiou (10.1016/j.cej.2020.126269_b0330) 2013; 34 Polatides (10.1016/j.cej.2020.126269_b0370) 2005; 35 Bhatnagar (10.1016/j.cej.2020.126269_b0015) 2011; 168 Öznülüer (10.1016/j.cej.2020.126269_b0555) 2013; 699 de Vooys (10.1016/j.cej.2020.126269_b0275) 2001; 202 Lei (10.1016/j.cej.2020.126269_b0120) 2018; 212 Andersen (10.1016/j.cej.2020.126269_b0140) 2019; 570 Su (10.1016/j.cej.2020.126269_b0360) 2017; 120 Zhang (10.1016/j.cej.2020.126269_b0575) 2018; 57 Lacasa (10.1016/j.cej.2020.126269_b0600) 2012; 213–214 de Vooys (10.1016/j.cej.2020.126269_b0280) 2004; 49 Shin (10.1016/j.cej.2020.126269_b0310) 2014; 48 Li (10.1016/j.cej.2020.126269_b0180) 2020; 142 Zhu (10.1016/j.cej.2020.126269_b0620) 2018; 291 Bae (10.1016/j.cej.2020.126269_b0405) 2007; 129 Wang (10.1016/j.cej.2020.126269_b0520) 2021; 53 Ghafari (10.1016/j.cej.2020.126269_b0025) 2008; 99 Kamiya (10.1016/j.cej.2020.126269_b0610) 2014; 1 Katsounaros (10.1016/j.cej.2020.126269_b0335) 2007; 52 Zhang (10.1016/j.cej.2020.126269_b0585) 2019; 60 Li (10.1016/j.cej.2020.126269_b0380) 2009; 54 Wang (10.1016/j.cej.2020.126269_b0130) 2019; 6 Samatya (10.1016/j.cej.2020.126269_b0060) 2006; 66 Ghazouani (10.1016/j.cej.2020.126269_b0635) 2014; 53 Alikhani (10.1016/j.cej.2020.126269_b0065) 2014; 239 Li (10.1016/j.cej.2020.126269_b0100) 2009; 171 Liu (10.1016/j.cej.2020.126269_b0540) 2016; 163 Zhang (10.1016/j.cej.2020.126269_b0475) 2018; 165 Banasiak (10.1016/j.cej.2020.126269_b0075) 2009; 334 Fernández-Nava (10.1016/j.cej.2020.126269_b0040) 2008; 99 Martínez (10.1016/j.cej.2020.126269_b0045) 2017; 207 Long (10.1016/j.cej.2020.126269_b0270) 2020; 59 Reyter (10.1016/j.cej.2020.126269_b0425) 2011; 192 Jia (10.1016/j.cej.2020.126269_b0505) 2020; 10 Wang (10.1016/j.cej.2020.126269_b0570) 2019; 12 Dima (10.1016/j.cej.2020.126269_b0265) 2003; 554–555 Ding (10.1016/j.cej.2020.126269_b0605) 2015; 271 He (10.1016/j.cej.2020.126269_b0515) 2018; 140 Li (10.1016/j.cej.2020.126269_b0350) 2016; 146 |
References_xml | – volume: 360 start-page: eaar6611 year: 2018 ident: b0035 article-title: Beyond fossil fuel-driven nitrogen transformations publication-title: Science – volume: 212 start-page: 237 year: 2018 end-page: 244 ident: b0120 article-title: Fabrication and characterization of a Cu-Pd-TNPs polymetallic nanoelectrode for electrochemically removing nitrate from groundwater publication-title: Chemosphere – volume: 3 start-page: 1800388 year: 2019 ident: b0160 article-title: Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction publication-title: Small Methods – volume: 157 start-page: 191 year: 2019 end-page: 200 ident: b0110 article-title: Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: factors, kinetics, and mechanism publication-title: Water Res. – volume: 48 start-page: 3166 year: 2019 end-page: 3180 ident: b0135 article-title: How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully publication-title: Chem. Soc. Rev. – volume: 207 start-page: 42 year: 2017 end-page: 59 ident: b0045 article-title: State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates publication-title: Appl. Catal., B – volume: 2 start-page: D58 year: 2013 end-page: D60 ident: b0445 article-title: Electrodeposition of Cu-Ni alloy electrodes with bimodal porosity and their use for nitrate reduction publication-title: ECS Electrochem. Lett. – volume: 63 start-page: 1192 year: 1959 end-page: 1197 ident: b0250 article-title: Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure II. Der galvanostatische Einschaltvorgang publication-title: Z. Elektrochem. – volume: 63 start-page: 1189 year: 1959 end-page: 1191 ident: b0240 article-title: Entgegnung auf die vorstehende Arbeit von G. Schmid über “Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure” publication-title: Z. Elektrochem. – reference: WHO, Nitrate and Nitrite in Drinking-Water, (2016). – volume: 154 start-page: 203 year: 2000 end-page: 215 ident: b0190 article-title: Electrocatalytic reduction of NO publication-title: J. Mol. Catal. A: Chem. – volume: 52 start-page: 230 year: 2018 end-page: 236 ident: b0545 article-title: Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon publication-title: Environ. Sci. Technol. – volume: 16 start-page: 532 year: 2004 end-page: 538 ident: b0420 article-title: Electrocatalysis of nitrate reduction at copper-nickel alloy electrodes in acidic media publication-title: Electroanalysis – volume: 53 start-page: 90 year: 2021 end-page: 92 ident: b0520 article-title: Unveiling enzyme-mimetic active intermediate of a bioinspired oxo-MoS publication-title: J. Energy Chem. – volume: 59 start-page: 5350 year: 2020 end-page: 5354 ident: b0115 article-title: Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 9992 year: 2018 end-page: 10002 ident: b0315 article-title: Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H* publication-title: Environ. Sci. Technol. – volume: 34 start-page: 373 year: 2013 end-page: 381 ident: b0330 article-title: Influence of the electrode and the pH on the rate and the product distribution of the electrochemical removal of nitrate publication-title: Environ. Technol. – volume: 773 start-page: 13 year: 2016 end-page: 21 ident: b0480 article-title: Ti nano electrode fabrication for electrochemical denitrification using Box-Behnken design publication-title: J. Electroanal. Chem. – volume: 236 start-page: 546 year: 2018 end-page: 568 ident: b0260 article-title: Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications publication-title: Appl. Catal., B – volume: 5 start-page: 313 year: 2013 end-page: 321 ident: b0290 article-title: Elucidation of nitrate reduction mechanisms on a Pd-In bimetallic catalyst using isotope labeled nitrogen species publication-title: ChemCatChem – volume: 308 start-page: 11 year: 2013 end-page: 24 ident: b0150 article-title: Structural and electronic effects in heterogeneous electrocatalysis: Toward a rational design of electrocatalysts publication-title: J. Catal. – volume: 46 start-page: 3655 year: 2012 end-page: 3670 ident: b0320 article-title: Critical review of Pd-based catalytic treatment of priority contaminants in water publication-title: Environ. Sci. Technol. – volume: 162 start-page: D236 year: 2015 end-page: D241 ident: b0455 article-title: Electrodeposition of compact and porous Cu-Zn alloy electrodes and their use in the cathodic reduction of nitrate publication-title: J. Electrochem. Soc. – volume: 506 start-page: 127 year: 2001 end-page: 137 ident: b0305 article-title: The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes publication-title: J. Electroanal. Chem. – volume: 9 start-page: 536 year: 2019 ident: b0215 article-title: Cu modified Pt nanoflowers with preferential (100) surfaces for selective electroreduction of nitrate publication-title: Catalysts – volume: 554–555 start-page: 15 year: 2003 end-page: 23 ident: b0265 article-title: Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions publication-title: J. Electroanal. Chem. – volume: 269 start-page: 733 year: 2018 end-page: 741 ident: b0560 article-title: Facile electrochemical co-deposition of metal (Cu, Pd, Pt, Rh) nanoparticles on reduced graphene oxide for electrocatalytic reduction of nitrate/nitrite publication-title: Electrochim. Acta – volume: 202 start-page: 387 year: 2001 end-page: 394 ident: b0275 article-title: Mechanistic study on the electrocatalytic reduction of nitric oxide on transition-metal electrodes publication-title: J. Catal. – volume: 12 start-page: 9 year: 2018 ident: b0080 article-title: Electrochemical removal of nitrate in industrial wastewater publication-title: Front. Environ. Sci. Eng. – volume: 227 start-page: 77 year: 2017 end-page: 84 ident: b0415 article-title: Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions publication-title: Electrochim. Acta – volume: 57 start-page: 7649 year: 2018 end-page: 7653 ident: b0575 article-title: Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode publication-title: Angew. Chem. Int. Ed. – volume: 699 start-page: 1 year: 2013 end-page: 5 ident: b0555 article-title: Electrochemical reduction of nitrate on graphene modified copper electrodes in alkaline media publication-title: J. Electroanal. Chem. – volume: 99 start-page: 3965 year: 2008 end-page: 3974 ident: b0025 article-title: Bio-electrochemical removal of nitrate from water and wastewater—a review publication-title: Bioresour. Technol. – volume: 291 start-page: 151 year: 2018 end-page: 160 ident: b0470 article-title: Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: High efficiency and N publication-title: Electrochim. Acta – volume: 165 start-page: E420 year: 2018 end-page: E428 ident: b0475 article-title: Fe/Cu composite electrode prepared by electrodeposition and its excellent behavior in nitrate electrochemical removal publication-title: J. Electrochem. Soc. – volume: 10 start-page: 3533 year: 2020 end-page: 3540 ident: b0505 article-title: Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO publication-title: ACS Catal. – volume: 223 start-page: 560 year: 2019 end-page: 568 ident: b0155 article-title: Fabrication and characterization of a Ni-TNTA bimetallic nanoelectrode to electrochemically remove nitrate from groundwater publication-title: Chemosphere – volume: 334 start-page: 101 year: 2009 end-page: 109 ident: b0075 article-title: Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter publication-title: J. Membr. Sci. – volume: 6 start-page: 730 year: 2019 end-page: 738 ident: b0130 article-title: Electrochemical synthesis of nitric acid from air and ammonia through waste utilization publication-title: Natl. Sci. Rev. – volume: 50 start-page: 2148 year: 2014 end-page: 2151 ident: b0175 article-title: pH dependence of the electroreduction of nitrate on Rh and Pt polycrystalline electrodes publication-title: Chem. Commun. – volume: 11 start-page: 8308 year: 2016 end-page: 8322 ident: b0535 article-title: Fabrication and characterization of Cu/Ti bilayer nanoelectrode for electrochemical denitrification publication-title: Int. J. Electrochem. Sci. – volume: 140 start-page: 2012 year: 2018 end-page: 2015 ident: b0515 article-title: Selective electrocatalytic reduction of nitrite to dinitrogen based on decoupled proton-electron transfer publication-title: J. Am. Chem. Soc. – volume: 259 year: 2019 ident: b0200 article-title: Electrochemical reduction of NO publication-title: Appl. Catal., B – volume: 383 year: 2020 ident: b0465 article-title: Electrochemical nitrate reduction as affected by the crystal morphology and facet of copper nanoparticles supported on nickel foam electrodes (Cu/Ni) publication-title: Chem. Eng. J. – volume: 24 start-page: 9895 year: 2017 end-page: 9906 ident: b0630 article-title: Nitrate and carbon matter removals from real effluents using Si/BDD electrode publication-title: Environ. Sci. Pollut. Res. Int. – volume: 228 start-page: 611 year: 2019 end-page: 618 ident: b0500 article-title: Ti plate with TiO publication-title: Chemosphere – volume: 109 start-page: 2209 year: 2009 end-page: 2244 ident: b0005 article-title: Nitrogen cycle electrocatalysis publication-title: Chem. Rev. – volume: 5 start-page: 9726 year: 2012 end-page: 9742 ident: b0010 article-title: Powering denitrification: the perspectives of electrocatalytic nitrate reduction publication-title: Energy Environ. Sci. – volume: 782 start-page: 270 year: 2016 end-page: 277 ident: b0355 article-title: Development and reaction mechanism of efficient nano titanium electrode: Reconstructed nanostructure and enhanced nitrate removal efficiency publication-title: J. Electroanal. Chem. – volume: 202 start-page: 177 year: 2018 end-page: 183 ident: b0490 article-title: Efficient nano titanium electrode via a two-step electrochemical anodization with reconstructed nanotubes: Electrochemical activity and stability publication-title: Chemosphere – volume: 52 start-page: 6412 year: 2007 end-page: 6420 ident: b0335 article-title: Influence of the concentration and the nature of the supporting electrolyte on the electrochemical reduction of nitrate on tin cathode publication-title: Electrochim. Acta – volume: 65 start-page: 531 year: 1961 end-page: 534 ident: b0255 article-title: Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure: III Mathematische Behandlung einer autokatalytischen Elektrodenreaktion 1. Ordnung publication-title: Z. Elektrochem. – volume: 273 year: 2020 ident: b0205 article-title: Manipulating the crystalline morphology and facet orientation of copper and copper-palladium nanocatalysts supported on stainless steel mesh with the aid of cationic surfactant to improve the electrochemical reduction of nitrate and N publication-title: Appl. Catal., B – year: 2020 ident: b0525 article-title: Enzyme mimetic active intermediates for nitrate reduction in neutral aqueous media publication-title: Angew. Chem. Int. Ed. – volume: 63 start-page: 1183 year: 1959 end-page: 1188 ident: b0245 article-title: Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure I. Zur Deutung stationärer strom-Spannungs-Kurven publication-title: Z. Elektrochem. – volume: 29 start-page: 457 year: 2016 end-page: 465 ident: b0410 article-title: Nitrate reduction pathways on Cu single crystal surfaces: effect of oxide and Cl publication-title: Nano Energy – volume: 164 start-page: E326 year: 2017 end-page: E331 ident: b0485 article-title: Electrochemical behavior of Ti-based nano-electrode for highly efficient denitrification in synthetic groundwater publication-title: J. Electrochem. Soc. – volume: 197 start-page: 475 year: 2012 end-page: 482 ident: b0340 article-title: Kinetic study of the simultaneous electrochemical removal of aqueous nitrogen compounds using BDD electrodes publication-title: Chem. Eng. J. – volume: 60 start-page: 894 year: 2019 end-page: 902 ident: b0585 article-title: Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array publication-title: Nano Energy – volume: 99 start-page: 7976 year: 2008 end-page: 7981 ident: b0040 article-title: Denitrification of wastewater containing high nitrate and calcium concentrations publication-title: Bioresour. Technol. – volume: 324 year: 2019 ident: b0565 article-title: In situ growth of copper/reduced graphene oxide on graphite surfaces for the electrocatalytic reduction of nitrate publication-title: Electrochim. Acta – volume: 59 start-page: 9711 year: 2020 end-page: 9718 ident: b0270 article-title: Direct electrochemical ammonia synthesis from nitric oxide publication-title: Angew. Chem. Int. Ed. – volume: 599–600 start-page: 1524 year: 2017 end-page: 1551 ident: b0030 article-title: Challenges in photocatalytic reduction of nitrate as a water treatment technology publication-title: Sci. Total. Environ. – volume: 44 start-page: 841 year: 1998 end-page: 851 ident: b0300 article-title: Kinetics of hydrogen evolution reaction with Frumkin adsorption: re-examination of the Volmer-Heyrovsky and Volmer-Tafel routes publication-title: Electrochim. Acta – volume: 239 start-page: 93 year: 2014 end-page: 104 ident: b0065 article-title: Ion-exchange polyHIPE type membrane for removing nitrate ions: preparation, characterization, kinetics and adsorption studies publication-title: Chem. Eng. J. – volume: 63 start-page: 206 year: 2011 end-page: 212 ident: b0625 article-title: Electrochemical treatment of wastewater polluted by nitrate: selective reduction to N publication-title: Water Sci. Technol. – volume: 66 start-page: 1206 year: 2006 end-page: 1214 ident: b0060 article-title: Removal of nitrate from aqueous solution by nitrate selective ion exchange resins publication-title: React. Funct. Polym. – volume: 382 year: 2020 ident: b0295 article-title: Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co publication-title: Chem. Eng. J. – volume: 146 start-page: 2585 year: 2016 end-page: 2595 ident: b0350 article-title: Electrochemical reduction of high-concentrated nitrate using Ti/TiO publication-title: Catal. Lett. – volume: 142 start-page: 7036 year: 2020 end-page: 7046 ident: b0180 article-title: Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters publication-title: J. Am. Chem. Soc. – volume: 163 start-page: E421 year: 2016 end-page: E427 ident: b0540 article-title: Fabrication and characterization of a Cu-Zn-TiO publication-title: J. Electrochem. Soc. – volume: 173 year: 2020 ident: b0550 article-title: Electrochemically mediated nitrate reduction on nanoconfined zerovalent iron: properties and mechanism publication-title: Water Res. – volume: 213–214 start-page: 478 year: 2012 end-page: 484 ident: b0600 article-title: Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media publication-title: J. Hazard. Mater. – volume: 48 start-page: 12768 year: 2014 end-page: 12774 ident: b0310 article-title: Nitrite reduction mechanism on a Pd surface publication-title: Environ. Sci. Technol. – volume: 427 start-page: 106 year: 2018 end-page: 113 ident: b0530 article-title: Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane publication-title: Appl. Surf. Sci. – volume: 257 year: 2019 ident: b0225 article-title: Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity publication-title: Appl. Catal., B – volume: 489 start-page: 321 year: 2019 end-page: 329 ident: b0345 article-title: Self-supported Cu nanosheets derived from CuCl-CuO for highly efficient electrochemical degradation of NO publication-title: Appl. Surf. Sci. – volume: 3 start-page: 1578 year: 2019 end-page: 1605 ident: b0020 article-title: Prospects and challenges for solar fertilizers publication-title: Joule – volume: 39 start-page: 4065 year: 2005 end-page: 4072 ident: b0145 article-title: Electrochemical denitrificaton of simulated ground water publication-title: Water Res. – volume: 35 start-page: 421 year: 2005 end-page: 427 ident: b0370 article-title: Electrochemical reduction of nitrate ion on various cathodes–reaction kinetics on bronze cathode publication-title: J. Appl. Electrochem. – volume: 291 start-page: 328 year: 2018 end-page: 334 ident: b0620 article-title: In-situ electrochemical activation of carbon fiber paper for the highly efficient electroreduction of concentrated nitric acid publication-title: Electrochim. Acta – volume: 168 start-page: 493 year: 2011 end-page: 504 ident: b0015 article-title: A review of emerging adsorbents for nitrate removal from water publication-title: Chem. Eng. J. – volume: 9 start-page: 7052 year: 2019 end-page: 7064 ident: b0235 article-title: Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals publication-title: ACS Catal. – volume: 662 start-page: 87 year: 2011 end-page: 92 ident: b0285 article-title: Formation of volatile products during nitrate reduction on a Sn-modified Pt electrode in acid solution publication-title: J. Electroanal. Chem. – volume: 61 start-page: 836 year: 1989 end-page: 837 ident: b0185 article-title: Erste Schritte auf dem Weg zur edelmetallkatalysierten Nitrat- und Nitrit-Entfernung aus Trinkwasser publication-title: Chem. Ing. Tech. – volume: 237 year: 2020 ident: b0510 article-title: Electrochemical removal of nitrate using a nanosheet structured Co publication-title: Sep. Purif. Technol. – volume: 180 start-page: 199 year: 2016 end-page: 209 ident: b0195 article-title: The electrochemical reduction of nitrate over micro-architectured metal electrodes with stainless steel scaffold publication-title: Appl. Catal., B – volume: 104 start-page: 1 year: 2011 end-page: 5 ident: b0085 article-title: Catalytic nitrate removal from water, past, present and future perspectives publication-title: Appl. Catal., B – volume: 494 start-page: 22 year: 2019 end-page: 28 ident: b0395 article-title: Bifunctional self-assembled Ni publication-title: Appl. Surf. Sci. – volume: 16 start-page: 1907029 year: 2020 ident: b0390 article-title: Oxygen evolution reaction kinetics: reducing oxygen evolution reaction overpotential in cobalt-based electrocatalysts via optimizing the “microparticles-in-spider web” electrode configurations publication-title: Small – volume: 192 start-page: 507 year: 2011 end-page: 513 ident: b0425 article-title: Optimization of the cathode material for nitrate removal by a paired electrolysis process publication-title: J. Hazard. Mater. – volume: 53 start-page: 1107 year: 2014 end-page: 1117 ident: b0635 article-title: Efficiency of electrochemical denitrification using electrolysis cell containing BDD electrode publication-title: Desalin. Water Treat. – volume: 171 start-page: 724 year: 2009 end-page: 730 ident: b0100 article-title: Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method publication-title: J. Hazard. Mater. – volume: 766 start-page: 157 year: 2018 end-page: 160 ident: b0430 article-title: Electrolytic reduction of nitrate on copper and its binary composite electrodes publication-title: J. Alloys Compd. – volume: 49 start-page: 1307 year: 2004 end-page: 1314 ident: b0280 article-title: Mechanisms of electrochemical reduction and oxidation of nitric oxide publication-title: Electrochim. Acta – volume: 54 start-page: 996 year: 2009 end-page: 1001 ident: b0125 article-title: Electrocatalytic reduction of nitrate on copper electrode in alkaline solution publication-title: Electrochim. Acta – volume: 89 start-page: 488 year: 2013 end-page: 496 ident: b0435 article-title: Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes publication-title: Electrochim. Acta – volume: 68 start-page: 1213 year: 2015 end-page: 1220 ident: b0385 article-title: Electrochemical restructuring of copper surfaces using organic additives and its effect on the electrocatalytic reduction of nitrate ions publication-title: Aust. J. Chem. – reference: USEPA, Ground Water and Drinking Water Table of Regulated Drinking Water Contaminants, (2017). – volume: 601 start-page: 161 year: 2007 end-page: 168 ident: b0220 article-title: Reduction of nitrate ions on tin-modified palladium thin film electrodes publication-title: J. Electroanal. Chem. – volume: 205 start-page: 706 year: 2018 end-page: 715 ident: b0460 article-title: Enhanced electrocatalytic reduction of aqueous nitrate by modified copper catalyst through electrochemical deposition and annealing treatment publication-title: Chem. Eng. Commun. – volume: 31 start-page: 3277 year: 2015 end-page: 3281 ident: b0210 article-title: Surface modification of Pt(100) for electrocatalytic nitrate reduction to dinitrogen in alkaline solution publication-title: Langmuir – volume: 132 start-page: 18042 year: 2010 end-page: 18044 ident: b0170 article-title: Direct reduction of nitrite to N publication-title: J. Am. Chem. Soc. – volume: 562 start-page: 81 year: 2004 end-page: 94 ident: b0230 article-title: The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum publication-title: J. Electroanal. Chem. – volume: 54 start-page: 4600 year: 2009 end-page: 4606 ident: b0380 article-title: Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO publication-title: Electrochim. Acta – volume: 120 start-page: 1 year: 2017 end-page: 11 ident: b0360 article-title: Electrochemical nitrate reduction by using a novel Co publication-title: Water Res. – volume: 12 start-page: 2055 year: 2019 end-page: 2066 ident: b0570 article-title: Rational design of three-phase interfaces for electrocatalysis publication-title: Nano Res. – volume: 161 start-page: 126 year: 2019 end-page: 135 ident: b0365 article-title: Highly active and durable carbon electrocatalyst for nitrate reduction reaction publication-title: Water Res. – volume: 12 start-page: 9385 year: 2020 end-page: 9391 ident: b0400 article-title: A three-dimensional Cu nanobelt cathode for highly efficient electrocatalytic nitrate reduction publication-title: Nanoscale – reference: Y. Wang, C. Liu, B. Zhang, Y. Yu, Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation, Sci. China Mater., doi: 10.1007/s40843-020-1365-0. – volume: 279 start-page: 372 year: 2015 end-page: 378 ident: b0070 article-title: Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme publication-title: Chem. Eng. J. – volume: 142 start-page: 5702 year: 2020 end-page: 5708 ident: b0440 article-title: Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption publication-title: J. Am. Chem. Soc. – volume: 271 start-page: 252 year: 2015 end-page: 259 ident: b0605 article-title: Electroreduction of nitrate in water: Role of cathode and cell configuration publication-title: Chem. Eng. J. – volume: 254 start-page: 391 year: 2019 end-page: 402 ident: b0105 article-title: Non-precious Co publication-title: Appl. Catal., B – volume: 242 year: 2020 ident: b0595 article-title: Electrocatalytic nitrate reduction using Fe publication-title: J. Cleaner Prod. – volume: 3 start-page: 1368 year: 2013 end-page: 1380 ident: b0495 article-title: Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts publication-title: Adv. Energy Mater. – volume: 783 start-page: 28 year: 2016 end-page: 40 ident: b0640 article-title: Enhancing removal of nitrates from highly concentrated synthetic wastewaters using bipolar Si/BDD cell: optimization and mechanism study publication-title: J. Electroanal. Chem. – volume: 140 start-page: 337 year: 2014 end-page: 344 ident: b0450 article-title: Hydrogen evolution assisted electrodeposition of porous Cu-Ni alloy electrodes and their use for nitrate reduction in alkali publication-title: Electrochim. Acta – volume: 216 start-page: 158 year: 2019 end-page: 165 ident: b0615 article-title: Efficient nitrate removal from water using selected cathodes and Ti/PbO publication-title: Sep. Purif. Technol. – volume: 123 start-page: 183 year: 2000 end-page: 193 ident: b0090 article-title: Biological denitrification of groundwater publication-title: Water, Air, Soil Pollut. – volume: 138 start-page: 13639 year: 2016 end-page: 13646 ident: b0580 article-title: A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 858 year: 2014 end-page: 862 ident: b0610 article-title: Graphene defects as active catalytic sites that are superior to platinum catalysts in electrochemical nitrate reduction publication-title: ChemElectroChem – volume: 210 start-page: 524 year: 2018 end-page: 530 ident: b0645 article-title: Comparison of performance between boron-doped diamond and copper electrodes for selective nitrogen gas formation by the electrochemical reduction of nitrate publication-title: Chemosphere – volume: 596 start-page: 13 year: 2006 end-page: 24 ident: b0375 article-title: Electrocatalytic reduction of nitrate on copper electrodes prepared by high-energy ball milling publication-title: J. Electroanal. Chem. – volume: 129 start-page: 10171 year: 2007 end-page: 10180 ident: b0405 article-title: Nitrate adsorption and reduction on Cu(100) in acidic solution publication-title: J. Am. Chem. Soc. – volume: 570 start-page: 504 year: 2019 end-page: 508 ident: b0140 article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements publication-title: Nature – volume: 52 start-page: 6023 year: 2007 end-page: 6033 ident: b0165 article-title: Electrochemical reduction of nitrate on Pt(S)[n(111)×(111)] electrodes in perchloric acid solution publication-title: Electrochim. Acta – volume: 145 start-page: 1756 year: 2015 end-page: 1763 ident: b0095 article-title: Catalytic hydrogenation of nitrate in water using a Pd–Cu/Al publication-title: Catal. Lett. – volume: 53 start-page: 5977 year: 2008 end-page: 5984 ident: b0325 article-title: Study of the electroreduction of nitrate on copper in alkaline solution publication-title: Electrochim. Acta – volume: 766 start-page: 157 year: 2018 ident: 10.1016/j.cej.2020.126269_b0430 article-title: Electrolytic reduction of nitrate on copper and its binary composite electrodes publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.07.004 – volume: 239 start-page: 93 year: 2014 ident: 10.1016/j.cej.2020.126269_b0065 article-title: Ion-exchange polyHIPE type membrane for removing nitrate ions: preparation, characterization, kinetics and adsorption studies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.11.013 – volume: 142 start-page: 7036 year: 2020 ident: 10.1016/j.cej.2020.126269_b0180 article-title: Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00418 – volume: 52 start-page: 6023 year: 2007 ident: 10.1016/j.cej.2020.126269_b0165 article-title: Electrochemical reduction of nitrate on Pt(S)[n(111)×(111)] electrodes in perchloric acid solution publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.03.057 – volume: 383 year: 2020 ident: 10.1016/j.cej.2020.126269_b0465 article-title: Electrochemical nitrate reduction as affected by the crystal morphology and facet of copper nanoparticles supported on nickel foam electrodes (Cu/Ni) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123157 – volume: 291 start-page: 151 year: 2018 ident: 10.1016/j.cej.2020.126269_b0470 article-title: Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: High efficiency and N2 selectivity publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.154 – volume: 334 start-page: 101 year: 2009 ident: 10.1016/j.cej.2020.126269_b0075 article-title: Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.02.020 – volume: 53 start-page: 1107 year: 2014 ident: 10.1016/j.cej.2020.126269_b0635 article-title: Efficiency of electrochemical denitrification using electrolysis cell containing BDD electrode publication-title: Desalin. Water Treat. – volume: 360 start-page: eaar6611 year: 2018 ident: 10.1016/j.cej.2020.126269_b0035 article-title: Beyond fossil fuel-driven nitrogen transformations publication-title: Science doi: 10.1126/science.aar6611 – volume: 54 start-page: 996 year: 2009 ident: 10.1016/j.cej.2020.126269_b0125 article-title: Electrocatalytic reduction of nitrate on copper electrode in alkaline solution publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.08.003 – volume: 308 start-page: 11 year: 2013 ident: 10.1016/j.cej.2020.126269_b0150 article-title: Structural and electronic effects in heterogeneous electrocatalysis: Toward a rational design of electrocatalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2013.05.006 – ident: 10.1016/j.cej.2020.126269_b0050 – volume: 161 start-page: 126 year: 2019 ident: 10.1016/j.cej.2020.126269_b0365 article-title: Highly active and durable carbon electrocatalyst for nitrate reduction reaction publication-title: Water Res. doi: 10.1016/j.watres.2019.05.104 – volume: 782 start-page: 270 year: 2016 ident: 10.1016/j.cej.2020.126269_b0355 article-title: Development and reaction mechanism of efficient nano titanium electrode: Reconstructed nanostructure and enhanced nitrate removal efficiency publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.10.047 – volume: 9 start-page: 536 year: 2019 ident: 10.1016/j.cej.2020.126269_b0215 article-title: Cu modified Pt nanoflowers with preferential (100) surfaces for selective electroreduction of nitrate publication-title: Catalysts doi: 10.3390/catal9060536 – volume: 269 start-page: 733 year: 2018 ident: 10.1016/j.cej.2020.126269_b0560 article-title: Facile electrochemical co-deposition of metal (Cu, Pd, Pt, Rh) nanoparticles on reduced graphene oxide for electrocatalytic reduction of nitrate/nitrite publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.03.005 – volume: 123 start-page: 183 year: 2000 ident: 10.1016/j.cej.2020.126269_b0090 article-title: Biological denitrification of groundwater publication-title: Water, Air, Soil Pollut. doi: 10.1023/A:1005242600186 – volume: 10 start-page: 3533 year: 2020 ident: 10.1016/j.cej.2020.126269_b0505 article-title: Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05260 – volume: 570 start-page: 504 year: 2019 ident: 10.1016/j.cej.2020.126269_b0140 article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements publication-title: Nature doi: 10.1038/s41586-019-1260-x – volume: 146 start-page: 2585 year: 2016 ident: 10.1016/j.cej.2020.126269_b0350 article-title: Electrochemical reduction of high-concentrated nitrate using Ti/TiO2 nanotube array anode and Fe cathode in dual-chamber cell publication-title: Catal. Lett. doi: 10.1007/s10562-016-1894-3 – volume: 89 start-page: 488 year: 2013 ident: 10.1016/j.cej.2020.126269_b0435 article-title: Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.11.074 – volume: 237 year: 2020 ident: 10.1016/j.cej.2020.126269_b0510 article-title: Electrochemical removal of nitrate using a nanosheet structured Co3O4/Ti cathode: effects of temperature, current and pH adjusting publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116485 – volume: 154 start-page: 203 year: 2000 ident: 10.1016/j.cej.2020.126269_b0190 article-title: Electrocatalytic reduction of NO3− on palladium/copper electrodes publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/S1381-1169(99)00375-1 – volume: 63 start-page: 1192 year: 1959 ident: 10.1016/j.cej.2020.126269_b0250 article-title: Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure II. Der galvanostatische Einschaltvorgang publication-title: Z. Elektrochem. – volume: 2 start-page: D58 year: 2013 ident: 10.1016/j.cej.2020.126269_b0445 article-title: Electrodeposition of Cu-Ni alloy electrodes with bimodal porosity and their use for nitrate reduction publication-title: ECS Electrochem. Lett. doi: 10.1149/2.004311eel – volume: 3 start-page: 1368 year: 2013 ident: 10.1016/j.cej.2020.126269_b0495 article-title: Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300380 – volume: 99 start-page: 3965 year: 2008 ident: 10.1016/j.cej.2020.126269_b0025 article-title: Bio-electrochemical removal of nitrate from water and wastewater—a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.05.026 – volume: 49 start-page: 1307 year: 2004 ident: 10.1016/j.cej.2020.126269_b0280 article-title: Mechanisms of electrochemical reduction and oxidation of nitric oxide publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2003.07.020 – volume: 53 start-page: 90 year: 2021 ident: 10.1016/j.cej.2020.126269_b0520 article-title: Unveiling enzyme-mimetic active intermediate of a bioinspired oxo-MoSx electrocatalyst for aqueous nitrate reduction publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.05.017 – volume: 6 start-page: 730 year: 2019 ident: 10.1016/j.cej.2020.126269_b0130 article-title: Electrochemical synthesis of nitric acid from air and ammonia through waste utilization publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwz019 – ident: 10.1016/j.cej.2020.126269_b0055 – volume: 12 start-page: 9 year: 2018 ident: 10.1016/j.cej.2020.126269_b0080 article-title: Electrochemical removal of nitrate in industrial wastewater publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-018-1033-z – volume: 259 year: 2019 ident: 10.1016/j.cej.2020.126269_b0200 article-title: Electrochemical reduction of NOx species at the interface of nanostructured Pd and PdCu catalysts in alkaline conditions publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118048 – volume: 12 start-page: 9385 year: 2020 ident: 10.1016/j.cej.2020.126269_b0400 article-title: A three-dimensional Cu nanobelt cathode for highly efficient electrocatalytic nitrate reduction publication-title: Nanoscale doi: 10.1039/C9NR10743F – volume: 173 year: 2020 ident: 10.1016/j.cej.2020.126269_b0550 article-title: Electrochemically mediated nitrate reduction on nanoconfined zerovalent iron: properties and mechanism publication-title: Water Res. doi: 10.1016/j.watres.2020.115596 – volume: 63 start-page: 1183 year: 1959 ident: 10.1016/j.cej.2020.126269_b0245 article-title: Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure I. Zur Deutung stationärer strom-Spannungs-Kurven publication-title: Z. Elektrochem. – volume: 773 start-page: 13 year: 2016 ident: 10.1016/j.cej.2020.126269_b0480 article-title: Ti nano electrode fabrication for electrochemical denitrification using Box-Behnken design publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.04.025 – volume: 129 start-page: 10171 year: 2007 ident: 10.1016/j.cej.2020.126269_b0405 article-title: Nitrate adsorption and reduction on Cu(100) in acidic solution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071330n – volume: 279 start-page: 372 year: 2015 ident: 10.1016/j.cej.2020.126269_b0070 article-title: Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.05.010 – volume: 213–214 start-page: 478 year: 2012 ident: 10.1016/j.cej.2020.126269_b0600 article-title: Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.02.034 – volume: 168 start-page: 493 year: 2011 ident: 10.1016/j.cej.2020.126269_b0015 article-title: A review of emerging adsorbents for nitrate removal from water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.01.103 – volume: 202 start-page: 177 year: 2018 ident: 10.1016/j.cej.2020.126269_b0490 article-title: Efficient nano titanium electrode via a two-step electrochemical anodization with reconstructed nanotubes: Electrochemical activity and stability publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.03.063 – volume: 5 start-page: 313 year: 2013 ident: 10.1016/j.cej.2020.126269_b0290 article-title: Elucidation of nitrate reduction mechanisms on a Pd-In bimetallic catalyst using isotope labeled nitrogen species publication-title: ChemCatChem doi: 10.1002/cctc.201200457 – volume: 324 year: 2019 ident: 10.1016/j.cej.2020.126269_b0565 article-title: In situ growth of copper/reduced graphene oxide on graphite surfaces for the electrocatalytic reduction of nitrate publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134846 – volume: 44 start-page: 841 year: 1998 ident: 10.1016/j.cej.2020.126269_b0300 article-title: Kinetics of hydrogen evolution reaction with Frumkin adsorption: re-examination of the Volmer-Heyrovsky and Volmer-Tafel routes publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(98)00233-3 – volume: 52 start-page: 9992 year: 2018 ident: 10.1016/j.cej.2020.126269_b0315 article-title: Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02740 – volume: 12 start-page: 2055 year: 2019 ident: 10.1016/j.cej.2020.126269_b0570 article-title: Rational design of three-phase interfaces for electrocatalysis publication-title: Nano Res. doi: 10.1007/s12274-019-2310-2 – volume: 140 start-page: 2012 year: 2018 ident: 10.1016/j.cej.2020.126269_b0515 article-title: Selective electrocatalytic reduction of nitrite to dinitrogen based on decoupled proton-electron transfer publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12774 – ident: 10.1016/j.cej.2020.126269_b0590 doi: 10.1007/s40843-020-1365-0 – volume: 120 start-page: 1 year: 2017 ident: 10.1016/j.cej.2020.126269_b0360 article-title: Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode publication-title: Water Res. doi: 10.1016/j.watres.2017.04.069 – volume: 254 start-page: 391 year: 2019 ident: 10.1016/j.cej.2020.126269_b0105 article-title: Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: preparation, performance and mechanism publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.05.016 – volume: 104 start-page: 1 year: 2011 ident: 10.1016/j.cej.2020.126269_b0085 article-title: Catalytic nitrate removal from water, past, present and future perspectives publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2011.03.011 – volume: 212 start-page: 237 year: 2018 ident: 10.1016/j.cej.2020.126269_b0120 article-title: Fabrication and characterization of a Cu-Pd-TNPs polymetallic nanoelectrode for electrochemically removing nitrate from groundwater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.082 – volume: 157 start-page: 191 year: 2019 ident: 10.1016/j.cej.2020.126269_b0110 article-title: Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: factors, kinetics, and mechanism publication-title: Water Res. doi: 10.1016/j.watres.2019.03.078 – volume: 138 start-page: 13639 year: 2016 ident: 10.1016/j.cej.2020.126269_b0580 article-title: A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07127 – volume: 99 start-page: 7976 year: 2008 ident: 10.1016/j.cej.2020.126269_b0040 article-title: Denitrification of wastewater containing high nitrate and calcium concentrations publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.03.048 – volume: 192 start-page: 507 year: 2011 ident: 10.1016/j.cej.2020.126269_b0425 article-title: Optimization of the cathode material for nitrate removal by a paired electrolysis process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.05.054 – volume: 164 start-page: E326 year: 2017 ident: 10.1016/j.cej.2020.126269_b0485 article-title: Electrochemical behavior of Ti-based nano-electrode for highly efficient denitrification in synthetic groundwater publication-title: J. Electrochem. Soc. doi: 10.1149/2.0821712jes – volume: 16 start-page: 1907029 year: 2020 ident: 10.1016/j.cej.2020.126269_b0390 article-title: Oxygen evolution reaction kinetics: reducing oxygen evolution reaction overpotential in cobalt-based electrocatalysts via optimizing the “microparticles-in-spider web” electrode configurations publication-title: Small doi: 10.1002/smll.201907029 – volume: 223 start-page: 560 year: 2019 ident: 10.1016/j.cej.2020.126269_b0155 article-title: Fabrication and characterization of a Ni-TNTA bimetallic nanoelectrode to electrochemically remove nitrate from groundwater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.02.028 – volume: 489 start-page: 321 year: 2019 ident: 10.1016/j.cej.2020.126269_b0345 article-title: Self-supported Cu nanosheets derived from CuCl-CuO for highly efficient electrochemical degradation of NO3− publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.05.358 – volume: 382 year: 2020 ident: 10.1016/j.cej.2020.126269_b0295 article-title: Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: Mechanism exploration from both experimental and DFT studies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123034 – volume: 52 start-page: 230 year: 2018 ident: 10.1016/j.cej.2020.126269_b0545 article-title: Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04775 – volume: 68 start-page: 1213 year: 2015 ident: 10.1016/j.cej.2020.126269_b0385 article-title: Electrochemical restructuring of copper surfaces using organic additives and its effect on the electrocatalytic reduction of nitrate ions publication-title: Aust. J. Chem. doi: 10.1071/CH15191 – volume: 132 start-page: 18042 year: 2010 ident: 10.1016/j.cej.2020.126269_b0170 article-title: Direct reduction of nitrite to N2 on a Pt(100) electrode in alkaline media publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1092503 – volume: 242 year: 2020 ident: 10.1016/j.cej.2020.126269_b0595 article-title: Electrocatalytic nitrate reduction using Fe0/Fe3O4 nanoparticles immobilized on nickel foam: Selectivity and energy consumption studies publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.118569 – volume: 34 start-page: 373 year: 2013 ident: 10.1016/j.cej.2020.126269_b0330 article-title: Influence of the electrode and the pH on the rate and the product distribution of the electrochemical removal of nitrate publication-title: Environ. Technol. doi: 10.1080/09593330.2012.696722 – volume: 46 start-page: 3655 year: 2012 ident: 10.1016/j.cej.2020.126269_b0320 article-title: Critical review of Pd-based catalytic treatment of priority contaminants in water publication-title: Environ. Sci. Technol. doi: 10.1021/es204087q – volume: 109 start-page: 2209 year: 2009 ident: 10.1016/j.cej.2020.126269_b0005 article-title: Nitrogen cycle electrocatalysis publication-title: Chem. Rev. doi: 10.1021/cr8003696 – volume: 257 year: 2019 ident: 10.1016/j.cej.2020.126269_b0225 article-title: Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.117909 – volume: 61 start-page: 836 year: 1989 ident: 10.1016/j.cej.2020.126269_b0185 article-title: Erste Schritte auf dem Weg zur edelmetallkatalysierten Nitrat- und Nitrit-Entfernung aus Trinkwasser publication-title: Chem. Ing. Tech. doi: 10.1002/cite.330611023 – volume: 197 start-page: 475 year: 2012 ident: 10.1016/j.cej.2020.126269_b0340 article-title: Kinetic study of the simultaneous electrochemical removal of aqueous nitrogen compounds using BDD electrodes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.05.062 – volume: 273 year: 2020 ident: 10.1016/j.cej.2020.126269_b0205 article-title: Manipulating the crystalline morphology and facet orientation of copper and copper-palladium nanocatalysts supported on stainless steel mesh with the aid of cationic surfactant to improve the electrochemical reduction of nitrate and N2 selectivity publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119053 – volume: 783 start-page: 28 year: 2016 ident: 10.1016/j.cej.2020.126269_b0640 article-title: Enhancing removal of nitrates from highly concentrated synthetic wastewaters using bipolar Si/BDD cell: optimization and mechanism study publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.10.048 – volume: 142 start-page: 5702 year: 2020 ident: 10.1016/j.cej.2020.126269_b0440 article-title: Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13347 – volume: 202 start-page: 387 year: 2001 ident: 10.1016/j.cej.2020.126269_b0275 article-title: Mechanistic study on the electrocatalytic reduction of nitric oxide on transition-metal electrodes publication-title: J. Catal. doi: 10.1006/jcat.2001.3275 – volume: 699 start-page: 1 year: 2013 ident: 10.1016/j.cej.2020.126269_b0555 article-title: Electrochemical reduction of nitrate on graphene modified copper electrodes in alkaline media publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2013.04.001 – volume: 65 start-page: 531 year: 1961 ident: 10.1016/j.cej.2020.126269_b0255 article-title: Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure: III Mathematische Behandlung einer autokatalytischen Elektrodenreaktion 1. Ordnung publication-title: Z. Elektrochem. – volume: 35 start-page: 421 year: 2005 ident: 10.1016/j.cej.2020.126269_b0370 article-title: Electrochemical reduction of nitrate ion on various cathodes–reaction kinetics on bronze cathode publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-004-8349-z – volume: 60 start-page: 894 year: 2019 ident: 10.1016/j.cej.2020.126269_b0585 article-title: Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.035 – volume: 171 start-page: 724 year: 2009 ident: 10.1016/j.cej.2020.126269_b0100 article-title: Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.06.066 – volume: 3 start-page: 1800388 year: 2019 ident: 10.1016/j.cej.2020.126269_b0160 article-title: Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction publication-title: Small Methods doi: 10.1002/smtd.201800388 – volume: 271 start-page: 252 year: 2015 ident: 10.1016/j.cej.2020.126269_b0605 article-title: Electroreduction of nitrate in water: Role of cathode and cell configuration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.001 – volume: 228 start-page: 611 year: 2019 ident: 10.1016/j.cej.2020.126269_b0500 article-title: Ti plate with TiO2 nanotube arrays as a novel cathode for nitrate reduction publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.04.071 – volume: 31 start-page: 3277 year: 2015 ident: 10.1016/j.cej.2020.126269_b0210 article-title: Surface modification of Pt(100) for electrocatalytic nitrate reduction to dinitrogen in alkaline solution publication-title: Langmuir doi: 10.1021/acs.langmuir.5b00283 – volume: 596 start-page: 13 year: 2006 ident: 10.1016/j.cej.2020.126269_b0375 article-title: Electrocatalytic reduction of nitrate on copper electrodes prepared by high-energy ball milling publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.06.012 – volume: 48 start-page: 12768 year: 2014 ident: 10.1016/j.cej.2020.126269_b0310 article-title: Nitrite reduction mechanism on a Pd surface publication-title: Environ. Sci. Technol. doi: 10.1021/es503772x – volume: 662 start-page: 87 year: 2011 ident: 10.1016/j.cej.2020.126269_b0285 article-title: Formation of volatile products during nitrate reduction on a Sn-modified Pt electrode in acid solution publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2011.03.015 – volume: 59 start-page: 9711 year: 2020 ident: 10.1016/j.cej.2020.126269_b0270 article-title: Direct electrochemical ammonia synthesis from nitric oxide publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002337 – volume: 16 start-page: 532 year: 2004 ident: 10.1016/j.cej.2020.126269_b0420 article-title: Electrocatalysis of nitrate reduction at copper-nickel alloy electrodes in acidic media publication-title: Electroanalysis doi: 10.1002/elan.200302790 – volume: 562 start-page: 81 year: 2004 ident: 10.1016/j.cej.2020.126269_b0230 article-title: The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2003.08.011 – volume: 554–555 start-page: 15 year: 2003 ident: 10.1016/j.cej.2020.126269_b0265 article-title: Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(02)01443-2 – volume: 162 start-page: D236 year: 2015 ident: 10.1016/j.cej.2020.126269_b0455 article-title: Electrodeposition of compact and porous Cu-Zn alloy electrodes and their use in the cathodic reduction of nitrate publication-title: J. Electrochem. Soc. doi: 10.1149/2.1041506jes – volume: 165 start-page: E420 year: 2018 ident: 10.1016/j.cej.2020.126269_b0475 article-title: Fe/Cu composite electrode prepared by electrodeposition and its excellent behavior in nitrate electrochemical removal publication-title: J. Electrochem. Soc. doi: 10.1149/2.0081810jes – volume: 145 start-page: 1756 year: 2015 ident: 10.1016/j.cej.2020.126269_b0095 article-title: Catalytic hydrogenation of nitrate in water using a Pd–Cu/Al2O3 catalyst and dilute H2 microbubbles publication-title: Catal. Lett. doi: 10.1007/s10562-015-1569-5 – volume: 427 start-page: 106 year: 2018 ident: 10.1016/j.cej.2020.126269_b0530 article-title: Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.171 – volume: 11 start-page: 8308 year: 2016 ident: 10.1016/j.cej.2020.126269_b0535 article-title: Fabrication and characterization of Cu/Ti bilayer nanoelectrode for electrochemical denitrification publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2016.10.49 – volume: 1 start-page: 858 year: 2014 ident: 10.1016/j.cej.2020.126269_b0610 article-title: Graphene defects as active catalytic sites that are superior to platinum catalysts in electrochemical nitrate reduction publication-title: ChemElectroChem doi: 10.1002/celc.201300237 – volume: 57 start-page: 7649 year: 2018 ident: 10.1016/j.cej.2020.126269_b0575 article-title: Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803543 – year: 2020 ident: 10.1016/j.cej.2020.126269_b0525 article-title: Enzyme mimetic active intermediates for nitrate reduction in neutral aqueous media publication-title: Angew. Chem. Int. Ed. – volume: 140 start-page: 337 year: 2014 ident: 10.1016/j.cej.2020.126269_b0450 article-title: Hydrogen evolution assisted electrodeposition of porous Cu-Ni alloy electrodes and their use for nitrate reduction in alkali publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.04.048 – volume: 53 start-page: 5977 year: 2008 ident: 10.1016/j.cej.2020.126269_b0325 article-title: Study of the electroreduction of nitrate on copper in alkaline solution publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.03.048 – volume: 9 start-page: 7052 year: 2019 ident: 10.1016/j.cej.2020.126269_b0235 article-title: Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals publication-title: ACS Catal. doi: 10.1021/acscatal.9b02179 – volume: 216 start-page: 158 year: 2019 ident: 10.1016/j.cej.2020.126269_b0615 article-title: Efficient nitrate removal from water using selected cathodes and Ti/PbO2 anode: Experimental study and mechanism verification publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.02.009 – volume: 29 start-page: 457 year: 2016 ident: 10.1016/j.cej.2020.126269_b0410 article-title: Nitrate reduction pathways on Cu single crystal surfaces: effect of oxide and Cl− publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.024 – volume: 52 start-page: 6412 year: 2007 ident: 10.1016/j.cej.2020.126269_b0335 article-title: Influence of the concentration and the nature of the supporting electrolyte on the electrochemical reduction of nitrate on tin cathode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.04.050 – volume: 163 start-page: E421 year: 2016 ident: 10.1016/j.cej.2020.126269_b0540 article-title: Fabrication and characterization of a Cu-Zn-TiO2 nanotube array polymetallic nanoelectrode for electrochemically removing nitrate from groundwater publication-title: J. Electrochem. Soc. doi: 10.1149/2.1391614jes – volume: 180 start-page: 199 year: 2016 ident: 10.1016/j.cej.2020.126269_b0195 article-title: The electrochemical reduction of nitrate over micro-architectured metal electrodes with stainless steel scaffold publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2015.06.028 – volume: 494 start-page: 22 year: 2019 ident: 10.1016/j.cej.2020.126269_b0395 article-title: Bifunctional self-assembled Ni0.7Co0.3P nanoflowers for efficient electrochemical water splitting in alkaline media publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.160 – volume: 3 start-page: 1578 year: 2019 ident: 10.1016/j.cej.2020.126269_b0020 article-title: Prospects and challenges for solar fertilizers publication-title: Joule doi: 10.1016/j.joule.2019.05.001 – volume: 24 start-page: 9895 year: 2017 ident: 10.1016/j.cej.2020.126269_b0630 article-title: Nitrate and carbon matter removals from real effluents using Si/BDD electrode publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-016-7563-7 – volume: 63 start-page: 1189 year: 1959 ident: 10.1016/j.cej.2020.126269_b0240 article-title: Entgegnung auf die vorstehende Arbeit von G. Schmid über “Die autokatalytische Natur der kathodischen Reduktion von Salpetersäure zu salpetriger Säure” publication-title: Z. Elektrochem. – volume: 63 start-page: 206 year: 2011 ident: 10.1016/j.cej.2020.126269_b0625 article-title: Electrochemical treatment of wastewater polluted by nitrate: selective reduction to N2 on boron-doped diamond cathode publication-title: Water Sci. Technol. doi: 10.2166/wst.2011.034 – volume: 210 start-page: 524 year: 2018 ident: 10.1016/j.cej.2020.126269_b0645 article-title: Comparison of performance between boron-doped diamond and copper electrodes for selective nitrogen gas formation by the electrochemical reduction of nitrate publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.07.039 – volume: 48 start-page: 3166 year: 2019 ident: 10.1016/j.cej.2020.126269_b0135 article-title: How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00280D – volume: 66 start-page: 1206 year: 2006 ident: 10.1016/j.cej.2020.126269_b0060 article-title: Removal of nitrate from aqueous solution by nitrate selective ion exchange resins publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2006.03.009 – volume: 50 start-page: 2148 year: 2014 ident: 10.1016/j.cej.2020.126269_b0175 article-title: pH dependence of the electroreduction of nitrate on Rh and Pt polycrystalline electrodes publication-title: Chem. Commun. doi: 10.1039/C3CC49224A – volume: 59 start-page: 5350 year: 2020 ident: 10.1016/j.cej.2020.126269_b0115 article-title: Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915992 – volume: 5 start-page: 9726 year: 2012 ident: 10.1016/j.cej.2020.126269_b0010 article-title: Powering denitrification: the perspectives of electrocatalytic nitrate reduction publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23062c – volume: 599–600 start-page: 1524 year: 2017 ident: 10.1016/j.cej.2020.126269_b0030 article-title: Challenges in photocatalytic reduction of nitrate as a water treatment technology publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2017.04.238 – volume: 39 start-page: 4065 year: 2005 ident: 10.1016/j.cej.2020.126269_b0145 article-title: Electrochemical denitrificaton of simulated ground water publication-title: Water Res. doi: 10.1016/j.watres.2005.07.032 – volume: 506 start-page: 127 year: 2001 ident: 10.1016/j.cej.2020.126269_b0305 article-title: The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(01)00491-0 – volume: 54 start-page: 4600 year: 2009 ident: 10.1016/j.cej.2020.126269_b0380 article-title: Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2–Pt anode and different cathodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.03.064 – volume: 205 start-page: 706 year: 2018 ident: 10.1016/j.cej.2020.126269_b0460 article-title: Enhanced electrocatalytic reduction of aqueous nitrate by modified copper catalyst through electrochemical deposition and annealing treatment publication-title: Chem. Eng. Commun. doi: 10.1080/00986445.2017.1413357 – volume: 601 start-page: 161 year: 2007 ident: 10.1016/j.cej.2020.126269_b0220 article-title: Reduction of nitrate ions on tin-modified palladium thin film electrodes publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.11.005 – volume: 291 start-page: 328 year: 2018 ident: 10.1016/j.cej.2020.126269_b0620 article-title: In-situ electrochemical activation of carbon fiber paper for the highly efficient electroreduction of concentrated nitric acid publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.127 – volume: 207 start-page: 42 year: 2017 ident: 10.1016/j.cej.2020.126269_b0045 article-title: State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.02.016 – volume: 227 start-page: 77 year: 2017 ident: 10.1016/j.cej.2020.126269_b0415 article-title: Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.147 – volume: 236 start-page: 546 year: 2018 ident: 10.1016/j.cej.2020.126269_b0260 article-title: Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.05.041 |
SSID | ssj0006919 |
Score | 2.7118995 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Non-noble metal electrocatalysts for nitrate reduction are reviewed.•Mechanisms of nitrate electroreduction are discussed.•Strategies to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 126269 |
SubjectTerms | Electrocatalysis Nitrate reduction Non-noble metal materials Water treatment |
Title | Recent advances in non-noble metal electrocatalysts for nitrate reduction |
URI | https://dx.doi.org/10.1016/j.cej.2020.126269 |
Volume | 403 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sSfIwdPQlybpU1zHMOxOdhBHe5W0jSBDR1jqwcv_u2-16Y6QT14KpSkhC_Je1_yXr9HyJVJnNFJbBhQ2YAJrgVLQmtYkDuXBzYBCltm-Y7jwUTcTaNpg_Tqf2EwrdLb_sqml9bav2l7NNvL2az9EGJMSwmMI3LwqqgJKoTEVX7z_pXmEauyuAc2Zti6jmyWOV7GzuGIyFFjAYi9-tk3bfib_h7Z9USRdqux7JOGXRyQnQ35wEMyBM4HPoP6OP6azhYUTvNsgTVi6IsFXk19mZvyluZtXawpkFQK2xgVIugKdVtxZo7IpH_72BswXxqBGa5kwaxxgKvRmQT-ZFAjT_HEyiQXBvyviiLtImO560gLezrSAISJcpwUG8tQ684xacKA7AmhmQljh9E-5-BoFCc6FIZLlXdkBl8KxSkJalBS43XDsXzFc1oniM1TwDFFHNMKx1Ny_dllWYlm_NVY1Ein32Y-BaP-e7ez_3U7J9scs1LKS5QL0ixWr_YSaEWRtcp10yJb3eFoMMbn6P5p9AEBoM0A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIAD4ine5AAXpLA1S18HDgiYNja4sEncSpcm0iYoaCtCu_Cn-IPYXQpDAg5Iu1ZN5Liu_bn-agMcqsCoOPAURyhb4VLEkgeOVrySGJNUdIAQNmf53nj1jry6c-9m4L34F4Zoldb3j3167q3tlbLVZvm51yvfOlTTCiXVEQVGVWmZlU09esW8bXjauMCHfCRE7bJ9Xud2tABXIvQzrpVBuVTc9RF_KOoxF4pA-0EiFcav0HVj4yotTNXX-E64MToO5SZ0KO35ThxXcd9ZmJPoLmhswsnbF6_EC_NpIiQdJ_GKUmpOKlO6jzmpoKYOmEmEPwfDiQBXW4Yli0zZ2fjwKzCj01VYnOhXuAYNBJkYpJglDgxZL2XpU8pTGkrDHjUCeWbn6uSfhUbDbMgQFTP0G9SSgg2oUSyZwjp0pqKwDSihQHoTWFc5nqHyojGYi3lB7Egl_DCp-l3cyZFbUCmUEinbqJzmZTxEBSOtH6EeI9JjNNbjFhx_Lnked-n462ZZaDr6ZmoRRpHfl23_b9kBzNfb162o1bhp7sCCIEpM_gVnF0rZ4EXvIabJuvu5DTG4n7bRfgBU8AdK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+non-noble+metal+electrocatalysts+for+nitrate+reduction&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhang%2C+Xi&rft.au=Wang%2C+Yuting&rft.au=Liu%2C+Cuibo&rft.au=Yu%2C+Yifu&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=403&rft_id=info:doi/10.1016%2Fj.cej.2020.126269&rft.externalDocID=S1385894720323974 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |