Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts
The effects of heteroatom-doping on transition metal oxide-based electrocatalysts toward overall water splitting performance. [Display omitted] •The basics of electrochemistry for water splitting process are elucidated.•Doping processes for preparing heteroatom (metal and non-metal)-doped TMOs are b...
Saved in:
Published in | Coordination chemistry reviews Vol. 474; p. 214864 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effects of heteroatom-doping on transition metal oxide-based electrocatalysts toward overall water splitting performance.
[Display omitted]
•The basics of electrochemistry for water splitting process are elucidated.•Doping processes for preparing heteroatom (metal and non-metal)-doped TMOs are briefed.•Concepts like doping, elemental incorporation and alloying are addressed.•Future scope, current challenges and outlook of heteroatom (metal and non-metal)-doped TMOs in electrocatalysts are highlighted.•Based on information provided, in this review, researchers can revolutionize overall water splitting electrocatalyst for commercial benefits.
Transition metal oxide electrocatalysts have received significant research interest toward the advancement of environmentally acceptable electrochemical applications and systems, which are considered to be promising technologies due to their unique physicochemical properties like low cost, robust durability, structural flexibility, and tunable activity. However, transition metal oxide-based electrocatalysts suffer from poor electrocatalytic activity as well as a limited number of active sites, which result in the obstruction of their applications over the world. To overcome these challenges, heteroatom-doping into transition metal oxide electrocatalysts has been a crucial and rapid way to improve the conductivity of the catalytic centers and optimize the adsorption of the reactants and intermediates during the catalytic process, and hence, their electrocatalytic activity, which has become widespread in nanomaterials, is offering the possibility to select the catalytic properties with attractive traits for a specific application to some extent. We have critically and systematically discussed the recent progress on doping strategy involves non-noble metallic elements, such as Fe, Co, Mn, Ni, Ru, Mo, W, Cu, etc., and non–metallic elements, such as S, N, P, B, Se, F, C, etc., in transition metal oxide-based electrocatalysts for water splitting performance to gain a better understanding of the relationship between effect of heteroatoms doping engineering techniques and TMOs catalytic properties. Most importantly, doping, elemental incorporation and alloying perform a significant role with heteroatoms for improving the catalytic activity on; modifying the electronic configuration of the catalysts, increasing the number of active sites, enhancing the electrical conductivity, and inducing synergistic effect of the transition metal oxide-based electrocatalysts during overall water splitting process. We here also have briefly described the techniques used for preparing metal and non-metal-doped transition metal oxide-based electrocatalysts for overall water splitting process. In nutshell, this review is expected to provide a deeper insight on the effect of the metal and non-metal-doping in transition metal oxide-based electrocatalysts for the rational design of high-performance catalysts in the future. We also have provided the current challenges and future perspectives of heteroatom-doped transition metal oxide-based electrocatalysts for the development of high-performance water splitting processes. |
---|---|
AbstractList | The effects of heteroatom-doping on transition metal oxide-based electrocatalysts toward overall water splitting performance.
[Display omitted]
•The basics of electrochemistry for water splitting process are elucidated.•Doping processes for preparing heteroatom (metal and non-metal)-doped TMOs are briefed.•Concepts like doping, elemental incorporation and alloying are addressed.•Future scope, current challenges and outlook of heteroatom (metal and non-metal)-doped TMOs in electrocatalysts are highlighted.•Based on information provided, in this review, researchers can revolutionize overall water splitting electrocatalyst for commercial benefits.
Transition metal oxide electrocatalysts have received significant research interest toward the advancement of environmentally acceptable electrochemical applications and systems, which are considered to be promising technologies due to their unique physicochemical properties like low cost, robust durability, structural flexibility, and tunable activity. However, transition metal oxide-based electrocatalysts suffer from poor electrocatalytic activity as well as a limited number of active sites, which result in the obstruction of their applications over the world. To overcome these challenges, heteroatom-doping into transition metal oxide electrocatalysts has been a crucial and rapid way to improve the conductivity of the catalytic centers and optimize the adsorption of the reactants and intermediates during the catalytic process, and hence, their electrocatalytic activity, which has become widespread in nanomaterials, is offering the possibility to select the catalytic properties with attractive traits for a specific application to some extent. We have critically and systematically discussed the recent progress on doping strategy involves non-noble metallic elements, such as Fe, Co, Mn, Ni, Ru, Mo, W, Cu, etc., and non–metallic elements, such as S, N, P, B, Se, F, C, etc., in transition metal oxide-based electrocatalysts for water splitting performance to gain a better understanding of the relationship between effect of heteroatoms doping engineering techniques and TMOs catalytic properties. Most importantly, doping, elemental incorporation and alloying perform a significant role with heteroatoms for improving the catalytic activity on; modifying the electronic configuration of the catalysts, increasing the number of active sites, enhancing the electrical conductivity, and inducing synergistic effect of the transition metal oxide-based electrocatalysts during overall water splitting process. We here also have briefly described the techniques used for preparing metal and non-metal-doped transition metal oxide-based electrocatalysts for overall water splitting process. In nutshell, this review is expected to provide a deeper insight on the effect of the metal and non-metal-doping in transition metal oxide-based electrocatalysts for the rational design of high-performance catalysts in the future. We also have provided the current challenges and future perspectives of heteroatom-doped transition metal oxide-based electrocatalysts for the development of high-performance water splitting processes. |
ArticleNumber | 214864 |
Author | Al-Naggar, Ahmed H. Kim, Jeom-Soo Shinde, Nanasaheb M. Mane, Rajaram S. |
Author_xml | – sequence: 1 givenname: Ahmed H. surname: Al-Naggar fullname: Al-Naggar, Ahmed H. organization: School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India – sequence: 2 givenname: Nanasaheb M. surname: Shinde fullname: Shinde, Nanasaheb M. organization: Department of Chemical Engineering (BK21 FOUR), Dong-A University, 37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea – sequence: 3 givenname: Jeom-Soo surname: Kim fullname: Kim, Jeom-Soo organization: Department of Chemical Engineering (BK21 FOUR), Dong-A University, 37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea – sequence: 4 givenname: Rajaram S. surname: Mane fullname: Mane, Rajaram S. email: rajarammane70@srtmun.ac.in organization: School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India |
BookMark | eNp9kEtLAzEQgINUsK3-AG_5A7vmtckunqT4goIXxWNMk1lJ2W6WJIj996bWk4eehhnmm8e3QLMxjIDQNSU1JVTebGtrY80IYzWjopXiDM1pq3jFW0FmaE4IJVXbiOYCLVLallR2HZujj3eTIeI0DT5nP37iCWIf4s6MFnDo8Q6yGbAZHS4Lq9-scmECh3M0Y_LZh_GvKXx7BxgGsDkGa0ppn3K6ROe9GRJc_cUlenu4f109VeuXx-fV3bqyrFO5go2EprHKckFdB61SlkojBDgDhFPCOG2E4M1G9RtQkvasByak6oTsCe8kXyJ1nGtjSClCr63P5nBeOdQPmhJ9EKW3uojSB1H6KKqQ9B85Rb8zcX-SuT0yUF768hB1sh6KM-dj-V-74E_QP_c4hEw |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2022_11_293 crossref_primary_10_3390_en17071591 crossref_primary_10_1016_j_jcis_2024_08_137 crossref_primary_10_1016_j_nantod_2024_102487 crossref_primary_10_1016_j_apsusc_2024_159540 crossref_primary_10_1021_acs_inorgchem_3c02690 crossref_primary_10_1016_j_fuel_2023_129485 crossref_primary_10_1016_j_jcis_2024_08_254 crossref_primary_10_1016_j_jcis_2025_137263 crossref_primary_10_26599_NR_2025_94907102 crossref_primary_10_3390_nano13132012 crossref_primary_10_1002_ente_202401577 crossref_primary_10_1016_j_ijhydene_2025_01_301 crossref_primary_10_1021_acsaem_3c03141 crossref_primary_10_1002_smll_202307241 crossref_primary_10_1016_j_jece_2024_113773 crossref_primary_10_1016_j_jcis_2024_08_025 crossref_primary_10_1016_j_surfin_2024_104902 crossref_primary_10_1016_j_jcis_2023_04_094 crossref_primary_10_1016_j_apenergy_2023_121582 crossref_primary_10_1039_D3NR03609J crossref_primary_10_1016_j_est_2024_112323 crossref_primary_10_1021_acs_langmuir_3c00695 crossref_primary_10_3390_cryst13091342 crossref_primary_10_1051_e3sconf_202448403004 crossref_primary_10_1039_D4CY00642A crossref_primary_10_1002_celc_202400609 crossref_primary_10_1007_s10562_023_04510_z crossref_primary_10_3390_catal13071102 crossref_primary_10_1002_crat_202300039 crossref_primary_10_1016_j_jpcs_2023_111853 crossref_primary_10_1016_j_cis_2025_103493 crossref_primary_10_1016_j_ccr_2024_215723 crossref_primary_10_1021_acsorginorgau_4c00050 crossref_primary_10_1016_j_apsusc_2023_159241 crossref_primary_10_1016_j_ceramint_2023_12_276 crossref_primary_10_1016_j_jiec_2024_04_022 crossref_primary_10_1016_j_jallcom_2024_177819 crossref_primary_10_1016_j_est_2024_111363 crossref_primary_10_1002_jccs_202400347 crossref_primary_10_1016_j_cej_2024_152860 crossref_primary_10_1039_D4QI01022A crossref_primary_10_3390_catal14040221 crossref_primary_10_1016_j_ijhydene_2024_07_459 crossref_primary_10_1007_s11224_024_02444_9 crossref_primary_10_1021_acs_jpcc_3c04094 crossref_primary_10_1039_D4TA05919K crossref_primary_10_1016_j_ijhydene_2023_10_121 crossref_primary_10_1002_cphc_202300013 crossref_primary_10_1021_acs_energyfuels_3c01533 crossref_primary_10_1016_j_fuel_2024_133135 crossref_primary_10_1016_j_jechem_2024_06_027 crossref_primary_10_1039_D4NR04915B crossref_primary_10_1016_j_matchemphys_2023_127946 crossref_primary_10_1016_j_seppur_2025_132343 crossref_primary_10_1039_D3EE02467A crossref_primary_10_1021_acsanm_3c05127 crossref_primary_10_1016_j_ijhydene_2024_04_149 crossref_primary_10_1016_j_apsusc_2025_162333 crossref_primary_10_1002_ange_202415306 crossref_primary_10_1002_adfm_202410379 crossref_primary_10_1155_2023_6685726 crossref_primary_10_1016_j_seppur_2024_126736 crossref_primary_10_1016_j_ijhydene_2024_11_348 crossref_primary_10_1016_j_electacta_2024_145187 crossref_primary_10_1002_celc_202400648 crossref_primary_10_1016_j_cej_2023_145348 crossref_primary_10_1016_j_ijhydene_2025_02_021 crossref_primary_10_1039_D4DT01083C crossref_primary_10_1007_s10971_024_06645_w crossref_primary_10_1016_j_ijhydene_2024_11_102 crossref_primary_10_3390_nano14221780 crossref_primary_10_1002_asia_202401484 crossref_primary_10_1016_j_envres_2024_118153 crossref_primary_10_1016_j_seppur_2024_128587 crossref_primary_10_3390_ma17102419 crossref_primary_10_1002_ejic_202400603 crossref_primary_10_1016_j_ijhydene_2024_12_395 crossref_primary_10_1002_aesr_202400001 crossref_primary_10_1039_D3CP04070D crossref_primary_10_1016_j_ijhydene_2023_08_173 crossref_primary_10_1002_smll_202307164 crossref_primary_10_1016_j_ccr_2024_216427 crossref_primary_10_1002_cctc_202401130 crossref_primary_10_1016_j_carbpol_2024_122351 crossref_primary_10_1016_j_mcat_2025_114888 crossref_primary_10_3390_molecules29081805 crossref_primary_10_1016_j_cej_2023_142620 crossref_primary_10_1016_j_electacta_2025_145915 crossref_primary_10_1039_D3TA05366K crossref_primary_10_3390_nano13030546 crossref_primary_10_3390_pr13030623 crossref_primary_10_1016_j_cej_2024_157848 crossref_primary_10_1002_aenm_202303730 crossref_primary_10_1016_j_envpol_2023_122818 crossref_primary_10_1016_j_flatc_2024_100623 crossref_primary_10_1016_j_fuel_2024_132112 crossref_primary_10_1039_D4CP01914H crossref_primary_10_1016_j_ijhydene_2024_11_482 crossref_primary_10_1016_j_ijhydene_2025_02_008 crossref_primary_10_1039_D3SE00527E crossref_primary_10_1002_adsu_202400372 crossref_primary_10_1021_acs_inorgchem_2c03909 crossref_primary_10_1021_acsmaterialslett_4c00659 crossref_primary_10_1039_D3NR02859C crossref_primary_10_3389_fchem_2024_1434488 crossref_primary_10_1016_j_xpro_2023_102448 crossref_primary_10_1016_j_jallcom_2024_177292 crossref_primary_10_1016_j_ijhydene_2024_11_254 crossref_primary_10_1016_j_mtnano_2023_100390 crossref_primary_10_1016_j_jece_2023_111831 crossref_primary_10_1021_acsanm_3c02724 crossref_primary_10_1016_j_ijhydene_2024_09_116 crossref_primary_10_1016_j_jcis_2024_03_184 crossref_primary_10_1016_j_ijhydene_2024_07_402 crossref_primary_10_1021_acsami_3c16244 crossref_primary_10_3390_molecules29153591 crossref_primary_10_1039_D4TA05577B crossref_primary_10_20517_microstructures_2023_66 crossref_primary_10_1016_j_ijhydene_2024_12_507 crossref_primary_10_1021_acsanm_4c00397 crossref_primary_10_1016_j_cej_2024_156284 crossref_primary_10_1016_j_renene_2025_122663 crossref_primary_10_1016_j_ijhydene_2024_10_225 crossref_primary_10_1038_s41598_024_54934_9 crossref_primary_10_1039_D3CC06015B crossref_primary_10_1002_smtd_202401480 crossref_primary_10_1002_smtd_202301628 crossref_primary_10_1039_D5CC00206K crossref_primary_10_1002_adsu_202300193 crossref_primary_10_1002_anie_202415306 crossref_primary_10_1002_ece2_29 crossref_primary_10_1080_10408347_2024_2358492 crossref_primary_10_1155_2024_9953038 crossref_primary_10_1016_j_jece_2023_111373 crossref_primary_10_1016_j_jece_2023_111376 crossref_primary_10_1016_j_est_2024_110542 crossref_primary_10_1002_smll_202406732 crossref_primary_10_1039_D3NJ00059A crossref_primary_10_1016_j_est_2024_110540 crossref_primary_10_1021_acsanm_3c05739 crossref_primary_10_1039_D4EN00780H crossref_primary_10_1016_j_cej_2025_160273 crossref_primary_10_1039_D4NJ00797B crossref_primary_10_1016_j_matchemphys_2023_127770 crossref_primary_10_1007_s00339_023_07099_7 crossref_primary_10_1016_j_jallcom_2022_168349 crossref_primary_10_1016_j_ccr_2024_216418 crossref_primary_10_1016_j_est_2024_114918 crossref_primary_10_1016_j_ijhydene_2024_11_283 crossref_primary_10_1016_j_jallcom_2023_170944 crossref_primary_10_1016_j_ijhydene_2024_02_321 crossref_primary_10_1007_s12274_024_6922_9 crossref_primary_10_1016_j_ica_2024_122453 crossref_primary_10_1360_SSPMA_2024_0410 crossref_primary_10_1002_ente_202400502 crossref_primary_10_1021_acsanm_3c04439 crossref_primary_10_3390_ma16175923 crossref_primary_10_1088_1361_6528_adbd48 crossref_primary_10_1002_smtd_202301602 crossref_primary_10_1016_j_jelechem_2022_117138 crossref_primary_10_1016_j_jelechem_2024_118029 crossref_primary_10_12677_japc_2024_132033 crossref_primary_10_1002_cphc_202400124 crossref_primary_10_3390_nano14080698 crossref_primary_10_1016_j_jpowsour_2024_235321 crossref_primary_10_1016_j_ijhydene_2024_02_313 crossref_primary_10_1016_j_cej_2024_155287 crossref_primary_10_1039_D4TA02468K crossref_primary_10_1002_smtd_202401709 crossref_primary_10_1016_j_arabjc_2023_104986 crossref_primary_10_1007_s10971_024_06504_8 crossref_primary_10_1021_acsami_3c13210 crossref_primary_10_1016_j_diamond_2025_112167 crossref_primary_10_1039_D3QM00760J crossref_primary_10_3390_molecules29020537 crossref_primary_10_1002_aesr_202300232 crossref_primary_10_1039_D3QM00567D crossref_primary_10_1021_acsmaterialslett_4c00034 crossref_primary_10_1016_j_cej_2024_155832 crossref_primary_10_1016_j_ijhydene_2024_03_351 crossref_primary_10_1016_j_jallcom_2024_174176 crossref_primary_10_1002_adfm_202405384 crossref_primary_10_1016_j_mtchem_2024_102028 crossref_primary_10_1016_j_diamond_2024_111343 crossref_primary_10_1039_D4CY00727A crossref_primary_10_1021_acs_energyfuels_3c02324 crossref_primary_10_1016_j_cej_2024_151912 crossref_primary_10_1016_j_jallcom_2025_179351 crossref_primary_10_1007_s42247_024_00633_0 crossref_primary_10_1016_j_apsusc_2023_156361 crossref_primary_10_1016_j_mattod_2024_06_006 crossref_primary_10_1002_adma_202418146 crossref_primary_10_1016_j_jpowsour_2024_234688 crossref_primary_10_1016_j_apsusc_2025_162352 crossref_primary_10_1016_j_cej_2025_161686 crossref_primary_10_1016_j_jallcom_2024_177676 crossref_primary_10_1039_D4NJ03407D crossref_primary_10_1002_adma_202407102 crossref_primary_10_3390_catal14100689 crossref_primary_10_1016_j_renene_2024_120223 crossref_primary_10_1007_s10854_025_14570_z crossref_primary_10_1002_smll_202311929 crossref_primary_10_1016_j_fuel_2025_134450 crossref_primary_10_1016_j_inoche_2024_113801 crossref_primary_10_1002_smll_202304390 crossref_primary_10_1007_s11814_024_00231_0 crossref_primary_10_3390_catal15010008 crossref_primary_10_1016_j_jmst_2023_11_020 crossref_primary_10_1021_acsanm_4c00388 crossref_primary_10_1007_s10904_025_03688_6 crossref_primary_10_1021_acs_energyfuels_4c04832 crossref_primary_10_3390_catal15010001 crossref_primary_10_1007_s10853_023_09290_w crossref_primary_10_3390_nano13111727 crossref_primary_10_1002_aenm_202406047 crossref_primary_10_1016_j_jpowsour_2024_235636 crossref_primary_10_1016_j_electacta_2023_143516 crossref_primary_10_1016_j_matchemphys_2025_130399 crossref_primary_10_1039_D4SE00058G crossref_primary_10_1021_acsanm_4c05946 |
Cites_doi | 10.1016/j.ijhydene.2021.09.003 10.1016/j.cej.2021.130820 10.1039/C9EE01202H 10.1039/D0TA09495A 10.1016/j.nanoen.2022.107344 10.1039/C8TA09913H 10.1007/s12274-019-2582-6 10.1016/j.apsusc.2020.147952 10.1021/acs.chemrev.7b00689 10.1016/j.cej.2021.131642 10.1021/acssuschemeng.9b01468 10.1002/adfm.201905252 10.1021/acs.chemrev.0c01328 10.1016/j.electacta.2021.138587 10.1016/j.ensm.2021.07.007 10.1039/D0CS01191F 10.1002/adma.201801351 10.1016/S1872-2067(20)63740-8 10.1016/j.apcatb.2021.120871 10.1021/acsenergylett.8b00174 10.1016/j.nanoen.2020.104761 10.1039/D0TA05038E 10.1016/j.apcatb.2021.120528 10.1016/j.apcatb.2019.05.035 10.1016/j.apsusc.2021.151482 10.1016/j.cej.2021.134331 10.1016/j.cej.2021.130718 10.1016/j.surfin.2021.101398 10.1007/s12274-020-3006-3 10.1002/adma.202002235 10.1039/C6TA09994G 10.1002/smll.201803009 10.1039/D1NR02324A 10.1021/acssuschemeng.1c05184 10.1016/j.ccr.2021.214144 10.1039/C6CS00328A 10.1016/j.apsadv.2021.100184 10.1016/j.cej.2021.133941 10.1021/acssuschemeng.8b01709 10.1021/acsaem.9b01965 10.1002/adfm.202009070 10.1016/j.cej.2021.129127 10.1039/C8DT00765A 10.1039/C8TA00447A 10.1021/acsaem.8b01280 10.1039/D0RA10169A 10.1016/j.cej.2021.130328 10.1007/s10854-016-4427-3 10.1016/j.apcatb.2019.04.089 10.1021/acsenergylett.0c00642 10.1016/j.renene.2017.12.003 10.1016/j.cej.2020.126474 10.1002/adma.201900510 10.1002/sus2.3 10.1021/acsmaterialslett.0c00549 10.1002/adfm.201910274 10.1002/asia.202000925 10.1002/adma.201803625 10.1088/2053-1591/ab45bd 10.1039/C8DT04026E 10.1002/eem2.12424 10.1016/j.cej.2020.126803 10.1016/j.apsusc.2021.150227 10.1021/acsenergylett.7b00691 10.1002/macp.201700359 10.1039/D1CY01688A 10.1016/j.apsusc.2018.02.076 10.1039/D1TA01108A 10.1016/j.nanoen.2020.105057 10.1016/j.apcatb.2020.119809 10.1016/j.apsusc.2020.146059 10.1039/D0EE02485F 10.1021/acsanm.0c01035 10.1016/j.nanoen.2018.10.043 10.1016/j.electacta.2020.135883 10.1126/science.aad4998 10.1002/smll.202102777 10.1002/smtd.202100834 10.1016/j.ccr.2022.214666 10.1021/acscatal.9b02457 10.1016/j.jechem.2019.12.027 10.1016/j.jcis.2020.12.098 10.1039/C9SE01172B 10.1021/acsami.9b08060 10.1039/C6QI00198J 10.1002/adfm.201902875 10.1016/j.apcatb.2020.118657 10.1007/s11426-020-9770-5 10.1002/cctc.202001838 10.1021/acs.chemrev.9b00434 10.1002/cssc.201701420 10.1002/cctc.201500396 10.1002/advs.201700464 10.1016/j.jallcom.2021.162113 10.1016/j.apsusc.2020.147993 10.1039/D2MH00075J 10.1039/D1NR06285A 10.1016/j.apsusc.2017.04.204 10.1021/acs.chemrev.0c00608 10.1016/j.apcatb.2021.120494 10.1016/j.jelechem.2019.113306 10.1039/D0SE00466A 10.1039/D1TA03732C 10.1016/j.ijhydene.2021.07.156 10.1016/j.ijhydene.2021.10.001 10.1016/j.nanoen.2020.104453 10.1039/C8TA12238E 10.1016/j.ijhydene.2019.12.156 10.1039/C8DT02706D 10.1039/D2TA01699K 10.1021/acssuschemeng.8b04814 10.1002/cctc.201900834 10.1016/S1872-2067(21)64052-4 10.1002/smll.201802760 10.1039/D1TA09932A 10.1021/acscatal.7b03594 10.1021/acssuschemeng.9b02558 10.1039/D0CC01215G 10.1016/j.cej.2020.126302 10.1002/adma.202001866 10.1021/acsami.1c13488 10.1039/D0TA08802A 10.1016/j.cej.2021.129805 10.1016/j.jechem.2018.06.014 10.1039/D0TA02538K 10.1002/ange.202005436 10.1002/smtd.201800211 10.1021/acsaem.1c03233 10.1039/C8NR06756B 10.1039/D0TA04088F 10.1039/C8CS00904J 10.1002/adma.202002435 10.1039/D1TA04032D 10.1016/j.jcis.2021.09.032 10.1016/j.mtchem.2018.10.010 10.1002/adfm.202003261 10.1016/j.coelec.2018.03.015 10.1021/ja408329q 10.1021/acsanm.1c00791 10.1016/j.cej.2021.128804 10.1088/1674-1056/ac1339 10.1021/jacs.7b08881 10.1039/D1CS00135C 10.1039/D2DT01394K 10.1002/admi.201901308 10.1039/C6TA02334G 10.1002/adfm.202003556 10.1016/j.apcatb.2022.121204 10.1021/acs.chemmater.0c03052 10.1016/j.cej.2020.126198 10.1002/celc.202000515 10.1016/j.nanoen.2019.01.017 10.1016/j.apcatb.2021.120985 10.1021/acssuschemeng.7b03752 10.1039/D0CC05272H 10.1016/j.jcis.2019.12.044 10.1021/acsnano.5b00520 10.1021/acsami.1c02129 10.1088/1361-6528/aba3d9 10.3390/app11052016 10.1021/acssuschemeng.9b04996 10.1039/D1TA03452A 10.1016/j.nanoen.2019.104118 10.1002/ente.201700851 10.1021/acs.accounts.6b00317 10.1021/acscatal.9b04922 10.1039/C8TA05054F 10.1002/aenm.202100265 10.1016/j.jcis.2020.11.069 10.1016/j.cej.2020.127894 10.1016/j.apsusc.2020.148221 10.1016/j.apcatb.2021.120488 10.1016/j.jpowsour.2021.230600 10.1021/jacs.8b04546 10.1021/acsomega.9b00132 10.1002/cctc.202000526 10.1039/D0SE01087A 10.1039/D0CC01023E 10.1002/aenm.202002731 10.1016/j.electacta.2019.02.091 10.1002/celc.202200080 10.1016/j.electacta.2019.134821 10.1016/j.ccr.2021.214389 10.1039/D1NR03500B 10.1039/D0TA12152E 10.1021/jacs.7b03507 10.1002/adma.202006328 10.1021/acs.chemrev.0c01269 10.1016/j.jechem.2020.10.010 10.1007/s11664-021-09053-w 10.1021/acsaem.9b00266 10.1002/aenm.202200029 10.1002/anie.202006546 10.1021/acssuschemeng.9b06959 10.1039/D1CS00330E 10.1021/acs.energyfuels.0c03084 10.1016/j.cej.2021.130400 10.1021/acs.chemrev.0c00454 10.1021/acsami.8b16425 10.1007/s10971-018-4886-5 10.1016/j.jechem.2022.04.023 10.1016/j.cej.2020.126732 10.1021/acsami.0c14521 10.1039/D1DT00654A 10.1016/j.jechem.2020.08.001 10.1039/D1TA00043H 10.1016/j.apsusc.2020.146987 10.1016/j.electacta.2018.09.162 10.1021/acs.chemrev.6b00558 10.1039/D0TA10925H 10.1039/C4CS00236A 10.1002/adma.201602270 10.1016/j.mtchem.2019.02.002 10.1016/j.jechem.2020.03.055 10.1021/jp511561k 10.1039/C7EE03457A 10.1039/C8TA12477A 10.1039/C8QI00867A 10.1021/acsenergylett.9b00348 10.1007/s12274-021-3455-3 10.1021/acs.chemrev.7b00051 10.1002/chem.202000209 10.1016/j.jcis.2021.08.151 10.1021/acsami.0c20500 10.1002/adfm.202000503 10.1016/j.electacta.2020.137651 10.1039/D0RA08993A 10.1016/j.nanoen.2018.10.008 10.1016/j.apcatb.2019.118467 10.1016/S1872-2067(21)63855-X 10.1021/acs.chemrev.6b00398 10.1016/j.ijhydene.2020.08.019 10.1039/D0CS00013B 10.1016/j.apcatb.2021.120582 10.1039/C9TA03220G 10.1021/acsami.7b18403 10.1016/j.arabjc.2019.08.006 10.1016/j.cej.2020.124591 10.1002/jccs.201900001 10.1021/acs.inorgchem.0c01832 10.1039/D0CC07969C 10.1002/cssc.202002002 10.1002/chem.201902998 10.1007/s11705-018-1746-3 10.1039/C9TA06537G 10.1002/adma.202004862 10.1002/celc.202200549 10.1016/j.apcatb.2019.04.021 10.1016/j.apsusc.2017.12.014 10.1016/j.cej.2021.133047 10.1002/smll.202002240 10.1016/j.cej.2022.135847 10.1039/C6TA08075H 10.1002/nano.202100075 10.1039/D1CC05375B 10.1002/adfm.202002533 10.1021/acscatal.7b04286 10.1039/D0TA00876A 10.1021/acs.chemrev.9b00248 10.1007/s40820-020-00469-3 10.1016/j.isci.2019.100756 10.1016/j.apcatb.2018.10.040 10.1002/adma.202000381 10.1039/D0TA01680B 10.1016/j.jcis.2021.11.026 10.1002/smll.201804201 10.1016/j.jallcom.2019.153346 10.1016/j.jcis.2021.12.031 10.1021/acs.accounts.6b00635 10.1016/j.ccr.2020.213552 10.1039/D0SE01722A 10.1002/smll.202200173 10.1016/j.jcis.2022.08.037 10.1021/acs.chemrev.0c00940 10.1039/D1TA02341A 10.1021/acssuschemeng.9b04699 10.1016/j.jcis.2021.08.035 10.1016/j.jcat.2017.12.020 10.1021/acsaem.2c00402 10.1039/C7TA10569J 10.1039/D1NR02019F 10.1039/C9TA02891A 10.1016/j.jcis.2022.07.114 10.1088/1361-6528/aa6381 10.1039/D0CS00962H 10.1016/j.jelechem.2020.114351 10.1039/C7TA07956G 10.1002/adma.201808167 10.1021/acscatal.8b03702 10.1021/acsami.9b06815 10.1039/C5CS00434A 10.1016/j.nanoen.2020.105514 10.1021/acsami.0c02124 10.1016/j.nanoen.2017.03.032 10.1016/j.electacta.2019.01.012 10.1002/smtd.202000988 10.1016/j.cej.2021.130062 10.1016/j.jcat.2021.04.003 10.1016/j.jece.2019.103055 10.1016/j.nanoen.2020.104652 10.1039/D0CC02079F 10.1016/j.mtchem.2018.09.003 10.1021/acs.inorgchem.1c00097 10.1016/j.jcis.2021.04.013 10.1002/smll.201902551 10.1016/j.jpowsour.2018.07.125 10.1016/j.cej.2020.124244 10.1021/acsami.6b06103 10.1016/j.nanoen.2021.105926 10.1021/acsami.7b16280 10.1021/jp901224n 10.1021/acs.chemrev.7b00633 10.1016/S1872-2067(21)63902-5 10.1039/D1NR05797A 10.1016/j.ijhydene.2020.06.283 10.1021/acs.chemrev.0c00594 10.1021/ja5127165 10.1016/j.jcis.2022.04.141 10.1039/C9DT04633J 10.1016/j.pmatsci.2019.100574 10.1039/D1DT02341A 10.1016/j.jcis.2019.09.009 10.1039/D0TA08894C 10.1039/D1TA05876B 10.1039/C4CS00448E 10.1016/j.jallcom.2022.166338 10.1021/acs.jpcc.0c01135 10.1016/j.ijhydene.2021.03.141 10.1016/j.jallcom.2020.153750 10.1016/j.apsusc.2020.146626 10.1016/j.ccr.2021.214049 10.1021/acsaem.1c03970 10.1021/acsami.9b21534 10.1002/adma.201804672 10.1002/smll.202100129 10.1002/aenm.202200332 10.1016/j.carbon.2019.09.080 10.1039/C9CS00607A 10.1002/er.8458 10.1002/aenm.202201713 10.1039/D0QI00095G 10.1016/j.ccr.2021.214209 10.1039/D1DT01468D |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ccr.2022.214864 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3840 |
ExternalDocumentID | 10_1016_j_ccr_2022_214864 S0010854522004593 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6J9 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M23 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSZ T5K TN5 TWZ UPT WH7 XPP YK3 ZMT ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HMH HVGLF HZ~ H~9 NDZJH OHT R2- RIG SCB SEW SIC SSH UQL VH1 WUQ XJT ZKB ZY4 |
ID | FETCH-LOGICAL-c297t-eb6e55c7c341d9e877c16a44edae031023154435b7fbe761f2fe2467946f03963 |
IEDL.DBID | .~1 |
ISSN | 0010-8545 |
IngestDate | Thu Apr 24 23:12:38 EDT 2025 Tue Jul 01 02:43:55 EDT 2025 Fri Feb 23 02:40:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrochemical water splitting Transition metal oxides Electrocatalysts Metal and non-metal-doping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-eb6e55c7c341d9e877c16a44edae031023154435b7fbe761f2fe2467946f03963 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ccr_2022_214864 crossref_primary_10_1016_j_ccr_2022_214864 elsevier_sciencedirect_doi_10_1016_j_ccr_2022_214864 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Coordination chemistry reviews |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Guo, Ren, Jin, Li, Song (b1295) 2021; 426 Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355 (6321) (2017) eaad4998, 10.1126/science.aad4998. Gao, Deng, Yan, Fang, Li, Shen, Chen (b0970) 2021; 5 Zhang, Guo, Xiao, Lin, Yan, Du, Shen (b0720) 2021; 416 Wu, Zhao, Jin, Jia, Wang, Ma (b0335) 2021; 31 Tong, Mao, Chen, Sun, Yan, Xi (b0785) 2020; 56 Zhu, Shi, Zhu, Yang (b0920) 2020; 73 Yuan, Yao, Zhang, Fu, Liu, Ye (b1105) 2022; 5 Ganesh, Mane, Cai, Chang, Han (b0630) 2009; 113 Zhao, Zhang, Wu, Guo, Xiong, Liu, Wang (b1085) 2018; 54 Zhu, Tu, Bai, Pan, Ji, Zhang, Deng, Zhang (b1550) 2019; 323 Li, Jia, Chen, Liu, Cai, Xue, Fan, Wang, Su, Li (b1155) 2018; 47 Li, Guo, Chen, Wang, Tan, Long, Tong, Tsiakaras, Song, Wang (b1610) 2019; 7 Jia, Li, Lian, Wu, Zheng, Song, Hu, Niu (b0360) 2021; 13 Meng, Han, Lu, Qiu, Wang, Sun (b0285) 2019; 15 Maduraiveeran, Sasidharan, Jin (b0260) 2019; 106 Chen, Huang, Jiang, Yang, Diao, Gong, Liu, Huang, Wang, Chen (b1190) 2019; 10 Yu, Wang, Long, Chen, Cao, Wang, Qiu, Lim, Yang (b1140) 2021; 11 Liu, Liu, Xu, Zhou, Han, Yang, Shan (b1630) 2022; 572 Zeng, Dai, Jin, Liu, Zhang, Wang (b1505) 2021; 5 Kim, Kang, Kim, Kim (b1615) 2021; 426 Hao, Zhu, Li, Tian, Xie, Lei, Cui, Zhang, Tang (b0665) 2020; 338 Yu, Gao, Chen, Zhao, Wu, Wang (b0560) 2021; 42 Wang, Jiang, Hu, Liu, Li, Chen (b1120) 2020; 12 Raja, Cheng, Cheng, Chang, Huang, Lu (b1800) 2022; 303 Wang, Su, He, Li, Zhu, Shen, Xie, Fu, Zhou, Feng (b0295) 2020; 120 Hao, Xin, Wang, Li, Zhao, Wen, Xie, Cui, Tang (b0645) 2021; 57 Wang, Liu, Wang, Lin, Dong, Yu, Luan, Chai, Dong (b0805) 2022; 610 . Wang, Qi (b0815) 2020; 132 Zhu, Lin, Zhong, Tahini, Shao, Wang (b0010) 2020; 13 Li, Niu, Zhou, Yang (b1600) 2018; 3 Raj, Anantharaj, Kundu, Roy (b1175) 2019; 7 Wang, Hu, Liang, Chang, Du, Han, Sun, Xu (b1410) 2022; 137094 Zhang, Xu, Wang, Li, Jiang, Li (b1555) 2021; 424 J. Cai, J. Yang, X. Xie, J. Ding, L. Liu, W. Tian, Y. Liu, Z. Tang, B. Liu, S. Lu, Carbon doping triggered efficient electrochemical hydrogen evolution of cross-linked porous Ru-MoO Li, Xu, Zhang, Li, Fang, Dai, Cheng, You, Li (b1130) 2020; 823 Yang, Feng, Chen, Liu, Zhao, Yang (b1685) 2020; 267 Hao, Xin, Tian, Li, Xie, Lei, Tong, Liu, Tang (b0670) 2020; 63 Yin, Dai, Nie, Ren, Yang, Gan, Wu, Cao, Zhang (b1575) 2021; 13 Liu, Zhang, Ma, Wang (b1640) 2019; 848 Liu, Zhang, Wang, Chen, Xiao, Chen, Liu, Yu, Mu (b1270) 2022; 10 Jin, Wang, Su, Wei, Pang, Wang (b1380) 2015; 137 Liu, Ye, Zhao, Wu, Liu, Huang, Xue, Sun, Zhang, Wang (b1720) 2022; 99 Xu, Wang, Wang, Xiao, Huang, Liu, Wang (b1375) 2017; 28 Long, Qiu, Wang, Wang, Yang (b0265) 2019; 11 Lu, Zang, Li, Li, Zou, Zhou, Wang (b1100) 2021; 422 Lyu, Bai, Wang, Wang, Zhang, Yin (b0735) 2019; 11 Khan, Khan, Asiri (b0280) 2016; 27 Li, Jang, Kim, Hou, Liu, Cho (b0915) 2022; 307 Boppella, Tan, Yun, Manorama, Moon (b0225) 2021; 427 Pei, Song, Song, Liu, Wei, Xu, Guo, Liang (b1210) 2021; 368 Xu, Yang, Fang, Du, Fu, Sun, Liu, Lin, Li (b0700) 2020; 48 Yang, Zhao, Dai, Nie, Ren, Yin, Gan, Wu, Cao, Zhang (b1395) 2021; 46 Fan, Liao, Shi, Liu, Shao, Kang (b1545) 2020; 7 Yu, Wang, Shifa, Zhan, Lou, Xia, He (b0530) 2019; 58 Wang, Zhang, Hofmann, Victor, Oropeza (b0405) 2021; 9 T. Asefa, Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts, A.c.c. Chem. Res. 49 (9) (2016) 1873–1883, doi: 10.1021/acs.accounts.6b00317. Sun, Gao, Lei, Xie (b1345) 2015; 44 Zhou, Ma, Wu, Lin, Pang, Zhang, Xu, Tian, Tang (b0755) 2020; 402 Banerjee, Debata, Madhuri, Sharma (b1000) 2018; 449 Zhang, Zou (b0115) 2021; 17 Li, Zhao, Yu, Liu, Zhang, Liu, Zhou (b0050) 2020; 12 Feng, Si, Deng, Xu, Pu, Hu, Wang (b1240) 2022; 892 Li, Li, An, Hao, Jiang, Guan (b0145) 2021 Shi, Zhou, Yang, Xu, Wang, Wang, Xu, Xia, Chen (b0655) 2017; 139 Wang, Lin, Wan, Wang (b1015) 2020; 45 Wang, Xu, Wang, Shang, Jin, Ren, Song, Guo, Du (b1565) 2020; 59 Bhanja, Kim, Paul, Kaneti, Alothman, Bhaumik, Yamauchi (b1590) 2021; 405 Hu, Zhang, Xiao, Li, Wang, Song (b1435) 2021; 42 Liu, Huang, Cao, Kajiyoshi, Li, Feng, Fu, Kou, Feng (b1635) 2020; 8 Yue, Ma, Yan, Wu, Zhao, Liu, Luo, Zhong, Zhang, Liu (b0945) 2022; 15 Lei, Xu, Ye, Zheng, Liao, Xiong, Hu, Wang, Wang, Ren (b1035) 2021; 285 Zhang, Pang, Cao, Ma, Kou, Liu, Hassan, Guo, Yue, Wang (b1420) 2022; 925 Li, Dong, Guo, Gao, Kang, Lei, Hao, Xie, Tang (b0795) 2022 nanoflowers on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting, Appl. Surf. Sci. 529 (2020). doi: 10.1016/j.apsusc.2020.146987. Hu, Zhang, Gong (b0005) 2019; 12 Badreldin, Abusrafa, Abdel-Wahab (b0925) 2021; 14 Dong, Zhao, Zhang, Chen, Yang, Song, Wei, Li (b1110) 2020; 388 o Ruqia, Kabiraz, Hong, Choi (b0600) 2022 Y. Zeng, M. Zhao, Z. Huang, W. Zhu, J. Zheng, Q. Jiang, Z. Wang, H. Liang, Surface Reconstruction of Water Splitting Electrocatalysts, Adv. Energy Mater. (n.d.) 2201713, doi: 10.1002/aenm.202201713. X. Li, X. Hao, A. Abudula, G. Guan, Nanostructured catalysts for electrochemical water splitting: Current state and prospects, J. Mater. Chem. A. 4 (31) (2016) 11973–12000 Hai, Huang, Cao, Kajiyoshi, Wang, Feng, Liu, Pan (b1585) 2021; 50 Jiang, Yang, Shi, Xia, Chen, Su, Chen (b0870) 2017; 5 Zhang, Ge, Chu, Dong, Baines, Pei, Ye, Shen (b1570) 2018; 10 Song, Ren, Chen, Meng, Biswas, Nandi, Elsen, Gao, Suib (b1185) 2016; 8 Hao, Zhu, Lei, Ma, Xie, Tan, Li, Liu, Tang (b0690) 2018; 10 Jamesh, Sun (b0365) 2018; 400 Tian, Wang, Velasco, Yang, Cao, Zhang, Li, Lin, Zhang, Chen (b1075) 2020; 23 Rani, Ravi, Yuvakkumar, Ravichandran, Ameen, Al-Sabri (b1315) 2019; 89 Chen, Liang, Liu, Ai, Asefa, Zou (b0100) 2020; 32 Shi, Zhang (b0355) 2016; 45 Song, Xu, Liao, Guo, Wu, Sun (b0450) 2021; 17 Du, Ding, Zhang (b1510) 2021; 562 Xie, Fan, Fu, Zhen, Li, Liu, Ma, Wang, Chai, Dong (b1795) 2021; 46 Yuan, Wang, Ma, Kundu, Tang, Li, Wang (b1460) 2021; 404 Shinde, Shinde, Xia, Yun, Mane, Kim (b0455) 2019; 4 Ibrahim, Tsai, Chala, Berihun, Kahsay, Berhe, Su, Hwang (b0480) 2019; 66 Ahn, Lee, Kim, Lee, Lee, Kim, Joo (b1465) 2021; 11 Y. Xia, C.T. Campbell, B. Roldan Cuenya, M. Mavrikakis, Introduction: Advanced materials and methods for catalysis and electrocatalysis by transition metals, Chem. Rev. 121 (2), (2021) 563–566, doi: 10.1021/acs.chemrev.0c01269. Wu, Chen, Zhu, Mu (b1280) 2021; 17 Wu, Lu, Zang, Lou (b0615) 2020; 30 S.M. El-Refaei, P.A. Russo, N. Pinna, Recent advances in multimetal and doped transition-metal phosphides for the hydrogen evolution reaction at different pH values, ACS Appl. Mater. \& Interfaces. 13(19) (2021) 22077–22097, doi: 10.1021/acsami.1c02129. Wacławek, Padil, Černik (b0420) 2018; 25 Sankar, Keerthana, Manjula, Sharad, Kundu (b0725) 2021; 60 Zeng, Zhou, Yang, Du, Liu, Zhou (b1125) 2018; 1 Liu, Huang, Xue, Sun, Wang, Xiong, Zhu (b0650) 2021; 13 Liu, Yin, Fu, Zu, Yang, Zhao (b0765) 2020; 8 Wang, Tran, Chang, Prabhakaran, Kim, Kim, Lee (b1350) 2021; 13 Liu, Wang, Xu, Veder, Shao (b0905) 2019; 7 Su, Ge, Jiang, Dong, Hao, Tian, Chen, Chen (b1220) 2018; 30 Li, Li, Liu, Tian, Zhang, Fu, Tang (b1625) 2019; 7 Zeng, Zheng, Li, Yan, Tian, Jin, Strasser, Yang (b0940) 2020; 30 Bui, Kumar, Bui, Lee, Hwang, Le, Kawazoe, Lee (b1740) 2020; 32 Adegoke, Maxakato (b0430) 2022; 457 Gao, Cui, Sewell, Li, Lin (b0990) 2021; 50 An, Wei, Lu, Liu, Chen, Scherer, Fisher, Xi, Xu, Yan (b0120) 2021; 33 Balaji, Nguyen, Harish, Kim, Lee (b0710) 2022; 10 Chiou, Hsu, Li, Tung, Yang, Lee, Lin (b0825) 2022; 58 Ding, Du, Zhang (b1215) 2021; 13 He, Liu, Chen, Liu, Zhang, Zhao, Chang, Wang, Liu, Zhou (b1300) 2022; 432 He, Han, Kong, Jiang, Lei, Lei (b1780) 2019; 32 Dong, Yang, Liu, Wang, Dong, Cui, Li, Yuan, Zhang, Dai (b1005) 2020; 49 Xie, Zhang, Li, Grote, Zhang, Zhang, Wang, Lei, Pan, Xie (b0635) 2013; 135 Wang, Arandiyan, Chen, Zhao, Bo, Su, Zhao (b1445) 2020; 124 Zhong, Han, Wang, Wang, Shen, Zhou, Wang, Zhang, Jin, Li (b0830) 2020; 8 Bao, Wang, Xie, Xu, Lei, Guan, Huang, Zhao, Xia, Li (b0685) 2018; 5 Chandrasekaran, Zhang, Shu, Wang, Chen, Edison, Liu, Karthik, Misra, Deng (b0585) 2021; 449 Bolar, Shit, Murmu, Samanta, Kuila (b0485) 2021; 13 Yu, He, Yang, Zhou, Shao, Ni (b0505) 2019; 9 Li, Yin, Lei, Zhao, He, Li, Yu (b1515) 2022; 47 Solanki, Patra, Ahmad, Kumar, Parra, Zaidi, Yasin, Kumar, Hussein, Sivaraman (b0170) 2022; 108207 A. Zunger, O.I. Malyi, Understanding doping of quantum materials, Chem. Rev. 121 (5) (2021) 3031 3060, doi: 10.1021/acs.chemrev.0c00608. Li, Wang, Lu (b0125) 2021; 9 Kumar, Prabhu, Shin, Yadav, Ahn, Abdellattif, Jeon (b0185) 2022; 467 Zhang, Cui, Sun, Qi, Jin, Wei, Li, Zhang, Zheng (b1475) 2018; 10 Xi, Yan, Tan, Xiao, Cheng, Khan, Wang, Li (b1430) 2018; 47 Ashraf, Liu, Pham, Zhang (b0580) 2020; 873 Zhao, Dai, Liu, Chen, Zhu, Xue, Wu, Liu (b1480) 2019; 6 Wang, Xu, Chen, Peng, Song, Lv, Liu, Sun, Yuan, Li, Guo, Yang, Zhang (b1385) 2019; 29 Yuan, Duan, Liu, Ye, Lv, Liu, Wang, Zhang (b0425) 2021; 42 Li, Wang, Shao, Huang (b0445) 2020; 49 Zhao, Yao, Wang, Cao, Lu, Xie, Hu, Hao (b1520) 2022 Tian, Cao, Qin (b1245) 2019; 11 Zhao, Liu, Wang, Ren, Li, Zhang (b0975) 2021; 50 Wang, Liang, Zheng, Cao (b0245) 2020; 15 Sun, Tong, Chen, Chen, Xi, Liu, Dong (b1690) 2021; 589 Xie, Gao, Cao, Liu, Lei, Hao, Xia, Tang (b0675) 2019; 7 Jin, Liu, Chen, Vasileff, Li, Jiao, Song, Zheng, Qiao (b0380) 2019; 4 Jiang, Yuan, Zhou, Liu, Zhao, Zhao, Xu (b1735) 2018; 292 Liu, Ran, Ge, Liu, Li, Chen, Feng, Che (b0935) 2021; 425 Salah, Ren, Al-Ansi, Yu, Lang, Tan, Li (b0550) 2021; 9 Wang, Chen, Yuan, Qian, Cai, Jiang, Zhang (b0695) 2020; 69 Xie, Qu, Lei, Peng, Liu, Gao, Hao, Cui, Tang (b0520) 2018; 6 X. Huang, H. Zheng, G. Lu, P. Wang, L. Xing, J. Wang, G. Wang, Enhanced water splitting electrocatalysis over mnco Sun, Zhao, Li, Li, Meng (b0180) 2022; 165719 Suen, Hung, Quan, Zhang, Xu, Chen (b0200) 2017; 46 Zeng, Xiao, Liu, Yang, Fu (b0900) 2018; 118 Ma, Zha, Dong, Li, Hu (b1170) 2019; 6 Wu, Zou, Huang, Gao (b1020) 2018; 358 Zhang, Xie, Ma, Dong, Liu, Chai (b0510) 2022; 430 Hu, Dai (b0070) 2019; 31 Wang, Vasileff, Jiao, Zheng, Qiao (b0375) 2019; 31 Li, Liu, Feng (b0525) 2020; 34 An Dai (10.1016/j.ccr.2022.214864_b0780) 2021; 9 Medhi (10.1016/j.ccr.2022.214864_b0340) 2020; 3 Yang (10.1016/j.ccr.2022.214864_b1115) 2021; 9 Li (10.1016/j.ccr.2022.214864_b0125) 2021; 9 Zhu (10.1016/j.ccr.2022.214864_b0010) 2020; 13 Guo (10.1016/j.ccr.2022.214864_b1030) 2019; 7 10.1016/j.ccr.2022.214864_b0035 Wang (10.1016/j.ccr.2022.214864_b0395) 2020; 515 Hu (10.1016/j.ccr.2022.214864_b0640) 2022; 12 Wang (10.1016/j.ccr.2022.214864_b0095) 2020; 819 Wang (10.1016/j.ccr.2022.214864_b0245) 2020; 15 Wu (10.1016/j.ccr.2022.214864_b1145) 2019; 2 Li (10.1016/j.ccr.2022.214864_b0490) 2021; 388 Gao (10.1016/j.ccr.2022.214864_b0970) 2021; 5 Salah (10.1016/j.ccr.2022.214864_b0550) 2021; 9 Song (10.1016/j.ccr.2022.214864_b0960) 2021; 9 Hao (10.1016/j.ccr.2022.214864_b0670) 2020; 63 Wang (10.1016/j.ccr.2022.214864_b0815) 2020; 132 Wang (10.1016/j.ccr.2022.214864_b1275) 2021; 420 Hao (10.1016/j.ccr.2022.214864_b0745) 2020; 31 Jiang (10.1016/j.ccr.2022.214864_b1735) 2018; 292 Xu (10.1016/j.ccr.2022.214864_b0835) 2021; 13 Niu (10.1016/j.ccr.2022.214864_b1230) 2019; 7 Ye (10.1016/j.ccr.2022.214864_b1290) 2021; 50 Li (10.1016/j.ccr.2022.214864_b1625) 2019; 7 Kwon (10.1016/j.ccr.2022.214864_b0310) 2021; 11 Li (10.1016/j.ccr.2022.214864_b0795) 2022 Yu (10.1016/j.ccr.2022.214864_b0530) 2019; 58 Bolar (10.1016/j.ccr.2022.214864_b0485) 2021; 13 Chen (10.1016/j.ccr.2022.214864_b0100) 2020; 32 Yang (10.1016/j.ccr.2022.214864_b1530) 2017; 41 Gao (10.1016/j.ccr.2022.214864_b0840) 2020; 12 Dalle Feste (10.1016/j.ccr.2022.214864_b0895) 2016; 11 Jamesh (10.1016/j.ccr.2022.214864_b0365) 2018; 400 Ahn (10.1016/j.ccr.2022.214864_b1465) 2021; 11 Yu (10.1016/j.ccr.2022.214864_b0560) 2021; 42 Shi (10.1016/j.ccr.2022.214864_b0290) 2020; 121 Yang (10.1016/j.ccr.2022.214864_b1705) 2021; 33 10.1016/j.ccr.2022.214864_b0020 Fan (10.1016/j.ccr.2022.214864_b1545) 2020; 7 Yang (10.1016/j.ccr.2022.214864_b1605) 2022; 430 Khan (10.1016/j.ccr.2022.214864_b0280) 2016; 27 Leng (10.1016/j.ccr.2022.214864_b0605) 2019; 48 Tang (10.1016/j.ccr.2022.214864_b0950) 2022 Zhu (10.1016/j.ccr.2022.214864_b1355) 2019; 7 Jang (10.1016/j.ccr.2022.214864_b1715) 2015; 119 Suen (10.1016/j.ccr.2022.214864_b0200) 2017; 46 Li (10.1016/j.ccr.2022.214864_b1130) 2020; 823 Fominykh (10.1016/j.ccr.2022.214864_b1040) 2015; 9 Jia (10.1016/j.ccr.2022.214864_b0360) 2021; 13 Dou (10.1016/j.ccr.2022.214864_b0075) 2019; 3 Yuan (10.1016/j.ccr.2022.214864_b0425) 2021; 42 Zhou (10.1016/j.ccr.2022.214864_b0625) 2020; 30 Yue (10.1016/j.ccr.2022.214864_b0945) 2022; 15 Li (10.1016/j.ccr.2022.214864_b1610) 2019; 7 Li (10.1016/j.ccr.2022.214864_b0865) 2020; 12 Shan (10.1016/j.ccr.2022.214864_b0085) 2019; 31 Liu (10.1016/j.ccr.2022.214864_b0650) 2021; 13 Hunter (10.1016/j.ccr.2022.214864_b0150) 2016; 116 Feng (10.1016/j.ccr.2022.214864_b1240) 2022; 892 Gao (10.1016/j.ccr.2022.214864_b0345) 2019; 12 Hu (10.1016/j.ccr.2022.214864_b0555) 2020; 26 Niu (10.1016/j.ccr.2022.214864_b1080) 2018; 8 Zhang (10.1016/j.ccr.2022.214864_b1650) 2020; 12 Wang (10.1016/j.ccr.2022.214864_b0890) 2018; 10 Shi (10.1016/j.ccr.2022.214864_b0355) 2016; 45 Hao (10.1016/j.ccr.2022.214864_b1495) 2022; 5 Zeng (10.1016/j.ccr.2022.214864_b0900) 2018; 118 Zhang (10.1016/j.ccr.2022.214864_b1420) 2022; 925 Wang (10.1016/j.ccr.2022.214864_b0540) 2021; 9 Li (10.1016/j.ccr.2022.214864_b1415) 2022; 12 Chen (10.1016/j.ccr.2022.214864_b1360) 2020; 526 Liu (10.1016/j.ccr.2022.214864_b1630) 2022; 572 Hu (10.1016/j.ccr.2022.214864_b0680) 2019; 243 Zhang (10.1016/j.ccr.2022.214864_b0080) 2020; 30 Chiou (10.1016/j.ccr.2022.214864_b0825) 2022; 58 Wen (10.1016/j.ccr.2022.214864_b1390) 2022; 5 Hu (10.1016/j.ccr.2022.214864_b0005) 2019; 12 Liu (10.1016/j.ccr.2022.214864_b0935) 2021; 425 Xiong (10.1016/j.ccr.2022.214864_b0130) 2018; 8 Ding (10.1016/j.ccr.2022.214864_b0875) 2022; 440 10.1016/j.ccr.2022.214864_b1450 Hu (10.1016/j.ccr.2022.214864_b1435) 2021; 42 Zeng (10.1016/j.ccr.2022.214864_b1505) 2021; 5 Chen (10.1016/j.ccr.2022.214864_b0255) 2019; 11 Bo (10.1016/j.ccr.2022.214864_b0980) 2022; 100987 Tian (10.1016/j.ccr.2022.214864_b1075) 2020; 23 Wu (10.1016/j.ccr.2022.214864_b0335) 2021; 31 He (10.1016/j.ccr.2022.214864_b0740) 2021; 298 Chen (10.1016/j.ccr.2022.214864_b0110) 2019; 3 Xu (10.1016/j.ccr.2022.214864_b1375) 2017; 28 Sun (10.1016/j.ccr.2022.214864_b1690) 2021; 589 Yu (10.1016/j.ccr.2022.214864_b0090) 2020; 26 Yang (10.1016/j.ccr.2022.214864_b0160) 2020; 121 Ding (10.1016/j.ccr.2022.214864_b1215) 2021; 13 Ibrahim (10.1016/j.ccr.2022.214864_b0480) 2019; 66 Ruqia (10.1016/j.ccr.2022.214864_b0600) 2022 Zhang (10.1016/j.ccr.2022.214864_b0705) 2019; 254 Han (10.1016/j.ccr.2022.214864_b0435) 2016; 28 Chen (10.1016/j.ccr.2022.214864_b0995) 2020; 45 Song (10.1016/j.ccr.2022.214864_b0105) 2018; 140 Yan (10.1016/j.ccr.2022.214864_b1325) 2018; 119 Li (10.1016/j.ccr.2022.214864_b0610) 2022 10.1016/j.ccr.2022.214864_b0190 Zhong (10.1016/j.ccr.2022.214864_b0830) 2020; 8 Kim (10.1016/j.ccr.2022.214864_b1615) 2021; 426 Zhu (10.1016/j.ccr.2022.214864_b1695) 2020; 30 10.1016/j.ccr.2022.214864_b0195 Du (10.1016/j.ccr.2022.214864_b0470) 2021; 50 Hao (10.1016/j.ccr.2022.214864_b0645) 2021; 57 Xie (10.1016/j.ccr.2022.214864_b0845) 2015; 7 Zou (10.1016/j.ccr.2022.214864_b0305) 2015; 44 Tang (10.1016/j.ccr.2022.214864_b1180) 2017; 139 Wang (10.1016/j.ccr.2022.214864_b0295) 2020; 120 Zhao (10.1016/j.ccr.2022.214864_b1520) 2022 Hao (10.1016/j.ccr.2022.214864_b0790) 2021; 9 Wang (10.1016/j.ccr.2022.214864_b1445) 2020; 124 Balaji (10.1016/j.ccr.2022.214864_b0710) 2022; 10 Jamesh (10.1016/j.ccr.2022.214864_b0775) 2021; 56 Dong (10.1016/j.ccr.2022.214864_b1110) 2020; 388 Dinh (10.1016/j.ccr.2022.214864_b1660) 2020; 157 Tian (10.1016/j.ccr.2022.214864_b1245) 2019; 11 Qian (10.1016/j.ccr.2022.214864_b0660) 2021; 84 Wacławek (10.1016/j.ccr.2022.214864_b0420) 2018; 25 Mahmood (10.1016/j.ccr.2022.214864_b0965) 2018; 5 10.1016/j.ccr.2022.214864_b0985 Chen (10.1016/j.ccr.2022.214864_b1190) 2019; 10 10.1016/j.ccr.2022.214864_b0620 Zhuang (10.1016/j.ccr.2022.214864_b1500) 2020; 59 10.1016/j.ccr.2022.214864_b0060 Bredar (10.1016/j.ccr.2022.214864_b0515) 2020; 3 Gao (10.1016/j.ccr.2022.214864_b0240) 2021; 11 Adegoke (10.1016/j.ccr.2022.214864_b0430) 2022; 457 Dong (10.1016/j.ccr.2022.214864_b0215) 2020; 8 Chen (10.1016/j.ccr.2022.214864_b0860) 2020; 8 Lu (10.1016/j.ccr.2022.214864_b1100) 2021; 422 Lin (10.1016/j.ccr.2022.214864_b1285) 2021; 514 Zhang (10.1016/j.ccr.2022.214864_b1405) 2021; 298 Dong (10.1016/j.ccr.2022.214864_b1005) 2020; 49 Meng (10.1016/j.ccr.2022.214864_b1335) 2019; 7 Xu (10.1016/j.ccr.2022.214864_b0700) 2020; 48 Zhang (10.1016/j.ccr.2022.214864_b1475) 2018; 10 Xie (10.1016/j.ccr.2022.214864_b0520) 2018; 6 Yu (10.1016/j.ccr.2022.214864_b0505) 2019; 9 Sun (10.1016/j.ccr.2022.214864_b0180) 2022; 165719 Zhu (10.1016/j.ccr.2022.214864_b0810) 2022; 304 Qi (10.1016/j.ccr.2022.214864_b0715) 2020; 56 Lu (10.1016/j.ccr.2022.214864_b1595) 2019; 7 10.1016/j.ccr.2022.214864_b0055 Singh (10.1016/j.ccr.2022.214864_b1770) 2021; 447 Yu (10.1016/j.ccr.2022.214864_b1140) 2021; 11 Guo (10.1016/j.ccr.2022.214864_b0595) 2021; 42 Zhang (10.1016/j.ccr.2022.214864_b0410) 2021; 50 Wang (10.1016/j.ccr.2022.214864_b1310) 2020; 562 Swaminathan (10.1016/j.ccr.2022.214864_b1055) 2019; 11 Zeng (10.1016/j.ccr.2022.214864_b1125) 2018; 1 Zhang (10.1016/j.ccr.2022.214864_b1655) 2019; 254 Sahoo (10.1016/j.ccr.2022.214864_b0175) 2022; 469 Zhang (10.1016/j.ccr.2022.214864_b1455) 2018; 14 Liu (10.1016/j.ccr.2022.214864_b1635) 2020; 8 Wang (10.1016/j.ccr.2022.214864_b0205) 2018; 12 Rani (10.1016/j.ccr.2022.214864_b1315) 2019; 89 Lin (10.1016/j.ccr.2022.214864_b1250) 2021; 536 Tong (10.1016/j.ccr.2022.214864_b0785) 2020; 56 Zhao (10.1016/j.ccr.2022.214864_b1480) 2019; 6 Liu (10.1016/j.ccr.2022.214864_b1160) 2021; 585 Wu (10.1016/j.ccr.2022.214864_b1540) 2019; 299 Wang (10.1016/j.ccr.2022.214864_b0405) 2021; 9 Lu (10.1016/j.ccr.2022.214864_b0770) 2021; 417 Bulakhe (10.1016/j.ccr.2022.214864_b0500) 2022 Chandrasekaran (10.1016/j.ccr.2022.214864_b1165) 2019; 7 Jiang (10.1016/j.ccr.2022.214864_b1400) 2022; 606 Min (10.1016/j.ccr.2022.214864_b0300) 2021; 424 Song (10.1016/j.ccr.2022.214864_b0165) 2018; 140 Yan (10.1016/j.ccr.2022.214864_b0040) 2016; 4 Pastor (10.1016/j.ccr.2022.214864_b1425) 2020; 45 Rajeshkhanna (10.1016/j.ccr.2022.214864_b1025) 2018; 10 Yuan (10.1016/j.ccr.2022.214864_b1460) 2021; 404 Hu (10.1016/j.ccr.2022.214864_b0070) 2019; 31 Long (10.1016/j.ccr.2022.214864_b0265) 2019; 11 Li (10.1016/j.ccr.2022.214864_b1155) 2018; 47 Su (10.1016/j.ccr.2022.214864_b1220) 2018; 30 Wang (10.1016/j.ccr.2022.214864_b1750) 2021; 597 Yuan (10.1016/j.ccr.2022.214864_b0270) 2020; 13 Wang (10.1016/j.ccr.2022.214864_b1015) 2020; 45 Zhu (10.1016/j.ccr.2022.214864_b0330) 2017; 50 Yuan (10.1016/j.ccr.2022.214864_b1665) 2018; 6 Li (10.1016/j.ccr.2022.214864_b1790) 2022 Banerjee (10.1016/j.ccr.2022.214864_b1000) 2018; 449 Ma (10.1016/j.ccr.2022.214864_b1170) 2019; 6 Tian (10.1016/j.ccr.2022.214864_b0565) 2021; 9 Wang (10.1016/j.ccr.2022.214864_b1365) 2021; 50 Yu (10.1016/j.ccr.2022.214864_b1265) 2022; 607 10.1016/j.ccr.2022.214864_b1645 Maduraiveeran (10.1016/j.ccr.2022.214864_b0260) 2019; 106 Vazhayil (10.1016/j.ccr.2022.214864_b0535) 2021; 6 Zhao (10.1016/j.ccr.2022.214864_b0570) 2017; 117 Sun (10.1016/j.ccr.2022.214864_b1760) 2021; 444 Jin (10.1016/j.ccr.2022.214864_b1380) 2015; 137 Zhang (10.1016/j.ccr.2022.214864_b0510) 2022; 430 Sun (10.1016/j.ccr.2022.214864_b1345) 2015; 44 Li (10.1016/j.ccr.2022.214864_b0915) 2022; 307 Bao (10.1016/j.ccr.2022.214864_b0685) 2018; 5 Zhang (10.1016/j.ccr.2022.214864_b1730) 2021; 298 Wang (10.1016/j.ccr.2022.214864_b1410) 2022; 137094 Zhu (10.1016/j.ccr.2022.214864_b0025) 2020; 120 Ganesh (10.1016/j.ccr.2022.214864_b0630) 2009; 113 Cao (10.1016/j.ccr.2022.214864_b1255) 2020; 4 Jin (10.1016/j.ccr.2022.214864_b0380) 2019; 4 Wu (10.1016/j.ccr.2022.214864_b1280) 2021; 17 Salah (10.1016/j.ccr.2022.214864_b0545) 2022; 12 Wang (10.1016/j.ccr.2022.214864_b0695) 2020; 69 Sankar (10.1016/j.ccr.2022.214864_b0725) 2021; 60 Sarkar (10.1016/j.ccr.2022.214864_b0760) 2022; 9 Song (10.1016/j.ccr.2022.214864_b1675) 2021; 298 Song (10.1016/j.ccr.2022.214864_b1185) 2016; 8 Wang (10.1016/j.ccr.2022.214864_ |
References_xml | – volume: 15 start-page: 1804201 year: 2019 ident: b0030 article-title: Noble-metal-free electrocatalysts for oxygen evolution publication-title: Small – volume: 45 start-page: 1529 year: 2016 end-page: 1541 ident: b0355 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem. Soc. Rev. – volume: 5 start-page: 1700464 year: 2018 ident: b0965 article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions publication-title: Adv. Sci. – volume: 457 year: 2022 ident: b0430 article-title: Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques publication-title: Coord. Chem. Rev. – volume: 358 start-page: 243 year: 2018 end-page: 252 ident: b1020 article-title: Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting publication-title: J. Catal. – volume: 14 start-page: 1803009 year: 2018 ident: b0275 article-title: Ultrasmall Ru/Cu-doped RuO publication-title: Small – year: 2022 ident: b0795 article-title: Cerium-induced lattice disordering in Co-based nanocatalysts promoting the hydrazine electro-oxidation behavior publication-title: Chem. Commun. – volume: 23 year: 2020 ident: b1075 article-title: A Co-Doped Nanorod-like RuO publication-title: IScience. – volume: 572 year: 2022 ident: b1630 article-title: Rational construction of Ni/V-MoO publication-title: Appl. Surf. Sci. – volume: 5 start-page: 1793 year: 2022 end-page: 1800 ident: b1495 article-title: Construction of Fe publication-title: ACS Appl. Energy Mater. – volume: 121 start-page: 796 year: 2020 end-page: 833 ident: b0160 article-title: Noble-metal nanoframes and their catalytic applications publication-title: Chem. Rev. – volume: 27 start-page: 5294 year: 2016 end-page: 5302 ident: b0280 article-title: Electro-catalyst based on cerium doped cobalt oxide for oxygen evolution reaction in electrochemical water splitting publication-title: J. Mater. Sci. Mater. Electron. – volume: 5 start-page: 2964 year: 2018 end-page: 2970 ident: b0685 article-title: The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting publication-title: Inorg. Chem. Front. – volume: 59 start-page: 14664 year: 2020 end-page: 14670 ident: b1500 article-title: Sulfur-modified oxygen vacancies in iron–cobalt oxide nanosheets: enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark publication-title: Angew. Chemie Int. Ed. – volume: 5 start-page: 2000988 year: 2021 ident: b0315 article-title: Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy publication-title: Small Methods. – volume: 31 start-page: 1900510 year: 2019 ident: b0085 article-title: Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments publication-title: Adv. Mater. – volume: 49 start-page: 6355 year: 2020 end-page: 6362 ident: b1005 article-title: 2D Fe-doped NiO nanosheets with grain boundary defects for the advanced oxygen evolution reaction publication-title: Dalt. Trans. – volume: 9 start-page: 5180 year: 2015 end-page: 5188 ident: b1040 article-title: Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting publication-title: ACS Nano – volume: 388 year: 2021 ident: b0490 article-title: In situ growing N and O co-doped helical carbon nanotubes encapsulated with CoFe alloy as tri-functional electrocatalyst applied in Zn–Air batteries driving water splitting publication-title: Electrochim. Acta – volume: 606 start-page: 384 year: 2022 end-page: 392 ident: b1400 article-title: Phosphorus doping and phosphates coating for nickel molybdate/nickel molybdate hydrate enabling efficient overall water splitting publication-title: J. Colloid Interface Sci. – volume: 66 year: 2019 ident: b1010 article-title: In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting publication-title: Nano Energy. – volume: 11 start-page: 4420 year: 2019 end-page: 4426 ident: b1245 article-title: Bimetal-organic framework derived high-valence-state Cu-doped Co publication-title: ChemCatChem. – volume: 15 start-page: 186 year: 2022 end-page: 194 ident: b0945 article-title: others, Improving the intrinsic electronic conductivity of NiMoO publication-title: Nano Res. – volume: 69 year: 2020 ident: b0695 article-title: Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions publication-title: Nano Energy – volume: 557 start-page: 28 year: 2019 end-page: 33 ident: b1805 article-title: Mn and S dual-doping of MOF-derived Co publication-title: J. Colloid Interface Sci. – volume: 400 start-page: 31 year: 2018 end-page: 68 ident: b0365 article-title: Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – A review publication-title: J. Power Sources. – volume: 13 start-page: 3299 year: 2020 end-page: 3309 ident: b1330 article-title: Nickel foam supported Cr-doped NiCo publication-title: Nano Res. – reference: Y. Zeng, M. Zhao, Z. Huang, W. Zhu, J. Zheng, Q. Jiang, Z. Wang, H. Liang, Surface Reconstruction of Water Splitting Electrocatalysts, Adv. Energy Mater. (n.d.) 2201713, doi: 10.1002/aenm.202201713. – reference: X. Huang, H. Zheng, G. Lu, P. Wang, L. Xing, J. Wang, G. Wang, Enhanced water splitting electrocatalysis over mnco – volume: 2 start-page: 2177 year: 2017 end-page: 2182 ident: b1620 article-title: others, High-valence-state NiO/Co publication-title: ACS Energy Lett. – volume: 56 start-page: 11910 year: 2020 end-page: 11930 ident: b0855 article-title: Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction publication-title: Chem. Commun. – volume: 11 start-page: 8198 year: 2021 end-page: 8206 ident: b1465 article-title: Electrochemical oxidation of boron-doped nickel–iron layered double hydroxide for facile charge transfer in oxygen evolution electrocatalysts publication-title: RSC Adv. – volume: 47 start-page: 216 year: 2022 end-page: 227 ident: b1515 article-title: Se-doped cobalt oxide nanoparticle as highly-efficient electrocatalyst for oxygen evolution reaction publication-title: Int. J. Hydrogen Energy. – volume: 30 start-page: 2003261 year: 2020 ident: b0080 article-title: Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting publication-title: Adv. Funct. Mater. – reference: Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355 (6321) (2017) eaad4998, 10.1126/science.aad4998. – volume: 31 start-page: 1804672 year: 2019 ident: b0070 article-title: Doping of carbon materials for metal-free electrocatalysis publication-title: Adv. Mater. – volume: 113 start-page: 7666 year: 2009 end-page: 7669 ident: b0630 article-title: ZnO nanoparticles- CdS quantum dots/N publication-title: J. Phys. Chem. C – volume: 60 start-page: 4034 year: 2021 end-page: 4046 ident: b0725 article-title: Electrospun Fe-incorporated ZIF-67 nanofibers for effective electrocatalytic water splitting publication-title: Inorg. Chem. – volume: 50 start-page: 13951 year: 2021 end-page: 13960 ident: b1290 article-title: Ru doping induces the construction of a unique core–shell microflower self-supporting electrocatalyst for highly efficient overall water splitting publication-title: Dalt. Trans. – volume: 12 start-page: 2200029 year: 2022 ident: b1415 article-title: P and Mo dual doped ru ultrasmall nanoclusters embedded in p-doped porous carbon toward efficient hydrogen evolution reaction publication-title: Adv. Energy Mater. – volume: 43 start-page: 2091 year: 2022 end-page: 2110 ident: b1755 article-title: Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism publication-title: Chinese J. Catal. – volume: 30 start-page: 1801351 year: 2018 ident: b1220 article-title: Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media publication-title: Adv. Mater. – volume: 100987 year: 2022 ident: b0980 article-title: The nature of synergistic effects in transition metal oxides/in-situ intermediate hydroxides for enhanced oxygen evolution reaction publication-title: Curr. Opin. Electrochem. – volume: 390 year: 2020 ident: b1135 article-title: Boosting the electrochemical water splitting on Co publication-title: Chem. Eng. J. – volume: 589 start-page: 127 year: 2021 end-page: 134 ident: b1690 article-title: Dual anions engineering on nickel cobalt-based catalyst for optimal hydrogen evolution electrocatalysis publication-title: J. Colloid Interface Sci. – volume: 243 start-page: 175 year: 2019 end-page: 182 ident: b0680 article-title: Facile synthesis of PdO-doped Co publication-title: Appl. Catal. B Environ. – volume: 254 start-page: 414 year: 2019 end-page: 423 ident: b0705 article-title: In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting publication-title: Appl. Catal. B Environ. – volume: 119 start-page: 1921 year: 2015 end-page: 1927 ident: b1715 article-title: Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution publication-title: J. Phys. Chem. C. – volume: 135 start-page: 17881 year: 2013 end-page: 17888 ident: b0635 article-title: Controllable disorder engineering in oxygen-incorporated MoS publication-title: J. Am. Chem. Soc. – volume: 607 start-page: 1091 year: 2022 end-page: 1102 ident: b1265 article-title: others, Progress in the development of heteroatom-doped nickel phosphates for electrocatalytic water splitting publication-title: J. Colloid Interface Sci. – volume: 13 start-page: 42944 year: 2021 end-page: 42956 ident: b1350 article-title: Bifunctional catalyst derived from sulfur-doped VMoO publication-title: ACS Appl. Mater. Interfaces – volume: 42 start-page: 1287 year: 2021 end-page: 1296 ident: b0595 article-title: Amorphous nanomaterials in electrocatalytic water splitting publication-title: Chin. J. Catal. – volume: 56 start-page: 7649 year: 2020 end-page: 7652 ident: b0850 article-title: Supercritical CO publication-title: Chem. Commun. – volume: 292 start-page: 247 year: 2018 end-page: 255 ident: b1735 article-title: Selenium phosphorus co-doped cobalt oxide nanosheets anhored on Co foil: a self-supported and stable bifunctional electrode for efficient electrochemical water splitting publication-title: Electrochim. Acta. – volume: 420 year: 2021 ident: b1275 article-title: Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis publication-title: Chem. Eng. J. – volume: 562 year: 2021 ident: b1510 article-title: Selectively Se-doped Co publication-title: Appl. Surf. Sci. – volume: 50 start-page: 8428 year: 2021 end-page: 8469 ident: b0990 article-title: Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction publication-title: Chem. Soc. Rev. – volume: 15 start-page: 3717 year: 2020 end-page: 3736 ident: b0245 article-title: Recent progress on defect-rich transition metal oxides and their energy-related applications publication-title: Chem. Asian J. – volume: 7 start-page: 2188 year: 2020 end-page: 2194 ident: b1545 article-title: Highly efficient water splitting over a RuO publication-title: Inorg. Chem. Front. – volume: 298 year: 2021 ident: b1730 article-title: MoO publication-title: Appl. Catal. B Environ. – volume: 6 start-page: 10595 year: 2018 end-page: 10626 ident: b0250 article-title: Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes publication-title: J. Mater. Chem. A. – volume: 425 year: 2021 ident: b0935 article-title: Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction publication-title: Chem. Eng. J. – volume: 298 year: 2021 ident: b0740 article-title: Tuning electron correlations of RuO publication-title: Appl. Catal. B Environ. – volume: 597 start-page: 361 year: 2021 end-page: 369 ident: b1750 article-title: N and Mn dual-doped cactus-like cobalt oxide nanoarchitecture derived from cobalt carbonate hydroxide as efficient electrocatalysts for oxygen evolution reactions publication-title: J. Colloid Interface Sci. – volume: 8 start-page: 6222 year: 2020 end-page: 6233 ident: b1635 article-title: V-Doping triggered formation and structural evolution of dendritic Ni publication-title: ACS Sustain. Chem. Eng. – volume: 6 year: 2021 ident: b0535 article-title: A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction publication-title: Appl. Surf. Sci. Adv. – volume: 608 start-page: 3030 year: 2022 end-page: 3039 ident: b0820 article-title: others, Electrochemical incorporation of heteroatom into surface reconstruction induced Ni vacancy of Ni publication-title: J. Colloid Interface Sci. – volume: 157 start-page: 515 year: 2020 end-page: 524 ident: b1660 article-title: others, Hybrid Ni/NiO composite with N-doped activated carbon from waste cauliflower leaves: a sustainable bifunctional electrocatalyst for efficient water splitting publication-title: Carbon N. Y. – volume: 140 start-page: 7748 year: 2018 end-page: 7759 ident: b0165 article-title: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance publication-title: J. Am. Chem. Soc. – volume: 496 year: 2020 ident: b1485 article-title: Highly efficient and robust sulfur-doped nickel-cobalt oxide towards oxygen evolution reaction publication-title: Mol. Catal. – volume: 12 start-page: 4618 year: 2020 end-page: 4624 ident: b1650 article-title: Two-dimensional nanosheet structure of Co, S Co-doped carbon-framework supported MoO publication-title: ChemCatChem. – volume: 89 start-page: 500 year: 2019 end-page: 510 ident: b1315 article-title: Efficient, highly stable Zn-doped NiO nanocluster electrocatalysts for electrochemical water splitting applications publication-title: J. Sol-Gel Sci. Technol. – volume: 8 start-page: 3688 year: 2018 end-page: 3707 ident: b0130 article-title: Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting publication-title: ACS Catal. – volume: 118 start-page: 6236 year: 2018 end-page: 6296 ident: b0900 article-title: Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control publication-title: Chem. Rev. – reference: via introduction of suitable ce content, ACS Sustain. Chem. & Eng. 7 (1) (2018) 1169–1177, doi: 10.1021/acssuschemeng.8b04814. – volume: 42 start-page: 1876 year: 2021 end-page: 1902 ident: b0560 article-title: Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides publication-title: Chin. J. Catal. – volume: 298 year: 2021 ident: b1675 article-title: Modulating electronic structure of cobalt phosphide porous nanofiber by ruthenium and nickel dual doping for highly-efficiency overall water splitting at high current density publication-title: Appl. Catal. B Environ. – volume: 11 start-page: 1 year: 2021 end-page: 32 ident: b0310 article-title: Dopants in the design of noble metal nanoparticle electrocatalysts and their effect on surface energy and coordination chemistry at the nanocrystal surface publication-title: Adv. Energy Mater. – volume: 4 start-page: 805 year: 2019 end-page: 810 ident: b0380 article-title: Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction publication-title: ACS Energy Lett. – volume: 11 start-page: 5361 year: 2021 end-page: 5383 ident: b0240 article-title: Doping strategy, properties and application of heteroatom-doped ordered mesoporous carbon publication-title: RSC Adv. – volume: 405 year: 2021 ident: b1235 article-title: Synergy of copper doping and oxygen vacancies in porous CoOOH nanoplates for efficient water oxidation publication-title: Chem. Eng. J. – volume: 46 start-page: 37281 year: 2021 end-page: 37293 ident: b1470 article-title: Enriched oxygen vacancy promoted heteroatoms (B, P, N, and S) doped CeO publication-title: Int. J. Hydrogen Energy – volume: 15 start-page: 1902551 year: 2019 ident: b0285 article-title: Fe publication-title: Small. – volume: 117 start-page: 6225 year: 2017 end-page: 6331 ident: b0370 article-title: recent advances in ultrathin two-dimensional nanomaterials publication-title: Chem. Rev. – volume: 34 start-page: 13491 year: 2020 end-page: 13522 ident: b0525 article-title: A review on advanced FeNi-based catalysts for water splitting reaction publication-title: Energy & Fuels – year: 2022 ident: b0600 article-title: Catalyst activation: Surface doping effects of group VI transition metal dichalcogenides towards hydrogen evolution reaction in acidic media publication-title: J. Energy Chem. – volume: 422 year: 2021 ident: b1100 article-title: Co-doped Ni publication-title: Chem. Eng. J. – volume: 8 start-page: 23123 year: 2020 end-page: 23141 ident: b0215 article-title: Noble-metal-free electrocatalysts toward H publication-title: J. Mater. Chem. A. – volume: 7 year: 2019 ident: b1230 article-title: Copper doped manganese oxides to produce enhanced catalytic performance for CO oxidation publication-title: J. Environ. Chem. Eng. – volume: 50 start-page: 11604 year: 2021 end-page: 11609 ident: b1585 article-title: Fe, Ni-codoped W publication-title: Dalt. Trans. – volume: 5 start-page: 1347 year: 2021 end-page: 1365 ident: b1505 article-title: Design strategies toward transition metal selenide-based catalysts for electrochemical water splitting publication-title: Sustain. Energy Fuels. – volume: 9 start-page: e202101140 year: 2022 ident: b0760 article-title: Boosting surface reconstruction for the oxygen evolution reaction: a combined effect of heteroatom incorporation and anion etching in cobalt silicate precatalyst publication-title: ChemElectroChem. – volume: 12 start-page: 1 year: 2020 end-page: 29 ident: b0050 article-title: Water splitting: from electrode to green energy system publication-title: Nano-Micro Letters – volume: 50 start-page: 6500 year: 2021 end-page: 6505 ident: b0065 article-title: Recasting Ni-foam into NiF publication-title: Dalt. Trans. – volume: 9 start-page: 8576 year: 2021 end-page: 8585 ident: b0790 article-title: Superassembly of NiCoO publication-title: J. Mater. Chem. A – volume: 10 start-page: 20384 year: 2018 end-page: 20392 ident: b0690 article-title: Morphology and electronic structure modulation induced by fluorine doping in nickel-based heterostructures for robust bifunctional electrocatalysis publication-title: Nanoscale – volume: 50 start-page: 2663 year: 2021 end-page: 2695 ident: b0470 article-title: Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction publication-title: Chem. Soc. Rev. – volume: 416 year: 2021 ident: b0720 article-title: Ni-Mo based mixed-phase polyionic compounds nanorod arrays on nickel foam as advanced bifunctional electrocatalysts for water splitting publication-title: Chem. Eng. J. – volume: 29 start-page: 1 year: 2019 end-page: 11 ident: b1385 article-title: Defect-rich nitrogen doped Co publication-title: Adv. Funct. Mater. – volume: 13 start-page: 3361 year: 2020 end-page: 3392 ident: b0010 article-title: Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts publication-title: Energy Environ. Sci. – volume: 819 year: 2020 ident: b0095 article-title: Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review publication-title: J. Alloys Compd. – volume: 430 year: 2022 ident: b0510 article-title: An overview of the active sites in transition metal electrocatalysts and their practical activity for hydrogen evolution reaction publication-title: Chem. Eng. J. – volume: 449 start-page: 660 year: 2018 end-page: 668 ident: b1000 article-title: Electrocatalytic behavior of transition metal (Ni, Fe, Cr) doped metal oxide nanocomposites for oxygen evolution reaction publication-title: Appl. Surf. Sci. – volume: 7 start-page: 12501 year: 2019 end-page: 12509 ident: b1595 article-title: In-situ transformed Ni, S-Codoped CoO from amorphous Co–Ni sulfide as an efficient electrocatalyst for hydrogen evolution in alkaline media publication-title: ACS Sustain. Chem. Eng. – volume: 4 start-page: 6486 year: 2019 end-page: 6491 ident: b0455 article-title: Electrocatalytic water splitting through the Ni publication-title: ACS Omega – volume: 8 start-page: 10831 year: 2020 end-page: 10838 ident: b0830 article-title: Aliovalent fluorine doping and anodization-induced amorphization enable bifunctional catalysts for efficient water splitting publication-title: J. Mater. Chem. A. – volume: 7 start-page: 13577 year: 2019 end-page: 13584 ident: b0675 article-title: Copper-incorporated hierarchical wire-on-sheet α-Ni(OH) publication-title: J. Mater. Chem. A – volume: 925 year: 2022 ident: b1420 article-title: Phosphorus modified hollow, porous nickel-Cobalt oxides nanocubes with heterostructure for oxygen evolution reaction in alkaline publication-title: J. Alloys Compd. – volume: 7 start-page: 5875 year: 2019 end-page: 5897 ident: b1355 article-title: Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions publication-title: J. Mater. Chem. A. – volume: 9 start-page: 3786 year: 2021 end-page: 3827 ident: b0125 article-title: Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting publication-title: J. Mater. Chem. A. – reference: S.M. El-Refaei, P.A. Russo, N. Pinna, Recent advances in multimetal and doped transition-metal phosphides for the hydrogen evolution reaction at different pH values, ACS Appl. Mater. \& Interfaces. 13(19) (2021) 22077–22097, doi: 10.1021/acsami.1c02129. – volume: 338 year: 2020 ident: b0665 article-title: Nickel incorporated Co publication-title: Electrochim. Acta – volume: 10 start-page: 3782 year: 2022 end-page: 3792 ident: b0710 article-title: Modulating heterointerfaces of tungsten incorporated CoSe/Co publication-title: J. Mater. Chem. A. – volume: 3 start-page: 892 year: 2018 end-page: 898 ident: b1600 article-title: Phosphorus and aluminum codoped porous NiO nanosheets as highly efficient electrocatalysts for overall water splitting publication-title: ACS Energy Lett. – start-page: 1 year: 2022 end-page: 9 ident: b1790 article-title: Co publication-title: Tungsten. – volume: 3 start-page: 6156 year: 2020 end-page: 6185 ident: b0340 article-title: Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications publication-title: ACS Appl. Nano Mater. – volume: 8 start-page: 13415 year: 2020 end-page: 13436 ident: b0140 article-title: Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting publication-title: J. Mater. Chem. A. – volume: 13 start-page: 121 year: 2020 end-page: 126 ident: b1490 article-title: Engineering defects and adjusting electronic structure on S doped MoO publication-title: Nano Res. – volume: 254 start-page: 634 year: 2019 end-page: 646 ident: b1655 article-title: CoNi based alloy/oxides@N-doped carbon core-shell dendrites as complementary water splitting electrocatalysts with significantly enhanced catalytic efficiency publication-title: Appl. Catal. B Environ. – volume: 132 start-page: 17372 year: 2020 end-page: 17377 ident: b0815 article-title: Heterostructured inter-doped ruthenium-cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting publication-title: Angew. Chem. – reference: G. Xu, M. Feng, S. Wang, Y. Cheng, J. J. Chen, Kinetic regulation engineering and in-situ spectroscopy studies on transition-metal-based electrocatalysts for water splitting, ChemElectroChem. (n.d.), doi: 10.1002/celc.202200549. – volume: 11 year: 2016 ident: b0895 article-title: Work function tuning in hydrothermally synthesized vanadium-doped MoO publication-title: Appl. Sci. – volume: 6 start-page: 1707 year: 2018 end-page: 1714 ident: b1710 article-title: W-Doped MoO publication-title: Energy Technol. – volume: 46 start-page: 337 year: 2017 end-page: 365 ident: b0200 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. – volume: 426 year: 2021 ident: b1745 article-title: Anion-cation-dual doped tremella-like nickel phosphides for electrocatalytic water oxidation publication-title: Chem. Eng. J. – volume: 7 start-page: 18055 year: 2019 end-page: 18060 ident: b1335 article-title: Activating inert ZnO by surface cobalt doping for efficient water oxidation in neutral media publication-title: ACS Sustain. Chem. Eng. – volume: 3 start-page: 1160 year: 2016 end-page: 1166 ident: b0955 article-title: others, Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction publication-title: Inorg. Chem. Front. – volume: 139 start-page: 8320 year: 2017 end-page: 8328 ident: b1180 article-title: Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting publication-title: J. Am. Chem. Soc. – year: 2022 ident: b1725 article-title: Synergistic modulation of inverse spinel Fe publication-title: J. Colloid Interface Sci. – volume: 299 start-page: 231 year: 2019 end-page: 244 ident: b1540 article-title: Fluorine-doped nickel cobalt oxide spinel as efficiently bifunctional catalyst for overall water splitting publication-title: Electrochim. Acta. – volume: 6 start-page: 11529 year: 2018 end-page: 11535 ident: b1665 article-title: Molecule-assisted synthesis of highly dispersed ultrasmall RuO publication-title: ACS Sustain. Chem. Eng. – volume: 49 start-page: 2196 year: 2020 end-page: 2214 ident: b0460 article-title: A review on fundamentals for designing oxygen evolution electrocatalysts publication-title: Chem. Soc. Rev. – year: 2022 ident: b0950 article-title: Synergistic effect of Mn doping and hollow structure boosting Mn-CoP/Co publication-title: J. Colloid Interface Sci. – volume: 252 start-page: 214 year: 2019 end-page: 221 ident: b1065 article-title: Catalyzing overall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon publication-title: Appl. Catal. B Environ. – volume: 30 start-page: 2000503 year: 2020 ident: b0940 article-title: Recent advances in non-noble bifunctional oxygen electrocatalysts toward large-scale production publication-title: Adv. Funct. Mater. – volume: 106 year: 2019 ident: b0260 article-title: Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications publication-title: Prog. Mater. Sci. – volume: 26 year: 2021 ident: b1095 article-title: Oxygen vacancies and band gap engineering of vertically aligned MnO publication-title: Surfaces and Interfaces. – volume: 398 start-page: 54 year: 2021 end-page: 66 ident: b0400 article-title: Strategies to improve cobalt-based electrocatalysts for electrochemical water splitting publication-title: J. Catal. – volume: 66 start-page: 829 year: 2019 end-page: 865 ident: b0480 article-title: A review of transition metal-based bifunctional oxygen electrocatalysts publication-title: J. Chinese Chem. Soc. – volume: 14 start-page: 1802760 year: 2018 ident: b1455 article-title: Disordering the atomic structure of Co (II) Oxide via B-doping: an efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts publication-title: Small – volume: 58 start-page: 244 year: 2019 end-page: 276 ident: b0530 article-title: Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction publication-title: Nano Energy. – volume: 11 start-page: 39706 year: 2019 end-page: 39714 ident: b1055 article-title: Tuning the electrocatalytic activity of Co publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 13459 year: 2021 end-page: 13470 ident: b0565 article-title: Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis publication-title: J. Mater. Chem. A. – volume: 7 start-page: 6161 year: 2019 end-page: 6172 ident: b1165 article-title: Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting publication-title: J. Mater. Chem. A. – volume: 4 start-page: 1522 year: 2020 end-page: 1531 ident: b1255 article-title: Temperature and doping-tuned coordination environments around electroactive centers in Fe-doped α(β)-Ni (OH) publication-title: Sustain. Energy Fuels – volume: 50 start-page: 9817 year: 2021 end-page: 9844 ident: b0410 article-title: Doping regulation in transition metal compounds for electrocatalysis publication-title: Chem. Soc. Rev. – volume: 45 start-page: 24828 year: 2020 end-page: 24839 ident: b0995 article-title: High-performance bifunctional Fe-doped molybdenum oxide-based electrocatalysts with in situ grown epitaxial heterojunctions for overall water splitting publication-title: Int. J. Hydrogen Energy – reference: S. Anantharaj, S.R. Ede, K. Karthick, S. Sam Sankar, K. Sangeetha, P.E. Karthik, S. Kundu, Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment, Energy Energy Environ. Sci. 11 (4) (2018) 744-771, doi: 10.1039/c7ee03457a. – volume: 32 start-page: 2002435 year: 2020 ident: b0100 article-title: Active site engineering in porous electrocatalysts publication-title: Adv. Mater. – volume: 3 start-page: 752 year: 2021 end-page: 780 ident: b0465 article-title: others, Regulating intrinsic electronic structures of transition-metal-based catalysts and the potential applications for electrocatalytic water splitting publication-title: ACS Mater. Lett. – reference: M. Li, R. Sun, Y. Li, J. Jiang, W. Xu, H. Cong, S. Han, The 3D porous “celosia” heterogeneous interface engineering of layered double hydroxide and P-doped molybdenum oxide on MXene promotes overall water-splitting, Chem. Eng. J. 431 (2022) 133941.doi: 10.1016/j.cej.2021.133941. – volume: 10 start-page: 4374 year: 2017 end-page: 4392 ident: b0350 article-title: Electrocatalytic metal–organic frameworks for energy applications publication-title: ChemSusChem. – volume: 9 start-page: 14372 year: 2021 end-page: 14380 ident: b0960 article-title: Fe-doping induced localized amorphization in ultrathin α-Ni (OH) publication-title: J. Mater. Chem. A. – volume: 25 start-page: 9 year: 2018 end-page: 34 ident: b0420 article-title: Major advances and challenges in heterogeneous catalysis for environmental applications: a review publication-title: Ecol. Chem. Eng. S. – volume: 7 start-page: 7280 year: 2019 end-page: 7300 ident: b0905 article-title: Recent advances in anion-doped metal oxides for catalytic applications publication-title: J. Mater. Chem. A – volume: 9 start-page: 6432 year: 2021 end-page: 6441 ident: b0780 article-title: Surface reconstruction induced in situ phosphorus doping in nickel oxides for an enhanced oxygen evolution reaction publication-title: J. Mater. Chem. A. – volume: 140 start-page: 7748 year: 2018 end-page: 7759 ident: b0105 article-title: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance publication-title: J. Am. Chem. Soc. – volume: 469 year: 2022 ident: b0175 article-title: Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: a review with insights on synthesis publication-title: Coord. Chem. Rev. – volume: 44 start-page: 5148 year: 2015 end-page: 5180 ident: b0305 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. – volume: 44 start-page: 623 year: 2015 end-page: 636 ident: b1345 article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis publication-title: Chem. Soc. Rev. – volume: 121 start-page: 10271 year: 2021 end-page: 10366 ident: b0135 article-title: Noble-metal-free multicomponent nanointegration for sustainable energy conversion publication-title: Chem. Rev. – volume: 9 start-page: 13106 year: 2021 end-page: 13113 ident: b1115 article-title: Triggering the intrinsic catalytic activity of Ni-doped molybdenum oxides via phase engineering for hydrogen evolution and application in Mg/seawater batteries publication-title: ACS Sustain. Chem. Eng. – volume: 58 start-page: 2746 year: 2022 end-page: 2749 ident: b0825 article-title: Fluoride-incorporated cobalt-based electrocatalyst towards enhanced hydrogen evolution reaction publication-title: Chem. Commun. – reference: via solid phase reaction strategy, Energy & Environ. Mater. (n.d.) e12424, doi: 10.1002/eem2.12424. – volume: 873 year: 2020 ident: b0580 article-title: Electrodeposition of superhydrophilic and binder-free Mo-doped Ni–Fe nanosheets as cost-effective and efficient bifunctional electrocatalyst for overall water splitting publication-title: J. Electroanal. Chem. – volume: 6 start-page: 16121 year: 2018 end-page: 16129 ident: b0520 article-title: Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis publication-title: J. Mater. Chem. A. – volume: 7 start-page: 17950 year: 2019 end-page: 17957 ident: b1625 article-title: Hollow Co publication-title: ACS Sustain. Chem. Eng. – volume: 449 year: 2021 ident: b0585 article-title: others, Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion publication-title: Coord. Chem. Rev. – volume: 5 year: 2022 ident: b1105 article-title: Regulating the heterostructure of metal/oxide toward the enhanced hydrogen evolution reaction publication-title: ACS Appl. Energy Mater. – volume: 307 year: 2022 ident: b0915 article-title: Ru-incorporated oxygen-vacancy-enriched MoO publication-title: Appl. Catal. B Environ. – volume: 42 start-page: 2275 year: 2021 end-page: 2286 ident: b1435 article-title: Template-free synthesis of Co publication-title: Chinese J. Catal. – volume: 45 start-page: 30404 year: 2020 end-page: 30414 ident: b1425 article-title: Stoichiometry control and phosphorus doping as strategies for the enhancement of nickel iron spinel oxides as electrocatalysts for water oxidation publication-title: Int. J. Hydrogen Energy. – volume: 2 start-page: 2148 year: 2021 end-page: 2158 ident: b1060 article-title: Improving oxygen vacancies by cobalt doping in MoO publication-title: Nano Sel. – volume: 32 start-page: 63 year: 2019 end-page: 70 ident: b1780 article-title: Fe-doped Co publication-title: J. Energy Chem. – volume: 48 start-page: 15 year: 2019 end-page: 20 ident: b0885 article-title: Defect engineering on electrocatalysts for gas-evolving reactions publication-title: Dalt. Trans. – reference: J. Cai, J. Yang, X. Xie, J. Ding, L. Liu, W. Tian, Y. Liu, Z. Tang, B. Liu, S. Lu, Carbon doping triggered efficient electrochemical hydrogen evolution of cross-linked porous Ru-MoO – volume: 12 start-page: 2200332 year: 2022 ident: b0545 article-title: Advanced Ru/Ni/WC@ NPC Multi-Interfacial Electrocatalyst for Efficient Sustainable Hydrogen and Chlor-Alkali Co-Production publication-title: Adv. Energy Mater. – reference: . – volume: 10 start-page: 745 year: 2018 end-page: 752 ident: b1475 article-title: Nanoporous sulfur-doped copper oxide (Cu publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 11901 year: 2019 end-page: 11910 ident: b1610 article-title: Anion–cation double doped Co publication-title: ACS Sustain. Chem. Eng. – volume: 17 start-page: 2100129 year: 2021 ident: b0115 article-title: Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges publication-title: Small. – volume: 8 start-page: 14944 year: 2020 end-page: 14954 ident: b1305 article-title: Flexible and free-standing hetero-electrocatalyst of high-valence-cation doped MoS publication-title: J. Mater. Chem. A – volume: 56 start-page: 4196 year: 2020 end-page: 4199 ident: b0785 article-title: Confinement of fluorine anions in nickel-based catalysts for greatly enhancing oxygen evolution activity publication-title: Chem. Commun. – year: 2022 ident: b0610 article-title: Electrochemical preparation of nano/micron structure transition metal-based catalysts for the oxygen evolution reaction publication-title: Mater. Horizons. – volume: 11 start-page: 2002731 year: 2021 ident: b1140 article-title: Formation of FeOOH nanosheets induces substitutional doping of CeO publication-title: Adv. Energy Mater. – volume: 9 start-page: 19465 year: 2021 end-page: 19488 ident: b0405 article-title: others, The electronic structure of transition metal oxides for oxygen evolution reaction publication-title: J. Mater. Chem. A – volume: 514 year: 2021 ident: b1285 article-title: Rational design of Ru aerogel and RuCo aerogels with abundant oxygen vacancies for hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting publication-title: J. Power Sources. – volume: 77 year: 2020 ident: b1785 article-title: One-step electrodeposition of carbon quantum dots and transition metal ions for N-doped carbon coupled with NiFe oxide clusters: A high-performance electrocatalyst for oxygen evolution publication-title: Nano Energy. – volume: 3 start-page: 14971 year: 2019 end-page: 15005 ident: b0110 article-title: Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution publication-title: J. Mater. Chem. A. – volume: 848 year: 2019 ident: b1640 article-title: Ni and NiO in situ grown on sulfur and phosphorus co-doped graphene as effective bifunctional catalyst for hydrogen evolution publication-title: J. Electroanal. Chem. – volume: 33 start-page: 2004862 year: 2021 ident: b1705 article-title: MnO publication-title: Adv. Mater. – volume: 31 start-page: 2009070 year: 2021 ident: b0335 article-title: Recent progress of vacancy engineering for electrochemical energy conversion related applications publication-title: Adv. Funct. Mater. – volume: 30 start-page: 1910274 year: 2020 ident: b0615 article-title: Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction publication-title: Adv. Funct. Mater. – volume: 6 year: 2019 ident: b1170 article-title: Mn-doped Co publication-title: Mater. Res. Express. – volume: 416 start-page: 371 year: 2017 end-page: 378 ident: b1050 article-title: Ternary mixed metal Fe-doped NiCo publication-title: Appl. Surf. Sci. – volume: 56 start-page: 4575 year: 2020 end-page: 4578 ident: b0715 article-title: Modulation of crystal water in cobalt phosphate for promoted water oxidation publication-title: Chem. Commun. – volume: 440 year: 2022 ident: b0875 article-title: Surface and interface engineering of MoNi alloy nanograins bound to Mo-doped NiO nanosheets on 3D graphene foam for high-efficiency water splitting catalysis publication-title: Chem. Eng. J. – year: 2022 ident: b1260 article-title: Ru-doping modulated cobalt phosphide nanoarrays as efficient electrocatalyst for hydrogen evolution rection publication-title: J. Colloid Interface Sci. – volume: 303 year: 2022 ident: b1800 article-title: In-situ grown metal-organic framework-derived carbon-coated Fe-doped cobalt oxide nanocomposite on fluorine-doped tin oxide glass for acidic oxygen evolution reaction publication-title: Appl. Catal. B Environ. – volume: 116 start-page: 14120 year: 2016 end-page: 14136 ident: b0150 article-title: Earth-abundant heterogeneous water oxidation catalysts publication-title: Chem. Rev. – volume: 8 start-page: 25465 year: 2020 end-page: 25498 ident: b0880 article-title: Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting publication-title: J. Mater. Chem. A. – volume: 8 start-page: 12030 year: 2018 end-page: 12040 ident: b1080 article-title: Understanding synergism of cobalt metal and copper oxide toward highly efficient electrocatalytic oxygen evolution publication-title: ACS Catal. – volume: 388 year: 2020 ident: b1110 article-title: Synergy of Mn and Ni enhanced catalytic performance for toluene combustion over Ni-doped α-MnO publication-title: Chem. Eng. J. – volume: 892 year: 2022 ident: b1240 article-title: Copper-doped ruthenium oxide as highly efficient electrocatalysts for the evolution of oxygen in acidic media publication-title: J. Alloys Compd. – volume: 536 year: 2021 ident: b1250 article-title: Ru doped bimetallic phosphide derived from 2D metal organic framework as active and robust electrocatalyst for water splitting publication-title: Appl. Surf. Sci. – volume: 48 start-page: 3015 year: 2019 end-page: 3072 ident: b0605 article-title: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion publication-title: Chem. Soc. Rev. – volume: 45 start-page: 6416 year: 2020 end-page: 6424 ident: b1015 article-title: Autologous growth of Fe-doped Ni (OH) publication-title: Int. J. Hydrogen Energy. – volume: 10 start-page: 12341 year: 2022 end-page: 12349 ident: b1270 article-title: Nearly hollow Ru–Cu–MoO publication-title: J. Mater. Chem. A – volume: 26 start-page: 6423 year: 2020 end-page: 6436 ident: b0090 article-title: Earth-abundant transition-metal-based bifunctional electrocatalysts for overall water splitting in alkaline media publication-title: Chem. Eur. J. – volume: 541 year: 2021 ident: b1340 article-title: Morphology control of Co publication-title: Appl. Surf. Sci. – reference: nanoflowers on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting, Appl. Surf. Sci. 529 (2020). doi: 10.1016/j.apsusc.2020.146987. – volume: 8 start-page: 15951 year: 2020 end-page: 15961 ident: b0860 article-title: Catalytic activity atlas of ternary Co–Fe–V metal oxides for the oxygen evolution reaction publication-title: J. Mater. Chem. A. – volume: 165719 year: 2022 ident: b0180 article-title: Recent advances in transition metal selenides-based electrocatalysts: rational design and applications in water splitting publication-title: J. Alloys Compd. – volume: 48 start-page: 116 year: 2020 end-page: 121 ident: b0700 article-title: Anion-cation dual doping: An effective electronic modulation strategy of Ni publication-title: J. Energy Chem. – volume: 414 year: 2021 ident: b1370 article-title: Self-supported Co/CoO anchored on N-doped carbon composite as bifunctional electrocatalyst for efficient overall water splitting publication-title: Chem. Eng. J. – volume: 137 start-page: 2688 year: 2015 end-page: 2694 ident: b1380 article-title: In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 112 year: 2019 end-page: 118 ident: b0735 article-title: Coordination-assisted synthesis of iron-incorporated cobalt oxide nanoplates for enhanced oxygen evolution publication-title: Mater. Today Chem. – volume: 13 start-page: 20324 year: 2021 end-page: 20353 ident: b0835 article-title: Rational design of metal oxide catalysts for electrocatalytic water splitting publication-title: Nanoscale. – volume: 4 start-page: 7675 year: 2021 end-page: 7685 ident: b1765 article-title: Ru-doped CuO/MoS publication-title: ACS Appl. Nano Mater. – volume: 823 year: 2020 ident: b1130 article-title: Low Ni-doped Co publication-title: J. Alloys Compd. – reference: X. Li, X. Hao, A. Abudula, G. Guan, Nanostructured catalysts for electrochemical water splitting: Current state and prospects, J. Mater. Chem. A. 4 (31) (2016) 11973–12000, – volume: 424 year: 2021 ident: b0300 article-title: Defect-rich Fe-doped Co publication-title: Chem. Eng. J. – year: 2022 ident: b0575 article-title: Ru doping boosts electrocatalytic water splitting publication-title: Dalt. Trans. – volume: 32 start-page: 9591 year: 2020 end-page: 9601 ident: b1740 article-title: Boosting electrocatalytic HER activity of 3D interconnected CoSP via metal doping: active and stable electrocatalysts for pH-universal hydrogen generation publication-title: Chem. Mater. – volume: 405 year: 2021 ident: b1670 article-title: Engineering of oxygen vacancies regulated core-shell N-doped carbon@ NiFe publication-title: Chem. Eng. J. – volume: 218 start-page: 1700359 year: 2017 ident: b0440 article-title: Transition metal ion-induced high electrocatalytic performance of conducting polymer for oxygen and hydrogen evolution reactions publication-title: Macromol. Chem. Phys. – volume: 54 start-page: 409 year: 2018 end-page: 428 ident: b0415 article-title: Zinc oxide for solar water splitting: A brief review of the material’s challenges and associated opportunities publication-title: Nano Energy – volume: 124 start-page: 9971 year: 2020 end-page: 9978 ident: b1445 article-title: Microwave-induced plasma synthesis of defect-rich, highly ordered porous phosphorus-doped cobalt oxides for overall water electrolysis publication-title: J. Phys. Chem. C. – reference: A. Zunger, O.I. Malyi, Understanding doping of quantum materials, Chem. Rev. 121 (5) (2021) 3031 3060, doi: 10.1021/acs.chemrev.0c00608. – volume: 5 start-page: 5475 year: 2017 end-page: 5485 ident: b0870 article-title: Pt-like electrocatalytic behavior of Ru–MoO 2 nanocomposites for the hydrogen evolution reaction publication-title: J. Mater. Chem. A. – volume: 426 year: 2021 ident: b1615 article-title: Exploring the intrinsic active sites and multi oxygen evolution reaction step via unique hollow structures of nitrogen and sulfur co-doped amorphous cobalt and nickel oxides publication-title: Chem. Eng. J. – volume: 526 year: 2020 ident: b1360 article-title: Polyaniline engineering defect-induced nitrogen doped carbon-supported Co publication-title: Appl. Surf. Sci. – volume: 54 start-page: 129 year: 2018 end-page: 137 ident: b1085 article-title: Cobalt-doped MnO publication-title: Nano Energy – volume: 267 year: 2020 ident: b1685 article-title: Synchronously integration of Co, Fe dual-metal doping in Ru@ C and CDs for boosted water splitting performances in alkaline media publication-title: Appl. Catal. B Environ. – volume: 10 start-page: 7087 year: 2018 end-page: 7095 ident: b1570 article-title: Dual-functional starfish-like P-doped Co–Ni–S nanosheets supported on nickel foams with enhanced electrochemical performance and excellent stability for overall water splitting publication-title: ACS Appl. Mater. Interfaces. – volume: 8 start-page: 20802 year: 2016 end-page: 20813 ident: b1185 article-title: Ni-and Mn-promoted mesoporous Co publication-title: ACS Appl. Mater. Interfaces. – volume: 26 start-page: 3930 year: 2020 end-page: 3942 ident: b0555 article-title: Nonmetal doping as a robust route for boosting the hydrogen evolution of metal-based electrocatalysts publication-title: Chem. Eur. J. – volume: 13 start-page: 1824 year: 2021 end-page: 1833 ident: b1215 article-title: Cu-doped Ni publication-title: ChemCatChem. – volume: 11 start-page: 16 year: 2019 end-page: 28 ident: b0265 article-title: Recent advances in transition metal–based catalysts with heterointerfaces for energy conversion and storage publication-title: Mater. Today Chem. – volume: 9 start-page: 5320 year: 2021 end-page: 5363 ident: b0540 article-title: Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting publication-title: J. Mater. Chem. A – volume: 28 year: 2017 ident: b1375 article-title: N-doped nanoporous Co publication-title: Nanotechnology. – volume: 5 start-page: 2100834 year: 2021 ident: b0970 article-title: Structural variations of metal oxide-based electrocatalysts for oxygen evolution reaction publication-title: Small Methods. – volume: 6 start-page: 2883 year: 2018 end-page: 2887 ident: b1090 article-title: Co-doped CuO nanoarray: an efficient oxygen evolution reaction electrocatalyst with enhanced activity publication-title: ACS Sustain. Chem. Eng. – volume: 30 start-page: 1905252 year: 2020 ident: b0625 article-title: Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting publication-title: Adv. Funct. Mater. – volume: 31 year: 2020 ident: b0745 article-title: Nickel cobalt oxide nanowires with iron incorporation realizing a promising electrocatalytic oxygen evolution reaction publication-title: Nanotechnology. – volume: 268 year: 2020 ident: b1195 article-title: Mo doping induced metallic CoSe for enhanced electrocatalytic hydrogen evolution publication-title: Appl. Catal. B Environ. – volume: 30 year: 2021 ident: b1580 article-title: Oxygen vacancies and V co-doped Co publication-title: Chinese Phys. B – volume: 368 year: 2021 ident: b1210 article-title: Mo-doping induced edge-rich cobalt iron oxide ultrathin nanomeshes as efficient bifunctional electrocatalysts for overall water splitting publication-title: Electrochim. Acta. – volume: 56 start-page: 299 year: 2021 end-page: 342 ident: b0775 article-title: Tuning the electronic structure of the earth-abundant electrocatalysts for oxygen evolution reaction (OER) to achieve efficient alkaline water splitting– A review publication-title: J. Energy Chem. – volume: 8 start-page: 2236 year: 2018 end-page: 2241 ident: b1440 article-title: Phosphorus-doped Co publication-title: Acs Catal. – volume: 13 start-page: 765 year: 2021 end-page: 780 ident: b0485 article-title: Activation strategy of MoS publication-title: ACS Appl. Mater. Interfaces – volume: 50 start-page: 915 year: 2017 end-page: 923 ident: b0330 article-title: Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes publication-title: Acc. Chem. Res. – volume: 562 start-page: 363 year: 2020 end-page: 369 ident: b1310 article-title: W doping dominated NiO/NiS publication-title: J. Colloid Interface Sci. – volume: 121 start-page: 649 year: 2020 end-page: 735 ident: b0290 article-title: Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications publication-title: Chem. Rev. – volume: 9 start-page: 15506 year: 2021 end-page: 15521 ident: b0590 article-title: Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction publication-title: J. Mater. Chem. A – volume: 57 start-page: 2029 year: 2021 end-page: 2032 ident: b0645 article-title: Lanthanum-incorporated β-Ni(OH) publication-title: Chem. Commun. – volume: 30 start-page: 2003556 year: 2020 ident: b1695 article-title: others, Etching-doping sedimentation equilibrium strategy: accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting publication-title: Adv. Funct. Mater. – volume: 12 start-page: 51437 year: 2020 end-page: 51447 ident: b0865 article-title: Ultralow Ru-induced bimetal electrocatalysts with a Ru-enriched and mixed-valence surface anchored on a hollow carbon matrix for oxygen reduction and water splitting publication-title: ACS Appl. Mater. Interfaces. – volume: 13 start-page: 11120 year: 2021 end-page: 11127 ident: b0360 article-title: A mild reduction of Co-doped MnO publication-title: Nanoscale. – volume: 12 start-page: 24701 year: 2020 end-page: 24709 ident: b0840 article-title: Crystalline cobalt/amorphous LaCoO publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 2568 year: 2015 end-page: 2580 ident: b0845 article-title: Structural engineering of electrocatalysts for the hydrogen evolution reaction: order or disorder? publication-title: ChemCatChem. – volume: 119 start-page: 54 year: 2018 end-page: 61 ident: b1325 article-title: Mesoporous Ag-doped Co publication-title: Renew. Energy – volume: 71 year: 2020 ident: b0750 article-title: Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting publication-title: Nano Energy – volume: 304 year: 2022 ident: b0810 article-title: Vanadium-phosphorus incorporation induced interfacial modification on cobalt catalyst and its super electrocatalysis for water splitting in alkaline media publication-title: Appl. Catal. B Environ. – volume: 298 year: 2021 ident: b1405 article-title: Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting publication-title: Appl. Catal. B Environ. – volume: 17 start-page: 2002240 year: 2021 ident: b0450 article-title: Electronic structure tuning of 2D metal (hydr) oxides nanosheets for electrocatalysis publication-title: Small – volume: 447 year: 2021 ident: b1770 article-title: Modulating electronic structure of metal-organic framework derived catalysts for electrochemical water oxidation publication-title: Coord. Chem. Rev. – volume: 13 start-page: 11314 year: 2021 end-page: 11324 ident: b1775 article-title: Nonmetal-doping of noble metal-based catalysts for electrocatalysis publication-title: Nanoscale. – volume: 13 start-page: 14156 year: 2021 end-page: 14165 ident: b1575 article-title: Electronic modulation and proton transfer by iron and borate co-doping for synergistically triggering the oxygen evolution reaction on a hollow NiO bipyramidal prism publication-title: Nanoscale – volume: 427 year: 2021 ident: b0225 article-title: Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives publication-title: Coord. Chem. Rev. – volume: 120 start-page: 1085 year: 2020 end-page: 1145 ident: b0230 article-title: Catalysis with colloidal ruthenium nanoparticles publication-title: Chem. Rev. – volume: 49 start-page: 3072 year: 2020 end-page: 3106 ident: b0445 article-title: Metallic nanostructures with low dimensionality for electrochemical water splitting publication-title: Chem. Soc. Rev. – volume: 12 start-page: 838 year: 2018 end-page: 854 ident: b0205 article-title: Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting publication-title: Front. Chem. Sci. Eng. – volume: 6 start-page: 167 year: 2018 end-page: 178 ident: b1070 article-title: A Co-doped Ni–Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting publication-title: J. Mater. Chem. A. – volume: 120 start-page: 12217 year: 2020 end-page: 12314 ident: b0295 article-title: others, Advanced electrocatalysts with single-metal-atom active sites publication-title: Chem. Rev. – volume: 467 year: 2022 ident: b0185 article-title: Prospects of non-noble metal single atoms embedded in two-dimensional (2D) carbon and non-carbon-based structures in electrocatalytic applications publication-title: Coord. Chem. Rev. – year: 2022 ident: b0500 article-title: Recent advances in non-precious Ni-based promising catalysts for water splitting application publication-title: Int. J. Energy Res. – volume: 33 start-page: 2006328 year: 2021 ident: b0120 article-title: Recent development of oxygen evolution electrocatalysts in acidic environment publication-title: Adv. Mater. – volume: 99 year: 2022 ident: b1720 article-title: others, A dual-site doping strategy for developing efficient perovskite oxide electrocatalysts towards oxygen evolution reaction publication-title: Nano Energy. – volume: 80 year: 2021 ident: b0015 article-title: “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts publication-title: Nano Energy – volume: 9 start-page: 20131 year: 2021 end-page: 20163 ident: b0390 article-title: Tuning intrinsic catalytic activities of oxygen-evolution catalysts by doping: a comprehensive review publication-title: J. Mater. Chem. A – volume: 1 start-page: 66 year: 2021 end-page: 87 ident: b0220 article-title: Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis publication-title: SusMat. – volume: 426 year: 2021 ident: b1295 article-title: Synergistic engineering of morphology and electronic structure in constructing metal-organic framework-derived Ru doped cobalt-nickel oxide heterostructure towards efficient alkaline hydrogen evolution reaction publication-title: Chem. Eng. J. – volume: 1 start-page: 6279 year: 2018 end-page: 6287 ident: b1125 article-title: General approach of in situ etching and doping to synthesize a nickel-doped M publication-title: ACS Appl. Energy Mater. – volume: 4 start-page: 5417 year: 2020 end-page: 5432 ident: b0320 article-title: First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings publication-title: Sustain. Energy Fuels. – volume: 441 start-page: 1024 year: 2018 end-page: 1033 ident: b1205 article-title: 3D structured Mo-doped Ni publication-title: Appl. Surf. Sci. – volume: 59 start-page: 11814 year: 2020 end-page: 11822 ident: b1565 article-title: Hollow V-Doped CoM publication-title: Inorg. Chem. – volume: 117 start-page: 10121 year: 2017 end-page: 10211 ident: b0570 article-title: Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond publication-title: Chem. Rev. – reference: T. Asefa, Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts, A.c.c. Chem. Res. 49 (9) (2016) 1873–1883, doi: 10.1021/acs.accounts.6b00317. – volume: 58 start-page: 446 year: 2021 end-page: 462 ident: b0325 article-title: Modification strategies on transition metal-based electrocatalysts for efficient water splitting publication-title: J. Energy Chem. – volume: 9 start-page: 20518 year: 2021 end-page: 20529 ident: b0550 article-title: Ru/Mo publication-title: J. Mater. Chem. A. – volume: 5 start-page: 1908 year: 2020 end-page: 1915 ident: b0730 article-title: others, Electron density modulation of metallic MoO publication-title: ACS Energy Lett. – volume: 402 year: 2020 ident: b0755 article-title: Electronic modulation by N incorporation boosts the electrocatalytic performance of urchin-like Ni publication-title: Chem. Eng. J. – volume: 3 start-page: 66 year: 2020 end-page: 98 ident: b0515 article-title: Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications publication-title: ACS Appl. Energy Mater. – year: 2021 ident: b0145 article-title: Transition-metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives publication-title: Nanoscale. – volume: 10 start-page: 42453 year: 2018 end-page: 42468 ident: b1025 article-title: Remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities with trace-level Fe doping in Ni-and Co-layered double hydroxides for overall water-splitting publication-title: ACS Appl. Mater. Interfaces. – volume: 2 start-page: 4105 year: 2019 end-page: 4110 ident: b1145 article-title: Ni–Co codoped RuO publication-title: ACS Appl. Energy Mater. – volume: 137094 year: 2022 ident: b1410 article-title: Surface reconstruction of phosphorus-doped cobalt molybdate microarrays in electrochemical water splitting publication-title: Chem. Eng. J. – volume: 84 year: 2021 ident: b0660 article-title: others, Selective dopant segregation modulates mesoscale reaction kinetics in layered transition metal oxide publication-title: Nano Energy. – volume: 5 start-page: 6814 year: 2022 end-page: 6822 ident: b1390 article-title: Hierarchically self-supporting phosphorus-doped CoMoO publication-title: ACS Appl. Energy Mater. – volume: 303 year: 2022 ident: b1560 article-title: Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity publication-title: Appl. Catal. B Environ. – volume: 417 year: 2021 ident: b0770 article-title: Charge state manipulation induced through cation intercalation into MnO publication-title: Chem. Eng. J. – volume: 41 start-page: 772 year: 2017 end-page: 779 ident: b1530 article-title: Co-N-doped MoO publication-title: Nano Energy. – volume: 515 year: 2020 ident: b0395 article-title: Surface engineering by doping manganese into cobalt phosphide towards highly efficient bifunctional HER and OER electrocatalysis publication-title: Appl. Surf. Sci. – volume: 10 start-page: 1152 year: 2019 end-page: 1160 ident: b1190 article-title: Mn-doped RuO publication-title: ACS Catal. – volume: 537 year: 2021 ident: b1225 article-title: Preferential dissolution of copper from Cu-Mn oxides in strong acid medium: Effect of the starting binary oxide to get new efficient copper doped MnO publication-title: Appl. Surf. Sci. – reference: o – volume: 46 start-page: 33388 year: 2021 end-page: 33396 ident: b1395 article-title: Phosphorus-doping induced electronic modulation of CoS publication-title: Int. J. Hydrogen Energy. – volume: 444 year: 2021 ident: b1760 article-title: Material libraries for electrocatalytic overall water splitting publication-title: Coord. Chem. Rev. – volume: 11 start-page: 34819 year: 2019 end-page: 34826 ident: b0255 article-title: Electronic structure and crystalline phase dual modulation via anion-cation co-doping for boosting oxygen evolution with long-term stability under large current density publication-title: ACS Appl. Mater. Interfaces. – volume: 31 start-page: 1808167 year: 2019 ident: b0045 article-title: Support and interface effects in water-splitting electrocatalysts publication-title: Adv. Mater. – volume: 7 start-page: 2297 year: 2020 end-page: 2308 ident: b0495 article-title: Appropriate use of electrochemical impedance spectroscopy in water splitting electrocatalysis publication-title: ChemElectroChem. – volume: 73 year: 2020 ident: b0920 article-title: The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction publication-title: Nano Energy. – volume: 627 start-page: 891 year: 2022 end-page: 899 ident: b0800 article-title: Oriented interlayered charge transfer in NiCoFe layered double hydroxide/MoO publication-title: J. Colloid Interface Sci. – volume: 404 year: 2021 ident: b1460 article-title: Oxygen vacancies engineered self-supported B doped Co publication-title: Chem. Eng. J. – volume: 12 start-page: 2620 year: 2019 end-page: 2645 ident: b0005 article-title: Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting publication-title: Energy Environ. Sci. – volume: 585 start-page: 61 year: 2021 end-page: 71 ident: b1160 article-title: Promotional effect of Mn-doping on the catalytic performance of NiO sheets for the selective oxidation of styrene publication-title: J. Colloid Interface Sci. – volume: 8 start-page: 10096 year: 2020 end-page: 10129 ident: b0765 article-title: Activation strategies of water-splitting electrocatalysts publication-title: J. Mater. Chem. A – volume: 432 year: 2022 ident: b1300 article-title: Cathode electrochemically reconstructed V-doped CoO nanosheets for enhanced alkaline hydrogen evolution reaction publication-title: Chem. Eng. J. – volume: 120 start-page: 851 year: 2020 end-page: 918 ident: b0025 article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles publication-title: Chem. Rev. – volume: 32 start-page: 2001866 year: 2020 ident: b0385 article-title: Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions publication-title: Adv. Mater. – volume: 63 start-page: 1030 year: 2020 end-page: 1039 ident: b0670 article-title: Novel (Ni, Fe) S publication-title: Sci. China Chem. – volume: 303 start-page: 316 year: 2019 end-page: 322 ident: b1525 article-title: Engineering the electronic structure of Co publication-title: Electrochim. Acta. – volume: 10 start-page: 16 year: 2018 end-page: 23 ident: b0890 article-title: Design strategies for non-precious metal oxide electrocatalysts for oxygen evolution reactions publication-title: Curr. Opin. Electrochem. – volume: 31 start-page: 1803625 year: 2019 ident: b0375 article-title: Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting publication-title: Adv. Mater. – volume: 3 start-page: 1800211 year: 2019 ident: b0075 article-title: Rational design of transition metal-based materials for highly efficient electrocatalysis publication-title: Small Methods. – volume: 139 start-page: 15479 year: 2017 end-page: 15485 ident: b0655 article-title: Energy level engineering of MoS publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 8430 year: 2018 end-page: 8440 ident: b1150 article-title: Hierarchically porous Mo-doped Ni–Fe oxide nanowires efficiently catalyzing oxygen/hydrogen evolution reactions publication-title: J. Mater. Chem. A. – volume: 6 start-page: 1901308 year: 2019 ident: b1480 article-title: Sulfur-induced interface engineering of hybrid NiCo publication-title: Adv. Mater. Interfaces. – volume: 12 start-page: 436 year: 2022 end-page: 461 ident: b0640 article-title: Recent developments of Co publication-title: Catal. Sci. Technol. – volume: 405 year: 2021 ident: b1590 article-title: Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: Efficient electrocatalysts for oxygen evolution reaction publication-title: Chem. Eng. J. – reference: X. Shang, J.-H. Tang, B. Dong, Y. Sun, Recent advances of nonprecious and bifunctional electrocatalysts for overall water splitting, Sustain. Energy \& Fuels. 4 (7) (2020) 3211–3228. doi: 10.1039/D0SE00466A. – start-page: 2200173 year: 2022 ident: b0910 article-title: Ru/Rh cation doping and oxygen-vacancy engineering of FeOOH nanoarrays@ Ti publication-title: Small – volume: 13 start-page: 4294 year: 2020 end-page: 4309 ident: b0270 article-title: A review on non-noble metal based electrocatalysis for the oxygen evolution reaction publication-title: Arab. J. Chem. – volume: 33 start-page: 2000381 year: 2021 ident: b0475 article-title: Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions publication-title: Adv. Mater. – volume: 47 start-page: 14679 year: 2018 end-page: 14685 ident: b1155 article-title: MOF-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting publication-title: Dalt. Trans. – volume: 17 start-page: 2102777 year: 2021 ident: b1280 article-title: Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media publication-title: Small. – volume: 154099 year: 2022 ident: b1700 article-title: Synergistically enhancing electrocatalytic activity of Co publication-title: Appl. Surf. Sci. – volume: 28 start-page: 9266 year: 2016 end-page: 9291 ident: b0435 article-title: Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction publication-title: Adv. Mater. – volume: 47 start-page: 8787 year: 2018 end-page: 8793 ident: b1430 article-title: Superaerophobic P-doped Ni (OH) publication-title: Dalt. Trans. – volume: 9 start-page: 9973 year: 2019 end-page: 10011 ident: b0505 article-title: Recent advances and prospective in ruthenium-based materials for electrochemical water splitting publication-title: ACS Catal. – volume: 108207 year: 2022 ident: b0170 article-title: Investigation of recent progress in metal-based materials as catalysts toward electrochemical water splitting publication-title: J. Environ Chem. Eng. – volume: 285 year: 2021 ident: b1035 article-title: Engineering defect-rich Fe-doped NiO coupled Ni cluster nanotube arrays with excellent oxygen evolution activity publication-title: Appl. Catal. B Environ. – volume: 42 start-page: 317 year: 2021 end-page: 369 ident: b0425 article-title: Recent progress on transition metal oxides as advanced materials for energy conversion and storage publication-title: Energy Storage Mater. – volume: 7 start-page: 21704 year: 2019 end-page: 21710 ident: b1030 article-title: Oxygen defect engineering in cobalt iron oxide nanosheets for promoted overall water splitting publication-title: J. Mater. Chem. A. – reference: W. Wang, Z. Yang, F. Jiao, Y. Gong, (P, W)-codoped MoO – volume: 606 start-page: 1695 year: 2022 end-page: 1706 ident: b1200 article-title: Molybdenum doped induced amorphous phase in cobalt acid nickel for supercapacitor and oxygen evolution reaction publication-title: J. Colloid Interface Sci. – volume: 50 start-page: 7745 year: 2021 end-page: 7778 ident: b0975 article-title: Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts publication-title: Chem. Soc. Rev. – volume: 323 year: 2019 ident: b1550 article-title: Zeolitic-imidazolate-framework-derived Co@ Co publication-title: Electrochim. Acta – year: 2022 ident: b1520 article-title: Doping-engineered bifunctional oxygen electrocatalyst with Se/Fe-doped Co publication-title: J. Colloid Interface Sci. – volume: 13 start-page: 19840 year: 2021 end-page: 19856 ident: b0650 article-title: Recent advances in heteroatom doping of perovskite oxides for efficient electrocatalytic reactions publication-title: Nanoscale. – volume: 30 start-page: 2002533 year: 2020 ident: b1680 article-title: Molybdenum and phosphorous dual doping in cobalt monolayer interfacial assembled cobalt nanowires for efficient overall water splitting publication-title: Adv. Funct. Mater. – volume: 430 year: 2022 ident: b1605 article-title: Core-shell trimetallic NiFeV disulfides and amorphous high-valance NiFe hydroxide nanosheets enhancing oxygen evolution reaction publication-title: Chem. Eng. J. – volume: 14 start-page: 10 year: 2021 end-page: 32 ident: b0925 article-title: Oxygen-deficient cobalt-based oxides for electrocatalytic water splitting publication-title: ChemSusChem. – volume: 50 start-page: 5072 year: 2021 end-page: 5080 ident: b1365 article-title: N-doped NiO nanosheet arrays as efficient electrocatalysts for hydrogen evolution reaction publication-title: J. Electron. Mater. – volume: 46 start-page: 19962 year: 2021 end-page: 19970 ident: b1795 article-title: Double doping of V and F on Co publication-title: Int. J. Hydrogen Energy. – volume: 424 year: 2021 ident: b1555 article-title: Dual-defective Co publication-title: Chem. Eng. J. – volume: 12 start-page: 266 year: 2019 end-page: 281 ident: b0345 article-title: Incorporation of rare earth elements with transition metal–based materials for electrocatalysis: a review for recent progress publication-title: Mater. Today Chem. – volume: 118 start-page: 6337 year: 2018 end-page: 6408 ident: b0155 article-title: emerging two-dimensional nanomaterials for electrocatalysis publication-title: Chem. Rev. – volume: 52 start-page: 115 year: 2021 end-page: 120 ident: b0930 article-title: Chlorine-anion doping induced multi-factor optimization in perovskties for boosting intrinsic oxygen evolution publication-title: J. Energy Chem. – volume: 4 start-page: 17587 year: 2016 end-page: 17603 ident: b0040 article-title: A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting publication-title: J. Mater. Chem. A – reference: Y. Xia, C.T. Campbell, B. Roldan Cuenya, M. Mavrikakis, Introduction: Advanced materials and methods for catalysis and electrocatalysis by transition metals, Chem. Rev. 121 (2), (2021) 563–566, doi: 10.1021/acs.chemrev.0c01269. – volume: 610 start-page: 173 year: 2022 end-page: 181 ident: b0805 article-title: Motivating borate doped FeNi layered double hydroxides by molten salt method toward efficient oxygen evolution publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 9690 year: 2019 end-page: 9698 ident: b1175 article-title: In situ Mn-doping-promoted conversion of Co(OH) publication-title: ACS Sustain. Chem. Eng. – volume: 32 start-page: 2002235 year: 2020 ident: b1045 article-title: Metal atom-doped Co publication-title: Adv. Mater. – volume: 12 start-page: 11600 year: 2020 end-page: 11606 ident: b1120 article-title: Top-open hollow nanocubes of Ni-doped Cu oxides on Ni foam: scalable oxygen evolution electrode via galvanic displacement and face-selective etching publication-title: ACS Appl. Mater. Interfaces. – volume: 46 start-page: 37281 issue: 75 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1470 article-title: Enriched oxygen vacancy promoted heteroatoms (B, P, N, and S) doped CeO2: challenging electrocatalysts for oxygen evolution reaction (OER) in alkaline medium publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.09.003 – volume: 426 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1615 article-title: Exploring the intrinsic active sites and multi oxygen evolution reaction step via unique hollow structures of nitrogen and sulfur co-doped amorphous cobalt and nickel oxides publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130820 – volume: 12 start-page: 2620 issue: 9 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0005 article-title: Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01202H – volume: 9 start-page: 3786 issue: 7 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0125 article-title: Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA09495A – volume: 99 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1720 article-title: others, A dual-site doping strategy for developing efficient perovskite oxide electrocatalysts towards oxygen evolution reaction publication-title: Nano Energy. doi: 10.1016/j.nanoen.2022.107344 – volume: 7 start-page: 7280 issue: 13 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0905 article-title: Recent advances in anion-doped metal oxides for catalytic applications publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09913H – volume: 13 start-page: 121 issue: 1 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1490 article-title: Engineering defects and adjusting electronic structure on S doped MoO2 nanosheets toward highly active hydrogen evolution reaction publication-title: Nano Res. doi: 10.1007/s12274-019-2582-6 – volume: 536 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1250 article-title: Ru doped bimetallic phosphide derived from 2D metal organic framework as active and robust electrocatalyst for water splitting publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147952 – start-page: 1 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1790 article-title: Co3O4/stainless steel catalyst with synergistic effect of oxygen vacancies and phosphorus doping for overall water splitting publication-title: Tungsten. – volume: 118 start-page: 6337 issue: 13 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0155 article-title: emerging two-dimensional nanomaterials for electrocatalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00689 – volume: 425 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0935 article-title: Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131642 – volume: 7 start-page: 9690 issue: 10 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1175 article-title: In situ Mn-doping-promoted conversion of Co(OH)2 to Co3O4 as an active electrocatalyst for oxygen evolution reaction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b01468 – volume: 430 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0510 article-title: An overview of the active sites in transition metal electrocatalysts and their practical activity for hydrogen evolution reaction publication-title: Chem. Eng. J. – volume: 30 start-page: 1905252 issue: 7 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0625 article-title: Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905252 – volume: 121 start-page: 10271 issue: 17 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0135 article-title: Noble-metal-free multicomponent nanointegration for sustainable energy conversion publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01328 – volume: 388 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0490 article-title: In situ growing N and O co-doped helical carbon nanotubes encapsulated with CoFe alloy as tri-functional electrocatalyst applied in Zn–Air batteries driving water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138587 – volume: 42 start-page: 317 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0425 article-title: Recent progress on transition metal oxides as advanced materials for energy conversion and storage publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.07.007 – volume: 50 start-page: 2663 issue: 4 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0470 article-title: Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01191F – volume: 30 start-page: 1801351 issue: 29 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1220 article-title: Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media publication-title: Adv. Mater. doi: 10.1002/adma.201801351 – volume: 42 start-page: 1287 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0595 article-title: Amorphous nanomaterials in electrocatalytic water splitting publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63740-8 – volume: 303 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1560 article-title: Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120871 – volume: 3 start-page: 892 issue: 7 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1600 article-title: Phosphorus and aluminum codoped porous NiO nanosheets as highly efficient electrocatalysts for overall water splitting publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00174 – volume: 73 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0920 article-title: The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction publication-title: Nano Energy. doi: 10.1016/j.nanoen.2020.104761 – volume: 8 start-page: 13415 issue: 27 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0140 article-title: Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA05038E – volume: 298 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0740 article-title: Tuning electron correlations of RuO2 by co-doping of Mo and Ce for boosting electrocatalytic water oxidation in acidic media publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120528 – volume: 254 start-page: 634 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1655 article-title: CoNi based alloy/oxides@N-doped carbon core-shell dendrites as complementary water splitting electrocatalysts with significantly enhanced catalytic efficiency publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.05.035 – volume: 572 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1630 article-title: Rational construction of Ni/V-MoO2 heterostructured nanohybrids as high-performanced electrocatalysts for hydrogen evolution reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151482 – volume: 432 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1300 article-title: Cathode electrochemically reconstructed V-doped CoO nanosheets for enhanced alkaline hydrogen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134331 – volume: 426 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1745 article-title: Anion-cation-dual doped tremella-like nickel phosphides for electrocatalytic water oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130718 – volume: 26 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1095 article-title: Oxygen vacancies and band gap engineering of vertically aligned MnO2 porous nanosheets for efficient oxygen evolution reaction publication-title: Surfaces and Interfaces. doi: 10.1016/j.surfin.2021.101398 – volume: 13 start-page: 3299 issue: 12 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1330 article-title: Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting publication-title: Nano Res. doi: 10.1007/s12274-020-3006-3 – volume: 467 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0185 article-title: Prospects of non-noble metal single atoms embedded in two-dimensional (2D) carbon and non-carbon-based structures in electrocatalytic applications publication-title: Coord. Chem. Rev. – volume: 32 start-page: 2002235 issue: 31 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1045 article-title: Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution publication-title: Adv. Mater. doi: 10.1002/adma.202002235 – volume: 5 start-page: 5475 issue: 11 year: 2017 ident: 10.1016/j.ccr.2022.214864_b0870 article-title: Pt-like electrocatalytic behavior of Ru–MoO 2 nanocomposites for the hydrogen evolution reaction publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA09994G – volume: 14 start-page: 1803009 issue: 41 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0275 article-title: Ultrasmall Ru/Cu-doped RuO2 complex embedded in amorphous carbon skeleton as highly active bifunctional electrocatalysts for overall water splitting publication-title: Small doi: 10.1002/smll.201803009 – volume: 13 start-page: 11120 issue: 25 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0360 article-title: A mild reduction of Co-doped MnO2 to create abundant oxygen vacancies and active sites for enhanced oxygen evolution reaction publication-title: Nanoscale. doi: 10.1039/D1NR02324A – volume: 9 start-page: 13106 issue: 38 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1115 article-title: Triggering the intrinsic catalytic activity of Ni-doped molybdenum oxides via phase engineering for hydrogen evolution and application in Mg/seawater batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c05184 – volume: 447 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1770 article-title: Modulating electronic structure of metal-organic framework derived catalysts for electrochemical water oxidation publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214144 – volume: 46 start-page: 337 issue: 2 year: 2017 ident: 10.1016/j.ccr.2022.214864_b0200 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 6 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0535 article-title: A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction publication-title: Appl. Surf. Sci. Adv. doi: 10.1016/j.apsadv.2021.100184 – ident: 10.1016/j.ccr.2022.214864_b1450 doi: 10.1016/j.cej.2021.133941 – volume: 6 start-page: 11529 issue: 9 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1665 article-title: Molecule-assisted synthesis of highly dispersed ultrasmall RuO2 nanoparticles on nitrogen-doped carbon matrix as ultraefficient bifunctional electrocatalysts for overall water splitting publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01709 – volume: 3 start-page: 66 issue: 1 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0515 article-title: Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01965 – volume: 31 start-page: 2009070 issue: 9 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0335 article-title: Recent progress of vacancy engineering for electrochemical energy conversion related applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009070 – volume: 416 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0720 article-title: Ni-Mo based mixed-phase polyionic compounds nanorod arrays on nickel foam as advanced bifunctional electrocatalysts for water splitting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129127 – volume: 47 start-page: 8787 issue: 26 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1430 article-title: Superaerophobic P-doped Ni (OH)2/NiMoO4 hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting publication-title: Dalt. Trans. doi: 10.1039/C8DT00765A – volume: 6 start-page: 8430 issue: 18 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1150 article-title: Hierarchically porous Mo-doped Ni–Fe oxide nanowires efficiently catalyzing oxygen/hydrogen evolution reactions publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA00447A – volume: 1 start-page: 6279 issue: 11 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1125 article-title: General approach of in situ etching and doping to synthesize a nickel-doped MxOy (M = Co, Mn, Fe) nanosheets array on nickel foam as large-sized electrodes for overall water splitting publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01280 – volume: 11 start-page: 8198 issue: 14 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1465 article-title: Electrochemical oxidation of boron-doped nickel–iron layered double hydroxide for facile charge transfer in oxygen evolution electrocatalysts publication-title: RSC Adv. doi: 10.1039/D0RA10169A – volume: 424 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1555 article-title: Dual-defective Co3O4 nanoarrays enrich target intermediates and promise high-efficient overall water splitting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130328 – volume: 27 start-page: 5294 issue: 5 year: 2016 ident: 10.1016/j.ccr.2022.214864_b0280 article-title: Electro-catalyst based on cerium doped cobalt oxide for oxygen evolution reaction in electrochemical water splitting publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-016-4427-3 – volume: 25 start-page: 9 issue: 1 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0420 article-title: Major advances and challenges in heterogeneous catalysis for environmental applications: a review publication-title: Ecol. Chem. Eng. S. – volume: 254 start-page: 414 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0705 article-title: In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.04.089 – volume: 5 start-page: 1908 issue: 6 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0730 article-title: others, Electron density modulation of metallic MoO2 by Ni doping to produce excellent hydrogen evolution and oxidation activities in acid publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00642 – volume: 119 start-page: 54 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1325 article-title: Mesoporous Ag-doped Co3O4 nanowire arrays supported on FTO as efficient electrocatalysts for oxygen evolution reaction in acidic media publication-title: Renew. Energy doi: 10.1016/j.renene.2017.12.003 – volume: 404 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1460 article-title: Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126474 – volume: 31 start-page: 1900510 issue: 17 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0085 article-title: Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments publication-title: Adv. Mater. doi: 10.1002/adma.201900510 – volume: 1 start-page: 66 issue: 1 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0220 article-title: Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis publication-title: SusMat. doi: 10.1002/sus2.3 – volume: 3 start-page: 752 issue: 6 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0465 article-title: others, Regulating intrinsic electronic structures of transition-metal-based catalysts and the potential applications for electrocatalytic water splitting publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.0c00549 – volume: 30 start-page: 1910274 issue: 15 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0615 article-title: Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910274 – volume: 15 start-page: 3717 issue: 22 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0245 article-title: Recent progress on defect-rich transition metal oxides and their energy-related applications publication-title: Chem. Asian J. doi: 10.1002/asia.202000925 – volume: 31 start-page: 1803625 issue: 13 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0375 article-title: Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201803625 – volume: 6 issue: 11 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1170 article-title: Mn-doped Co3O4 nanoarrays as a promising electrocatalyst for oxygen evolution reaction publication-title: Mater. Res. Express. doi: 10.1088/2053-1591/ab45bd – volume: 48 start-page: 15 issue: 1 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0885 article-title: Defect engineering on electrocatalysts for gas-evolving reactions publication-title: Dalt. Trans. doi: 10.1039/C8DT04026E – ident: 10.1016/j.ccr.2022.214864_b1535 doi: 10.1002/eem2.12424 – volume: 100987 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0980 article-title: The nature of synergistic effects in transition metal oxides/in-situ intermediate hydroxides for enhanced oxygen evolution reaction publication-title: Curr. Opin. Electrochem. – volume: 405 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1590 article-title: Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: Efficient electrocatalysts for oxygen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126803 – volume: 562 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1510 article-title: Selectively Se-doped Co3O4@ CeO2 nanoparticle-dotted nanoneedle arrays for high-efficiency overall water splitting publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150227 – volume: 2 start-page: 2177 issue: 9 year: 2017 ident: 10.1016/j.ccr.2022.214864_b1620 article-title: others, High-valence-state NiO/Co3O4 nanoparticles on nitrogen-doped carbon for oxygen evolution at low overpotential publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00691 – volume: 218 start-page: 1700359 issue: 22 year: 2017 ident: 10.1016/j.ccr.2022.214864_b0440 article-title: Transition metal ion-induced high electrocatalytic performance of conducting polymer for oxygen and hydrogen evolution reactions publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201700359 – volume: 12 start-page: 436 issue: 2 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0640 article-title: Recent developments of Co3O4 -based materials as catalysts for the oxygen evolution reaction publication-title: Catal. Sci. Technol. doi: 10.1039/D1CY01688A – volume: 441 start-page: 1024 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1205 article-title: 3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.02.076 – volume: 9 start-page: 13459 issue: 23 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0565 article-title: Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis publication-title: J. Mater. Chem. A. doi: 10.1039/D1TA01108A – volume: 77 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1785 article-title: One-step electrodeposition of carbon quantum dots and transition metal ions for N-doped carbon coupled with NiFe oxide clusters: A high-performance electrocatalyst for oxygen evolution publication-title: Nano Energy. doi: 10.1016/j.nanoen.2020.105057 – volume: 285 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1035 article-title: Engineering defect-rich Fe-doped NiO coupled Ni cluster nanotube arrays with excellent oxygen evolution activity publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119809 – volume: 515 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0395 article-title: Surface engineering by doping manganese into cobalt phosphide towards highly efficient bifunctional HER and OER electrocatalysis publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146059 – volume: 13 start-page: 3361 issue: 10 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0010 article-title: Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02485F – volume: 3 start-page: 6156 issue: 7 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0340 article-title: Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c01035 – volume: 54 start-page: 409 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0415 article-title: Zinc oxide for solar water splitting: A brief review of the material’s challenges and associated opportunities publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.043 – volume: 338 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0665 article-title: Nickel incorporated Co9S8 nanosheet arrays on carbon cloth boosting overall urea electrolysis publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.135883 – ident: 10.1016/j.ccr.2022.214864_b0020 doi: 10.1126/science.aad4998 – volume: 17 start-page: 2102777 issue: 39 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1280 article-title: Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media publication-title: Small. doi: 10.1002/smll.202102777 – volume: 5 start-page: 2100834 issue: 12 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0970 article-title: Structural variations of metal oxide-based electrocatalysts for oxygen evolution reaction publication-title: Small Methods. doi: 10.1002/smtd.202100834 – volume: 469 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0175 article-title: Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: a review with insights on synthesis publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214666 – volume: 9 start-page: 9973 issue: 11 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0505 article-title: Recent advances and prospective in ruthenium-based materials for electrochemical water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.9b02457 – volume: 48 start-page: 116 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0700 article-title: Anion-cation dual doping: An effective electronic modulation strategy of Ni2P for high-performance oxygen evolution publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.12.027 – volume: 589 start-page: 127 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1690 article-title: Dual anions engineering on nickel cobalt-based catalyst for optimal hydrogen evolution electrocatalysis publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.12.098 – volume: 4 start-page: 1522 issue: 3 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1255 article-title: Temperature and doping-tuned coordination environments around electroactive centers in Fe-doped α(β)-Ni (OH)2 for excellent water splitting publication-title: Sustain. Energy Fuels doi: 10.1039/C9SE01172B – volume: 11 start-page: 34819 issue: 38 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0255 article-title: Electronic structure and crystalline phase dual modulation via anion-cation co-doping for boosting oxygen evolution with long-term stability under large current density publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.9b08060 – volume: 3 start-page: 1160 issue: 9 year: 2016 ident: 10.1016/j.ccr.2022.214864_b0955 article-title: others, Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction publication-title: Inorg. Chem. Front. doi: 10.1039/C6QI00198J – volume: 29 start-page: 1 issue: 33 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1385 article-title: Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902875 – volume: 267 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1685 article-title: Synchronously integration of Co, Fe dual-metal doping in Ru@ C and CDs for boosted water splitting performances in alkaline media publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.118657 – volume: 63 start-page: 1030 issue: 8 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0670 article-title: Novel (Ni, Fe) S2/(Ni, Fe)3S4 solid solution hybrid: an efficient electrocatalyst with robust oxygen-evolving performance publication-title: Sci. China Chem. doi: 10.1007/s11426-020-9770-5 – volume: 13 start-page: 1824 issue: 7 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1215 article-title: Cu-doped Ni3S2 interlaced nanosheet arrays as high-efficiency electrocatalyst boosting the alkaline hydrogen evolution publication-title: ChemCatChem. doi: 10.1002/cctc.202001838 – year: 2021 ident: 10.1016/j.ccr.2022.214864_b0145 article-title: Transition-metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives publication-title: Nanoscale. – volume: 120 start-page: 1085 issue: 2 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0230 article-title: Catalysis with colloidal ruthenium nanoparticles publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00434 – volume: 10 start-page: 4374 issue: 22 year: 2017 ident: 10.1016/j.ccr.2022.214864_b0350 article-title: Electrocatalytic metal–organic frameworks for energy applications publication-title: ChemSusChem. doi: 10.1002/cssc.201701420 – volume: 7 start-page: 2568 issue: 17 year: 2015 ident: 10.1016/j.ccr.2022.214864_b0845 article-title: Structural engineering of electrocatalysts for the hydrogen evolution reaction: order or disorder? publication-title: ChemCatChem. doi: 10.1002/cctc.201500396 – volume: 5 start-page: 1700464 issue: 2 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0965 article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions publication-title: Adv. Sci. doi: 10.1002/advs.201700464 – volume: 892 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1240 article-title: Copper-doped ruthenium oxide as highly efficient electrocatalysts for the evolution of oxygen in acidic media publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.162113 – volume: 537 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1225 article-title: Preferential dissolution of copper from Cu-Mn oxides in strong acid medium: Effect of the starting binary oxide to get new efficient copper doped MnO2 catalysts in toluene oxidation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147993 – year: 2022 ident: 10.1016/j.ccr.2022.214864_b0610 article-title: Electrochemical preparation of nano/micron structure transition metal-based catalysts for the oxygen evolution reaction publication-title: Mater. Horizons. doi: 10.1039/D2MH00075J – volume: 13 start-page: 20324 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0835 article-title: Rational design of metal oxide catalysts for electrocatalytic water splitting publication-title: Nanoscale. doi: 10.1039/D1NR06285A – volume: 416 start-page: 371 year: 2017 ident: 10.1016/j.ccr.2022.214864_b1050 article-title: Ternary mixed metal Fe-doped NiCo2O4 nanowires as efficient electrocatalysts for oxygen evolution reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.04.204 – ident: 10.1016/j.ccr.2022.214864_b0620 doi: 10.1021/acs.chemrev.0c00608 – volume: 298 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1405 article-title: Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120494 – volume: 848 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1640 article-title: Ni and NiO in situ grown on sulfur and phosphorus co-doped graphene as effective bifunctional catalyst for hydrogen evolution publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.113306 – ident: 10.1016/j.ccr.2022.214864_b0060 doi: 10.1039/D0SE00466A – volume: 9 start-page: 19465 issue: 35 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0405 article-title: others, The electronic structure of transition metal oxides for oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/D1TA03732C – volume: 46 start-page: 33388 issue: 47 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1395 article-title: Phosphorus-doping induced electronic modulation of CoS2–MoS2 hollow spheres on MoO2 film-Mo foil for synergistically boosting alkaline hydrogen evolution reaction publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2021.07.156 – volume: 47 start-page: 216 issue: 1 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1515 article-title: Se-doped cobalt oxide nanoparticle as highly-efficient electrocatalyst for oxygen evolution reaction publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2021.10.001 – volume: 69 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0695 article-title: Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104453 – volume: 7 start-page: 6161 issue: 11 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1165 article-title: Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA12238E – volume: 45 start-page: 6416 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1015 article-title: Autologous growth of Fe-doped Ni (OH)2 nanosheets with low overpotential for oxygen evolution reaction publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2019.12.156 – volume: 47 start-page: 14679 issue: 41 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1155 article-title: MOF-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting publication-title: Dalt. Trans. doi: 10.1039/C8DT02706D – volume: 10 start-page: 12341 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1270 article-title: Nearly hollow Ru–Cu–MoO2 octahedrons consisting of clusters and nanocrystals for high efficiency hydrogen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/D2TA01699K – ident: 10.1016/j.ccr.2022.214864_b1320 doi: 10.1021/acssuschemeng.8b04814 – volume: 11 start-page: 4420 issue: 17 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1245 article-title: Bimetal-organic framework derived high-valence-state Cu-doped Co3O4 porous nanosheet arrays for efficient oxygen evolution and water splitting publication-title: ChemCatChem. doi: 10.1002/cctc.201900834 – volume: 43 start-page: 2091 issue: 8 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1755 article-title: Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(21)64052-4 – volume: 14 start-page: 1802760 issue: 41 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1455 article-title: Disordering the atomic structure of Co (II) Oxide via B-doping: an efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts publication-title: Small doi: 10.1002/smll.201802760 – volume: 165719 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0180 article-title: Recent advances in transition metal selenides-based electrocatalysts: rational design and applications in water splitting publication-title: J. Alloys Compd. – volume: 10 start-page: 3782 issue: 7 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0710 article-title: Modulating heterointerfaces of tungsten incorporated CoSe/Co3O 4 as a highly efficient electrocatalyst for overall water splitting publication-title: J. Mater. Chem. A. doi: 10.1039/D1TA09932A – volume: 8 start-page: 2236 issue: 3 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1440 article-title: Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting publication-title: Acs Catal. doi: 10.1021/acscatal.7b03594 – volume: 7 start-page: 11901 issue: 13 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1610 article-title: Anion–cation double doped Co3O4 microtube architecture to promote high-valence Co species formation for enhanced oxygen evolution reaction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02558 – volume: 56 start-page: 4196 issue: 30 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0785 article-title: Confinement of fluorine anions in nickel-based catalysts for greatly enhancing oxygen evolution activity publication-title: Chem. Commun. doi: 10.1039/D0CC01215G – volume: 402 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0755 article-title: Electronic modulation by N incorporation boosts the electrocatalytic performance of urchin-like Ni5P4 hollow microspheres for hydrogen evolution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126302 – volume: 32 start-page: 2001866 issue: 46 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0385 article-title: Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions publication-title: Adv. Mater. doi: 10.1002/adma.202001866 – volume: 13 start-page: 42944 issue: 36 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1350 article-title: Bifunctional catalyst derived from sulfur-doped VMoOx nanolayer shelled Co nanosheets for efficient water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c13488 – volume: 8 start-page: 25465 issue: 48 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0880 article-title: Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA08802A – volume: 420 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1275 article-title: Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129805 – volume: 32 start-page: 63 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1780 article-title: Fe-doped Co3O4@C nanoparticles derived from layered double hydroxide used as efficient electrocatalyst for oxygen evolution reaction publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.06.014 – volume: 8 start-page: 14944 issue: 30 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1305 article-title: Flexible and free-standing hetero-electrocatalyst of high-valence-cation doped MoS2/MoO2/CNT foam with synergistically enhanced hydrogen evolution reaction catalytic activity publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02538K – volume: 132 start-page: 17372 issue: 39 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0815 article-title: Heterostructured inter-doped ruthenium-cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting publication-title: Angew. Chem. doi: 10.1002/ange.202005436 – volume: 3 start-page: 1800211 issue: 1 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0075 article-title: Rational design of transition metal-based materials for highly efficient electrocatalysis publication-title: Small Methods. doi: 10.1002/smtd.201800211 – volume: 5 start-page: 1793 issue: 2 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1495 article-title: Construction of Fe2O3 nanosheet arrays by sulfur doping toward efficient alkaline hydrogen evolution publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c03233 – volume: 10 start-page: 20384 issue: 43 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0690 article-title: Morphology and electronic structure modulation induced by fluorine doping in nickel-based heterostructures for robust bifunctional electrocatalysis publication-title: Nanoscale doi: 10.1039/C8NR06756B – volume: 8 start-page: 15951 issue: 31 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0860 article-title: Catalytic activity atlas of ternary Co–Fe–V metal oxides for the oxygen evolution reaction publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA04088F – volume: 48 start-page: 3015 issue: 11 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0605 article-title: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00904J – volume: 32 start-page: 2002435 issue: 44 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0100 article-title: Active site engineering in porous electrocatalysts publication-title: Adv. Mater. doi: 10.1002/adma.202002435 – volume: 9 start-page: 20131 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0390 article-title: Tuning intrinsic catalytic activities of oxygen-evolution catalysts by doping: a comprehensive review publication-title: J. Mater. Chem. A doi: 10.1039/D1TA04032D – volume: 607 start-page: 1091 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1265 article-title: others, Progress in the development of heteroatom-doped nickel phosphates for electrocatalytic water splitting publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.09.032 – volume: 11 start-page: 112 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0735 article-title: Coordination-assisted synthesis of iron-incorporated cobalt oxide nanoplates for enhanced oxygen evolution publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2018.10.010 – volume: 30 start-page: 2003261 issue: 34 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0080 article-title: Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003261 – volume: 10 start-page: 16 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0890 article-title: Design strategies for non-precious metal oxide electrocatalysts for oxygen evolution reactions publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.03.015 – volume: 108207 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0170 article-title: Investigation of recent progress in metal-based materials as catalysts toward electrochemical water splitting publication-title: J. Environ Chem. Eng. – volume: 135 start-page: 17881 issue: 47 year: 2013 ident: 10.1016/j.ccr.2022.214864_b0635 article-title: Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408329q – volume: 4 start-page: 7675 issue: 8 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1765 article-title: Ru-doped CuO/MoS2 nanostructures as bifunctional water-splitting electrocatalysts in alkaline media publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c00791 – volume: 414 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1370 article-title: Self-supported Co/CoO anchored on N-doped carbon composite as bifunctional electrocatalyst for efficient overall water splitting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128804 – volume: 30 issue: 10 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1580 article-title: Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis publication-title: Chinese Phys. B doi: 10.1088/1674-1056/ac1339 – volume: 139 start-page: 15479 issue: 43 year: 2017 ident: 10.1016/j.ccr.2022.214864_b0655 article-title: Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08881 – volume: 50 start-page: 7745 issue: 13 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0975 article-title: Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00135C – year: 2022 ident: 10.1016/j.ccr.2022.214864_b0575 article-title: Ru doping boosts electrocatalytic water splitting publication-title: Dalt. Trans. doi: 10.1039/D2DT01394K – volume: 6 start-page: 1901308 issue: 21 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1480 article-title: Sulfur-induced interface engineering of hybrid NiCo2O4@ NiMo2S4 structure for overall water splitting and flexible hybrid energy storage publication-title: Adv. Mater. Interfaces. doi: 10.1002/admi.201901308 – ident: 10.1016/j.ccr.2022.214864_b0055 doi: 10.1039/C6TA02334G – volume: 30 start-page: 2003556 issue: 35 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1695 article-title: others, Etching-doping sedimentation equilibrium strategy: accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003556 – volume: 307 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0915 article-title: Ru-incorporated oxygen-vacancy-enriched MoO2 electrocatalysts for hydrogen evolution reaction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2022.121204 – volume: 32 start-page: 9591 issue: 22 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1740 article-title: Boosting electrocatalytic HER activity of 3D interconnected CoSP via metal doping: active and stable electrocatalysts for pH-universal hydrogen generation publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c03052 – volume: 405 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1235 article-title: Synergy of copper doping and oxygen vacancies in porous CoOOH nanoplates for efficient water oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126198 – volume: 7 start-page: 2297 issue: 10 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0495 article-title: Appropriate use of electrochemical impedance spectroscopy in water splitting electrocatalysis publication-title: ChemElectroChem. doi: 10.1002/celc.202000515 – volume: 58 start-page: 244 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0530 article-title: Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction publication-title: Nano Energy. doi: 10.1016/j.nanoen.2019.01.017 – volume: 304 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0810 article-title: Vanadium-phosphorus incorporation induced interfacial modification on cobalt catalyst and its super electrocatalysis for water splitting in alkaline media publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120985 – volume: 6 start-page: 2883 issue: 3 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1090 article-title: Co-doped CuO nanoarray: an efficient oxygen evolution reaction electrocatalyst with enhanced activity publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b03752 – volume: 56 start-page: 11910 issue: 80 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0855 article-title: Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction publication-title: Chem. Commun. doi: 10.1039/D0CC05272H – volume: 562 start-page: 363 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1310 article-title: W doping dominated NiO/NiS2 interfaced nanosheets for highly efficient overall water splitting publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.12.044 – volume: 9 start-page: 5180 issue: 5 year: 2015 ident: 10.1016/j.ccr.2022.214864_b1040 article-title: Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting publication-title: ACS Nano doi: 10.1021/acsnano.5b00520 – ident: 10.1016/j.ccr.2022.214864_b0195 doi: 10.1021/acsami.1c02129 – volume: 31 issue: 43 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0745 article-title: Nickel cobalt oxide nanowires with iron incorporation realizing a promising electrocatalytic oxygen evolution reaction publication-title: Nanotechnology. doi: 10.1088/1361-6528/aba3d9 – volume: 11 issue: 5 year: 2016 ident: 10.1016/j.ccr.2022.214864_b0895 article-title: Work function tuning in hydrothermally synthesized vanadium-doped MoO3 and Co3O4 mesostructures for energy conversion devices publication-title: Appl. Sci. doi: 10.3390/app11052016 – volume: 7 start-page: 18055 issue: 21 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1335 article-title: Activating inert ZnO by surface cobalt doping for efficient water oxidation in neutral media publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b04996 – volume: 9 start-page: 15506 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0590 article-title: Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/D1TA03452A – volume: 66 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1010 article-title: In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting publication-title: Nano Energy. doi: 10.1016/j.nanoen.2019.104118 – volume: 6 start-page: 1707 issue: 9 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1710 article-title: W-Doped MoO2/MoC Hybrids encapsulated by P-doped carbon shells for enhanced electrocatalytic hydrogen evolution publication-title: Energy Technol. doi: 10.1002/ente.201700851 – ident: 10.1016/j.ccr.2022.214864_b0235 doi: 10.1021/acs.accounts.6b00317 – volume: 10 start-page: 1152 issue: 2 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1190 article-title: Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media publication-title: ACS Catal. doi: 10.1021/acscatal.9b04922 – volume: 6 start-page: 16121 issue: 33 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0520 article-title: Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA05054F – volume: 11 start-page: 1 issue: 22 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0310 article-title: Dopants in the design of noble metal nanoparticle electrocatalysts and their effect on surface energy and coordination chemistry at the nanocrystal surface publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100265 – volume: 585 start-page: 61 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1160 article-title: Promotional effect of Mn-doping on the catalytic performance of NiO sheets for the selective oxidation of styrene publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.11.069 – volume: 417 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0770 article-title: Charge state manipulation induced through cation intercalation into MnO2 sheet arrays for efficient water splitting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127894 – volume: 541 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1340 article-title: Morphology control of Co3O4 with nickel incorporation for highly efficient oxygen evolution reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148221 – volume: 298 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1675 article-title: Modulating electronic structure of cobalt phosphide porous nanofiber by ruthenium and nickel dual doping for highly-efficiency overall water splitting at high current density publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120488 – volume: 514 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1285 article-title: Rational design of Ru aerogel and RuCo aerogels with abundant oxygen vacancies for hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2021.230600 – volume: 140 start-page: 7748 issue: 25 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0165 article-title: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04546 – volume: 4 start-page: 6486 issue: 4 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0455 article-title: Electrocatalytic water splitting through the NixSy self-grown superstructures obtained via a wet chemical sulfurization process publication-title: ACS Omega doi: 10.1021/acsomega.9b00132 – volume: 12 start-page: 4618 issue: 18 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1650 article-title: Two-dimensional nanosheet structure of Co, S Co-doped carbon-framework supported MoO2 for hydrogen evolution reaction in alkaline solutions publication-title: ChemCatChem. doi: 10.1002/cctc.202000526 – volume: 140 start-page: 7748 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0105 article-title: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04546 – volume: 4 start-page: 5417 issue: 11 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0320 article-title: First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings publication-title: Sustain. Energy Fuels. doi: 10.1039/D0SE01087A – volume: 56 start-page: 4575 issue: 33 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0715 article-title: Modulation of crystal water in cobalt phosphate for promoted water oxidation publication-title: Chem. Commun. doi: 10.1039/D0CC01023E – volume: 11 start-page: 2002731 issue: 4 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1140 article-title: Formation of FeOOH nanosheets induces substitutional doping of CeO2- x with high-valence ni for efficient water oxidation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002731 – volume: 303 start-page: 316 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1525 article-title: Engineering the electronic structure of Co3O4 by carbon-doping for efficient overall water splitting publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2019.02.091 – volume: 9 start-page: e202101140 issue: 5 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0760 article-title: Boosting surface reconstruction for the oxygen evolution reaction: a combined effect of heteroatom incorporation and anion etching in cobalt silicate precatalyst publication-title: ChemElectroChem. doi: 10.1002/celc.202200080 – volume: 323 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1550 article-title: Zeolitic-imidazolate-framework-derived Co@ Co3O4 embedded into iron, nitrogen, sulfur Co-doped reduced graphene oxide as efficient electrocatalysts for overall water splitting and zinc-air batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134821 – volume: 457 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0430 article-title: Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214389 – volume: 13 start-page: 14156 issue: 33 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1575 article-title: Electronic modulation and proton transfer by iron and borate co-doping for synergistically triggering the oxygen evolution reaction on a hollow NiO bipyramidal prism publication-title: Nanoscale doi: 10.1039/D1NR03500B – volume: 9 start-page: 5320 issue: 9 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0540 article-title: Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/D0TA12152E – volume: 139 start-page: 8320 issue: 24 year: 2017 ident: 10.1016/j.ccr.2022.214864_b1180 article-title: Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03507 – volume: 33 start-page: 2006328 issue: 20 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0120 article-title: Recent development of oxygen evolution electrocatalysts in acidic environment publication-title: Adv. Mater. doi: 10.1002/adma.202006328 – ident: 10.1016/j.ccr.2022.214864_b0210 doi: 10.1021/acs.chemrev.0c01269 – volume: 58 start-page: 446 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0325 article-title: Modification strategies on transition metal-based electrocatalysts for efficient water splitting publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.10.010 – volume: 50 start-page: 5072 issue: 9 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1365 article-title: N-doped NiO nanosheet arrays as efficient electrocatalysts for hydrogen evolution reaction publication-title: J. Electron. Mater. doi: 10.1007/s11664-021-09053-w – volume: 2 start-page: 4105 issue: 6 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1145 article-title: Ni–Co codoped RuO2 with outstanding oxygen evolution reaction performance publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00266 – volume: 12 start-page: 2200029 issue: 23 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1415 article-title: P and Mo dual doped ru ultrasmall nanoclusters embedded in p-doped porous carbon toward efficient hydrogen evolution reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200029 – volume: 59 start-page: 14664 issue: 34 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1500 article-title: Sulfur-modified oxygen vacancies in iron–cobalt oxide nanosheets: enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark publication-title: Angew. Chemie Int. Ed. doi: 10.1002/anie.202006546 – volume: 8 start-page: 6222 issue: 16 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1635 article-title: V-Doping triggered formation and structural evolution of dendritic Ni3S2@ NiO core–shell nanoarrays for accelerating alkaline water splitting publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b06959 – volume: 50 start-page: 9817 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0410 article-title: Doping regulation in transition metal compounds for electrocatalysis publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00330E – volume: 34 start-page: 13491 issue: 11 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0525 article-title: A review on advanced FeNi-based catalysts for water splitting reaction publication-title: Energy & Fuels doi: 10.1021/acs.energyfuels.0c03084 – volume: 424 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0300 article-title: Defect-rich Fe-doped Co3O4 derived from bimetallic-organic framework as an enhanced electrocatalyst for oxygen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130400 – volume: 121 start-page: 649 issue: 2 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0290 article-title: Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00454 – volume: 10 start-page: 42453 issue: 49 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1025 article-title: Remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities with trace-level Fe doping in Ni-and Co-layered double hydroxides for overall water-splitting publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.8b16425 – volume: 89 start-page: 500 issue: 2 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1315 article-title: Efficient, highly stable Zn-doped NiO nanocluster electrocatalysts for electrochemical water splitting applications publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-018-4886-5 – year: 2022 ident: 10.1016/j.ccr.2022.214864_b0600 article-title: Catalyst activation: Surface doping effects of group VI transition metal dichalcogenides towards hydrogen evolution reaction in acidic media publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.04.023 – volume: 137094 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1410 article-title: Surface reconstruction of phosphorus-doped cobalt molybdate microarrays in electrochemical water splitting publication-title: Chem. Eng. J. – volume: 405 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1670 article-title: Engineering of oxygen vacancies regulated core-shell N-doped carbon@ NiFe2O4 nanospheres: A superior bifunctional electrocatalyst for boosting the kinetics of oxygen and hydrogen evaluation reactions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126732 – volume: 12 start-page: 51437 issue: 46 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0865 article-title: Ultralow Ru-induced bimetal electrocatalysts with a Ru-enriched and mixed-valence surface anchored on a hollow carbon matrix for oxygen reduction and water splitting publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.0c14521 – volume: 50 start-page: 6500 issue: 19 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0065 article-title: Recasting Ni-foam into NiF2 nanorod arrays via a hydrothermal process for hydrogen evolution reaction application publication-title: Dalt. Trans. doi: 10.1039/D1DT00654A – volume: 56 start-page: 299 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0775 article-title: Tuning the electronic structure of the earth-abundant electrocatalysts for oxygen evolution reaction (OER) to achieve efficient alkaline water splitting– A review publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.08.001 – volume: 9 start-page: 8576 issue: 13 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0790 article-title: Superassembly of NiCoOx solid solution hybrids with a 2D/3D porous polyhedron-on-sheet structure for multi-functional electrocatalytic oxidation publication-title: J. Mater. Chem. A doi: 10.1039/D1TA00043H – ident: 10.1016/j.ccr.2022.214864_b1645 doi: 10.1016/j.apsusc.2020.146987 – volume: 154099 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1700 article-title: Synergistically enhancing electrocatalytic activity of Co2P by Cr doping and P vacancies for overall water splitting publication-title: Appl. Surf. Sci. – volume: 292 start-page: 247 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1735 article-title: Selenium phosphorus co-doped cobalt oxide nanosheets anhored on Co foil: a self-supported and stable bifunctional electrode for efficient electrochemical water splitting publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2018.09.162 – volume: 117 start-page: 6225 issue: 9 year: 2017 ident: 10.1016/j.ccr.2022.214864_b0370 article-title: recent advances in ultrathin two-dimensional nanomaterials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00558 – volume: 9 start-page: 6432 issue: 10 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0780 article-title: Surface reconstruction induced in situ phosphorus doping in nickel oxides for an enhanced oxygen evolution reaction publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA10925H – volume: 44 start-page: 623 issue: 3 year: 2015 ident: 10.1016/j.ccr.2022.214864_b1345 article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00236A – volume: 28 start-page: 9266 issue: 42 year: 2016 ident: 10.1016/j.ccr.2022.214864_b0435 article-title: Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction publication-title: Adv. Mater. doi: 10.1002/adma.201602270 – volume: 12 start-page: 266 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0345 article-title: Incorporation of rare earth elements with transition metal–based materials for electrocatalysis: a review for recent progress publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2019.02.002 – volume: 52 start-page: 115 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0930 article-title: Chlorine-anion doping induced multi-factor optimization in perovskties for boosting intrinsic oxygen evolution publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.03.055 – volume: 119 start-page: 1921 issue: 4 year: 2015 ident: 10.1016/j.ccr.2022.214864_b1715 article-title: Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution publication-title: J. Phys. Chem. C. doi: 10.1021/jp511561k – ident: 10.1016/j.ccr.2022.214864_b0035 doi: 10.1039/C7EE03457A – volume: 7 start-page: 5875 issue: 11 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1355 article-title: Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA12477A – volume: 5 start-page: 2964 issue: 11 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0685 article-title: The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI00867A – volume: 4 start-page: 805 issue: 4 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0380 article-title: Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00348 – volume: 15 start-page: 186 issue: 1 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0945 article-title: others, Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage publication-title: Nano Res. doi: 10.1007/s12274-021-3455-3 – volume: 117 start-page: 10121 issue: 15 year: 2017 ident: 10.1016/j.ccr.2022.214864_b0570 article-title: Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00051 – volume: 26 start-page: 6423 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0090 article-title: Earth-abundant transition-metal-based bifunctional electrocatalysts for overall water splitting in alkaline media publication-title: Chem. Eur. J. doi: 10.1002/chem.202000209 – volume: 606 start-page: 1695 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1200 article-title: Molybdenum doped induced amorphous phase in cobalt acid nickel for supercapacitor and oxygen evolution reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.151 – volume: 13 start-page: 765 issue: 1 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0485 article-title: Activation strategy of MoS2 as HER electrocatalyst through doping-induced lattice strain, band gap engineering, and active crystal plane design publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c20500 – volume: 496 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1485 article-title: Highly efficient and robust sulfur-doped nickel-cobalt oxide towards oxygen evolution reaction publication-title: Mol. Catal. – volume: 30 start-page: 2000503 issue: 27 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0940 article-title: Recent advances in non-noble bifunctional oxygen electrocatalysts toward large-scale production publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000503 – volume: 368 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1210 article-title: Mo-doping induced edge-rich cobalt iron oxide ultrathin nanomeshes as efficient bifunctional electrocatalysts for overall water splitting publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2020.137651 – volume: 11 start-page: 5361 issue: 10 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0240 article-title: Doping strategy, properties and application of heteroatom-doped ordered mesoporous carbon publication-title: RSC Adv. doi: 10.1039/D0RA08993A – volume: 54 start-page: 129 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1085 article-title: Cobalt-doped MnO2 ultrathin nanosheets with abundant oxygen vacancies supported on functionalized carbon nanofibers for efficient oxygen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.008 – volume: 268 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1195 article-title: Mo doping induced metallic CoSe for enhanced electrocatalytic hydrogen evolution publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118467 – volume: 42 start-page: 1876 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0560 article-title: Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63855-X – volume: 116 start-page: 14120 issue: 22 year: 2016 ident: 10.1016/j.ccr.2022.214864_b0150 article-title: Earth-abundant heterogeneous water oxidation catalysts publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00398 – volume: 45 start-page: 30404 issue: 55 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1425 article-title: Stoichiometry control and phosphorus doping as strategies for the enhancement of nickel iron spinel oxides as electrocatalysts for water oxidation publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.08.019 – volume: 49 start-page: 3072 issue: 10 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0445 article-title: Metallic nanostructures with low dimensionality for electrochemical water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00013B – volume: 298 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1730 article-title: MoO3 crystal facets modulation by doping heteroatom Fe from polyoxometalate for quasi-industrial oxygen evolution reaction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120582 – volume: 3 start-page: 14971 issue: 29 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0110 article-title: Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution publication-title: J. Mater. Chem. A. doi: 10.1039/C9TA03220G – volume: 10 start-page: 7087 issue: 8 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1570 article-title: Dual-functional starfish-like P-doped Co–Ni–S nanosheets supported on nickel foams with enhanced electrochemical performance and excellent stability for overall water splitting publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.7b18403 – volume: 13 start-page: 4294 issue: 2 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0270 article-title: A review on non-noble metal based electrocatalysis for the oxygen evolution reaction publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2019.08.006 – volume: 390 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1135 article-title: Boosting the electrochemical water splitting on Co3O4 through surface decoration of epitaxial S-doped CoO layers publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124591 – volume: 66 start-page: 829 issue: 8 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0480 article-title: A review of transition metal-based bifunctional oxygen electrocatalysts publication-title: J. Chinese Chem. Soc. doi: 10.1002/jccs.201900001 – volume: 59 start-page: 11814 issue: 16 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1565 article-title: Hollow V-Doped CoMx(M= P, S, O) Nanoboxes as Efficient OER Electrocatalysts for Overall Water Splitting publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c01832 – volume: 57 start-page: 2029 issue: 16 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0645 article-title: Lanthanum-incorporated β-Ni(OH)2 nanoarrays for robust urea electro-oxidation publication-title: Chem. Commun. doi: 10.1039/D0CC07969C – volume: 14 start-page: 10 issue: 1 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0925 article-title: Oxygen-deficient cobalt-based oxides for electrocatalytic water splitting publication-title: ChemSusChem. doi: 10.1002/cssc.202002002 – volume: 26 start-page: 3930 issue: 18 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0555 article-title: Nonmetal doping as a robust route for boosting the hydrogen evolution of metal-based electrocatalysts publication-title: Chem. Eur. J. doi: 10.1002/chem.201902998 – volume: 12 start-page: 838 issue: 4 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0205 article-title: Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting publication-title: Front. Chem. Sci. Eng. doi: 10.1007/s11705-018-1746-3 – volume: 7 start-page: 21704 issue: 38 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1030 article-title: Oxygen defect engineering in cobalt iron oxide nanosheets for promoted overall water splitting publication-title: J. Mater. Chem. A. doi: 10.1039/C9TA06537G – volume: 33 start-page: 2004862 issue: 9 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1705 article-title: MnO2-based materials for environmental applications publication-title: Adv. Mater. doi: 10.1002/adma.202004862 – ident: 10.1016/j.ccr.2022.214864_b0190 doi: 10.1002/celc.202200549 – volume: 252 start-page: 214 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1065 article-title: Catalyzing overall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.04.021 – volume: 449 start-page: 660 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1000 article-title: Electrocatalytic behavior of transition metal (Ni, Fe, Cr) doped metal oxide nanocomposites for oxygen evolution reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.12.014 – volume: 430 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1605 article-title: Core-shell trimetallic NiFeV disulfides and amorphous high-valance NiFe hydroxide nanosheets enhancing oxygen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133047 – volume: 17 start-page: 2002240 issue: 9 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0450 article-title: Electronic structure tuning of 2D metal (hydr) oxides nanosheets for electrocatalysis publication-title: Small doi: 10.1002/smll.202002240 – volume: 440 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0875 article-title: Surface and interface engineering of MoNi alloy nanograins bound to Mo-doped NiO nanosheets on 3D graphene foam for high-efficiency water splitting catalysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135847 – volume: 4 start-page: 17587 issue: 45 year: 2016 ident: 10.1016/j.ccr.2022.214864_b0040 article-title: A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08075H – volume: 2 start-page: 2148 issue: 11 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1060 article-title: Improving oxygen vacancies by cobalt doping in MoO2 nanorods for efficient electrocatalytic hydrogen evolution reaction publication-title: Nano Sel. doi: 10.1002/nano.202100075 – volume: 58 start-page: 2746 issue: 16 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0825 article-title: Fluoride-incorporated cobalt-based electrocatalyst towards enhanced hydrogen evolution reaction publication-title: Chem. Commun. doi: 10.1039/D1CC05375B – volume: 30 start-page: 2002533 issue: 34 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1680 article-title: Molybdenum and phosphorous dual doping in cobalt monolayer interfacial assembled cobalt nanowires for efficient overall water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002533 – volume: 8 start-page: 3688 issue: 4 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0130 article-title: Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.7b04286 – volume: 8 start-page: 10831 issue: 21 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0830 article-title: Aliovalent fluorine doping and anodization-induced amorphization enable bifunctional catalysts for efficient water splitting publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA00876A – volume: 120 start-page: 851 issue: 2 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0025 article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00248 – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0050 article-title: Water splitting: from electrode to green energy system publication-title: Nano-Micro Letters doi: 10.1007/s40820-020-00469-3 – volume: 23 issue: 1 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1075 article-title: A Co-Doped Nanorod-like RuO2 Electrocatalyst with Abundant Oxygen Vacancies for Acidic Water Oxidation publication-title: IScience. doi: 10.1016/j.isci.2019.100756 – volume: 243 start-page: 175 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0680 article-title: Facile synthesis of PdO-doped Co3O4 nanoparticles as an efficient bifunctional oxygen electrocatalyst publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.10.040 – volume: 33 start-page: 2000381 issue: 6 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0475 article-title: Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions publication-title: Adv. Mater. doi: 10.1002/adma.202000381 – year: 2022 ident: 10.1016/j.ccr.2022.214864_b1520 article-title: Doping-engineered bifunctional oxygen electrocatalyst with Se/Fe-doped Co3O4/N-doped carbon nanosheets as highly efficient rechargeable zinc-air batteries publication-title: J. Colloid Interface Sci. – volume: 8 start-page: 10096 issue: 20 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0765 article-title: Activation strategies of water-splitting electrocatalysts publication-title: J. Mater. Chem. A doi: 10.1039/D0TA01680B – volume: 608 start-page: 3030 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0820 article-title: others, Electrochemical incorporation of heteroatom into surface reconstruction induced Ni vacancy of NixO nanosheet for enhanced water oxidation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.11.026 – volume: 15 start-page: 1804201 issue: 1 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0030 article-title: Noble-metal-free electrocatalysts for oxygen evolution publication-title: Small doi: 10.1002/smll.201804201 – volume: 819 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0095 article-title: Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.153346 – volume: 7 start-page: 12501 issue: 14 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1595 article-title: In-situ transformed Ni, S-Codoped CoO from amorphous Co–Ni sulfide as an efficient electrocatalyst for hydrogen evolution in alkaline media publication-title: ACS Sustain. Chem. Eng. – volume: 610 start-page: 173 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0805 article-title: Motivating borate doped FeNi layered double hydroxides by molten salt method toward efficient oxygen evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.12.031 – volume: 50 start-page: 915 issue: 4 year: 2017 ident: 10.1016/j.ccr.2022.214864_b0330 article-title: Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00635 – volume: 427 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0225 article-title: Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213552 – volume: 5 start-page: 1347 issue: 5 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1505 article-title: Design strategies toward transition metal selenide-based catalysts for electrochemical water splitting publication-title: Sustain. Energy Fuels. doi: 10.1039/D0SE01722A – start-page: 2200173 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0910 article-title: Ru/Rh cation doping and oxygen-vacancy engineering of FeOOH nanoarrays@ Ti3C2Tx MXene heterojunction for highly efficient and stable electrocatalytic oxygen evolution publication-title: Small doi: 10.1002/smll.202200173 – year: 2022 ident: 10.1016/j.ccr.2022.214864_b0950 article-title: Synergistic effect of Mn doping and hollow structure boosting Mn-CoP/Co2P nanotubes as efficient bifunctional electrocatalyst for overall water splitting publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.08.037 – volume: 121 start-page: 796 issue: 2 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0160 article-title: Noble-metal nanoframes and their catalytic applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00940 – volume: 9 start-page: 14372 issue: 25 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0960 article-title: Fe-doping induced localized amorphization in ultrathin α-Ni (OH)2 nanomesh for superior oxygen evolution reaction catalysis publication-title: J. Mater. Chem. A. doi: 10.1039/D1TA02341A – volume: 7 start-page: 17950 issue: 21 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1625 article-title: Hollow Co3O4/CeO2 heterostructures in situ embedded in N-doped carbon nanofibers enable outstanding oxygen evolution publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b04699 – volume: 606 start-page: 384 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1400 article-title: Phosphorus doping and phosphates coating for nickel molybdate/nickel molybdate hydrate enabling efficient overall water splitting publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.035 – volume: 358 start-page: 243 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1020 article-title: Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting publication-title: J. Catal. doi: 10.1016/j.jcat.2017.12.020 – volume: 5 start-page: 6814 issue: 6 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1390 article-title: Hierarchically self-supporting phosphorus-doped CoMoO4 nanoflowers arrays toward efficient hydrogen evolution reaction publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.2c00402 – volume: 6 start-page: 10595 issue: 23 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0250 article-title: Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA10569J – volume: 13 start-page: 11314 issue: 26 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1775 article-title: Nonmetal-doping of noble metal-based catalysts for electrocatalysis publication-title: Nanoscale. doi: 10.1039/D1NR02019F – volume: 7 start-page: 13577 issue: 22 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0675 article-title: Copper-incorporated hierarchical wire-on-sheet α-Ni(OH) 2 nanoarrays as robust trifunctional catalysts for synergistic hydrogen generation and urea oxidation publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02891A – year: 2022 ident: 10.1016/j.ccr.2022.214864_b0795 article-title: Cerium-induced lattice disordering in Co-based nanocatalysts promoting the hydrazine electro-oxidation behavior publication-title: Chem. Commun. – volume: 627 start-page: 891 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0800 article-title: Oriented interlayered charge transfer in NiCoFe layered double hydroxide/MoO3 stacked heterostructure promoting the oxygen-evolving behavior publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.07.114 – volume: 28 issue: 16 year: 2017 ident: 10.1016/j.ccr.2022.214864_b1375 article-title: N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts publication-title: Nanotechnology. doi: 10.1088/1361-6528/aa6381 – volume: 50 start-page: 8428 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0990 article-title: Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00962H – volume: 873 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0580 article-title: Electrodeposition of superhydrophilic and binder-free Mo-doped Ni–Fe nanosheets as cost-effective and efficient bifunctional electrocatalyst for overall water splitting publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2020.114351 – volume: 6 start-page: 167 issue: 1 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1070 article-title: A Co-doped Ni–Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA07956G – volume: 31 start-page: 1808167 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0045 article-title: Support and interface effects in water-splitting electrocatalysts publication-title: Adv. Mater. doi: 10.1002/adma.201808167 – volume: 8 start-page: 12030 issue: 12 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1080 article-title: Understanding synergism of cobalt metal and copper oxide toward highly efficient electrocatalytic oxygen evolution publication-title: ACS Catal. doi: 10.1021/acscatal.8b03702 – volume: 11 start-page: 39706 issue: 43 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1055 article-title: Tuning the electrocatalytic activity of Co3O4 through discrete elemental doping publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b06815 – volume: 45 start-page: 1529 issue: 6 year: 2016 ident: 10.1016/j.ccr.2022.214864_b0355 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00434A – volume: 80 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0015 article-title: “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105514 – year: 2022 ident: 10.1016/j.ccr.2022.214864_b1260 article-title: Ru-doping modulated cobalt phosphide nanoarrays as efficient electrocatalyst for hydrogen evolution rection publication-title: J. Colloid Interface Sci. – volume: 12 start-page: 24701 issue: 22 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0840 article-title: Crystalline cobalt/amorphous LaCoOx hybrid nanoparticles embedded in porous nitrogen-doped carbon as efficient electrocatalysts for hydrazine-assisted hydrogen production publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c02124 – volume: 41 start-page: 772 year: 2017 ident: 10.1016/j.ccr.2022.214864_b1530 article-title: Co-N-doped MoO2 nanowires as efficient electrocatalysts for the oxygen reduction reaction and hydrogen evolution reaction publication-title: Nano Energy. doi: 10.1016/j.nanoen.2017.03.032 – volume: 299 start-page: 231 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1540 article-title: Fluorine-doped nickel cobalt oxide spinel as efficiently bifunctional catalyst for overall water splitting publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2019.01.012 – volume: 5 start-page: 2000988 issue: 4 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0315 article-title: Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy publication-title: Small Methods. doi: 10.1002/smtd.202000988 – volume: 422 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1100 article-title: Co-doped NixPy loading on Co3O4 embedded in Ni foam as a hierarchically porous self-supported electrode for overall water splitting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130062 – volume: 398 start-page: 54 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0400 article-title: Strategies to improve cobalt-based electrocatalysts for electrochemical water splitting publication-title: J. Catal. doi: 10.1016/j.jcat.2021.04.003 – volume: 7 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1230 article-title: Copper doped manganese oxides to produce enhanced catalytic performance for CO oxidation publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2019.103055 – volume: 71 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0750 article-title: Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104652 – volume: 56 start-page: 7649 issue: 55 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0850 article-title: Supercritical CO2 synthesis of Co-doped MoO3–x nanocrystals for multifunctional light utilization publication-title: Chem. Commun. doi: 10.1039/D0CC02079F – volume: 11 start-page: 16 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0265 article-title: Recent advances in transition metal–based catalysts with heterointerfaces for energy conversion and storage publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2018.09.003 – volume: 60 start-page: 4034 issue: 6 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0725 article-title: Electrospun Fe-incorporated ZIF-67 nanofibers for effective electrocatalytic water splitting publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c00097 – volume: 597 start-page: 361 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1750 article-title: N and Mn dual-doped cactus-like cobalt oxide nanoarchitecture derived from cobalt carbonate hydroxide as efficient electrocatalysts for oxygen evolution reactions publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.04.013 – volume: 15 start-page: 1902551 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0285 article-title: Fe2+ doped layered double (Ni, Fe) hydroxides as efficient electrocatalysts for water splitting and self-powered electrochemical systems publication-title: Small. doi: 10.1002/smll.201902551 – volume: 400 start-page: 31 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0365 article-title: Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – A review publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2018.07.125 – volume: 388 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1110 article-title: Synergy of Mn and Ni enhanced catalytic performance for toluene combustion over Ni-doped α-MnO2 catalysts publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124244 – volume: 8 start-page: 20802 issue: 32 year: 2016 ident: 10.1016/j.ccr.2022.214864_b1185 article-title: Ni-and Mn-promoted mesoporous Co3O4: a stable bifunctional catalyst with surface-structure-dependent activity for oxygen reduction reaction and oxygen evolution reaction publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.6b06103 – volume: 84 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0660 article-title: others, Selective dopant segregation modulates mesoscale reaction kinetics in layered transition metal oxide publication-title: Nano Energy. doi: 10.1016/j.nanoen.2021.105926 – volume: 10 start-page: 745 issue: 1 year: 2018 ident: 10.1016/j.ccr.2022.214864_b1475 article-title: Nanoporous sulfur-doped copper oxide (Cu2OxS1–x) for overall water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16280 – volume: 113 start-page: 7666 issue: 18 year: 2009 ident: 10.1016/j.ccr.2022.214864_b0630 article-title: ZnO nanoparticles- CdS quantum dots/N3 dye molecules: dual photosensitization publication-title: J. Phys. Chem. C doi: 10.1021/jp901224n – volume: 118 start-page: 6236 issue: 13 year: 2018 ident: 10.1016/j.ccr.2022.214864_b0900 article-title: Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00633 – volume: 42 start-page: 2275 issue: 12 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1435 article-title: Template-free synthesis of Co3O4 microtubes for enhanced oxygen evolution reaction publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(21)63902-5 – volume: 13 start-page: 19840 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0650 article-title: Recent advances in heteroatom doping of perovskite oxides for efficient electrocatalytic reactions publication-title: Nanoscale. doi: 10.1039/D1NR05797A – volume: 45 start-page: 24828 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0995 article-title: High-performance bifunctional Fe-doped molybdenum oxide-based electrocatalysts with in situ grown epitaxial heterojunctions for overall water splitting publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.06.283 – volume: 120 start-page: 12217 issue: 21 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0295 article-title: others, Advanced electrocatalysts with single-metal-atom active sites publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00594 – volume: 137 start-page: 2688 issue: 7 year: 2015 ident: 10.1016/j.ccr.2022.214864_b1380 article-title: In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5127165 – year: 2022 ident: 10.1016/j.ccr.2022.214864_b1725 article-title: Synergistic modulation of inverse spinel Fe3O4 by doping with chromium and nitrogen for efficient electrocatalytic water splitting publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.04.141 – volume: 49 start-page: 6355 issue: 19 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1005 article-title: 2D Fe-doped NiO nanosheets with grain boundary defects for the advanced oxygen evolution reaction publication-title: Dalt. Trans. doi: 10.1039/C9DT04633J – volume: 106 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0260 article-title: Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.100574 – volume: 50 start-page: 13951 issue: 39 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1290 article-title: Ru doping induces the construction of a unique core–shell microflower self-supporting electrocatalyst for highly efficient overall water splitting publication-title: Dalt. Trans. doi: 10.1039/D1DT02341A – volume: 557 start-page: 28 year: 2019 ident: 10.1016/j.ccr.2022.214864_b1805 article-title: Mn and S dual-doping of MOF-derived Co3O4 electrode array increases the efficiency of electrocatalytic generation of oxygen publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.09.009 – volume: 8 start-page: 23123 issue: 44 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0215 article-title: Noble-metal-free electrocatalysts toward H2O2 production publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA08894C – volume: 9 start-page: 20518 issue: 36 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0550 article-title: Ru/Mo 2 C@ NC Schottky junction-loaded hollow nanospheres as an efficient hydrogen evolution electrocatalyst publication-title: J. Mater. Chem. A. doi: 10.1039/D1TA05876B – volume: 44 start-page: 5148 issue: 15 year: 2015 ident: 10.1016/j.ccr.2022.214864_b0305 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 303 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1800 article-title: In-situ grown metal-organic framework-derived carbon-coated Fe-doped cobalt oxide nanocomposite on fluorine-doped tin oxide glass for acidic oxygen evolution reaction publication-title: Appl. Catal. B Environ. – volume: 925 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1420 article-title: Phosphorus modified hollow, porous nickel-Cobalt oxides nanocubes with heterostructure for oxygen evolution reaction in alkaline publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.166338 – volume: 426 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1295 article-title: Synergistic engineering of morphology and electronic structure in constructing metal-organic framework-derived Ru doped cobalt-nickel oxide heterostructure towards efficient alkaline hydrogen evolution reaction publication-title: Chem. Eng. J. – volume: 124 start-page: 9971 issue: 18 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1445 article-title: Microwave-induced plasma synthesis of defect-rich, highly ordered porous phosphorus-doped cobalt oxides for overall water electrolysis publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.0c01135 – volume: 46 start-page: 19962 issue: 38 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1795 article-title: Double doping of V and F on Co3O4 nanoneedles as efficient electrocatalyst for oxygen evolution publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2021.03.141 – volume: 823 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1130 article-title: Low Ni-doped Co3O4 porous nanoplates for enhanced hydrogen and oxygen evolution reaction publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.153750 – volume: 526 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1360 article-title: Polyaniline engineering defect-induced nitrogen doped carbon-supported Co3O4 hybrid composite as a high-efficiency electrocatalyst for oxygen evolution reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146626 – volume: 444 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1760 article-title: Material libraries for electrocatalytic overall water splitting publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214049 – volume: 5 issue: 5 year: 2022 ident: 10.1016/j.ccr.2022.214864_b1105 article-title: Regulating the heterostructure of metal/oxide toward the enhanced hydrogen evolution reaction publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c03970 – volume: 12 start-page: 11600 issue: 10 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1120 article-title: Top-open hollow nanocubes of Ni-doped Cu oxides on Ni foam: scalable oxygen evolution electrode via galvanic displacement and face-selective etching publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.9b21534 – volume: 31 start-page: 1804672 issue: 7 year: 2019 ident: 10.1016/j.ccr.2022.214864_b0070 article-title: Doping of carbon materials for metal-free electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201804672 – volume: 17 start-page: 2100129 issue: 37 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0115 article-title: Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges publication-title: Small. doi: 10.1002/smll.202100129 – volume: 12 start-page: 2200332 issue: 21 year: 2022 ident: 10.1016/j.ccr.2022.214864_b0545 article-title: Advanced Ru/Ni/WC@ NPC Multi-Interfacial Electrocatalyst for Efficient Sustainable Hydrogen and Chlor-Alkali Co-Production publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200332 – volume: 157 start-page: 515 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1660 article-title: others, Hybrid Ni/NiO composite with N-doped activated carbon from waste cauliflower leaves: a sustainable bifunctional electrocatalyst for efficient water splitting publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2019.09.080 – volume: 49 start-page: 2196 issue: 7 year: 2020 ident: 10.1016/j.ccr.2022.214864_b0460 article-title: A review on fundamentals for designing oxygen evolution electrocatalysts publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00607A – year: 2022 ident: 10.1016/j.ccr.2022.214864_b0500 article-title: Recent advances in non-precious Ni-based promising catalysts for water splitting application publication-title: Int. J. Energy Res. doi: 10.1002/er.8458 – ident: 10.1016/j.ccr.2022.214864_b0985 doi: 10.1002/aenm.202201713 – volume: 7 start-page: 2188 issue: 11 year: 2020 ident: 10.1016/j.ccr.2022.214864_b1545 article-title: Highly efficient water splitting over a RuO2/F-doped graphene electrocatalyst with ultra-low ruthenium content publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI00095G – volume: 449 year: 2021 ident: 10.1016/j.ccr.2022.214864_b0585 article-title: others, Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214209 – volume: 50 start-page: 11604 issue: 33 year: 2021 ident: 10.1016/j.ccr.2022.214864_b1585 article-title: Fe, Ni-codoped W18O49 grown on nickel foam as a bifunctional electrocatalyst for boosted water splitting publication-title: Dalt. Trans. doi: 10.1039/D1DT01468D |
SSID | ssj0016992 |
Score | 2.7128623 |
SecondaryResourceType | review_article |
Snippet | The effects of heteroatom-doping on transition metal oxide-based electrocatalysts toward overall water splitting performance.
[Display omitted]
•The basics of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 214864 |
SubjectTerms | Electrocatalysts Electrochemical water splitting Metal and non-metal-doping Transition metal oxides |
Title | Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts |
URI | https://dx.doi.org/10.1016/j.ccr.2022.214864 |
Volume | 474 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvQiPrE-Sg6ehLSbNJt0j6VYqmJPFntbNy-oaFvaFfTib3eS3a0K6sHjhoQNw-zMl-w33yB0zkRHZkpZolwmCXesS1REDdFciszXokdBu_N2JIZjfj2JJzXUr2phPK2yjP1FTA_Ruhxpl9ZsL6ZTX-PrmfNeEdzjksQrfnJ4A_h0631N86AiSQrFcIg3fnb1ZzNwvLT2kqCMtRicCgT_OTd9yTeDHbRdAkXcK_ayi2p2toc2-1V_tn30cA8wcYlXgCIDdxkvPmsA8NzhZwu4Gmczg-GET8ITMfOFNTj3-SlQtcpJ89epsbjsiBMudN5W-eoAjQeXd_0hKfslEM0SmROrhI1jLTVkJpPYrpSaioxzazLrFUABynm1u1hJp6wU1DFnGQTKhAsXdeBLPER12JE9QjiiSknDYyotnJ2dUIzqRDEHA1Qz7hooqiyV6lJM3Pe0eEor1thjCsZNvXHTwrgNdLFesiiUNP6azCvzp9_cIYVI__uy4_8tO0Fbvot8cbNyiur58sWeAdbIVTM4UxNt9K5uhqMPyHvTaA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BO5QF8RTl6YEJyTRxHbsZq4qqpY-pFd1C7NhSEbRRGyT499iJU0ACBsZYPsn65Nx9tu--A7gmrMljIRQWOuaYatLCwvMTLClnsa1F93LtztGY9ab0fhbMtqBT1sLYtErn-wufnntrN9JwaDbS-dzW-NrMeasIbnlJ2NyGqlWnCipQbfcHvfHmMYGFYSEablyONSgfN_M0LymtKight8QcDBj9OTx9CTndPdh1XBG1i-Xsw5ZaHECtU7ZoO4THB8MUV2htiGSevozSzzIAtNToRRlqjeJFgswhH-dfOFmmKkGZDVF5tpabtHybJwq5pjj5nc77OlsfwbR7N-n0sGuZgCUJeYaVYCoIJJcmOCWhanEufRZTqpJYWRFQw-as4F0guBaKM18TrYjxlSFl2muan_EYKmZF6gSQ5wvBExr4XJnjs2aC-DIURJsBXxKq6-CVSEXS6YnbthbPUZk49hQZcCMLblSAW4ebjUlaiGn8NZmW8EffdkRknP3vZqf_M7uCWm8yGkbD_nhwBju2qXxx0XIOlWz1qi4M9cjEpdtaHxhe1hk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+splitting+performance+of+metal+and+non-metal-doped+transition+metal+oxide+electrocatalysts&rft.jtitle=Coordination+chemistry+reviews&rft.au=Al-Naggar%2C+Ahmed+H.&rft.au=Shinde%2C+Nanasaheb+M.&rft.au=Kim%2C+Jeom-Soo&rft.au=Mane%2C+Rajaram+S.&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=0010-8545&rft.eissn=1873-3840&rft.volume=474&rft_id=info:doi/10.1016%2Fj.ccr.2022.214864&rft.externalDocID=S0010854522004593 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon |