Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts

The effects of heteroatom-doping on transition metal oxide-based electrocatalysts toward overall water splitting performance. [Display omitted] •The basics of electrochemistry for water splitting process are elucidated.•Doping processes for preparing heteroatom (metal and non-metal)-doped TMOs are b...

Full description

Saved in:
Bibliographic Details
Published inCoordination chemistry reviews Vol. 474; p. 214864
Main Authors Al-Naggar, Ahmed H., Shinde, Nanasaheb M., Kim, Jeom-Soo, Mane, Rajaram S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effects of heteroatom-doping on transition metal oxide-based electrocatalysts toward overall water splitting performance. [Display omitted] •The basics of electrochemistry for water splitting process are elucidated.•Doping processes for preparing heteroatom (metal and non-metal)-doped TMOs are briefed.•Concepts like doping, elemental incorporation and alloying are addressed.•Future scope, current challenges and outlook of heteroatom (metal and non-metal)-doped TMOs in electrocatalysts are highlighted.•Based on information provided, in this review, researchers can revolutionize overall water splitting electrocatalyst for commercial benefits. Transition metal oxide electrocatalysts have received significant research interest toward the advancement of environmentally acceptable electrochemical applications and systems, which are considered to be promising technologies due to their unique physicochemical properties like low cost, robust durability, structural flexibility, and tunable activity. However, transition metal oxide-based electrocatalysts suffer from poor electrocatalytic activity as well as a limited number of active sites, which result in the obstruction of their applications over the world. To overcome these challenges, heteroatom-doping into transition metal oxide electrocatalysts has been a crucial and rapid way to improve the conductivity of the catalytic centers and optimize the adsorption of the reactants and intermediates during the catalytic process, and hence, their electrocatalytic activity, which has become widespread in nanomaterials, is offering the possibility to select the catalytic properties with attractive traits for a specific application to some extent. We have critically and systematically discussed the recent progress on doping strategy involves non-noble metallic elements, such as Fe, Co, Mn, Ni, Ru, Mo, W, Cu, etc., and non–metallic elements, such as S, N, P, B, Se, F, C, etc., in transition metal oxide-based electrocatalysts for water splitting performance to gain a better understanding of the relationship between effect of heteroatoms doping engineering techniques and TMOs catalytic properties. Most importantly, doping, elemental incorporation and alloying perform a significant role with heteroatoms for improving the catalytic activity on; modifying the electronic configuration of the catalysts, increasing the number of active sites, enhancing the electrical conductivity, and inducing synergistic effect of the transition metal oxide-based electrocatalysts during overall water splitting process. We here also have briefly described the techniques used for preparing metal and non-metal-doped transition metal oxide-based electrocatalysts for overall water splitting process. In nutshell, this review is expected to provide a deeper insight on the effect of the metal and non-metal-doping in transition metal oxide-based electrocatalysts for the rational design of high-performance catalysts in the future. We also have provided the current challenges and future perspectives of heteroatom-doped transition metal oxide-based electrocatalysts for the development of high-performance water splitting processes.
AbstractList The effects of heteroatom-doping on transition metal oxide-based electrocatalysts toward overall water splitting performance. [Display omitted] •The basics of electrochemistry for water splitting process are elucidated.•Doping processes for preparing heteroatom (metal and non-metal)-doped TMOs are briefed.•Concepts like doping, elemental incorporation and alloying are addressed.•Future scope, current challenges and outlook of heteroatom (metal and non-metal)-doped TMOs in electrocatalysts are highlighted.•Based on information provided, in this review, researchers can revolutionize overall water splitting electrocatalyst for commercial benefits. Transition metal oxide electrocatalysts have received significant research interest toward the advancement of environmentally acceptable electrochemical applications and systems, which are considered to be promising technologies due to their unique physicochemical properties like low cost, robust durability, structural flexibility, and tunable activity. However, transition metal oxide-based electrocatalysts suffer from poor electrocatalytic activity as well as a limited number of active sites, which result in the obstruction of their applications over the world. To overcome these challenges, heteroatom-doping into transition metal oxide electrocatalysts has been a crucial and rapid way to improve the conductivity of the catalytic centers and optimize the adsorption of the reactants and intermediates during the catalytic process, and hence, their electrocatalytic activity, which has become widespread in nanomaterials, is offering the possibility to select the catalytic properties with attractive traits for a specific application to some extent. We have critically and systematically discussed the recent progress on doping strategy involves non-noble metallic elements, such as Fe, Co, Mn, Ni, Ru, Mo, W, Cu, etc., and non–metallic elements, such as S, N, P, B, Se, F, C, etc., in transition metal oxide-based electrocatalysts for water splitting performance to gain a better understanding of the relationship between effect of heteroatoms doping engineering techniques and TMOs catalytic properties. Most importantly, doping, elemental incorporation and alloying perform a significant role with heteroatoms for improving the catalytic activity on; modifying the electronic configuration of the catalysts, increasing the number of active sites, enhancing the electrical conductivity, and inducing synergistic effect of the transition metal oxide-based electrocatalysts during overall water splitting process. We here also have briefly described the techniques used for preparing metal and non-metal-doped transition metal oxide-based electrocatalysts for overall water splitting process. In nutshell, this review is expected to provide a deeper insight on the effect of the metal and non-metal-doping in transition metal oxide-based electrocatalysts for the rational design of high-performance catalysts in the future. We also have provided the current challenges and future perspectives of heteroatom-doped transition metal oxide-based electrocatalysts for the development of high-performance water splitting processes.
ArticleNumber 214864
Author Al-Naggar, Ahmed H.
Kim, Jeom-Soo
Shinde, Nanasaheb M.
Mane, Rajaram S.
Author_xml – sequence: 1
  givenname: Ahmed H.
  surname: Al-Naggar
  fullname: Al-Naggar, Ahmed H.
  organization: School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
– sequence: 2
  givenname: Nanasaheb M.
  surname: Shinde
  fullname: Shinde, Nanasaheb M.
  organization: Department of Chemical Engineering (BK21 FOUR), Dong-A University, 37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea
– sequence: 3
  givenname: Jeom-Soo
  surname: Kim
  fullname: Kim, Jeom-Soo
  organization: Department of Chemical Engineering (BK21 FOUR), Dong-A University, 37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea
– sequence: 4
  givenname: Rajaram S.
  surname: Mane
  fullname: Mane, Rajaram S.
  email: rajarammane70@srtmun.ac.in
  organization: School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
BookMark eNp9kEtLAzEQgINUsK3-AG_5A7vmtckunqT4goIXxWNMk1lJ2W6WJIj996bWk4eehhnmm8e3QLMxjIDQNSU1JVTebGtrY80IYzWjopXiDM1pq3jFW0FmaE4IJVXbiOYCLVLallR2HZujj3eTIeI0DT5nP37iCWIf4s6MFnDo8Q6yGbAZHS4Lq9-scmECh3M0Y_LZh_GvKXx7BxgGsDkGa0ppn3K6ROe9GRJc_cUlenu4f109VeuXx-fV3bqyrFO5go2EprHKckFdB61SlkojBDgDhFPCOG2E4M1G9RtQkvasByak6oTsCe8kXyJ1nGtjSClCr63P5nBeOdQPmhJ9EKW3uojSB1H6KKqQ9B85Rb8zcX-SuT0yUF768hB1sh6KM-dj-V-74E_QP_c4hEw
CitedBy_id crossref_primary_10_1016_j_ceramint_2022_11_293
crossref_primary_10_3390_en17071591
crossref_primary_10_1016_j_jcis_2024_08_137
crossref_primary_10_1016_j_nantod_2024_102487
crossref_primary_10_1016_j_apsusc_2024_159540
crossref_primary_10_1021_acs_inorgchem_3c02690
crossref_primary_10_1016_j_fuel_2023_129485
crossref_primary_10_1016_j_jcis_2024_08_254
crossref_primary_10_1016_j_jcis_2025_137263
crossref_primary_10_26599_NR_2025_94907102
crossref_primary_10_3390_nano13132012
crossref_primary_10_1002_ente_202401577
crossref_primary_10_1016_j_ijhydene_2025_01_301
crossref_primary_10_1021_acsaem_3c03141
crossref_primary_10_1002_smll_202307241
crossref_primary_10_1016_j_jece_2024_113773
crossref_primary_10_1016_j_jcis_2024_08_025
crossref_primary_10_1016_j_surfin_2024_104902
crossref_primary_10_1016_j_jcis_2023_04_094
crossref_primary_10_1016_j_apenergy_2023_121582
crossref_primary_10_1039_D3NR03609J
crossref_primary_10_1016_j_est_2024_112323
crossref_primary_10_1021_acs_langmuir_3c00695
crossref_primary_10_3390_cryst13091342
crossref_primary_10_1051_e3sconf_202448403004
crossref_primary_10_1039_D4CY00642A
crossref_primary_10_1002_celc_202400609
crossref_primary_10_1007_s10562_023_04510_z
crossref_primary_10_3390_catal13071102
crossref_primary_10_1002_crat_202300039
crossref_primary_10_1016_j_jpcs_2023_111853
crossref_primary_10_1016_j_cis_2025_103493
crossref_primary_10_1016_j_ccr_2024_215723
crossref_primary_10_1021_acsorginorgau_4c00050
crossref_primary_10_1016_j_apsusc_2023_159241
crossref_primary_10_1016_j_ceramint_2023_12_276
crossref_primary_10_1016_j_jiec_2024_04_022
crossref_primary_10_1016_j_jallcom_2024_177819
crossref_primary_10_1016_j_est_2024_111363
crossref_primary_10_1002_jccs_202400347
crossref_primary_10_1016_j_cej_2024_152860
crossref_primary_10_1039_D4QI01022A
crossref_primary_10_3390_catal14040221
crossref_primary_10_1016_j_ijhydene_2024_07_459
crossref_primary_10_1007_s11224_024_02444_9
crossref_primary_10_1021_acs_jpcc_3c04094
crossref_primary_10_1039_D4TA05919K
crossref_primary_10_1016_j_ijhydene_2023_10_121
crossref_primary_10_1002_cphc_202300013
crossref_primary_10_1021_acs_energyfuels_3c01533
crossref_primary_10_1016_j_fuel_2024_133135
crossref_primary_10_1016_j_jechem_2024_06_027
crossref_primary_10_1039_D4NR04915B
crossref_primary_10_1016_j_matchemphys_2023_127946
crossref_primary_10_1016_j_seppur_2025_132343
crossref_primary_10_1039_D3EE02467A
crossref_primary_10_1021_acsanm_3c05127
crossref_primary_10_1016_j_ijhydene_2024_04_149
crossref_primary_10_1016_j_apsusc_2025_162333
crossref_primary_10_1002_ange_202415306
crossref_primary_10_1002_adfm_202410379
crossref_primary_10_1155_2023_6685726
crossref_primary_10_1016_j_seppur_2024_126736
crossref_primary_10_1016_j_ijhydene_2024_11_348
crossref_primary_10_1016_j_electacta_2024_145187
crossref_primary_10_1002_celc_202400648
crossref_primary_10_1016_j_cej_2023_145348
crossref_primary_10_1016_j_ijhydene_2025_02_021
crossref_primary_10_1039_D4DT01083C
crossref_primary_10_1007_s10971_024_06645_w
crossref_primary_10_1016_j_ijhydene_2024_11_102
crossref_primary_10_3390_nano14221780
crossref_primary_10_1002_asia_202401484
crossref_primary_10_1016_j_envres_2024_118153
crossref_primary_10_1016_j_seppur_2024_128587
crossref_primary_10_3390_ma17102419
crossref_primary_10_1002_ejic_202400603
crossref_primary_10_1016_j_ijhydene_2024_12_395
crossref_primary_10_1002_aesr_202400001
crossref_primary_10_1039_D3CP04070D
crossref_primary_10_1016_j_ijhydene_2023_08_173
crossref_primary_10_1002_smll_202307164
crossref_primary_10_1016_j_ccr_2024_216427
crossref_primary_10_1002_cctc_202401130
crossref_primary_10_1016_j_carbpol_2024_122351
crossref_primary_10_1016_j_mcat_2025_114888
crossref_primary_10_3390_molecules29081805
crossref_primary_10_1016_j_cej_2023_142620
crossref_primary_10_1016_j_electacta_2025_145915
crossref_primary_10_1039_D3TA05366K
crossref_primary_10_3390_nano13030546
crossref_primary_10_3390_pr13030623
crossref_primary_10_1016_j_cej_2024_157848
crossref_primary_10_1002_aenm_202303730
crossref_primary_10_1016_j_envpol_2023_122818
crossref_primary_10_1016_j_flatc_2024_100623
crossref_primary_10_1016_j_fuel_2024_132112
crossref_primary_10_1039_D4CP01914H
crossref_primary_10_1016_j_ijhydene_2024_11_482
crossref_primary_10_1016_j_ijhydene_2025_02_008
crossref_primary_10_1039_D3SE00527E
crossref_primary_10_1002_adsu_202400372
crossref_primary_10_1021_acs_inorgchem_2c03909
crossref_primary_10_1021_acsmaterialslett_4c00659
crossref_primary_10_1039_D3NR02859C
crossref_primary_10_3389_fchem_2024_1434488
crossref_primary_10_1016_j_xpro_2023_102448
crossref_primary_10_1016_j_jallcom_2024_177292
crossref_primary_10_1016_j_ijhydene_2024_11_254
crossref_primary_10_1016_j_mtnano_2023_100390
crossref_primary_10_1016_j_jece_2023_111831
crossref_primary_10_1021_acsanm_3c02724
crossref_primary_10_1016_j_ijhydene_2024_09_116
crossref_primary_10_1016_j_jcis_2024_03_184
crossref_primary_10_1016_j_ijhydene_2024_07_402
crossref_primary_10_1021_acsami_3c16244
crossref_primary_10_3390_molecules29153591
crossref_primary_10_1039_D4TA05577B
crossref_primary_10_20517_microstructures_2023_66
crossref_primary_10_1016_j_ijhydene_2024_12_507
crossref_primary_10_1021_acsanm_4c00397
crossref_primary_10_1016_j_cej_2024_156284
crossref_primary_10_1016_j_renene_2025_122663
crossref_primary_10_1016_j_ijhydene_2024_10_225
crossref_primary_10_1038_s41598_024_54934_9
crossref_primary_10_1039_D3CC06015B
crossref_primary_10_1002_smtd_202401480
crossref_primary_10_1002_smtd_202301628
crossref_primary_10_1039_D5CC00206K
crossref_primary_10_1002_adsu_202300193
crossref_primary_10_1002_anie_202415306
crossref_primary_10_1002_ece2_29
crossref_primary_10_1080_10408347_2024_2358492
crossref_primary_10_1155_2024_9953038
crossref_primary_10_1016_j_jece_2023_111373
crossref_primary_10_1016_j_jece_2023_111376
crossref_primary_10_1016_j_est_2024_110542
crossref_primary_10_1002_smll_202406732
crossref_primary_10_1039_D3NJ00059A
crossref_primary_10_1016_j_est_2024_110540
crossref_primary_10_1021_acsanm_3c05739
crossref_primary_10_1039_D4EN00780H
crossref_primary_10_1016_j_cej_2025_160273
crossref_primary_10_1039_D4NJ00797B
crossref_primary_10_1016_j_matchemphys_2023_127770
crossref_primary_10_1007_s00339_023_07099_7
crossref_primary_10_1016_j_jallcom_2022_168349
crossref_primary_10_1016_j_ccr_2024_216418
crossref_primary_10_1016_j_est_2024_114918
crossref_primary_10_1016_j_ijhydene_2024_11_283
crossref_primary_10_1016_j_jallcom_2023_170944
crossref_primary_10_1016_j_ijhydene_2024_02_321
crossref_primary_10_1007_s12274_024_6922_9
crossref_primary_10_1016_j_ica_2024_122453
crossref_primary_10_1360_SSPMA_2024_0410
crossref_primary_10_1002_ente_202400502
crossref_primary_10_1021_acsanm_3c04439
crossref_primary_10_3390_ma16175923
crossref_primary_10_1088_1361_6528_adbd48
crossref_primary_10_1002_smtd_202301602
crossref_primary_10_1016_j_jelechem_2022_117138
crossref_primary_10_1016_j_jelechem_2024_118029
crossref_primary_10_12677_japc_2024_132033
crossref_primary_10_1002_cphc_202400124
crossref_primary_10_3390_nano14080698
crossref_primary_10_1016_j_jpowsour_2024_235321
crossref_primary_10_1016_j_ijhydene_2024_02_313
crossref_primary_10_1016_j_cej_2024_155287
crossref_primary_10_1039_D4TA02468K
crossref_primary_10_1002_smtd_202401709
crossref_primary_10_1016_j_arabjc_2023_104986
crossref_primary_10_1007_s10971_024_06504_8
crossref_primary_10_1021_acsami_3c13210
crossref_primary_10_1016_j_diamond_2025_112167
crossref_primary_10_1039_D3QM00760J
crossref_primary_10_3390_molecules29020537
crossref_primary_10_1002_aesr_202300232
crossref_primary_10_1039_D3QM00567D
crossref_primary_10_1021_acsmaterialslett_4c00034
crossref_primary_10_1016_j_cej_2024_155832
crossref_primary_10_1016_j_ijhydene_2024_03_351
crossref_primary_10_1016_j_jallcom_2024_174176
crossref_primary_10_1002_adfm_202405384
crossref_primary_10_1016_j_mtchem_2024_102028
crossref_primary_10_1016_j_diamond_2024_111343
crossref_primary_10_1039_D4CY00727A
crossref_primary_10_1021_acs_energyfuels_3c02324
crossref_primary_10_1016_j_cej_2024_151912
crossref_primary_10_1016_j_jallcom_2025_179351
crossref_primary_10_1007_s42247_024_00633_0
crossref_primary_10_1016_j_apsusc_2023_156361
crossref_primary_10_1016_j_mattod_2024_06_006
crossref_primary_10_1002_adma_202418146
crossref_primary_10_1016_j_jpowsour_2024_234688
crossref_primary_10_1016_j_apsusc_2025_162352
crossref_primary_10_1016_j_cej_2025_161686
crossref_primary_10_1016_j_jallcom_2024_177676
crossref_primary_10_1039_D4NJ03407D
crossref_primary_10_1002_adma_202407102
crossref_primary_10_3390_catal14100689
crossref_primary_10_1016_j_renene_2024_120223
crossref_primary_10_1007_s10854_025_14570_z
crossref_primary_10_1002_smll_202311929
crossref_primary_10_1016_j_fuel_2025_134450
crossref_primary_10_1016_j_inoche_2024_113801
crossref_primary_10_1002_smll_202304390
crossref_primary_10_1007_s11814_024_00231_0
crossref_primary_10_3390_catal15010008
crossref_primary_10_1016_j_jmst_2023_11_020
crossref_primary_10_1021_acsanm_4c00388
crossref_primary_10_1007_s10904_025_03688_6
crossref_primary_10_1021_acs_energyfuels_4c04832
crossref_primary_10_3390_catal15010001
crossref_primary_10_1007_s10853_023_09290_w
crossref_primary_10_3390_nano13111727
crossref_primary_10_1002_aenm_202406047
crossref_primary_10_1016_j_jpowsour_2024_235636
crossref_primary_10_1016_j_electacta_2023_143516
crossref_primary_10_1016_j_matchemphys_2025_130399
crossref_primary_10_1039_D4SE00058G
crossref_primary_10_1021_acsanm_4c05946
Cites_doi 10.1016/j.ijhydene.2021.09.003
10.1016/j.cej.2021.130820
10.1039/C9EE01202H
10.1039/D0TA09495A
10.1016/j.nanoen.2022.107344
10.1039/C8TA09913H
10.1007/s12274-019-2582-6
10.1016/j.apsusc.2020.147952
10.1021/acs.chemrev.7b00689
10.1016/j.cej.2021.131642
10.1021/acssuschemeng.9b01468
10.1002/adfm.201905252
10.1021/acs.chemrev.0c01328
10.1016/j.electacta.2021.138587
10.1016/j.ensm.2021.07.007
10.1039/D0CS01191F
10.1002/adma.201801351
10.1016/S1872-2067(20)63740-8
10.1016/j.apcatb.2021.120871
10.1021/acsenergylett.8b00174
10.1016/j.nanoen.2020.104761
10.1039/D0TA05038E
10.1016/j.apcatb.2021.120528
10.1016/j.apcatb.2019.05.035
10.1016/j.apsusc.2021.151482
10.1016/j.cej.2021.134331
10.1016/j.cej.2021.130718
10.1016/j.surfin.2021.101398
10.1007/s12274-020-3006-3
10.1002/adma.202002235
10.1039/C6TA09994G
10.1002/smll.201803009
10.1039/D1NR02324A
10.1021/acssuschemeng.1c05184
10.1016/j.ccr.2021.214144
10.1039/C6CS00328A
10.1016/j.apsadv.2021.100184
10.1016/j.cej.2021.133941
10.1021/acssuschemeng.8b01709
10.1021/acsaem.9b01965
10.1002/adfm.202009070
10.1016/j.cej.2021.129127
10.1039/C8DT00765A
10.1039/C8TA00447A
10.1021/acsaem.8b01280
10.1039/D0RA10169A
10.1016/j.cej.2021.130328
10.1007/s10854-016-4427-3
10.1016/j.apcatb.2019.04.089
10.1021/acsenergylett.0c00642
10.1016/j.renene.2017.12.003
10.1016/j.cej.2020.126474
10.1002/adma.201900510
10.1002/sus2.3
10.1021/acsmaterialslett.0c00549
10.1002/adfm.201910274
10.1002/asia.202000925
10.1002/adma.201803625
10.1088/2053-1591/ab45bd
10.1039/C8DT04026E
10.1002/eem2.12424
10.1016/j.cej.2020.126803
10.1016/j.apsusc.2021.150227
10.1021/acsenergylett.7b00691
10.1002/macp.201700359
10.1039/D1CY01688A
10.1016/j.apsusc.2018.02.076
10.1039/D1TA01108A
10.1016/j.nanoen.2020.105057
10.1016/j.apcatb.2020.119809
10.1016/j.apsusc.2020.146059
10.1039/D0EE02485F
10.1021/acsanm.0c01035
10.1016/j.nanoen.2018.10.043
10.1016/j.electacta.2020.135883
10.1126/science.aad4998
10.1002/smll.202102777
10.1002/smtd.202100834
10.1016/j.ccr.2022.214666
10.1021/acscatal.9b02457
10.1016/j.jechem.2019.12.027
10.1016/j.jcis.2020.12.098
10.1039/C9SE01172B
10.1021/acsami.9b08060
10.1039/C6QI00198J
10.1002/adfm.201902875
10.1016/j.apcatb.2020.118657
10.1007/s11426-020-9770-5
10.1002/cctc.202001838
10.1021/acs.chemrev.9b00434
10.1002/cssc.201701420
10.1002/cctc.201500396
10.1002/advs.201700464
10.1016/j.jallcom.2021.162113
10.1016/j.apsusc.2020.147993
10.1039/D2MH00075J
10.1039/D1NR06285A
10.1016/j.apsusc.2017.04.204
10.1021/acs.chemrev.0c00608
10.1016/j.apcatb.2021.120494
10.1016/j.jelechem.2019.113306
10.1039/D0SE00466A
10.1039/D1TA03732C
10.1016/j.ijhydene.2021.07.156
10.1016/j.ijhydene.2021.10.001
10.1016/j.nanoen.2020.104453
10.1039/C8TA12238E
10.1016/j.ijhydene.2019.12.156
10.1039/C8DT02706D
10.1039/D2TA01699K
10.1021/acssuschemeng.8b04814
10.1002/cctc.201900834
10.1016/S1872-2067(21)64052-4
10.1002/smll.201802760
10.1039/D1TA09932A
10.1021/acscatal.7b03594
10.1021/acssuschemeng.9b02558
10.1039/D0CC01215G
10.1016/j.cej.2020.126302
10.1002/adma.202001866
10.1021/acsami.1c13488
10.1039/D0TA08802A
10.1016/j.cej.2021.129805
10.1016/j.jechem.2018.06.014
10.1039/D0TA02538K
10.1002/ange.202005436
10.1002/smtd.201800211
10.1021/acsaem.1c03233
10.1039/C8NR06756B
10.1039/D0TA04088F
10.1039/C8CS00904J
10.1002/adma.202002435
10.1039/D1TA04032D
10.1016/j.jcis.2021.09.032
10.1016/j.mtchem.2018.10.010
10.1002/adfm.202003261
10.1016/j.coelec.2018.03.015
10.1021/ja408329q
10.1021/acsanm.1c00791
10.1016/j.cej.2021.128804
10.1088/1674-1056/ac1339
10.1021/jacs.7b08881
10.1039/D1CS00135C
10.1039/D2DT01394K
10.1002/admi.201901308
10.1039/C6TA02334G
10.1002/adfm.202003556
10.1016/j.apcatb.2022.121204
10.1021/acs.chemmater.0c03052
10.1016/j.cej.2020.126198
10.1002/celc.202000515
10.1016/j.nanoen.2019.01.017
10.1016/j.apcatb.2021.120985
10.1021/acssuschemeng.7b03752
10.1039/D0CC05272H
10.1016/j.jcis.2019.12.044
10.1021/acsnano.5b00520
10.1021/acsami.1c02129
10.1088/1361-6528/aba3d9
10.3390/app11052016
10.1021/acssuschemeng.9b04996
10.1039/D1TA03452A
10.1016/j.nanoen.2019.104118
10.1002/ente.201700851
10.1021/acs.accounts.6b00317
10.1021/acscatal.9b04922
10.1039/C8TA05054F
10.1002/aenm.202100265
10.1016/j.jcis.2020.11.069
10.1016/j.cej.2020.127894
10.1016/j.apsusc.2020.148221
10.1016/j.apcatb.2021.120488
10.1016/j.jpowsour.2021.230600
10.1021/jacs.8b04546
10.1021/acsomega.9b00132
10.1002/cctc.202000526
10.1039/D0SE01087A
10.1039/D0CC01023E
10.1002/aenm.202002731
10.1016/j.electacta.2019.02.091
10.1002/celc.202200080
10.1016/j.electacta.2019.134821
10.1016/j.ccr.2021.214389
10.1039/D1NR03500B
10.1039/D0TA12152E
10.1021/jacs.7b03507
10.1002/adma.202006328
10.1021/acs.chemrev.0c01269
10.1016/j.jechem.2020.10.010
10.1007/s11664-021-09053-w
10.1021/acsaem.9b00266
10.1002/aenm.202200029
10.1002/anie.202006546
10.1021/acssuschemeng.9b06959
10.1039/D1CS00330E
10.1021/acs.energyfuels.0c03084
10.1016/j.cej.2021.130400
10.1021/acs.chemrev.0c00454
10.1021/acsami.8b16425
10.1007/s10971-018-4886-5
10.1016/j.jechem.2022.04.023
10.1016/j.cej.2020.126732
10.1021/acsami.0c14521
10.1039/D1DT00654A
10.1016/j.jechem.2020.08.001
10.1039/D1TA00043H
10.1016/j.apsusc.2020.146987
10.1016/j.electacta.2018.09.162
10.1021/acs.chemrev.6b00558
10.1039/D0TA10925H
10.1039/C4CS00236A
10.1002/adma.201602270
10.1016/j.mtchem.2019.02.002
10.1016/j.jechem.2020.03.055
10.1021/jp511561k
10.1039/C7EE03457A
10.1039/C8TA12477A
10.1039/C8QI00867A
10.1021/acsenergylett.9b00348
10.1007/s12274-021-3455-3
10.1021/acs.chemrev.7b00051
10.1002/chem.202000209
10.1016/j.jcis.2021.08.151
10.1021/acsami.0c20500
10.1002/adfm.202000503
10.1016/j.electacta.2020.137651
10.1039/D0RA08993A
10.1016/j.nanoen.2018.10.008
10.1016/j.apcatb.2019.118467
10.1016/S1872-2067(21)63855-X
10.1021/acs.chemrev.6b00398
10.1016/j.ijhydene.2020.08.019
10.1039/D0CS00013B
10.1016/j.apcatb.2021.120582
10.1039/C9TA03220G
10.1021/acsami.7b18403
10.1016/j.arabjc.2019.08.006
10.1016/j.cej.2020.124591
10.1002/jccs.201900001
10.1021/acs.inorgchem.0c01832
10.1039/D0CC07969C
10.1002/cssc.202002002
10.1002/chem.201902998
10.1007/s11705-018-1746-3
10.1039/C9TA06537G
10.1002/adma.202004862
10.1002/celc.202200549
10.1016/j.apcatb.2019.04.021
10.1016/j.apsusc.2017.12.014
10.1016/j.cej.2021.133047
10.1002/smll.202002240
10.1016/j.cej.2022.135847
10.1039/C6TA08075H
10.1002/nano.202100075
10.1039/D1CC05375B
10.1002/adfm.202002533
10.1021/acscatal.7b04286
10.1039/D0TA00876A
10.1021/acs.chemrev.9b00248
10.1007/s40820-020-00469-3
10.1016/j.isci.2019.100756
10.1016/j.apcatb.2018.10.040
10.1002/adma.202000381
10.1039/D0TA01680B
10.1016/j.jcis.2021.11.026
10.1002/smll.201804201
10.1016/j.jallcom.2019.153346
10.1016/j.jcis.2021.12.031
10.1021/acs.accounts.6b00635
10.1016/j.ccr.2020.213552
10.1039/D0SE01722A
10.1002/smll.202200173
10.1016/j.jcis.2022.08.037
10.1021/acs.chemrev.0c00940
10.1039/D1TA02341A
10.1021/acssuschemeng.9b04699
10.1016/j.jcis.2021.08.035
10.1016/j.jcat.2017.12.020
10.1021/acsaem.2c00402
10.1039/C7TA10569J
10.1039/D1NR02019F
10.1039/C9TA02891A
10.1016/j.jcis.2022.07.114
10.1088/1361-6528/aa6381
10.1039/D0CS00962H
10.1016/j.jelechem.2020.114351
10.1039/C7TA07956G
10.1002/adma.201808167
10.1021/acscatal.8b03702
10.1021/acsami.9b06815
10.1039/C5CS00434A
10.1016/j.nanoen.2020.105514
10.1021/acsami.0c02124
10.1016/j.nanoen.2017.03.032
10.1016/j.electacta.2019.01.012
10.1002/smtd.202000988
10.1016/j.cej.2021.130062
10.1016/j.jcat.2021.04.003
10.1016/j.jece.2019.103055
10.1016/j.nanoen.2020.104652
10.1039/D0CC02079F
10.1016/j.mtchem.2018.09.003
10.1021/acs.inorgchem.1c00097
10.1016/j.jcis.2021.04.013
10.1002/smll.201902551
10.1016/j.jpowsour.2018.07.125
10.1016/j.cej.2020.124244
10.1021/acsami.6b06103
10.1016/j.nanoen.2021.105926
10.1021/acsami.7b16280
10.1021/jp901224n
10.1021/acs.chemrev.7b00633
10.1016/S1872-2067(21)63902-5
10.1039/D1NR05797A
10.1016/j.ijhydene.2020.06.283
10.1021/acs.chemrev.0c00594
10.1021/ja5127165
10.1016/j.jcis.2022.04.141
10.1039/C9DT04633J
10.1016/j.pmatsci.2019.100574
10.1039/D1DT02341A
10.1016/j.jcis.2019.09.009
10.1039/D0TA08894C
10.1039/D1TA05876B
10.1039/C4CS00448E
10.1016/j.jallcom.2022.166338
10.1021/acs.jpcc.0c01135
10.1016/j.ijhydene.2021.03.141
10.1016/j.jallcom.2020.153750
10.1016/j.apsusc.2020.146626
10.1016/j.ccr.2021.214049
10.1021/acsaem.1c03970
10.1021/acsami.9b21534
10.1002/adma.201804672
10.1002/smll.202100129
10.1002/aenm.202200332
10.1016/j.carbon.2019.09.080
10.1039/C9CS00607A
10.1002/er.8458
10.1002/aenm.202201713
10.1039/D0QI00095G
10.1016/j.ccr.2021.214209
10.1039/D1DT01468D
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ccr.2022.214864
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3840
ExternalDocumentID 10_1016_j_ccr_2022_214864
S0010854522004593
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
6J9
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M23
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
UPT
WH7
XPP
YK3
ZMT
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMH
HVGLF
HZ~
H~9
NDZJH
OHT
R2-
RIG
SCB
SEW
SIC
SSH
UQL
VH1
WUQ
XJT
ZKB
ZY4
ID FETCH-LOGICAL-c297t-eb6e55c7c341d9e877c16a44edae031023154435b7fbe761f2fe2467946f03963
IEDL.DBID .~1
ISSN 0010-8545
IngestDate Thu Apr 24 23:12:38 EDT 2025
Tue Jul 01 02:43:55 EDT 2025
Fri Feb 23 02:40:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrochemical water splitting
Transition metal oxides
Electrocatalysts
Metal and non-metal-doping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-eb6e55c7c341d9e877c16a44edae031023154435b7fbe761f2fe2467946f03963
ParticipantIDs crossref_citationtrail_10_1016_j_ccr_2022_214864
crossref_primary_10_1016_j_ccr_2022_214864
elsevier_sciencedirect_doi_10_1016_j_ccr_2022_214864
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Coordination chemistry reviews
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Guo, Ren, Jin, Li, Song (b1295) 2021; 426
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355 (6321) (2017) eaad4998, 10.1126/science.aad4998.
Gao, Deng, Yan, Fang, Li, Shen, Chen (b0970) 2021; 5
Zhang, Guo, Xiao, Lin, Yan, Du, Shen (b0720) 2021; 416
Wu, Zhao, Jin, Jia, Wang, Ma (b0335) 2021; 31
Tong, Mao, Chen, Sun, Yan, Xi (b0785) 2020; 56
Zhu, Shi, Zhu, Yang (b0920) 2020; 73
Yuan, Yao, Zhang, Fu, Liu, Ye (b1105) 2022; 5
Ganesh, Mane, Cai, Chang, Han (b0630) 2009; 113
Zhao, Zhang, Wu, Guo, Xiong, Liu, Wang (b1085) 2018; 54
Zhu, Tu, Bai, Pan, Ji, Zhang, Deng, Zhang (b1550) 2019; 323
Li, Jia, Chen, Liu, Cai, Xue, Fan, Wang, Su, Li (b1155) 2018; 47
Li, Guo, Chen, Wang, Tan, Long, Tong, Tsiakaras, Song, Wang (b1610) 2019; 7
Jia, Li, Lian, Wu, Zheng, Song, Hu, Niu (b0360) 2021; 13
Meng, Han, Lu, Qiu, Wang, Sun (b0285) 2019; 15
Maduraiveeran, Sasidharan, Jin (b0260) 2019; 106
Chen, Huang, Jiang, Yang, Diao, Gong, Liu, Huang, Wang, Chen (b1190) 2019; 10
Yu, Wang, Long, Chen, Cao, Wang, Qiu, Lim, Yang (b1140) 2021; 11
Liu, Liu, Xu, Zhou, Han, Yang, Shan (b1630) 2022; 572
Zeng, Dai, Jin, Liu, Zhang, Wang (b1505) 2021; 5
Kim, Kang, Kim, Kim (b1615) 2021; 426
Hao, Zhu, Li, Tian, Xie, Lei, Cui, Zhang, Tang (b0665) 2020; 338
Yu, Gao, Chen, Zhao, Wu, Wang (b0560) 2021; 42
Wang, Jiang, Hu, Liu, Li, Chen (b1120) 2020; 12
Raja, Cheng, Cheng, Chang, Huang, Lu (b1800) 2022; 303
Wang, Su, He, Li, Zhu, Shen, Xie, Fu, Zhou, Feng (b0295) 2020; 120
Hao, Xin, Wang, Li, Zhao, Wen, Xie, Cui, Tang (b0645) 2021; 57
Wang, Liu, Wang, Lin, Dong, Yu, Luan, Chai, Dong (b0805) 2022; 610
.
Wang, Qi (b0815) 2020; 132
Zhu, Lin, Zhong, Tahini, Shao, Wang (b0010) 2020; 13
Li, Niu, Zhou, Yang (b1600) 2018; 3
Raj, Anantharaj, Kundu, Roy (b1175) 2019; 7
Wang, Hu, Liang, Chang, Du, Han, Sun, Xu (b1410) 2022; 137094
Zhang, Xu, Wang, Li, Jiang, Li (b1555) 2021; 424
J. Cai, J. Yang, X. Xie, J. Ding, L. Liu, W. Tian, Y. Liu, Z. Tang, B. Liu, S. Lu, Carbon doping triggered efficient electrochemical hydrogen evolution of cross-linked porous Ru-MoO
Li, Xu, Zhang, Li, Fang, Dai, Cheng, You, Li (b1130) 2020; 823
Yang, Feng, Chen, Liu, Zhao, Yang (b1685) 2020; 267
Hao, Xin, Tian, Li, Xie, Lei, Tong, Liu, Tang (b0670) 2020; 63
Yin, Dai, Nie, Ren, Yang, Gan, Wu, Cao, Zhang (b1575) 2021; 13
Liu, Zhang, Ma, Wang (b1640) 2019; 848
Liu, Zhang, Wang, Chen, Xiao, Chen, Liu, Yu, Mu (b1270) 2022; 10
Jin, Wang, Su, Wei, Pang, Wang (b1380) 2015; 137
Liu, Ye, Zhao, Wu, Liu, Huang, Xue, Sun, Zhang, Wang (b1720) 2022; 99
Xu, Wang, Wang, Xiao, Huang, Liu, Wang (b1375) 2017; 28
Long, Qiu, Wang, Wang, Yang (b0265) 2019; 11
Lu, Zang, Li, Li, Zou, Zhou, Wang (b1100) 2021; 422
Lyu, Bai, Wang, Wang, Zhang, Yin (b0735) 2019; 11
Khan, Khan, Asiri (b0280) 2016; 27
Li, Jang, Kim, Hou, Liu, Cho (b0915) 2022; 307
Boppella, Tan, Yun, Manorama, Moon (b0225) 2021; 427
Pei, Song, Song, Liu, Wei, Xu, Guo, Liang (b1210) 2021; 368
Xu, Yang, Fang, Du, Fu, Sun, Liu, Lin, Li (b0700) 2020; 48
Yang, Zhao, Dai, Nie, Ren, Yin, Gan, Wu, Cao, Zhang (b1395) 2021; 46
Fan, Liao, Shi, Liu, Shao, Kang (b1545) 2020; 7
Yu, Wang, Shifa, Zhan, Lou, Xia, He (b0530) 2019; 58
Wang, Zhang, Hofmann, Victor, Oropeza (b0405) 2021; 9
T. Asefa, Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts, A.c.c. Chem. Res. 49 (9) (2016) 1873–1883, doi: 10.1021/acs.accounts.6b00317.
Sun, Gao, Lei, Xie (b1345) 2015; 44
Zhou, Ma, Wu, Lin, Pang, Zhang, Xu, Tian, Tang (b0755) 2020; 402
Banerjee, Debata, Madhuri, Sharma (b1000) 2018; 449
Zhang, Zou (b0115) 2021; 17
Li, Zhao, Yu, Liu, Zhang, Liu, Zhou (b0050) 2020; 12
Feng, Si, Deng, Xu, Pu, Hu, Wang (b1240) 2022; 892
Li, Li, An, Hao, Jiang, Guan (b0145) 2021
Shi, Zhou, Yang, Xu, Wang, Wang, Xu, Xia, Chen (b0655) 2017; 139
Wang, Lin, Wan, Wang (b1015) 2020; 45
Wang, Xu, Wang, Shang, Jin, Ren, Song, Guo, Du (b1565) 2020; 59
Bhanja, Kim, Paul, Kaneti, Alothman, Bhaumik, Yamauchi (b1590) 2021; 405
Hu, Zhang, Xiao, Li, Wang, Song (b1435) 2021; 42
Liu, Huang, Cao, Kajiyoshi, Li, Feng, Fu, Kou, Feng (b1635) 2020; 8
Yue, Ma, Yan, Wu, Zhao, Liu, Luo, Zhong, Zhang, Liu (b0945) 2022; 15
Lei, Xu, Ye, Zheng, Liao, Xiong, Hu, Wang, Wang, Ren (b1035) 2021; 285
Zhang, Pang, Cao, Ma, Kou, Liu, Hassan, Guo, Yue, Wang (b1420) 2022; 925
Li, Dong, Guo, Gao, Kang, Lei, Hao, Xie, Tang (b0795) 2022
nanoflowers on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting, Appl. Surf. Sci. 529 (2020). doi: 10.1016/j.apsusc.2020.146987.
Hu, Zhang, Gong (b0005) 2019; 12
Badreldin, Abusrafa, Abdel-Wahab (b0925) 2021; 14
Dong, Zhao, Zhang, Chen, Yang, Song, Wei, Li (b1110) 2020; 388
o
Ruqia, Kabiraz, Hong, Choi (b0600) 2022
Y. Zeng, M. Zhao, Z. Huang, W. Zhu, J. Zheng, Q. Jiang, Z. Wang, H. Liang, Surface Reconstruction of Water Splitting Electrocatalysts, Adv. Energy Mater. (n.d.) 2201713, doi: 10.1002/aenm.202201713.
X. Li, X. Hao, A. Abudula, G. Guan, Nanostructured catalysts for electrochemical water splitting: Current state and prospects, J. Mater. Chem. A. 4 (31) (2016) 11973–12000
Hai, Huang, Cao, Kajiyoshi, Wang, Feng, Liu, Pan (b1585) 2021; 50
Jiang, Yang, Shi, Xia, Chen, Su, Chen (b0870) 2017; 5
Zhang, Ge, Chu, Dong, Baines, Pei, Ye, Shen (b1570) 2018; 10
Song, Ren, Chen, Meng, Biswas, Nandi, Elsen, Gao, Suib (b1185) 2016; 8
Hao, Zhu, Lei, Ma, Xie, Tan, Li, Liu, Tang (b0690) 2018; 10
Jamesh, Sun (b0365) 2018; 400
Tian, Wang, Velasco, Yang, Cao, Zhang, Li, Lin, Zhang, Chen (b1075) 2020; 23
Rani, Ravi, Yuvakkumar, Ravichandran, Ameen, Al-Sabri (b1315) 2019; 89
Chen, Liang, Liu, Ai, Asefa, Zou (b0100) 2020; 32
Shi, Zhang (b0355) 2016; 45
Song, Xu, Liao, Guo, Wu, Sun (b0450) 2021; 17
Du, Ding, Zhang (b1510) 2021; 562
Xie, Fan, Fu, Zhen, Li, Liu, Ma, Wang, Chai, Dong (b1795) 2021; 46
Yuan, Wang, Ma, Kundu, Tang, Li, Wang (b1460) 2021; 404
Shinde, Shinde, Xia, Yun, Mane, Kim (b0455) 2019; 4
Ibrahim, Tsai, Chala, Berihun, Kahsay, Berhe, Su, Hwang (b0480) 2019; 66
Ahn, Lee, Kim, Lee, Lee, Kim, Joo (b1465) 2021; 11
Y. Xia, C.T. Campbell, B. Roldan Cuenya, M. Mavrikakis, Introduction: Advanced materials and methods for catalysis and electrocatalysis by transition metals, Chem. Rev. 121 (2), (2021) 563–566, doi: 10.1021/acs.chemrev.0c01269.
Wu, Chen, Zhu, Mu (b1280) 2021; 17
Wu, Lu, Zang, Lou (b0615) 2020; 30
S.M. El-Refaei, P.A. Russo, N. Pinna, Recent advances in multimetal and doped transition-metal phosphides for the hydrogen evolution reaction at different pH values, ACS Appl. Mater. \& Interfaces. 13(19) (2021) 22077–22097, doi: 10.1021/acsami.1c02129.
Wacławek, Padil, Černik (b0420) 2018; 25
Sankar, Keerthana, Manjula, Sharad, Kundu (b0725) 2021; 60
Zeng, Zhou, Yang, Du, Liu, Zhou (b1125) 2018; 1
Liu, Huang, Xue, Sun, Wang, Xiong, Zhu (b0650) 2021; 13
Liu, Yin, Fu, Zu, Yang, Zhao (b0765) 2020; 8
Wang, Tran, Chang, Prabhakaran, Kim, Kim, Lee (b1350) 2021; 13
Liu, Wang, Xu, Veder, Shao (b0905) 2019; 7
Su, Ge, Jiang, Dong, Hao, Tian, Chen, Chen (b1220) 2018; 30
Li, Li, Liu, Tian, Zhang, Fu, Tang (b1625) 2019; 7
Zeng, Zheng, Li, Yan, Tian, Jin, Strasser, Yang (b0940) 2020; 30
Bui, Kumar, Bui, Lee, Hwang, Le, Kawazoe, Lee (b1740) 2020; 32
Adegoke, Maxakato (b0430) 2022; 457
Gao, Cui, Sewell, Li, Lin (b0990) 2021; 50
An, Wei, Lu, Liu, Chen, Scherer, Fisher, Xi, Xu, Yan (b0120) 2021; 33
Balaji, Nguyen, Harish, Kim, Lee (b0710) 2022; 10
Chiou, Hsu, Li, Tung, Yang, Lee, Lin (b0825) 2022; 58
Ding, Du, Zhang (b1215) 2021; 13
He, Liu, Chen, Liu, Zhang, Zhao, Chang, Wang, Liu, Zhou (b1300) 2022; 432
He, Han, Kong, Jiang, Lei, Lei (b1780) 2019; 32
Dong, Yang, Liu, Wang, Dong, Cui, Li, Yuan, Zhang, Dai (b1005) 2020; 49
Xie, Zhang, Li, Grote, Zhang, Zhang, Wang, Lei, Pan, Xie (b0635) 2013; 135
Wang, Arandiyan, Chen, Zhao, Bo, Su, Zhao (b1445) 2020; 124
Zhong, Han, Wang, Wang, Shen, Zhou, Wang, Zhang, Jin, Li (b0830) 2020; 8
Bao, Wang, Xie, Xu, Lei, Guan, Huang, Zhao, Xia, Li (b0685) 2018; 5
Chandrasekaran, Zhang, Shu, Wang, Chen, Edison, Liu, Karthik, Misra, Deng (b0585) 2021; 449
Bolar, Shit, Murmu, Samanta, Kuila (b0485) 2021; 13
Yu, He, Yang, Zhou, Shao, Ni (b0505) 2019; 9
Li, Yin, Lei, Zhao, He, Li, Yu (b1515) 2022; 47
Solanki, Patra, Ahmad, Kumar, Parra, Zaidi, Yasin, Kumar, Hussein, Sivaraman (b0170) 2022; 108207
A. Zunger, O.I. Malyi, Understanding doping of quantum materials, Chem. Rev. 121 (5) (2021) 3031 3060, doi: 10.1021/acs.chemrev.0c00608.
Li, Wang, Lu (b0125) 2021; 9
Kumar, Prabhu, Shin, Yadav, Ahn, Abdellattif, Jeon (b0185) 2022; 467
Zhang, Cui, Sun, Qi, Jin, Wei, Li, Zhang, Zheng (b1475) 2018; 10
Xi, Yan, Tan, Xiao, Cheng, Khan, Wang, Li (b1430) 2018; 47
Ashraf, Liu, Pham, Zhang (b0580) 2020; 873
Zhao, Dai, Liu, Chen, Zhu, Xue, Wu, Liu (b1480) 2019; 6
Wang, Xu, Chen, Peng, Song, Lv, Liu, Sun, Yuan, Li, Guo, Yang, Zhang (b1385) 2019; 29
Yuan, Duan, Liu, Ye, Lv, Liu, Wang, Zhang (b0425) 2021; 42
Li, Wang, Shao, Huang (b0445) 2020; 49
Zhao, Yao, Wang, Cao, Lu, Xie, Hu, Hao (b1520) 2022
Tian, Cao, Qin (b1245) 2019; 11
Zhao, Liu, Wang, Ren, Li, Zhang (b0975) 2021; 50
Wang, Liang, Zheng, Cao (b0245) 2020; 15
Sun, Tong, Chen, Chen, Xi, Liu, Dong (b1690) 2021; 589
Xie, Gao, Cao, Liu, Lei, Hao, Xia, Tang (b0675) 2019; 7
Jin, Liu, Chen, Vasileff, Li, Jiao, Song, Zheng, Qiao (b0380) 2019; 4
Jiang, Yuan, Zhou, Liu, Zhao, Zhao, Xu (b1735) 2018; 292
Liu, Ran, Ge, Liu, Li, Chen, Feng, Che (b0935) 2021; 425
Salah, Ren, Al-Ansi, Yu, Lang, Tan, Li (b0550) 2021; 9
Wang, Chen, Yuan, Qian, Cai, Jiang, Zhang (b0695) 2020; 69
Xie, Qu, Lei, Peng, Liu, Gao, Hao, Cui, Tang (b0520) 2018; 6
X. Huang, H. Zheng, G. Lu, P. Wang, L. Xing, J. Wang, G. Wang, Enhanced water splitting electrocatalysis over mnco
Sun, Zhao, Li, Li, Meng (b0180) 2022; 165719
Suen, Hung, Quan, Zhang, Xu, Chen (b0200) 2017; 46
Zeng, Xiao, Liu, Yang, Fu (b0900) 2018; 118
Ma, Zha, Dong, Li, Hu (b1170) 2019; 6
Wu, Zou, Huang, Gao (b1020) 2018; 358
Zhang, Xie, Ma, Dong, Liu, Chai (b0510) 2022; 430
Hu, Dai (b0070) 2019; 31
Wang, Vasileff, Jiao, Zheng, Qiao (b0375) 2019; 31
Li, Liu, Feng (b0525) 2020; 34
An
Dai (10.1016/j.ccr.2022.214864_b0780) 2021; 9
Medhi (10.1016/j.ccr.2022.214864_b0340) 2020; 3
Yang (10.1016/j.ccr.2022.214864_b1115) 2021; 9
Li (10.1016/j.ccr.2022.214864_b0125) 2021; 9
Zhu (10.1016/j.ccr.2022.214864_b0010) 2020; 13
Guo (10.1016/j.ccr.2022.214864_b1030) 2019; 7
10.1016/j.ccr.2022.214864_b0035
Wang (10.1016/j.ccr.2022.214864_b0395) 2020; 515
Hu (10.1016/j.ccr.2022.214864_b0640) 2022; 12
Wang (10.1016/j.ccr.2022.214864_b0095) 2020; 819
Wang (10.1016/j.ccr.2022.214864_b0245) 2020; 15
Wu (10.1016/j.ccr.2022.214864_b1145) 2019; 2
Li (10.1016/j.ccr.2022.214864_b0490) 2021; 388
Gao (10.1016/j.ccr.2022.214864_b0970) 2021; 5
Salah (10.1016/j.ccr.2022.214864_b0550) 2021; 9
Song (10.1016/j.ccr.2022.214864_b0960) 2021; 9
Hao (10.1016/j.ccr.2022.214864_b0670) 2020; 63
Wang (10.1016/j.ccr.2022.214864_b0815) 2020; 132
Wang (10.1016/j.ccr.2022.214864_b1275) 2021; 420
Hao (10.1016/j.ccr.2022.214864_b0745) 2020; 31
Jiang (10.1016/j.ccr.2022.214864_b1735) 2018; 292
Xu (10.1016/j.ccr.2022.214864_b0835) 2021; 13
Niu (10.1016/j.ccr.2022.214864_b1230) 2019; 7
Ye (10.1016/j.ccr.2022.214864_b1290) 2021; 50
Li (10.1016/j.ccr.2022.214864_b1625) 2019; 7
Kwon (10.1016/j.ccr.2022.214864_b0310) 2021; 11
Li (10.1016/j.ccr.2022.214864_b0795) 2022
Yu (10.1016/j.ccr.2022.214864_b0530) 2019; 58
Bolar (10.1016/j.ccr.2022.214864_b0485) 2021; 13
Chen (10.1016/j.ccr.2022.214864_b0100) 2020; 32
Yang (10.1016/j.ccr.2022.214864_b1530) 2017; 41
Gao (10.1016/j.ccr.2022.214864_b0840) 2020; 12
Dalle Feste (10.1016/j.ccr.2022.214864_b0895) 2016; 11
Jamesh (10.1016/j.ccr.2022.214864_b0365) 2018; 400
Ahn (10.1016/j.ccr.2022.214864_b1465) 2021; 11
Yu (10.1016/j.ccr.2022.214864_b0560) 2021; 42
Shi (10.1016/j.ccr.2022.214864_b0290) 2020; 121
Yang (10.1016/j.ccr.2022.214864_b1705) 2021; 33
10.1016/j.ccr.2022.214864_b0020
Fan (10.1016/j.ccr.2022.214864_b1545) 2020; 7
Yang (10.1016/j.ccr.2022.214864_b1605) 2022; 430
Khan (10.1016/j.ccr.2022.214864_b0280) 2016; 27
Leng (10.1016/j.ccr.2022.214864_b0605) 2019; 48
Tang (10.1016/j.ccr.2022.214864_b0950) 2022
Zhu (10.1016/j.ccr.2022.214864_b1355) 2019; 7
Jang (10.1016/j.ccr.2022.214864_b1715) 2015; 119
Suen (10.1016/j.ccr.2022.214864_b0200) 2017; 46
Li (10.1016/j.ccr.2022.214864_b1130) 2020; 823
Fominykh (10.1016/j.ccr.2022.214864_b1040) 2015; 9
Jia (10.1016/j.ccr.2022.214864_b0360) 2021; 13
Dou (10.1016/j.ccr.2022.214864_b0075) 2019; 3
Yuan (10.1016/j.ccr.2022.214864_b0425) 2021; 42
Zhou (10.1016/j.ccr.2022.214864_b0625) 2020; 30
Yue (10.1016/j.ccr.2022.214864_b0945) 2022; 15
Li (10.1016/j.ccr.2022.214864_b1610) 2019; 7
Li (10.1016/j.ccr.2022.214864_b0865) 2020; 12
Shan (10.1016/j.ccr.2022.214864_b0085) 2019; 31
Liu (10.1016/j.ccr.2022.214864_b0650) 2021; 13
Hunter (10.1016/j.ccr.2022.214864_b0150) 2016; 116
Feng (10.1016/j.ccr.2022.214864_b1240) 2022; 892
Gao (10.1016/j.ccr.2022.214864_b0345) 2019; 12
Hu (10.1016/j.ccr.2022.214864_b0555) 2020; 26
Niu (10.1016/j.ccr.2022.214864_b1080) 2018; 8
Zhang (10.1016/j.ccr.2022.214864_b1650) 2020; 12
Wang (10.1016/j.ccr.2022.214864_b0890) 2018; 10
Shi (10.1016/j.ccr.2022.214864_b0355) 2016; 45
Hao (10.1016/j.ccr.2022.214864_b1495) 2022; 5
Zeng (10.1016/j.ccr.2022.214864_b0900) 2018; 118
Zhang (10.1016/j.ccr.2022.214864_b1420) 2022; 925
Wang (10.1016/j.ccr.2022.214864_b0540) 2021; 9
Li (10.1016/j.ccr.2022.214864_b1415) 2022; 12
Chen (10.1016/j.ccr.2022.214864_b1360) 2020; 526
Liu (10.1016/j.ccr.2022.214864_b1630) 2022; 572
Hu (10.1016/j.ccr.2022.214864_b0680) 2019; 243
Zhang (10.1016/j.ccr.2022.214864_b0080) 2020; 30
Chiou (10.1016/j.ccr.2022.214864_b0825) 2022; 58
Wen (10.1016/j.ccr.2022.214864_b1390) 2022; 5
Hu (10.1016/j.ccr.2022.214864_b0005) 2019; 12
Liu (10.1016/j.ccr.2022.214864_b0935) 2021; 425
Xiong (10.1016/j.ccr.2022.214864_b0130) 2018; 8
Ding (10.1016/j.ccr.2022.214864_b0875) 2022; 440
10.1016/j.ccr.2022.214864_b1450
Hu (10.1016/j.ccr.2022.214864_b1435) 2021; 42
Zeng (10.1016/j.ccr.2022.214864_b1505) 2021; 5
Chen (10.1016/j.ccr.2022.214864_b0255) 2019; 11
Bo (10.1016/j.ccr.2022.214864_b0980) 2022; 100987
Tian (10.1016/j.ccr.2022.214864_b1075) 2020; 23
Wu (10.1016/j.ccr.2022.214864_b0335) 2021; 31
He (10.1016/j.ccr.2022.214864_b0740) 2021; 298
Chen (10.1016/j.ccr.2022.214864_b0110) 2019; 3
Xu (10.1016/j.ccr.2022.214864_b1375) 2017; 28
Sun (10.1016/j.ccr.2022.214864_b1690) 2021; 589
Yu (10.1016/j.ccr.2022.214864_b0090) 2020; 26
Yang (10.1016/j.ccr.2022.214864_b0160) 2020; 121
Ding (10.1016/j.ccr.2022.214864_b1215) 2021; 13
Ibrahim (10.1016/j.ccr.2022.214864_b0480) 2019; 66
Ruqia (10.1016/j.ccr.2022.214864_b0600) 2022
Zhang (10.1016/j.ccr.2022.214864_b0705) 2019; 254
Han (10.1016/j.ccr.2022.214864_b0435) 2016; 28
Chen (10.1016/j.ccr.2022.214864_b0995) 2020; 45
Song (10.1016/j.ccr.2022.214864_b0105) 2018; 140
Yan (10.1016/j.ccr.2022.214864_b1325) 2018; 119
Li (10.1016/j.ccr.2022.214864_b0610) 2022
10.1016/j.ccr.2022.214864_b0190
Zhong (10.1016/j.ccr.2022.214864_b0830) 2020; 8
Kim (10.1016/j.ccr.2022.214864_b1615) 2021; 426
Zhu (10.1016/j.ccr.2022.214864_b1695) 2020; 30
10.1016/j.ccr.2022.214864_b0195
Du (10.1016/j.ccr.2022.214864_b0470) 2021; 50
Hao (10.1016/j.ccr.2022.214864_b0645) 2021; 57
Xie (10.1016/j.ccr.2022.214864_b0845) 2015; 7
Zou (10.1016/j.ccr.2022.214864_b0305) 2015; 44
Tang (10.1016/j.ccr.2022.214864_b1180) 2017; 139
Wang (10.1016/j.ccr.2022.214864_b0295) 2020; 120
Zhao (10.1016/j.ccr.2022.214864_b1520) 2022
Hao (10.1016/j.ccr.2022.214864_b0790) 2021; 9
Wang (10.1016/j.ccr.2022.214864_b1445) 2020; 124
Balaji (10.1016/j.ccr.2022.214864_b0710) 2022; 10
Jamesh (10.1016/j.ccr.2022.214864_b0775) 2021; 56
Dong (10.1016/j.ccr.2022.214864_b1110) 2020; 388
Dinh (10.1016/j.ccr.2022.214864_b1660) 2020; 157
Tian (10.1016/j.ccr.2022.214864_b1245) 2019; 11
Qian (10.1016/j.ccr.2022.214864_b0660) 2021; 84
Wacławek (10.1016/j.ccr.2022.214864_b0420) 2018; 25
Mahmood (10.1016/j.ccr.2022.214864_b0965) 2018; 5
10.1016/j.ccr.2022.214864_b0985
Chen (10.1016/j.ccr.2022.214864_b1190) 2019; 10
10.1016/j.ccr.2022.214864_b0620
Zhuang (10.1016/j.ccr.2022.214864_b1500) 2020; 59
10.1016/j.ccr.2022.214864_b0060
Bredar (10.1016/j.ccr.2022.214864_b0515) 2020; 3
Gao (10.1016/j.ccr.2022.214864_b0240) 2021; 11
Adegoke (10.1016/j.ccr.2022.214864_b0430) 2022; 457
Dong (10.1016/j.ccr.2022.214864_b0215) 2020; 8
Chen (10.1016/j.ccr.2022.214864_b0860) 2020; 8
Lu (10.1016/j.ccr.2022.214864_b1100) 2021; 422
Lin (10.1016/j.ccr.2022.214864_b1285) 2021; 514
Zhang (10.1016/j.ccr.2022.214864_b1405) 2021; 298
Dong (10.1016/j.ccr.2022.214864_b1005) 2020; 49
Meng (10.1016/j.ccr.2022.214864_b1335) 2019; 7
Xu (10.1016/j.ccr.2022.214864_b0700) 2020; 48
Zhang (10.1016/j.ccr.2022.214864_b1475) 2018; 10
Xie (10.1016/j.ccr.2022.214864_b0520) 2018; 6
Yu (10.1016/j.ccr.2022.214864_b0505) 2019; 9
Sun (10.1016/j.ccr.2022.214864_b0180) 2022; 165719
Zhu (10.1016/j.ccr.2022.214864_b0810) 2022; 304
Qi (10.1016/j.ccr.2022.214864_b0715) 2020; 56
Lu (10.1016/j.ccr.2022.214864_b1595) 2019; 7
10.1016/j.ccr.2022.214864_b0055
Singh (10.1016/j.ccr.2022.214864_b1770) 2021; 447
Yu (10.1016/j.ccr.2022.214864_b1140) 2021; 11
Guo (10.1016/j.ccr.2022.214864_b0595) 2021; 42
Zhang (10.1016/j.ccr.2022.214864_b0410) 2021; 50
Wang (10.1016/j.ccr.2022.214864_b1310) 2020; 562
Swaminathan (10.1016/j.ccr.2022.214864_b1055) 2019; 11
Zeng (10.1016/j.ccr.2022.214864_b1125) 2018; 1
Zhang (10.1016/j.ccr.2022.214864_b1655) 2019; 254
Sahoo (10.1016/j.ccr.2022.214864_b0175) 2022; 469
Zhang (10.1016/j.ccr.2022.214864_b1455) 2018; 14
Liu (10.1016/j.ccr.2022.214864_b1635) 2020; 8
Wang (10.1016/j.ccr.2022.214864_b0205) 2018; 12
Rani (10.1016/j.ccr.2022.214864_b1315) 2019; 89
Lin (10.1016/j.ccr.2022.214864_b1250) 2021; 536
Tong (10.1016/j.ccr.2022.214864_b0785) 2020; 56
Zhao (10.1016/j.ccr.2022.214864_b1480) 2019; 6
Liu (10.1016/j.ccr.2022.214864_b1160) 2021; 585
Wu (10.1016/j.ccr.2022.214864_b1540) 2019; 299
Wang (10.1016/j.ccr.2022.214864_b0405) 2021; 9
Lu (10.1016/j.ccr.2022.214864_b0770) 2021; 417
Bulakhe (10.1016/j.ccr.2022.214864_b0500) 2022
Chandrasekaran (10.1016/j.ccr.2022.214864_b1165) 2019; 7
Jiang (10.1016/j.ccr.2022.214864_b1400) 2022; 606
Min (10.1016/j.ccr.2022.214864_b0300) 2021; 424
Song (10.1016/j.ccr.2022.214864_b0165) 2018; 140
Yan (10.1016/j.ccr.2022.214864_b0040) 2016; 4
Pastor (10.1016/j.ccr.2022.214864_b1425) 2020; 45
Rajeshkhanna (10.1016/j.ccr.2022.214864_b1025) 2018; 10
Yuan (10.1016/j.ccr.2022.214864_b1460) 2021; 404
Hu (10.1016/j.ccr.2022.214864_b0070) 2019; 31
Long (10.1016/j.ccr.2022.214864_b0265) 2019; 11
Li (10.1016/j.ccr.2022.214864_b1155) 2018; 47
Su (10.1016/j.ccr.2022.214864_b1220) 2018; 30
Wang (10.1016/j.ccr.2022.214864_b1750) 2021; 597
Yuan (10.1016/j.ccr.2022.214864_b0270) 2020; 13
Wang (10.1016/j.ccr.2022.214864_b1015) 2020; 45
Zhu (10.1016/j.ccr.2022.214864_b0330) 2017; 50
Yuan (10.1016/j.ccr.2022.214864_b1665) 2018; 6
Li (10.1016/j.ccr.2022.214864_b1790) 2022
Banerjee (10.1016/j.ccr.2022.214864_b1000) 2018; 449
Ma (10.1016/j.ccr.2022.214864_b1170) 2019; 6
Tian (10.1016/j.ccr.2022.214864_b0565) 2021; 9
Wang (10.1016/j.ccr.2022.214864_b1365) 2021; 50
Yu (10.1016/j.ccr.2022.214864_b1265) 2022; 607
10.1016/j.ccr.2022.214864_b1645
Maduraiveeran (10.1016/j.ccr.2022.214864_b0260) 2019; 106
Vazhayil (10.1016/j.ccr.2022.214864_b0535) 2021; 6
Zhao (10.1016/j.ccr.2022.214864_b0570) 2017; 117
Sun (10.1016/j.ccr.2022.214864_b1760) 2021; 444
Jin (10.1016/j.ccr.2022.214864_b1380) 2015; 137
Zhang (10.1016/j.ccr.2022.214864_b0510) 2022; 430
Sun (10.1016/j.ccr.2022.214864_b1345) 2015; 44
Li (10.1016/j.ccr.2022.214864_b0915) 2022; 307
Bao (10.1016/j.ccr.2022.214864_b0685) 2018; 5
Zhang (10.1016/j.ccr.2022.214864_b1730) 2021; 298
Wang (10.1016/j.ccr.2022.214864_b1410) 2022; 137094
Zhu (10.1016/j.ccr.2022.214864_b0025) 2020; 120
Ganesh (10.1016/j.ccr.2022.214864_b0630) 2009; 113
Cao (10.1016/j.ccr.2022.214864_b1255) 2020; 4
Jin (10.1016/j.ccr.2022.214864_b0380) 2019; 4
Wu (10.1016/j.ccr.2022.214864_b1280) 2021; 17
Salah (10.1016/j.ccr.2022.214864_b0545) 2022; 12
Wang (10.1016/j.ccr.2022.214864_b0695) 2020; 69
Sankar (10.1016/j.ccr.2022.214864_b0725) 2021; 60
Sarkar (10.1016/j.ccr.2022.214864_b0760) 2022; 9
Song (10.1016/j.ccr.2022.214864_b1675) 2021; 298
Song (10.1016/j.ccr.2022.214864_b1185) 2016; 8
Wang (10.1016/j.ccr.2022.214864_
References_xml – volume: 15
  start-page: 1804201
  year: 2019
  ident: b0030
  article-title: Noble-metal-free electrocatalysts for oxygen evolution
  publication-title: Small
– volume: 45
  start-page: 1529
  year: 2016
  end-page: 1541
  ident: b0355
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 1700464
  year: 2018
  ident: b0965
  article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions
  publication-title: Adv. Sci.
– volume: 457
  year: 2022
  ident: b0430
  article-title: Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques
  publication-title: Coord. Chem. Rev.
– volume: 358
  start-page: 243
  year: 2018
  end-page: 252
  ident: b1020
  article-title: Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting
  publication-title: J. Catal.
– volume: 14
  start-page: 1803009
  year: 2018
  ident: b0275
  article-title: Ultrasmall Ru/Cu-doped RuO
  publication-title: Small
– year: 2022
  ident: b0795
  article-title: Cerium-induced lattice disordering in Co-based nanocatalysts promoting the hydrazine electro-oxidation behavior
  publication-title: Chem. Commun.
– volume: 23
  year: 2020
  ident: b1075
  article-title: A Co-Doped Nanorod-like RuO
  publication-title: IScience.
– volume: 572
  year: 2022
  ident: b1630
  article-title: Rational construction of Ni/V-MoO
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 1793
  year: 2022
  end-page: 1800
  ident: b1495
  article-title: Construction of Fe
  publication-title: ACS Appl. Energy Mater.
– volume: 121
  start-page: 796
  year: 2020
  end-page: 833
  ident: b0160
  article-title: Noble-metal nanoframes and their catalytic applications
  publication-title: Chem. Rev.
– volume: 27
  start-page: 5294
  year: 2016
  end-page: 5302
  ident: b0280
  article-title: Electro-catalyst based on cerium doped cobalt oxide for oxygen evolution reaction in electrochemical water splitting
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 5
  start-page: 2964
  year: 2018
  end-page: 2970
  ident: b0685
  article-title: The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting
  publication-title: Inorg. Chem. Front.
– volume: 59
  start-page: 14664
  year: 2020
  end-page: 14670
  ident: b1500
  article-title: Sulfur-modified oxygen vacancies in iron–cobalt oxide nanosheets: enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark
  publication-title: Angew. Chemie Int. Ed.
– volume: 5
  start-page: 2000988
  year: 2021
  ident: b0315
  article-title: Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy
  publication-title: Small Methods.
– volume: 31
  start-page: 1900510
  year: 2019
  ident: b0085
  article-title: Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments
  publication-title: Adv. Mater.
– volume: 49
  start-page: 6355
  year: 2020
  end-page: 6362
  ident: b1005
  article-title: 2D Fe-doped NiO nanosheets with grain boundary defects for the advanced oxygen evolution reaction
  publication-title: Dalt. Trans.
– volume: 9
  start-page: 5180
  year: 2015
  end-page: 5188
  ident: b1040
  article-title: Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting
  publication-title: ACS Nano
– volume: 388
  year: 2021
  ident: b0490
  article-title: In situ growing N and O co-doped helical carbon nanotubes encapsulated with CoFe alloy as tri-functional electrocatalyst applied in Zn–Air batteries driving water splitting
  publication-title: Electrochim. Acta
– volume: 606
  start-page: 384
  year: 2022
  end-page: 392
  ident: b1400
  article-title: Phosphorus doping and phosphates coating for nickel molybdate/nickel molybdate hydrate enabling efficient overall water splitting
  publication-title: J. Colloid Interface Sci.
– volume: 66
  year: 2019
  ident: b1010
  article-title: In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting
  publication-title: Nano Energy.
– volume: 11
  start-page: 4420
  year: 2019
  end-page: 4426
  ident: b1245
  article-title: Bimetal-organic framework derived high-valence-state Cu-doped Co
  publication-title: ChemCatChem.
– volume: 15
  start-page: 186
  year: 2022
  end-page: 194
  ident: b0945
  article-title: others, Improving the intrinsic electronic conductivity of NiMoO
  publication-title: Nano Res.
– volume: 69
  year: 2020
  ident: b0695
  article-title: Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions
  publication-title: Nano Energy
– volume: 557
  start-page: 28
  year: 2019
  end-page: 33
  ident: b1805
  article-title: Mn and S dual-doping of MOF-derived Co
  publication-title: J. Colloid Interface Sci.
– volume: 400
  start-page: 31
  year: 2018
  end-page: 68
  ident: b0365
  article-title: Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – A review
  publication-title: J. Power Sources.
– volume: 13
  start-page: 3299
  year: 2020
  end-page: 3309
  ident: b1330
  article-title: Nickel foam supported Cr-doped NiCo
  publication-title: Nano Res.
– reference: Y. Zeng, M. Zhao, Z. Huang, W. Zhu, J. Zheng, Q. Jiang, Z. Wang, H. Liang, Surface Reconstruction of Water Splitting Electrocatalysts, Adv. Energy Mater. (n.d.) 2201713, doi: 10.1002/aenm.202201713.
– reference: X. Huang, H. Zheng, G. Lu, P. Wang, L. Xing, J. Wang, G. Wang, Enhanced water splitting electrocatalysis over mnco
– volume: 2
  start-page: 2177
  year: 2017
  end-page: 2182
  ident: b1620
  article-title: others, High-valence-state NiO/Co
  publication-title: ACS Energy Lett.
– volume: 56
  start-page: 11910
  year: 2020
  end-page: 11930
  ident: b0855
  article-title: Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction
  publication-title: Chem. Commun.
– volume: 11
  start-page: 8198
  year: 2021
  end-page: 8206
  ident: b1465
  article-title: Electrochemical oxidation of boron-doped nickel–iron layered double hydroxide for facile charge transfer in oxygen evolution electrocatalysts
  publication-title: RSC Adv.
– volume: 47
  start-page: 216
  year: 2022
  end-page: 227
  ident: b1515
  article-title: Se-doped cobalt oxide nanoparticle as highly-efficient electrocatalyst for oxygen evolution reaction
  publication-title: Int. J. Hydrogen Energy.
– volume: 30
  start-page: 2003261
  year: 2020
  ident: b0080
  article-title: Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting
  publication-title: Adv. Funct. Mater.
– reference: Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355 (6321) (2017) eaad4998, 10.1126/science.aad4998.
– volume: 31
  start-page: 1804672
  year: 2019
  ident: b0070
  article-title: Doping of carbon materials for metal-free electrocatalysis
  publication-title: Adv. Mater.
– volume: 113
  start-page: 7666
  year: 2009
  end-page: 7669
  ident: b0630
  article-title: ZnO nanoparticles- CdS quantum dots/N
  publication-title: J. Phys. Chem. C
– volume: 60
  start-page: 4034
  year: 2021
  end-page: 4046
  ident: b0725
  article-title: Electrospun Fe-incorporated ZIF-67 nanofibers for effective electrocatalytic water splitting
  publication-title: Inorg. Chem.
– volume: 50
  start-page: 13951
  year: 2021
  end-page: 13960
  ident: b1290
  article-title: Ru doping induces the construction of a unique core–shell microflower self-supporting electrocatalyst for highly efficient overall water splitting
  publication-title: Dalt. Trans.
– volume: 12
  start-page: 2200029
  year: 2022
  ident: b1415
  article-title: P and Mo dual doped ru ultrasmall nanoclusters embedded in p-doped porous carbon toward efficient hydrogen evolution reaction
  publication-title: Adv. Energy Mater.
– volume: 43
  start-page: 2091
  year: 2022
  end-page: 2110
  ident: b1755
  article-title: Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism
  publication-title: Chinese J. Catal.
– volume: 30
  start-page: 1801351
  year: 2018
  ident: b1220
  article-title: Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media
  publication-title: Adv. Mater.
– volume: 100987
  year: 2022
  ident: b0980
  article-title: The nature of synergistic effects in transition metal oxides/in-situ intermediate hydroxides for enhanced oxygen evolution reaction
  publication-title: Curr. Opin. Electrochem.
– volume: 390
  year: 2020
  ident: b1135
  article-title: Boosting the electrochemical water splitting on Co
  publication-title: Chem. Eng. J.
– volume: 589
  start-page: 127
  year: 2021
  end-page: 134
  ident: b1690
  article-title: Dual anions engineering on nickel cobalt-based catalyst for optimal hydrogen evolution electrocatalysis
  publication-title: J. Colloid Interface Sci.
– volume: 243
  start-page: 175
  year: 2019
  end-page: 182
  ident: b0680
  article-title: Facile synthesis of PdO-doped Co
  publication-title: Appl. Catal. B Environ.
– volume: 254
  start-page: 414
  year: 2019
  end-page: 423
  ident: b0705
  article-title: In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting
  publication-title: Appl. Catal. B Environ.
– volume: 119
  start-page: 1921
  year: 2015
  end-page: 1927
  ident: b1715
  article-title: Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution
  publication-title: J. Phys. Chem. C.
– volume: 135
  start-page: 17881
  year: 2013
  end-page: 17888
  ident: b0635
  article-title: Controllable disorder engineering in oxygen-incorporated MoS
  publication-title: J. Am. Chem. Soc.
– volume: 607
  start-page: 1091
  year: 2022
  end-page: 1102
  ident: b1265
  article-title: others, Progress in the development of heteroatom-doped nickel phosphates for electrocatalytic water splitting
  publication-title: J. Colloid Interface Sci.
– volume: 13
  start-page: 42944
  year: 2021
  end-page: 42956
  ident: b1350
  article-title: Bifunctional catalyst derived from sulfur-doped VMoO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 42
  start-page: 1287
  year: 2021
  end-page: 1296
  ident: b0595
  article-title: Amorphous nanomaterials in electrocatalytic water splitting
  publication-title: Chin. J. Catal.
– volume: 56
  start-page: 7649
  year: 2020
  end-page: 7652
  ident: b0850
  article-title: Supercritical CO
  publication-title: Chem. Commun.
– volume: 292
  start-page: 247
  year: 2018
  end-page: 255
  ident: b1735
  article-title: Selenium phosphorus co-doped cobalt oxide nanosheets anhored on Co foil: a self-supported and stable bifunctional electrode for efficient electrochemical water splitting
  publication-title: Electrochim. Acta.
– volume: 420
  year: 2021
  ident: b1275
  article-title: Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis
  publication-title: Chem. Eng. J.
– volume: 562
  year: 2021
  ident: b1510
  article-title: Selectively Se-doped Co
  publication-title: Appl. Surf. Sci.
– volume: 50
  start-page: 8428
  year: 2021
  end-page: 8469
  ident: b0990
  article-title: Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 3717
  year: 2020
  end-page: 3736
  ident: b0245
  article-title: Recent progress on defect-rich transition metal oxides and their energy-related applications
  publication-title: Chem. Asian J.
– volume: 7
  start-page: 2188
  year: 2020
  end-page: 2194
  ident: b1545
  article-title: Highly efficient water splitting over a RuO
  publication-title: Inorg. Chem. Front.
– volume: 298
  year: 2021
  ident: b1730
  article-title: MoO
  publication-title: Appl. Catal. B Environ.
– volume: 6
  start-page: 10595
  year: 2018
  end-page: 10626
  ident: b0250
  article-title: Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes
  publication-title: J. Mater. Chem. A.
– volume: 425
  year: 2021
  ident: b0935
  article-title: Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction
  publication-title: Chem. Eng. J.
– volume: 298
  year: 2021
  ident: b0740
  article-title: Tuning electron correlations of RuO
  publication-title: Appl. Catal. B Environ.
– volume: 597
  start-page: 361
  year: 2021
  end-page: 369
  ident: b1750
  article-title: N and Mn dual-doped cactus-like cobalt oxide nanoarchitecture derived from cobalt carbonate hydroxide as efficient electrocatalysts for oxygen evolution reactions
  publication-title: J. Colloid Interface Sci.
– volume: 8
  start-page: 6222
  year: 2020
  end-page: 6233
  ident: b1635
  article-title: V-Doping triggered formation and structural evolution of dendritic Ni
  publication-title: ACS Sustain. Chem. Eng.
– volume: 6
  year: 2021
  ident: b0535
  article-title: A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction
  publication-title: Appl. Surf. Sci. Adv.
– volume: 608
  start-page: 3030
  year: 2022
  end-page: 3039
  ident: b0820
  article-title: others, Electrochemical incorporation of heteroatom into surface reconstruction induced Ni vacancy of Ni
  publication-title: J. Colloid Interface Sci.
– volume: 157
  start-page: 515
  year: 2020
  end-page: 524
  ident: b1660
  article-title: others, Hybrid Ni/NiO composite with N-doped activated carbon from waste cauliflower leaves: a sustainable bifunctional electrocatalyst for efficient water splitting
  publication-title: Carbon N. Y.
– volume: 140
  start-page: 7748
  year: 2018
  end-page: 7759
  ident: b0165
  article-title: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance
  publication-title: J. Am. Chem. Soc.
– volume: 496
  year: 2020
  ident: b1485
  article-title: Highly efficient and robust sulfur-doped nickel-cobalt oxide towards oxygen evolution reaction
  publication-title: Mol. Catal.
– volume: 12
  start-page: 4618
  year: 2020
  end-page: 4624
  ident: b1650
  article-title: Two-dimensional nanosheet structure of Co, S Co-doped carbon-framework supported MoO
  publication-title: ChemCatChem.
– volume: 89
  start-page: 500
  year: 2019
  end-page: 510
  ident: b1315
  article-title: Efficient, highly stable Zn-doped NiO nanocluster electrocatalysts for electrochemical water splitting applications
  publication-title: J. Sol-Gel Sci. Technol.
– volume: 8
  start-page: 3688
  year: 2018
  end-page: 3707
  ident: b0130
  article-title: Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting
  publication-title: ACS Catal.
– volume: 118
  start-page: 6236
  year: 2018
  end-page: 6296
  ident: b0900
  article-title: Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control
  publication-title: Chem. Rev.
– reference: via introduction of suitable ce content, ACS Sustain. Chem. & Eng. 7 (1) (2018) 1169–1177, doi: 10.1021/acssuschemeng.8b04814.
– volume: 42
  start-page: 1876
  year: 2021
  end-page: 1902
  ident: b0560
  article-title: Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides
  publication-title: Chin. J. Catal.
– volume: 298
  year: 2021
  ident: b1675
  article-title: Modulating electronic structure of cobalt phosphide porous nanofiber by ruthenium and nickel dual doping for highly-efficiency overall water splitting at high current density
  publication-title: Appl. Catal. B Environ.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 32
  ident: b0310
  article-title: Dopants in the design of noble metal nanoparticle electrocatalysts and their effect on surface energy and coordination chemistry at the nanocrystal surface
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 805
  year: 2019
  end-page: 810
  ident: b0380
  article-title: Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 5361
  year: 2021
  end-page: 5383
  ident: b0240
  article-title: Doping strategy, properties and application of heteroatom-doped ordered mesoporous carbon
  publication-title: RSC Adv.
– volume: 405
  year: 2021
  ident: b1235
  article-title: Synergy of copper doping and oxygen vacancies in porous CoOOH nanoplates for efficient water oxidation
  publication-title: Chem. Eng. J.
– volume: 46
  start-page: 37281
  year: 2021
  end-page: 37293
  ident: b1470
  article-title: Enriched oxygen vacancy promoted heteroatoms (B, P, N, and S) doped CeO
  publication-title: Int. J. Hydrogen Energy
– volume: 15
  start-page: 1902551
  year: 2019
  ident: b0285
  article-title: Fe
  publication-title: Small.
– volume: 117
  start-page: 6225
  year: 2017
  end-page: 6331
  ident: b0370
  article-title: recent advances in ultrathin two-dimensional nanomaterials
  publication-title: Chem. Rev.
– volume: 34
  start-page: 13491
  year: 2020
  end-page: 13522
  ident: b0525
  article-title: A review on advanced FeNi-based catalysts for water splitting reaction
  publication-title: Energy & Fuels
– year: 2022
  ident: b0600
  article-title: Catalyst activation: Surface doping effects of group VI transition metal dichalcogenides towards hydrogen evolution reaction in acidic media
  publication-title: J. Energy Chem.
– volume: 422
  year: 2021
  ident: b1100
  article-title: Co-doped Ni
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 23123
  year: 2020
  end-page: 23141
  ident: b0215
  article-title: Noble-metal-free electrocatalysts toward H
  publication-title: J. Mater. Chem. A.
– volume: 7
  year: 2019
  ident: b1230
  article-title: Copper doped manganese oxides to produce enhanced catalytic performance for CO oxidation
  publication-title: J. Environ. Chem. Eng.
– volume: 50
  start-page: 11604
  year: 2021
  end-page: 11609
  ident: b1585
  article-title: Fe, Ni-codoped W
  publication-title: Dalt. Trans.
– volume: 5
  start-page: 1347
  year: 2021
  end-page: 1365
  ident: b1505
  article-title: Design strategies toward transition metal selenide-based catalysts for electrochemical water splitting
  publication-title: Sustain. Energy Fuels.
– volume: 9
  start-page: e202101140
  year: 2022
  ident: b0760
  article-title: Boosting surface reconstruction for the oxygen evolution reaction: a combined effect of heteroatom incorporation and anion etching in cobalt silicate precatalyst
  publication-title: ChemElectroChem.
– volume: 12
  start-page: 1
  year: 2020
  end-page: 29
  ident: b0050
  article-title: Water splitting: from electrode to green energy system
  publication-title: Nano-Micro Letters
– volume: 50
  start-page: 6500
  year: 2021
  end-page: 6505
  ident: b0065
  article-title: Recasting Ni-foam into NiF
  publication-title: Dalt. Trans.
– volume: 9
  start-page: 8576
  year: 2021
  end-page: 8585
  ident: b0790
  article-title: Superassembly of NiCoO
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 20384
  year: 2018
  end-page: 20392
  ident: b0690
  article-title: Morphology and electronic structure modulation induced by fluorine doping in nickel-based heterostructures for robust bifunctional electrocatalysis
  publication-title: Nanoscale
– volume: 50
  start-page: 2663
  year: 2021
  end-page: 2695
  ident: b0470
  article-title: Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction
  publication-title: Chem. Soc. Rev.
– volume: 416
  year: 2021
  ident: b0720
  article-title: Ni-Mo based mixed-phase polyionic compounds nanorod arrays on nickel foam as advanced bifunctional electrocatalysts for water splitting
  publication-title: Chem. Eng. J.
– volume: 29
  start-page: 1
  year: 2019
  end-page: 11
  ident: b1385
  article-title: Defect-rich nitrogen doped Co
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 3361
  year: 2020
  end-page: 3392
  ident: b0010
  article-title: Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts
  publication-title: Energy Environ. Sci.
– volume: 819
  year: 2020
  ident: b0095
  article-title: Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review
  publication-title: J. Alloys Compd.
– volume: 430
  year: 2022
  ident: b0510
  article-title: An overview of the active sites in transition metal electrocatalysts and their practical activity for hydrogen evolution reaction
  publication-title: Chem. Eng. J.
– volume: 449
  start-page: 660
  year: 2018
  end-page: 668
  ident: b1000
  article-title: Electrocatalytic behavior of transition metal (Ni, Fe, Cr) doped metal oxide nanocomposites for oxygen evolution reaction
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 12501
  year: 2019
  end-page: 12509
  ident: b1595
  article-title: In-situ transformed Ni, S-Codoped CoO from amorphous Co–Ni sulfide as an efficient electrocatalyst for hydrogen evolution in alkaline media
  publication-title: ACS Sustain. Chem. Eng.
– volume: 4
  start-page: 6486
  year: 2019
  end-page: 6491
  ident: b0455
  article-title: Electrocatalytic water splitting through the Ni
  publication-title: ACS Omega
– volume: 8
  start-page: 10831
  year: 2020
  end-page: 10838
  ident: b0830
  article-title: Aliovalent fluorine doping and anodization-induced amorphization enable bifunctional catalysts for efficient water splitting
  publication-title: J. Mater. Chem. A.
– volume: 7
  start-page: 13577
  year: 2019
  end-page: 13584
  ident: b0675
  article-title: Copper-incorporated hierarchical wire-on-sheet α-Ni(OH)
  publication-title: J. Mater. Chem. A
– volume: 925
  year: 2022
  ident: b1420
  article-title: Phosphorus modified hollow, porous nickel-Cobalt oxides nanocubes with heterostructure for oxygen evolution reaction in alkaline
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 5875
  year: 2019
  end-page: 5897
  ident: b1355
  article-title: Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions
  publication-title: J. Mater. Chem. A.
– volume: 9
  start-page: 3786
  year: 2021
  end-page: 3827
  ident: b0125
  article-title: Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting
  publication-title: J. Mater. Chem. A.
– reference: S.M. El-Refaei, P.A. Russo, N. Pinna, Recent advances in multimetal and doped transition-metal phosphides for the hydrogen evolution reaction at different pH values, ACS Appl. Mater. \& Interfaces. 13(19) (2021) 22077–22097, doi: 10.1021/acsami.1c02129.
– volume: 338
  year: 2020
  ident: b0665
  article-title: Nickel incorporated Co
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 3782
  year: 2022
  end-page: 3792
  ident: b0710
  article-title: Modulating heterointerfaces of tungsten incorporated CoSe/Co
  publication-title: J. Mater. Chem. A.
– volume: 3
  start-page: 892
  year: 2018
  end-page: 898
  ident: b1600
  article-title: Phosphorus and aluminum codoped porous NiO nanosheets as highly efficient electrocatalysts for overall water splitting
  publication-title: ACS Energy Lett.
– start-page: 1
  year: 2022
  end-page: 9
  ident: b1790
  article-title: Co
  publication-title: Tungsten.
– volume: 3
  start-page: 6156
  year: 2020
  end-page: 6185
  ident: b0340
  article-title: Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications
  publication-title: ACS Appl. Nano Mater.
– volume: 8
  start-page: 13415
  year: 2020
  end-page: 13436
  ident: b0140
  article-title: Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting
  publication-title: J. Mater. Chem. A.
– volume: 13
  start-page: 121
  year: 2020
  end-page: 126
  ident: b1490
  article-title: Engineering defects and adjusting electronic structure on S doped MoO
  publication-title: Nano Res.
– volume: 254
  start-page: 634
  year: 2019
  end-page: 646
  ident: b1655
  article-title: CoNi based alloy/oxides@N-doped carbon core-shell dendrites as complementary water splitting electrocatalysts with significantly enhanced catalytic efficiency
  publication-title: Appl. Catal. B Environ.
– volume: 132
  start-page: 17372
  year: 2020
  end-page: 17377
  ident: b0815
  article-title: Heterostructured inter-doped ruthenium-cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting
  publication-title: Angew. Chem.
– reference: G. Xu, M. Feng, S. Wang, Y. Cheng, J. J. Chen, Kinetic regulation engineering and in-situ spectroscopy studies on transition-metal-based electrocatalysts for water splitting, ChemElectroChem. (n.d.), doi: 10.1002/celc.202200549.
– volume: 11
  year: 2016
  ident: b0895
  article-title: Work function tuning in hydrothermally synthesized vanadium-doped MoO
  publication-title: Appl. Sci.
– volume: 6
  start-page: 1707
  year: 2018
  end-page: 1714
  ident: b1710
  article-title: W-Doped MoO
  publication-title: Energy Technol.
– volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  ident: b0200
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
– volume: 426
  year: 2021
  ident: b1745
  article-title: Anion-cation-dual doped tremella-like nickel phosphides for electrocatalytic water oxidation
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 18055
  year: 2019
  end-page: 18060
  ident: b1335
  article-title: Activating inert ZnO by surface cobalt doping for efficient water oxidation in neutral media
  publication-title: ACS Sustain. Chem. Eng.
– volume: 3
  start-page: 1160
  year: 2016
  end-page: 1166
  ident: b0955
  article-title: others, Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction
  publication-title: Inorg. Chem. Front.
– volume: 139
  start-page: 8320
  year: 2017
  end-page: 8328
  ident: b1180
  article-title: Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting
  publication-title: J. Am. Chem. Soc.
– year: 2022
  ident: b1725
  article-title: Synergistic modulation of inverse spinel Fe
  publication-title: J. Colloid Interface Sci.
– volume: 299
  start-page: 231
  year: 2019
  end-page: 244
  ident: b1540
  article-title: Fluorine-doped nickel cobalt oxide spinel as efficiently bifunctional catalyst for overall water splitting
  publication-title: Electrochim. Acta.
– volume: 6
  start-page: 11529
  year: 2018
  end-page: 11535
  ident: b1665
  article-title: Molecule-assisted synthesis of highly dispersed ultrasmall RuO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 49
  start-page: 2196
  year: 2020
  end-page: 2214
  ident: b0460
  article-title: A review on fundamentals for designing oxygen evolution electrocatalysts
  publication-title: Chem. Soc. Rev.
– year: 2022
  ident: b0950
  article-title: Synergistic effect of Mn doping and hollow structure boosting Mn-CoP/Co
  publication-title: J. Colloid Interface Sci.
– volume: 252
  start-page: 214
  year: 2019
  end-page: 221
  ident: b1065
  article-title: Catalyzing overall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon
  publication-title: Appl. Catal. B Environ.
– volume: 30
  start-page: 2000503
  year: 2020
  ident: b0940
  article-title: Recent advances in non-noble bifunctional oxygen electrocatalysts toward large-scale production
  publication-title: Adv. Funct. Mater.
– volume: 106
  year: 2019
  ident: b0260
  article-title: Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications
  publication-title: Prog. Mater. Sci.
– volume: 26
  year: 2021
  ident: b1095
  article-title: Oxygen vacancies and band gap engineering of vertically aligned MnO
  publication-title: Surfaces and Interfaces.
– volume: 398
  start-page: 54
  year: 2021
  end-page: 66
  ident: b0400
  article-title: Strategies to improve cobalt-based electrocatalysts for electrochemical water splitting
  publication-title: J. Catal.
– volume: 66
  start-page: 829
  year: 2019
  end-page: 865
  ident: b0480
  article-title: A review of transition metal-based bifunctional oxygen electrocatalysts
  publication-title: J. Chinese Chem. Soc.
– volume: 14
  start-page: 1802760
  year: 2018
  ident: b1455
  article-title: Disordering the atomic structure of Co (II) Oxide via B-doping: an efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts
  publication-title: Small
– volume: 58
  start-page: 244
  year: 2019
  end-page: 276
  ident: b0530
  article-title: Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction
  publication-title: Nano Energy.
– volume: 11
  start-page: 39706
  year: 2019
  end-page: 39714
  ident: b1055
  article-title: Tuning the electrocatalytic activity of Co
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 13459
  year: 2021
  end-page: 13470
  ident: b0565
  article-title: Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis
  publication-title: J. Mater. Chem. A.
– volume: 7
  start-page: 6161
  year: 2019
  end-page: 6172
  ident: b1165
  article-title: Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting
  publication-title: J. Mater. Chem. A.
– volume: 4
  start-page: 1522
  year: 2020
  end-page: 1531
  ident: b1255
  article-title: Temperature and doping-tuned coordination environments around electroactive centers in Fe-doped α(β)-Ni (OH)
  publication-title: Sustain. Energy Fuels
– volume: 50
  start-page: 9817
  year: 2021
  end-page: 9844
  ident: b0410
  article-title: Doping regulation in transition metal compounds for electrocatalysis
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 24828
  year: 2020
  end-page: 24839
  ident: b0995
  article-title: High-performance bifunctional Fe-doped molybdenum oxide-based electrocatalysts with in situ grown epitaxial heterojunctions for overall water splitting
  publication-title: Int. J. Hydrogen Energy
– reference: S. Anantharaj, S.R. Ede, K. Karthick, S. Sam Sankar, K. Sangeetha, P.E. Karthik, S. Kundu, Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment, Energy Energy Environ. Sci. 11 (4) (2018) 744-771, doi: 10.1039/c7ee03457a.
– volume: 32
  start-page: 2002435
  year: 2020
  ident: b0100
  article-title: Active site engineering in porous electrocatalysts
  publication-title: Adv. Mater.
– volume: 3
  start-page: 752
  year: 2021
  end-page: 780
  ident: b0465
  article-title: others, Regulating intrinsic electronic structures of transition-metal-based catalysts and the potential applications for electrocatalytic water splitting
  publication-title: ACS Mater. Lett.
– reference: M. Li, R. Sun, Y. Li, J. Jiang, W. Xu, H. Cong, S. Han, The 3D porous “celosia” heterogeneous interface engineering of layered double hydroxide and P-doped molybdenum oxide on MXene promotes overall water-splitting, Chem. Eng. J. 431 (2022) 133941.doi: 10.1016/j.cej.2021.133941.
– volume: 10
  start-page: 4374
  year: 2017
  end-page: 4392
  ident: b0350
  article-title: Electrocatalytic metal–organic frameworks for energy applications
  publication-title: ChemSusChem.
– volume: 9
  start-page: 14372
  year: 2021
  end-page: 14380
  ident: b0960
  article-title: Fe-doping induced localized amorphization in ultrathin α-Ni (OH)
  publication-title: J. Mater. Chem. A.
– volume: 25
  start-page: 9
  year: 2018
  end-page: 34
  ident: b0420
  article-title: Major advances and challenges in heterogeneous catalysis for environmental applications: a review
  publication-title: Ecol. Chem. Eng. S.
– volume: 7
  start-page: 7280
  year: 2019
  end-page: 7300
  ident: b0905
  article-title: Recent advances in anion-doped metal oxides for catalytic applications
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 6432
  year: 2021
  end-page: 6441
  ident: b0780
  article-title: Surface reconstruction induced in situ phosphorus doping in nickel oxides for an enhanced oxygen evolution reaction
  publication-title: J. Mater. Chem. A.
– volume: 140
  start-page: 7748
  year: 2018
  end-page: 7759
  ident: b0105
  article-title: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance
  publication-title: J. Am. Chem. Soc.
– volume: 469
  year: 2022
  ident: b0175
  article-title: Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: a review with insights on synthesis
  publication-title: Coord. Chem. Rev.
– volume: 44
  start-page: 5148
  year: 2015
  end-page: 5180
  ident: b0305
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
– volume: 44
  start-page: 623
  year: 2015
  end-page: 636
  ident: b1345
  article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis
  publication-title: Chem. Soc. Rev.
– volume: 121
  start-page: 10271
  year: 2021
  end-page: 10366
  ident: b0135
  article-title: Noble-metal-free multicomponent nanointegration for sustainable energy conversion
  publication-title: Chem. Rev.
– volume: 9
  start-page: 13106
  year: 2021
  end-page: 13113
  ident: b1115
  article-title: Triggering the intrinsic catalytic activity of Ni-doped molybdenum oxides via phase engineering for hydrogen evolution and application in Mg/seawater batteries
  publication-title: ACS Sustain. Chem. Eng.
– volume: 58
  start-page: 2746
  year: 2022
  end-page: 2749
  ident: b0825
  article-title: Fluoride-incorporated cobalt-based electrocatalyst towards enhanced hydrogen evolution reaction
  publication-title: Chem. Commun.
– reference: via solid phase reaction strategy, Energy & Environ. Mater. (n.d.) e12424, doi: 10.1002/eem2.12424.
– volume: 873
  year: 2020
  ident: b0580
  article-title: Electrodeposition of superhydrophilic and binder-free Mo-doped Ni–Fe nanosheets as cost-effective and efficient bifunctional electrocatalyst for overall water splitting
  publication-title: J. Electroanal. Chem.
– volume: 6
  start-page: 16121
  year: 2018
  end-page: 16129
  ident: b0520
  article-title: Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis
  publication-title: J. Mater. Chem. A.
– volume: 7
  start-page: 17950
  year: 2019
  end-page: 17957
  ident: b1625
  article-title: Hollow Co
  publication-title: ACS Sustain. Chem. Eng.
– volume: 449
  year: 2021
  ident: b0585
  article-title: others, Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion
  publication-title: Coord. Chem. Rev.
– volume: 5
  year: 2022
  ident: b1105
  article-title: Regulating the heterostructure of metal/oxide toward the enhanced hydrogen evolution reaction
  publication-title: ACS Appl. Energy Mater.
– volume: 307
  year: 2022
  ident: b0915
  article-title: Ru-incorporated oxygen-vacancy-enriched MoO
  publication-title: Appl. Catal. B Environ.
– volume: 42
  start-page: 2275
  year: 2021
  end-page: 2286
  ident: b1435
  article-title: Template-free synthesis of Co
  publication-title: Chinese J. Catal.
– volume: 45
  start-page: 30404
  year: 2020
  end-page: 30414
  ident: b1425
  article-title: Stoichiometry control and phosphorus doping as strategies for the enhancement of nickel iron spinel oxides as electrocatalysts for water oxidation
  publication-title: Int. J. Hydrogen Energy.
– volume: 2
  start-page: 2148
  year: 2021
  end-page: 2158
  ident: b1060
  article-title: Improving oxygen vacancies by cobalt doping in MoO
  publication-title: Nano Sel.
– volume: 32
  start-page: 63
  year: 2019
  end-page: 70
  ident: b1780
  article-title: Fe-doped Co
  publication-title: J. Energy Chem.
– volume: 48
  start-page: 15
  year: 2019
  end-page: 20
  ident: b0885
  article-title: Defect engineering on electrocatalysts for gas-evolving reactions
  publication-title: Dalt. Trans.
– reference: J. Cai, J. Yang, X. Xie, J. Ding, L. Liu, W. Tian, Y. Liu, Z. Tang, B. Liu, S. Lu, Carbon doping triggered efficient electrochemical hydrogen evolution of cross-linked porous Ru-MoO
– volume: 12
  start-page: 2200332
  year: 2022
  ident: b0545
  article-title: Advanced Ru/Ni/WC@ NPC Multi-Interfacial Electrocatalyst for Efficient Sustainable Hydrogen and Chlor-Alkali Co-Production
  publication-title: Adv. Energy Mater.
– reference: .
– volume: 10
  start-page: 745
  year: 2018
  end-page: 752
  ident: b1475
  article-title: Nanoporous sulfur-doped copper oxide (Cu
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 11901
  year: 2019
  end-page: 11910
  ident: b1610
  article-title: Anion–cation double doped Co
  publication-title: ACS Sustain. Chem. Eng.
– volume: 17
  start-page: 2100129
  year: 2021
  ident: b0115
  article-title: Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges
  publication-title: Small.
– volume: 8
  start-page: 14944
  year: 2020
  end-page: 14954
  ident: b1305
  article-title: Flexible and free-standing hetero-electrocatalyst of high-valence-cation doped MoS
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 4196
  year: 2020
  end-page: 4199
  ident: b0785
  article-title: Confinement of fluorine anions in nickel-based catalysts for greatly enhancing oxygen evolution activity
  publication-title: Chem. Commun.
– year: 2022
  ident: b0610
  article-title: Electrochemical preparation of nano/micron structure transition metal-based catalysts for the oxygen evolution reaction
  publication-title: Mater. Horizons.
– volume: 11
  start-page: 2002731
  year: 2021
  ident: b1140
  article-title: Formation of FeOOH nanosheets induces substitutional doping of CeO
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 19465
  year: 2021
  end-page: 19488
  ident: b0405
  article-title: others, The electronic structure of transition metal oxides for oxygen evolution reaction
  publication-title: J. Mater. Chem. A
– volume: 514
  year: 2021
  ident: b1285
  article-title: Rational design of Ru aerogel and RuCo aerogels with abundant oxygen vacancies for hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting
  publication-title: J. Power Sources.
– volume: 77
  year: 2020
  ident: b1785
  article-title: One-step electrodeposition of carbon quantum dots and transition metal ions for N-doped carbon coupled with NiFe oxide clusters: A high-performance electrocatalyst for oxygen evolution
  publication-title: Nano Energy.
– volume: 3
  start-page: 14971
  year: 2019
  end-page: 15005
  ident: b0110
  article-title: Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution
  publication-title: J. Mater. Chem. A.
– volume: 848
  year: 2019
  ident: b1640
  article-title: Ni and NiO in situ grown on sulfur and phosphorus co-doped graphene as effective bifunctional catalyst for hydrogen evolution
  publication-title: J. Electroanal. Chem.
– volume: 33
  start-page: 2004862
  year: 2021
  ident: b1705
  article-title: MnO
  publication-title: Adv. Mater.
– volume: 31
  start-page: 2009070
  year: 2021
  ident: b0335
  article-title: Recent progress of vacancy engineering for electrochemical energy conversion related applications
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 1910274
  year: 2020
  ident: b0615
  article-title: Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2019
  ident: b1170
  article-title: Mn-doped Co
  publication-title: Mater. Res. Express.
– volume: 416
  start-page: 371
  year: 2017
  end-page: 378
  ident: b1050
  article-title: Ternary mixed metal Fe-doped NiCo
  publication-title: Appl. Surf. Sci.
– volume: 56
  start-page: 4575
  year: 2020
  end-page: 4578
  ident: b0715
  article-title: Modulation of crystal water in cobalt phosphate for promoted water oxidation
  publication-title: Chem. Commun.
– volume: 440
  year: 2022
  ident: b0875
  article-title: Surface and interface engineering of MoNi alloy nanograins bound to Mo-doped NiO nanosheets on 3D graphene foam for high-efficiency water splitting catalysis
  publication-title: Chem. Eng. J.
– year: 2022
  ident: b1260
  article-title: Ru-doping modulated cobalt phosphide nanoarrays as efficient electrocatalyst for hydrogen evolution rection
  publication-title: J. Colloid Interface Sci.
– volume: 303
  year: 2022
  ident: b1800
  article-title: In-situ grown metal-organic framework-derived carbon-coated Fe-doped cobalt oxide nanocomposite on fluorine-doped tin oxide glass for acidic oxygen evolution reaction
  publication-title: Appl. Catal. B Environ.
– volume: 116
  start-page: 14120
  year: 2016
  end-page: 14136
  ident: b0150
  article-title: Earth-abundant heterogeneous water oxidation catalysts
  publication-title: Chem. Rev.
– volume: 8
  start-page: 25465
  year: 2020
  end-page: 25498
  ident: b0880
  article-title: Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting
  publication-title: J. Mater. Chem. A.
– volume: 8
  start-page: 12030
  year: 2018
  end-page: 12040
  ident: b1080
  article-title: Understanding synergism of cobalt metal and copper oxide toward highly efficient electrocatalytic oxygen evolution
  publication-title: ACS Catal.
– volume: 388
  year: 2020
  ident: b1110
  article-title: Synergy of Mn and Ni enhanced catalytic performance for toluene combustion over Ni-doped α-MnO
  publication-title: Chem. Eng. J.
– volume: 892
  year: 2022
  ident: b1240
  article-title: Copper-doped ruthenium oxide as highly efficient electrocatalysts for the evolution of oxygen in acidic media
  publication-title: J. Alloys Compd.
– volume: 536
  year: 2021
  ident: b1250
  article-title: Ru doped bimetallic phosphide derived from 2D metal organic framework as active and robust electrocatalyst for water splitting
  publication-title: Appl. Surf. Sci.
– volume: 48
  start-page: 3015
  year: 2019
  end-page: 3072
  ident: b0605
  article-title: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 6416
  year: 2020
  end-page: 6424
  ident: b1015
  article-title: Autologous growth of Fe-doped Ni (OH)
  publication-title: Int. J. Hydrogen Energy.
– volume: 10
  start-page: 12341
  year: 2022
  end-page: 12349
  ident: b1270
  article-title: Nearly hollow Ru–Cu–MoO
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 6423
  year: 2020
  end-page: 6436
  ident: b0090
  article-title: Earth-abundant transition-metal-based bifunctional electrocatalysts for overall water splitting in alkaline media
  publication-title: Chem. Eur. J.
– volume: 541
  year: 2021
  ident: b1340
  article-title: Morphology control of Co
  publication-title: Appl. Surf. Sci.
– reference: nanoflowers on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting, Appl. Surf. Sci. 529 (2020). doi: 10.1016/j.apsusc.2020.146987.
– volume: 8
  start-page: 15951
  year: 2020
  end-page: 15961
  ident: b0860
  article-title: Catalytic activity atlas of ternary Co–Fe–V metal oxides for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A.
– volume: 165719
  year: 2022
  ident: b0180
  article-title: Recent advances in transition metal selenides-based electrocatalysts: rational design and applications in water splitting
  publication-title: J. Alloys Compd.
– volume: 48
  start-page: 116
  year: 2020
  end-page: 121
  ident: b0700
  article-title: Anion-cation dual doping: An effective electronic modulation strategy of Ni
  publication-title: J. Energy Chem.
– volume: 414
  year: 2021
  ident: b1370
  article-title: Self-supported Co/CoO anchored on N-doped carbon composite as bifunctional electrocatalyst for efficient overall water splitting
  publication-title: Chem. Eng. J.
– volume: 137
  start-page: 2688
  year: 2015
  end-page: 2694
  ident: b1380
  article-title: In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 112
  year: 2019
  end-page: 118
  ident: b0735
  article-title: Coordination-assisted synthesis of iron-incorporated cobalt oxide nanoplates for enhanced oxygen evolution
  publication-title: Mater. Today Chem.
– volume: 13
  start-page: 20324
  year: 2021
  end-page: 20353
  ident: b0835
  article-title: Rational design of metal oxide catalysts for electrocatalytic water splitting
  publication-title: Nanoscale.
– volume: 4
  start-page: 7675
  year: 2021
  end-page: 7685
  ident: b1765
  article-title: Ru-doped CuO/MoS
  publication-title: ACS Appl. Nano Mater.
– volume: 823
  year: 2020
  ident: b1130
  article-title: Low Ni-doped Co
  publication-title: J. Alloys Compd.
– reference: X. Li, X. Hao, A. Abudula, G. Guan, Nanostructured catalysts for electrochemical water splitting: Current state and prospects, J. Mater. Chem. A. 4 (31) (2016) 11973–12000,
– volume: 424
  year: 2021
  ident: b0300
  article-title: Defect-rich Fe-doped Co
  publication-title: Chem. Eng. J.
– year: 2022
  ident: b0575
  article-title: Ru doping boosts electrocatalytic water splitting
  publication-title: Dalt. Trans.
– volume: 32
  start-page: 9591
  year: 2020
  end-page: 9601
  ident: b1740
  article-title: Boosting electrocatalytic HER activity of 3D interconnected CoSP via metal doping: active and stable electrocatalysts for pH-universal hydrogen generation
  publication-title: Chem. Mater.
– volume: 405
  year: 2021
  ident: b1670
  article-title: Engineering of oxygen vacancies regulated core-shell N-doped carbon@ NiFe
  publication-title: Chem. Eng. J.
– volume: 218
  start-page: 1700359
  year: 2017
  ident: b0440
  article-title: Transition metal ion-induced high electrocatalytic performance of conducting polymer for oxygen and hydrogen evolution reactions
  publication-title: Macromol. Chem. Phys.
– volume: 54
  start-page: 409
  year: 2018
  end-page: 428
  ident: b0415
  article-title: Zinc oxide for solar water splitting: A brief review of the material’s challenges and associated opportunities
  publication-title: Nano Energy
– volume: 124
  start-page: 9971
  year: 2020
  end-page: 9978
  ident: b1445
  article-title: Microwave-induced plasma synthesis of defect-rich, highly ordered porous phosphorus-doped cobalt oxides for overall water electrolysis
  publication-title: J. Phys. Chem. C.
– reference: A. Zunger, O.I. Malyi, Understanding doping of quantum materials, Chem. Rev. 121 (5) (2021) 3031 3060, doi: 10.1021/acs.chemrev.0c00608.
– volume: 5
  start-page: 5475
  year: 2017
  end-page: 5485
  ident: b0870
  article-title: Pt-like electrocatalytic behavior of Ru–MoO 2 nanocomposites for the hydrogen evolution reaction
  publication-title: J. Mater. Chem. A.
– volume: 426
  year: 2021
  ident: b1615
  article-title: Exploring the intrinsic active sites and multi oxygen evolution reaction step via unique hollow structures of nitrogen and sulfur co-doped amorphous cobalt and nickel oxides
  publication-title: Chem. Eng. J.
– volume: 526
  year: 2020
  ident: b1360
  article-title: Polyaniline engineering defect-induced nitrogen doped carbon-supported Co
  publication-title: Appl. Surf. Sci.
– volume: 54
  start-page: 129
  year: 2018
  end-page: 137
  ident: b1085
  article-title: Cobalt-doped MnO
  publication-title: Nano Energy
– volume: 267
  year: 2020
  ident: b1685
  article-title: Synchronously integration of Co, Fe dual-metal doping in Ru@ C and CDs for boosted water splitting performances in alkaline media
  publication-title: Appl. Catal. B Environ.
– volume: 10
  start-page: 7087
  year: 2018
  end-page: 7095
  ident: b1570
  article-title: Dual-functional starfish-like P-doped Co–Ni–S nanosheets supported on nickel foams with enhanced electrochemical performance and excellent stability for overall water splitting
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 8
  start-page: 20802
  year: 2016
  end-page: 20813
  ident: b1185
  article-title: Ni-and Mn-promoted mesoporous Co
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 26
  start-page: 3930
  year: 2020
  end-page: 3942
  ident: b0555
  article-title: Nonmetal doping as a robust route for boosting the hydrogen evolution of metal-based electrocatalysts
  publication-title: Chem. Eur. J.
– volume: 13
  start-page: 1824
  year: 2021
  end-page: 1833
  ident: b1215
  article-title: Cu-doped Ni
  publication-title: ChemCatChem.
– volume: 11
  start-page: 16
  year: 2019
  end-page: 28
  ident: b0265
  article-title: Recent advances in transition metal–based catalysts with heterointerfaces for energy conversion and storage
  publication-title: Mater. Today Chem.
– volume: 9
  start-page: 5320
  year: 2021
  end-page: 5363
  ident: b0540
  article-title: Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting
  publication-title: J. Mater. Chem. A
– volume: 28
  year: 2017
  ident: b1375
  article-title: N-doped nanoporous Co
  publication-title: Nanotechnology.
– volume: 5
  start-page: 2100834
  year: 2021
  ident: b0970
  article-title: Structural variations of metal oxide-based electrocatalysts for oxygen evolution reaction
  publication-title: Small Methods.
– volume: 6
  start-page: 2883
  year: 2018
  end-page: 2887
  ident: b1090
  article-title: Co-doped CuO nanoarray: an efficient oxygen evolution reaction electrocatalyst with enhanced activity
  publication-title: ACS Sustain. Chem. Eng.
– volume: 30
  start-page: 1905252
  year: 2020
  ident: b0625
  article-title: Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting
  publication-title: Adv. Funct. Mater.
– volume: 31
  year: 2020
  ident: b0745
  article-title: Nickel cobalt oxide nanowires with iron incorporation realizing a promising electrocatalytic oxygen evolution reaction
  publication-title: Nanotechnology.
– volume: 268
  year: 2020
  ident: b1195
  article-title: Mo doping induced metallic CoSe for enhanced electrocatalytic hydrogen evolution
  publication-title: Appl. Catal. B Environ.
– volume: 30
  year: 2021
  ident: b1580
  article-title: Oxygen vacancies and V co-doped Co
  publication-title: Chinese Phys. B
– volume: 368
  year: 2021
  ident: b1210
  article-title: Mo-doping induced edge-rich cobalt iron oxide ultrathin nanomeshes as efficient bifunctional electrocatalysts for overall water splitting
  publication-title: Electrochim. Acta.
– volume: 56
  start-page: 299
  year: 2021
  end-page: 342
  ident: b0775
  article-title: Tuning the electronic structure of the earth-abundant electrocatalysts for oxygen evolution reaction (OER) to achieve efficient alkaline water splitting– A review
  publication-title: J. Energy Chem.
– volume: 8
  start-page: 2236
  year: 2018
  end-page: 2241
  ident: b1440
  article-title: Phosphorus-doped Co
  publication-title: Acs Catal.
– volume: 13
  start-page: 765
  year: 2021
  end-page: 780
  ident: b0485
  article-title: Activation strategy of MoS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 50
  start-page: 915
  year: 2017
  end-page: 923
  ident: b0330
  article-title: Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes
  publication-title: Acc. Chem. Res.
– volume: 562
  start-page: 363
  year: 2020
  end-page: 369
  ident: b1310
  article-title: W doping dominated NiO/NiS
  publication-title: J. Colloid Interface Sci.
– volume: 121
  start-page: 649
  year: 2020
  end-page: 735
  ident: b0290
  article-title: Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications
  publication-title: Chem. Rev.
– volume: 9
  start-page: 15506
  year: 2021
  end-page: 15521
  ident: b0590
  article-title: Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
– volume: 57
  start-page: 2029
  year: 2021
  end-page: 2032
  ident: b0645
  article-title: Lanthanum-incorporated β-Ni(OH)
  publication-title: Chem. Commun.
– volume: 30
  start-page: 2003556
  year: 2020
  ident: b1695
  article-title: others, Etching-doping sedimentation equilibrium strategy: accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 51437
  year: 2020
  end-page: 51447
  ident: b0865
  article-title: Ultralow Ru-induced bimetal electrocatalysts with a Ru-enriched and mixed-valence surface anchored on a hollow carbon matrix for oxygen reduction and water splitting
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 13
  start-page: 11120
  year: 2021
  end-page: 11127
  ident: b0360
  article-title: A mild reduction of Co-doped MnO
  publication-title: Nanoscale.
– volume: 12
  start-page: 24701
  year: 2020
  end-page: 24709
  ident: b0840
  article-title: Crystalline cobalt/amorphous LaCoO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 2568
  year: 2015
  end-page: 2580
  ident: b0845
  article-title: Structural engineering of electrocatalysts for the hydrogen evolution reaction: order or disorder?
  publication-title: ChemCatChem.
– volume: 119
  start-page: 54
  year: 2018
  end-page: 61
  ident: b1325
  article-title: Mesoporous Ag-doped Co
  publication-title: Renew. Energy
– volume: 71
  year: 2020
  ident: b0750
  article-title: Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting
  publication-title: Nano Energy
– volume: 304
  year: 2022
  ident: b0810
  article-title: Vanadium-phosphorus incorporation induced interfacial modification on cobalt catalyst and its super electrocatalysis for water splitting in alkaline media
  publication-title: Appl. Catal. B Environ.
– volume: 298
  year: 2021
  ident: b1405
  article-title: Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting
  publication-title: Appl. Catal. B Environ.
– volume: 17
  start-page: 2002240
  year: 2021
  ident: b0450
  article-title: Electronic structure tuning of 2D metal (hydr) oxides nanosheets for electrocatalysis
  publication-title: Small
– volume: 447
  year: 2021
  ident: b1770
  article-title: Modulating electronic structure of metal-organic framework derived catalysts for electrochemical water oxidation
  publication-title: Coord. Chem. Rev.
– volume: 13
  start-page: 11314
  year: 2021
  end-page: 11324
  ident: b1775
  article-title: Nonmetal-doping of noble metal-based catalysts for electrocatalysis
  publication-title: Nanoscale.
– volume: 13
  start-page: 14156
  year: 2021
  end-page: 14165
  ident: b1575
  article-title: Electronic modulation and proton transfer by iron and borate co-doping for synergistically triggering the oxygen evolution reaction on a hollow NiO bipyramidal prism
  publication-title: Nanoscale
– volume: 427
  year: 2021
  ident: b0225
  article-title: Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives
  publication-title: Coord. Chem. Rev.
– volume: 120
  start-page: 1085
  year: 2020
  end-page: 1145
  ident: b0230
  article-title: Catalysis with colloidal ruthenium nanoparticles
  publication-title: Chem. Rev.
– volume: 49
  start-page: 3072
  year: 2020
  end-page: 3106
  ident: b0445
  article-title: Metallic nanostructures with low dimensionality for electrochemical water splitting
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 838
  year: 2018
  end-page: 854
  ident: b0205
  article-title: Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting
  publication-title: Front. Chem. Sci. Eng.
– volume: 6
  start-page: 167
  year: 2018
  end-page: 178
  ident: b1070
  article-title: A Co-doped Ni–Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting
  publication-title: J. Mater. Chem. A.
– volume: 120
  start-page: 12217
  year: 2020
  end-page: 12314
  ident: b0295
  article-title: others, Advanced electrocatalysts with single-metal-atom active sites
  publication-title: Chem. Rev.
– volume: 467
  year: 2022
  ident: b0185
  article-title: Prospects of non-noble metal single atoms embedded in two-dimensional (2D) carbon and non-carbon-based structures in electrocatalytic applications
  publication-title: Coord. Chem. Rev.
– year: 2022
  ident: b0500
  article-title: Recent advances in non-precious Ni-based promising catalysts for water splitting application
  publication-title: Int. J. Energy Res.
– volume: 33
  start-page: 2006328
  year: 2021
  ident: b0120
  article-title: Recent development of oxygen evolution electrocatalysts in acidic environment
  publication-title: Adv. Mater.
– volume: 99
  year: 2022
  ident: b1720
  article-title: others, A dual-site doping strategy for developing efficient perovskite oxide electrocatalysts towards oxygen evolution reaction
  publication-title: Nano Energy.
– volume: 80
  year: 2021
  ident: b0015
  article-title: “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts
  publication-title: Nano Energy
– volume: 9
  start-page: 20131
  year: 2021
  end-page: 20163
  ident: b0390
  article-title: Tuning intrinsic catalytic activities of oxygen-evolution catalysts by doping: a comprehensive review
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 66
  year: 2021
  end-page: 87
  ident: b0220
  article-title: Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis
  publication-title: SusMat.
– volume: 426
  year: 2021
  ident: b1295
  article-title: Synergistic engineering of morphology and electronic structure in constructing metal-organic framework-derived Ru doped cobalt-nickel oxide heterostructure towards efficient alkaline hydrogen evolution reaction
  publication-title: Chem. Eng. J.
– volume: 1
  start-page: 6279
  year: 2018
  end-page: 6287
  ident: b1125
  article-title: General approach of in situ etching and doping to synthesize a nickel-doped M
  publication-title: ACS Appl. Energy Mater.
– volume: 4
  start-page: 5417
  year: 2020
  end-page: 5432
  ident: b0320
  article-title: First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings
  publication-title: Sustain. Energy Fuels.
– volume: 441
  start-page: 1024
  year: 2018
  end-page: 1033
  ident: b1205
  article-title: 3D structured Mo-doped Ni
  publication-title: Appl. Surf. Sci.
– volume: 59
  start-page: 11814
  year: 2020
  end-page: 11822
  ident: b1565
  article-title: Hollow V-Doped CoM
  publication-title: Inorg. Chem.
– volume: 117
  start-page: 10121
  year: 2017
  end-page: 10211
  ident: b0570
  article-title: Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond
  publication-title: Chem. Rev.
– reference: T. Asefa, Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts, A.c.c. Chem. Res. 49 (9) (2016) 1873–1883, doi: 10.1021/acs.accounts.6b00317.
– volume: 58
  start-page: 446
  year: 2021
  end-page: 462
  ident: b0325
  article-title: Modification strategies on transition metal-based electrocatalysts for efficient water splitting
  publication-title: J. Energy Chem.
– volume: 9
  start-page: 20518
  year: 2021
  end-page: 20529
  ident: b0550
  article-title: Ru/Mo
  publication-title: J. Mater. Chem. A.
– volume: 5
  start-page: 1908
  year: 2020
  end-page: 1915
  ident: b0730
  article-title: others, Electron density modulation of metallic MoO
  publication-title: ACS Energy Lett.
– volume: 402
  year: 2020
  ident: b0755
  article-title: Electronic modulation by N incorporation boosts the electrocatalytic performance of urchin-like Ni
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 66
  year: 2020
  end-page: 98
  ident: b0515
  article-title: Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications
  publication-title: ACS Appl. Energy Mater.
– year: 2021
  ident: b0145
  article-title: Transition-metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives
  publication-title: Nanoscale.
– volume: 10
  start-page: 42453
  year: 2018
  end-page: 42468
  ident: b1025
  article-title: Remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities with trace-level Fe doping in Ni-and Co-layered double hydroxides for overall water-splitting
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 2
  start-page: 4105
  year: 2019
  end-page: 4110
  ident: b1145
  article-title: Ni–Co codoped RuO
  publication-title: ACS Appl. Energy Mater.
– volume: 137094
  year: 2022
  ident: b1410
  article-title: Surface reconstruction of phosphorus-doped cobalt molybdate microarrays in electrochemical water splitting
  publication-title: Chem. Eng. J.
– volume: 84
  year: 2021
  ident: b0660
  article-title: others, Selective dopant segregation modulates mesoscale reaction kinetics in layered transition metal oxide
  publication-title: Nano Energy.
– volume: 5
  start-page: 6814
  year: 2022
  end-page: 6822
  ident: b1390
  article-title: Hierarchically self-supporting phosphorus-doped CoMoO
  publication-title: ACS Appl. Energy Mater.
– volume: 303
  year: 2022
  ident: b1560
  article-title: Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity
  publication-title: Appl. Catal. B Environ.
– volume: 417
  year: 2021
  ident: b0770
  article-title: Charge state manipulation induced through cation intercalation into MnO
  publication-title: Chem. Eng. J.
– volume: 41
  start-page: 772
  year: 2017
  end-page: 779
  ident: b1530
  article-title: Co-N-doped MoO
  publication-title: Nano Energy.
– volume: 515
  year: 2020
  ident: b0395
  article-title: Surface engineering by doping manganese into cobalt phosphide towards highly efficient bifunctional HER and OER electrocatalysis
  publication-title: Appl. Surf. Sci.
– volume: 10
  start-page: 1152
  year: 2019
  end-page: 1160
  ident: b1190
  article-title: Mn-doped RuO
  publication-title: ACS Catal.
– volume: 537
  year: 2021
  ident: b1225
  article-title: Preferential dissolution of copper from Cu-Mn oxides in strong acid medium: Effect of the starting binary oxide to get new efficient copper doped MnO
  publication-title: Appl. Surf. Sci.
– reference: o
– volume: 46
  start-page: 33388
  year: 2021
  end-page: 33396
  ident: b1395
  article-title: Phosphorus-doping induced electronic modulation of CoS
  publication-title: Int. J. Hydrogen Energy.
– volume: 444
  year: 2021
  ident: b1760
  article-title: Material libraries for electrocatalytic overall water splitting
  publication-title: Coord. Chem. Rev.
– volume: 11
  start-page: 34819
  year: 2019
  end-page: 34826
  ident: b0255
  article-title: Electronic structure and crystalline phase dual modulation via anion-cation co-doping for boosting oxygen evolution with long-term stability under large current density
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 31
  start-page: 1808167
  year: 2019
  ident: b0045
  article-title: Support and interface effects in water-splitting electrocatalysts
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2297
  year: 2020
  end-page: 2308
  ident: b0495
  article-title: Appropriate use of electrochemical impedance spectroscopy in water splitting electrocatalysis
  publication-title: ChemElectroChem.
– volume: 73
  year: 2020
  ident: b0920
  article-title: The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction
  publication-title: Nano Energy.
– volume: 627
  start-page: 891
  year: 2022
  end-page: 899
  ident: b0800
  article-title: Oriented interlayered charge transfer in NiCoFe layered double hydroxide/MoO
  publication-title: J. Colloid Interface Sci.
– volume: 404
  year: 2021
  ident: b1460
  article-title: Oxygen vacancies engineered self-supported B doped Co
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 2620
  year: 2019
  end-page: 2645
  ident: b0005
  article-title: Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting
  publication-title: Energy Environ. Sci.
– volume: 585
  start-page: 61
  year: 2021
  end-page: 71
  ident: b1160
  article-title: Promotional effect of Mn-doping on the catalytic performance of NiO sheets for the selective oxidation of styrene
  publication-title: J. Colloid Interface Sci.
– volume: 8
  start-page: 10096
  year: 2020
  end-page: 10129
  ident: b0765
  article-title: Activation strategies of water-splitting electrocatalysts
  publication-title: J. Mater. Chem. A
– volume: 432
  year: 2022
  ident: b1300
  article-title: Cathode electrochemically reconstructed V-doped CoO nanosheets for enhanced alkaline hydrogen evolution reaction
  publication-title: Chem. Eng. J.
– volume: 120
  start-page: 851
  year: 2020
  end-page: 918
  ident: b0025
  article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles
  publication-title: Chem. Rev.
– volume: 32
  start-page: 2001866
  year: 2020
  ident: b0385
  article-title: Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions
  publication-title: Adv. Mater.
– volume: 63
  start-page: 1030
  year: 2020
  end-page: 1039
  ident: b0670
  article-title: Novel (Ni, Fe) S
  publication-title: Sci. China Chem.
– volume: 303
  start-page: 316
  year: 2019
  end-page: 322
  ident: b1525
  article-title: Engineering the electronic structure of Co
  publication-title: Electrochim. Acta.
– volume: 10
  start-page: 16
  year: 2018
  end-page: 23
  ident: b0890
  article-title: Design strategies for non-precious metal oxide electrocatalysts for oxygen evolution reactions
  publication-title: Curr. Opin. Electrochem.
– volume: 31
  start-page: 1803625
  year: 2019
  ident: b0375
  article-title: Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1800211
  year: 2019
  ident: b0075
  article-title: Rational design of transition metal-based materials for highly efficient electrocatalysis
  publication-title: Small Methods.
– volume: 139
  start-page: 15479
  year: 2017
  end-page: 15485
  ident: b0655
  article-title: Energy level engineering of MoS
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 8430
  year: 2018
  end-page: 8440
  ident: b1150
  article-title: Hierarchically porous Mo-doped Ni–Fe oxide nanowires efficiently catalyzing oxygen/hydrogen evolution reactions
  publication-title: J. Mater. Chem. A.
– volume: 6
  start-page: 1901308
  year: 2019
  ident: b1480
  article-title: Sulfur-induced interface engineering of hybrid NiCo
  publication-title: Adv. Mater. Interfaces.
– volume: 12
  start-page: 436
  year: 2022
  end-page: 461
  ident: b0640
  article-title: Recent developments of Co
  publication-title: Catal. Sci. Technol.
– volume: 405
  year: 2021
  ident: b1590
  article-title: Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: Efficient electrocatalysts for oxygen evolution reaction
  publication-title: Chem. Eng. J.
– reference: X. Shang, J.-H. Tang, B. Dong, Y. Sun, Recent advances of nonprecious and bifunctional electrocatalysts for overall water splitting, Sustain. Energy \& Fuels. 4 (7) (2020) 3211–3228. doi: 10.1039/D0SE00466A.
– start-page: 2200173
  year: 2022
  ident: b0910
  article-title: Ru/Rh cation doping and oxygen-vacancy engineering of FeOOH nanoarrays@ Ti
  publication-title: Small
– volume: 13
  start-page: 4294
  year: 2020
  end-page: 4309
  ident: b0270
  article-title: A review on non-noble metal based electrocatalysis for the oxygen evolution reaction
  publication-title: Arab. J. Chem.
– volume: 33
  start-page: 2000381
  year: 2021
  ident: b0475
  article-title: Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions
  publication-title: Adv. Mater.
– volume: 47
  start-page: 14679
  year: 2018
  end-page: 14685
  ident: b1155
  article-title: MOF-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting
  publication-title: Dalt. Trans.
– volume: 17
  start-page: 2102777
  year: 2021
  ident: b1280
  article-title: Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media
  publication-title: Small.
– volume: 154099
  year: 2022
  ident: b1700
  article-title: Synergistically enhancing electrocatalytic activity of Co
  publication-title: Appl. Surf. Sci.
– volume: 28
  start-page: 9266
  year: 2016
  end-page: 9291
  ident: b0435
  article-title: Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction
  publication-title: Adv. Mater.
– volume: 47
  start-page: 8787
  year: 2018
  end-page: 8793
  ident: b1430
  article-title: Superaerophobic P-doped Ni (OH)
  publication-title: Dalt. Trans.
– volume: 9
  start-page: 9973
  year: 2019
  end-page: 10011
  ident: b0505
  article-title: Recent advances and prospective in ruthenium-based materials for electrochemical water splitting
  publication-title: ACS Catal.
– volume: 108207
  year: 2022
  ident: b0170
  article-title: Investigation of recent progress in metal-based materials as catalysts toward electrochemical water splitting
  publication-title: J. Environ Chem. Eng.
– volume: 285
  year: 2021
  ident: b1035
  article-title: Engineering defect-rich Fe-doped NiO coupled Ni cluster nanotube arrays with excellent oxygen evolution activity
  publication-title: Appl. Catal. B Environ.
– volume: 42
  start-page: 317
  year: 2021
  end-page: 369
  ident: b0425
  article-title: Recent progress on transition metal oxides as advanced materials for energy conversion and storage
  publication-title: Energy Storage Mater.
– volume: 7
  start-page: 21704
  year: 2019
  end-page: 21710
  ident: b1030
  article-title: Oxygen defect engineering in cobalt iron oxide nanosheets for promoted overall water splitting
  publication-title: J. Mater. Chem. A.
– reference: W. Wang, Z. Yang, F. Jiao, Y. Gong, (P, W)-codoped MoO
– volume: 606
  start-page: 1695
  year: 2022
  end-page: 1706
  ident: b1200
  article-title: Molybdenum doped induced amorphous phase in cobalt acid nickel for supercapacitor and oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
– volume: 50
  start-page: 7745
  year: 2021
  end-page: 7778
  ident: b0975
  article-title: Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts
  publication-title: Chem. Soc. Rev.
– volume: 323
  year: 2019
  ident: b1550
  article-title: Zeolitic-imidazolate-framework-derived Co@ Co
  publication-title: Electrochim. Acta
– year: 2022
  ident: b1520
  article-title: Doping-engineered bifunctional oxygen electrocatalyst with Se/Fe-doped Co
  publication-title: J. Colloid Interface Sci.
– volume: 13
  start-page: 19840
  year: 2021
  end-page: 19856
  ident: b0650
  article-title: Recent advances in heteroatom doping of perovskite oxides for efficient electrocatalytic reactions
  publication-title: Nanoscale.
– volume: 30
  start-page: 2002533
  year: 2020
  ident: b1680
  article-title: Molybdenum and phosphorous dual doping in cobalt monolayer interfacial assembled cobalt nanowires for efficient overall water splitting
  publication-title: Adv. Funct. Mater.
– volume: 430
  year: 2022
  ident: b1605
  article-title: Core-shell trimetallic NiFeV disulfides and amorphous high-valance NiFe hydroxide nanosheets enhancing oxygen evolution reaction
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 10
  year: 2021
  end-page: 32
  ident: b0925
  article-title: Oxygen-deficient cobalt-based oxides for electrocatalytic water splitting
  publication-title: ChemSusChem.
– volume: 50
  start-page: 5072
  year: 2021
  end-page: 5080
  ident: b1365
  article-title: N-doped NiO nanosheet arrays as efficient electrocatalysts for hydrogen evolution reaction
  publication-title: J. Electron. Mater.
– volume: 46
  start-page: 19962
  year: 2021
  end-page: 19970
  ident: b1795
  article-title: Double doping of V and F on Co
  publication-title: Int. J. Hydrogen Energy.
– volume: 424
  year: 2021
  ident: b1555
  article-title: Dual-defective Co
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 266
  year: 2019
  end-page: 281
  ident: b0345
  article-title: Incorporation of rare earth elements with transition metal–based materials for electrocatalysis: a review for recent progress
  publication-title: Mater. Today Chem.
– volume: 118
  start-page: 6337
  year: 2018
  end-page: 6408
  ident: b0155
  article-title: emerging two-dimensional nanomaterials for electrocatalysis
  publication-title: Chem. Rev.
– volume: 52
  start-page: 115
  year: 2021
  end-page: 120
  ident: b0930
  article-title: Chlorine-anion doping induced multi-factor optimization in perovskties for boosting intrinsic oxygen evolution
  publication-title: J. Energy Chem.
– volume: 4
  start-page: 17587
  year: 2016
  end-page: 17603
  ident: b0040
  article-title: A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting
  publication-title: J. Mater. Chem. A
– reference: Y. Xia, C.T. Campbell, B. Roldan Cuenya, M. Mavrikakis, Introduction: Advanced materials and methods for catalysis and electrocatalysis by transition metals, Chem. Rev. 121 (2), (2021) 563–566, doi: 10.1021/acs.chemrev.0c01269.
– volume: 610
  start-page: 173
  year: 2022
  end-page: 181
  ident: b0805
  article-title: Motivating borate doped FeNi layered double hydroxides by molten salt method toward efficient oxygen evolution
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 9690
  year: 2019
  end-page: 9698
  ident: b1175
  article-title: In situ Mn-doping-promoted conversion of Co(OH)
  publication-title: ACS Sustain. Chem. Eng.
– volume: 32
  start-page: 2002235
  year: 2020
  ident: b1045
  article-title: Metal atom-doped Co
  publication-title: Adv. Mater.
– volume: 12
  start-page: 11600
  year: 2020
  end-page: 11606
  ident: b1120
  article-title: Top-open hollow nanocubes of Ni-doped Cu oxides on Ni foam: scalable oxygen evolution electrode via galvanic displacement and face-selective etching
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 46
  start-page: 37281
  issue: 75
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1470
  article-title: Enriched oxygen vacancy promoted heteroatoms (B, P, N, and S) doped CeO2: challenging electrocatalysts for oxygen evolution reaction (OER) in alkaline medium
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.09.003
– volume: 426
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1615
  article-title: Exploring the intrinsic active sites and multi oxygen evolution reaction step via unique hollow structures of nitrogen and sulfur co-doped amorphous cobalt and nickel oxides
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130820
– volume: 12
  start-page: 2620
  issue: 9
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0005
  article-title: Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01202H
– volume: 9
  start-page: 3786
  issue: 7
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0125
  article-title: Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA09495A
– volume: 99
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1720
  article-title: others, A dual-site doping strategy for developing efficient perovskite oxide electrocatalysts towards oxygen evolution reaction
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2022.107344
– volume: 7
  start-page: 7280
  issue: 13
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0905
  article-title: Recent advances in anion-doped metal oxides for catalytic applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09913H
– volume: 13
  start-page: 121
  issue: 1
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1490
  article-title: Engineering defects and adjusting electronic structure on S doped MoO2 nanosheets toward highly active hydrogen evolution reaction
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2582-6
– volume: 536
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1250
  article-title: Ru doped bimetallic phosphide derived from 2D metal organic framework as active and robust electrocatalyst for water splitting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147952
– start-page: 1
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1790
  article-title: Co3O4/stainless steel catalyst with synergistic effect of oxygen vacancies and phosphorus doping for overall water splitting
  publication-title: Tungsten.
– volume: 118
  start-page: 6337
  issue: 13
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0155
  article-title: emerging two-dimensional nanomaterials for electrocatalysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00689
– volume: 425
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0935
  article-title: Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131642
– volume: 7
  start-page: 9690
  issue: 10
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1175
  article-title: In situ Mn-doping-promoted conversion of Co(OH)2 to Co3O4 as an active electrocatalyst for oxygen evolution reaction
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01468
– volume: 430
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0510
  article-title: An overview of the active sites in transition metal electrocatalysts and their practical activity for hydrogen evolution reaction
  publication-title: Chem. Eng. J.
– volume: 30
  start-page: 1905252
  issue: 7
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0625
  article-title: Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905252
– volume: 121
  start-page: 10271
  issue: 17
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0135
  article-title: Noble-metal-free multicomponent nanointegration for sustainable energy conversion
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01328
– volume: 388
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0490
  article-title: In situ growing N and O co-doped helical carbon nanotubes encapsulated with CoFe alloy as tri-functional electrocatalyst applied in Zn–Air batteries driving water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138587
– volume: 42
  start-page: 317
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0425
  article-title: Recent progress on transition metal oxides as advanced materials for energy conversion and storage
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.07.007
– volume: 50
  start-page: 2663
  issue: 4
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0470
  article-title: Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01191F
– volume: 30
  start-page: 1801351
  issue: 29
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1220
  article-title: Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801351
– volume: 42
  start-page: 1287
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0595
  article-title: Amorphous nanomaterials in electrocatalytic water splitting
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(20)63740-8
– volume: 303
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1560
  article-title: Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120871
– volume: 3
  start-page: 892
  issue: 7
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1600
  article-title: Phosphorus and aluminum codoped porous NiO nanosheets as highly efficient electrocatalysts for overall water splitting
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00174
– volume: 73
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0920
  article-title: The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2020.104761
– volume: 8
  start-page: 13415
  issue: 27
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0140
  article-title: Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA05038E
– volume: 298
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0740
  article-title: Tuning electron correlations of RuO2 by co-doping of Mo and Ce for boosting electrocatalytic water oxidation in acidic media
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120528
– volume: 254
  start-page: 634
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1655
  article-title: CoNi based alloy/oxides@N-doped carbon core-shell dendrites as complementary water splitting electrocatalysts with significantly enhanced catalytic efficiency
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.05.035
– volume: 572
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1630
  article-title: Rational construction of Ni/V-MoO2 heterostructured nanohybrids as high-performanced electrocatalysts for hydrogen evolution reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.151482
– volume: 432
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1300
  article-title: Cathode electrochemically reconstructed V-doped CoO nanosheets for enhanced alkaline hydrogen evolution reaction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134331
– volume: 426
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1745
  article-title: Anion-cation-dual doped tremella-like nickel phosphides for electrocatalytic water oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130718
– volume: 26
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1095
  article-title: Oxygen vacancies and band gap engineering of vertically aligned MnO2 porous nanosheets for efficient oxygen evolution reaction
  publication-title: Surfaces and Interfaces.
  doi: 10.1016/j.surfin.2021.101398
– volume: 13
  start-page: 3299
  issue: 12
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1330
  article-title: Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3006-3
– volume: 467
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0185
  article-title: Prospects of non-noble metal single atoms embedded in two-dimensional (2D) carbon and non-carbon-based structures in electrocatalytic applications
  publication-title: Coord. Chem. Rev.
– volume: 32
  start-page: 2002235
  issue: 31
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1045
  article-title: Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002235
– volume: 5
  start-page: 5475
  issue: 11
  year: 2017
  ident: 10.1016/j.ccr.2022.214864_b0870
  article-title: Pt-like electrocatalytic behavior of Ru–MoO 2 nanocomposites for the hydrogen evolution reaction
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA09994G
– volume: 14
  start-page: 1803009
  issue: 41
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0275
  article-title: Ultrasmall Ru/Cu-doped RuO2 complex embedded in amorphous carbon skeleton as highly active bifunctional electrocatalysts for overall water splitting
  publication-title: Small
  doi: 10.1002/smll.201803009
– volume: 13
  start-page: 11120
  issue: 25
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0360
  article-title: A mild reduction of Co-doped MnO2 to create abundant oxygen vacancies and active sites for enhanced oxygen evolution reaction
  publication-title: Nanoscale.
  doi: 10.1039/D1NR02324A
– volume: 9
  start-page: 13106
  issue: 38
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1115
  article-title: Triggering the intrinsic catalytic activity of Ni-doped molybdenum oxides via phase engineering for hydrogen evolution and application in Mg/seawater batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c05184
– volume: 447
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1770
  article-title: Modulating electronic structure of metal-organic framework derived catalysts for electrochemical water oxidation
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214144
– volume: 46
  start-page: 337
  issue: 2
  year: 2017
  ident: 10.1016/j.ccr.2022.214864_b0200
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 6
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0535
  article-title: A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction
  publication-title: Appl. Surf. Sci. Adv.
  doi: 10.1016/j.apsadv.2021.100184
– ident: 10.1016/j.ccr.2022.214864_b1450
  doi: 10.1016/j.cej.2021.133941
– volume: 6
  start-page: 11529
  issue: 9
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1665
  article-title: Molecule-assisted synthesis of highly dispersed ultrasmall RuO2 nanoparticles on nitrogen-doped carbon matrix as ultraefficient bifunctional electrocatalysts for overall water splitting
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01709
– volume: 3
  start-page: 66
  issue: 1
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0515
  article-title: Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01965
– volume: 31
  start-page: 2009070
  issue: 9
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0335
  article-title: Recent progress of vacancy engineering for electrochemical energy conversion related applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009070
– volume: 416
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0720
  article-title: Ni-Mo based mixed-phase polyionic compounds nanorod arrays on nickel foam as advanced bifunctional electrocatalysts for water splitting
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129127
– volume: 47
  start-page: 8787
  issue: 26
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1430
  article-title: Superaerophobic P-doped Ni (OH)2/NiMoO4 hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting
  publication-title: Dalt. Trans.
  doi: 10.1039/C8DT00765A
– volume: 6
  start-page: 8430
  issue: 18
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1150
  article-title: Hierarchically porous Mo-doped Ni–Fe oxide nanowires efficiently catalyzing oxygen/hydrogen evolution reactions
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA00447A
– volume: 1
  start-page: 6279
  issue: 11
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1125
  article-title: General approach of in situ etching and doping to synthesize a nickel-doped MxOy (M = Co, Mn, Fe) nanosheets array on nickel foam as large-sized electrodes for overall water splitting
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01280
– volume: 11
  start-page: 8198
  issue: 14
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1465
  article-title: Electrochemical oxidation of boron-doped nickel–iron layered double hydroxide for facile charge transfer in oxygen evolution electrocatalysts
  publication-title: RSC Adv.
  doi: 10.1039/D0RA10169A
– volume: 424
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1555
  article-title: Dual-defective Co3O4 nanoarrays enrich target intermediates and promise high-efficient overall water splitting
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130328
– volume: 27
  start-page: 5294
  issue: 5
  year: 2016
  ident: 10.1016/j.ccr.2022.214864_b0280
  article-title: Electro-catalyst based on cerium doped cobalt oxide for oxygen evolution reaction in electrochemical water splitting
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-016-4427-3
– volume: 25
  start-page: 9
  issue: 1
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0420
  article-title: Major advances and challenges in heterogeneous catalysis for environmental applications: a review
  publication-title: Ecol. Chem. Eng. S.
– volume: 254
  start-page: 414
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0705
  article-title: In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.04.089
– volume: 5
  start-page: 1908
  issue: 6
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0730
  article-title: others, Electron density modulation of metallic MoO2 by Ni doping to produce excellent hydrogen evolution and oxidation activities in acid
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00642
– volume: 119
  start-page: 54
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1325
  article-title: Mesoporous Ag-doped Co3O4 nanowire arrays supported on FTO as efficient electrocatalysts for oxygen evolution reaction in acidic media
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.12.003
– volume: 404
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1460
  article-title: Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126474
– volume: 31
  start-page: 1900510
  issue: 17
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0085
  article-title: Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900510
– volume: 1
  start-page: 66
  issue: 1
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0220
  article-title: Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis
  publication-title: SusMat.
  doi: 10.1002/sus2.3
– volume: 3
  start-page: 752
  issue: 6
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0465
  article-title: others, Regulating intrinsic electronic structures of transition-metal-based catalysts and the potential applications for electrocatalytic water splitting
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.0c00549
– volume: 30
  start-page: 1910274
  issue: 15
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0615
  article-title: Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910274
– volume: 15
  start-page: 3717
  issue: 22
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0245
  article-title: Recent progress on defect-rich transition metal oxides and their energy-related applications
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.202000925
– volume: 31
  start-page: 1803625
  issue: 13
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0375
  article-title: Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803625
– volume: 6
  issue: 11
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1170
  article-title: Mn-doped Co3O4 nanoarrays as a promising electrocatalyst for oxygen evolution reaction
  publication-title: Mater. Res. Express.
  doi: 10.1088/2053-1591/ab45bd
– volume: 48
  start-page: 15
  issue: 1
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0885
  article-title: Defect engineering on electrocatalysts for gas-evolving reactions
  publication-title: Dalt. Trans.
  doi: 10.1039/C8DT04026E
– ident: 10.1016/j.ccr.2022.214864_b1535
  doi: 10.1002/eem2.12424
– volume: 100987
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0980
  article-title: The nature of synergistic effects in transition metal oxides/in-situ intermediate hydroxides for enhanced oxygen evolution reaction
  publication-title: Curr. Opin. Electrochem.
– volume: 405
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1590
  article-title: Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: Efficient electrocatalysts for oxygen evolution reaction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126803
– volume: 562
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1510
  article-title: Selectively Se-doped Co3O4@ CeO2 nanoparticle-dotted nanoneedle arrays for high-efficiency overall water splitting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150227
– volume: 2
  start-page: 2177
  issue: 9
  year: 2017
  ident: 10.1016/j.ccr.2022.214864_b1620
  article-title: others, High-valence-state NiO/Co3O4 nanoparticles on nitrogen-doped carbon for oxygen evolution at low overpotential
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00691
– volume: 218
  start-page: 1700359
  issue: 22
  year: 2017
  ident: 10.1016/j.ccr.2022.214864_b0440
  article-title: Transition metal ion-induced high electrocatalytic performance of conducting polymer for oxygen and hydrogen evolution reactions
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201700359
– volume: 12
  start-page: 436
  issue: 2
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0640
  article-title: Recent developments of Co3O4 -based materials as catalysts for the oxygen evolution reaction
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D1CY01688A
– volume: 441
  start-page: 1024
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1205
  article-title: 3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.02.076
– volume: 9
  start-page: 13459
  issue: 23
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0565
  article-title: Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D1TA01108A
– volume: 77
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1785
  article-title: One-step electrodeposition of carbon quantum dots and transition metal ions for N-doped carbon coupled with NiFe oxide clusters: A high-performance electrocatalyst for oxygen evolution
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2020.105057
– volume: 285
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1035
  article-title: Engineering defect-rich Fe-doped NiO coupled Ni cluster nanotube arrays with excellent oxygen evolution activity
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119809
– volume: 515
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0395
  article-title: Surface engineering by doping manganese into cobalt phosphide towards highly efficient bifunctional HER and OER electrocatalysis
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146059
– volume: 13
  start-page: 3361
  issue: 10
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0010
  article-title: Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02485F
– volume: 3
  start-page: 6156
  issue: 7
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0340
  article-title: Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c01035
– volume: 54
  start-page: 409
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0415
  article-title: Zinc oxide for solar water splitting: A brief review of the material’s challenges and associated opportunities
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.043
– volume: 338
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0665
  article-title: Nickel incorporated Co9S8 nanosheet arrays on carbon cloth boosting overall urea electrolysis
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.135883
– ident: 10.1016/j.ccr.2022.214864_b0020
  doi: 10.1126/science.aad4998
– volume: 17
  start-page: 2102777
  issue: 39
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1280
  article-title: Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media
  publication-title: Small.
  doi: 10.1002/smll.202102777
– volume: 5
  start-page: 2100834
  issue: 12
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0970
  article-title: Structural variations of metal oxide-based electrocatalysts for oxygen evolution reaction
  publication-title: Small Methods.
  doi: 10.1002/smtd.202100834
– volume: 469
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0175
  article-title: Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: a review with insights on synthesis
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214666
– volume: 9
  start-page: 9973
  issue: 11
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0505
  article-title: Recent advances and prospective in ruthenium-based materials for electrochemical water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02457
– volume: 48
  start-page: 116
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0700
  article-title: Anion-cation dual doping: An effective electronic modulation strategy of Ni2P for high-performance oxygen evolution
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.12.027
– volume: 589
  start-page: 127
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1690
  article-title: Dual anions engineering on nickel cobalt-based catalyst for optimal hydrogen evolution electrocatalysis
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.12.098
– volume: 4
  start-page: 1522
  issue: 3
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1255
  article-title: Temperature and doping-tuned coordination environments around electroactive centers in Fe-doped α(β)-Ni (OH)2 for excellent water splitting
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C9SE01172B
– volume: 11
  start-page: 34819
  issue: 38
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0255
  article-title: Electronic structure and crystalline phase dual modulation via anion-cation co-doping for boosting oxygen evolution with long-term stability under large current density
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.9b08060
– volume: 3
  start-page: 1160
  issue: 9
  year: 2016
  ident: 10.1016/j.ccr.2022.214864_b0955
  article-title: others, Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C6QI00198J
– volume: 29
  start-page: 1
  issue: 33
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1385
  article-title: Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902875
– volume: 267
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1685
  article-title: Synchronously integration of Co, Fe dual-metal doping in Ru@ C and CDs for boosted water splitting performances in alkaline media
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.118657
– volume: 63
  start-page: 1030
  issue: 8
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0670
  article-title: Novel (Ni, Fe) S2/(Ni, Fe)3S4 solid solution hybrid: an efficient electrocatalyst with robust oxygen-evolving performance
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-020-9770-5
– volume: 13
  start-page: 1824
  issue: 7
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1215
  article-title: Cu-doped Ni3S2 interlaced nanosheet arrays as high-efficiency electrocatalyst boosting the alkaline hydrogen evolution
  publication-title: ChemCatChem.
  doi: 10.1002/cctc.202001838
– year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0145
  article-title: Transition-metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives
  publication-title: Nanoscale.
– volume: 120
  start-page: 1085
  issue: 2
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0230
  article-title: Catalysis with colloidal ruthenium nanoparticles
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00434
– volume: 10
  start-page: 4374
  issue: 22
  year: 2017
  ident: 10.1016/j.ccr.2022.214864_b0350
  article-title: Electrocatalytic metal–organic frameworks for energy applications
  publication-title: ChemSusChem.
  doi: 10.1002/cssc.201701420
– volume: 7
  start-page: 2568
  issue: 17
  year: 2015
  ident: 10.1016/j.ccr.2022.214864_b0845
  article-title: Structural engineering of electrocatalysts for the hydrogen evolution reaction: order or disorder?
  publication-title: ChemCatChem.
  doi: 10.1002/cctc.201500396
– volume: 5
  start-page: 1700464
  issue: 2
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0965
  article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700464
– volume: 892
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1240
  article-title: Copper-doped ruthenium oxide as highly efficient electrocatalysts for the evolution of oxygen in acidic media
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.162113
– volume: 537
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1225
  article-title: Preferential dissolution of copper from Cu-Mn oxides in strong acid medium: Effect of the starting binary oxide to get new efficient copper doped MnO2 catalysts in toluene oxidation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147993
– year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0610
  article-title: Electrochemical preparation of nano/micron structure transition metal-based catalysts for the oxygen evolution reaction
  publication-title: Mater. Horizons.
  doi: 10.1039/D2MH00075J
– volume: 13
  start-page: 20324
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0835
  article-title: Rational design of metal oxide catalysts for electrocatalytic water splitting
  publication-title: Nanoscale.
  doi: 10.1039/D1NR06285A
– volume: 416
  start-page: 371
  year: 2017
  ident: 10.1016/j.ccr.2022.214864_b1050
  article-title: Ternary mixed metal Fe-doped NiCo2O4 nanowires as efficient electrocatalysts for oxygen evolution reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.04.204
– ident: 10.1016/j.ccr.2022.214864_b0620
  doi: 10.1021/acs.chemrev.0c00608
– volume: 298
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1405
  article-title: Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120494
– volume: 848
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1640
  article-title: Ni and NiO in situ grown on sulfur and phosphorus co-doped graphene as effective bifunctional catalyst for hydrogen evolution
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2019.113306
– ident: 10.1016/j.ccr.2022.214864_b0060
  doi: 10.1039/D0SE00466A
– volume: 9
  start-page: 19465
  issue: 35
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0405
  article-title: others, The electronic structure of transition metal oxides for oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA03732C
– volume: 46
  start-page: 33388
  issue: 47
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1395
  article-title: Phosphorus-doping induced electronic modulation of CoS2–MoS2 hollow spheres on MoO2 film-Mo foil for synergistically boosting alkaline hydrogen evolution reaction
  publication-title: Int. J. Hydrogen Energy.
  doi: 10.1016/j.ijhydene.2021.07.156
– volume: 47
  start-page: 216
  issue: 1
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1515
  article-title: Se-doped cobalt oxide nanoparticle as highly-efficient electrocatalyst for oxygen evolution reaction
  publication-title: Int. J. Hydrogen Energy.
  doi: 10.1016/j.ijhydene.2021.10.001
– volume: 69
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0695
  article-title: Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104453
– volume: 7
  start-page: 6161
  issue: 11
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1165
  article-title: Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA12238E
– volume: 45
  start-page: 6416
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1015
  article-title: Autologous growth of Fe-doped Ni (OH)2 nanosheets with low overpotential for oxygen evolution reaction
  publication-title: Int. J. Hydrogen Energy.
  doi: 10.1016/j.ijhydene.2019.12.156
– volume: 47
  start-page: 14679
  issue: 41
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1155
  article-title: MOF-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting
  publication-title: Dalt. Trans.
  doi: 10.1039/C8DT02706D
– volume: 10
  start-page: 12341
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1270
  article-title: Nearly hollow Ru–Cu–MoO2 octahedrons consisting of clusters and nanocrystals for high efficiency hydrogen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA01699K
– ident: 10.1016/j.ccr.2022.214864_b1320
  doi: 10.1021/acssuschemeng.8b04814
– volume: 11
  start-page: 4420
  issue: 17
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1245
  article-title: Bimetal-organic framework derived high-valence-state Cu-doped Co3O4 porous nanosheet arrays for efficient oxygen evolution and water splitting
  publication-title: ChemCatChem.
  doi: 10.1002/cctc.201900834
– volume: 43
  start-page: 2091
  issue: 8
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1755
  article-title: Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(21)64052-4
– volume: 14
  start-page: 1802760
  issue: 41
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1455
  article-title: Disordering the atomic structure of Co (II) Oxide via B-doping: an efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts
  publication-title: Small
  doi: 10.1002/smll.201802760
– volume: 165719
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0180
  article-title: Recent advances in transition metal selenides-based electrocatalysts: rational design and applications in water splitting
  publication-title: J. Alloys Compd.
– volume: 10
  start-page: 3782
  issue: 7
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0710
  article-title: Modulating heterointerfaces of tungsten incorporated CoSe/Co3O 4 as a highly efficient electrocatalyst for overall water splitting
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D1TA09932A
– volume: 8
  start-page: 2236
  issue: 3
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1440
  article-title: Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.7b03594
– volume: 7
  start-page: 11901
  issue: 13
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1610
  article-title: Anion–cation double doped Co3O4 microtube architecture to promote high-valence Co species formation for enhanced oxygen evolution reaction
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02558
– volume: 56
  start-page: 4196
  issue: 30
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0785
  article-title: Confinement of fluorine anions in nickel-based catalysts for greatly enhancing oxygen evolution activity
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC01215G
– volume: 402
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0755
  article-title: Electronic modulation by N incorporation boosts the electrocatalytic performance of urchin-like Ni5P4 hollow microspheres for hydrogen evolution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126302
– volume: 32
  start-page: 2001866
  issue: 46
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0385
  article-title: Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001866
– volume: 13
  start-page: 42944
  issue: 36
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1350
  article-title: Bifunctional catalyst derived from sulfur-doped VMoOx nanolayer shelled Co nanosheets for efficient water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c13488
– volume: 8
  start-page: 25465
  issue: 48
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0880
  article-title: Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA08802A
– volume: 420
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1275
  article-title: Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129805
– volume: 32
  start-page: 63
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1780
  article-title: Fe-doped Co3O4@C nanoparticles derived from layered double hydroxide used as efficient electrocatalyst for oxygen evolution reaction
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.06.014
– volume: 8
  start-page: 14944
  issue: 30
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1305
  article-title: Flexible and free-standing hetero-electrocatalyst of high-valence-cation doped MoS2/MoO2/CNT foam with synergistically enhanced hydrogen evolution reaction catalytic activity
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02538K
– volume: 132
  start-page: 17372
  issue: 39
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0815
  article-title: Heterostructured inter-doped ruthenium-cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202005436
– volume: 3
  start-page: 1800211
  issue: 1
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0075
  article-title: Rational design of transition metal-based materials for highly efficient electrocatalysis
  publication-title: Small Methods.
  doi: 10.1002/smtd.201800211
– volume: 5
  start-page: 1793
  issue: 2
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1495
  article-title: Construction of Fe2O3 nanosheet arrays by sulfur doping toward efficient alkaline hydrogen evolution
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c03233
– volume: 10
  start-page: 20384
  issue: 43
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0690
  article-title: Morphology and electronic structure modulation induced by fluorine doping in nickel-based heterostructures for robust bifunctional electrocatalysis
  publication-title: Nanoscale
  doi: 10.1039/C8NR06756B
– volume: 8
  start-page: 15951
  issue: 31
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0860
  article-title: Catalytic activity atlas of ternary Co–Fe–V metal oxides for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA04088F
– volume: 48
  start-page: 3015
  issue: 11
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0605
  article-title: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00904J
– volume: 32
  start-page: 2002435
  issue: 44
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0100
  article-title: Active site engineering in porous electrocatalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002435
– volume: 9
  start-page: 20131
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0390
  article-title: Tuning intrinsic catalytic activities of oxygen-evolution catalysts by doping: a comprehensive review
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA04032D
– volume: 607
  start-page: 1091
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1265
  article-title: others, Progress in the development of heteroatom-doped nickel phosphates for electrocatalytic water splitting
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.09.032
– volume: 11
  start-page: 112
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0735
  article-title: Coordination-assisted synthesis of iron-incorporated cobalt oxide nanoplates for enhanced oxygen evolution
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2018.10.010
– volume: 30
  start-page: 2003261
  issue: 34
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0080
  article-title: Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003261
– volume: 10
  start-page: 16
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0890
  article-title: Design strategies for non-precious metal oxide electrocatalysts for oxygen evolution reactions
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2018.03.015
– volume: 108207
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0170
  article-title: Investigation of recent progress in metal-based materials as catalysts toward electrochemical water splitting
  publication-title: J. Environ Chem. Eng.
– volume: 135
  start-page: 17881
  issue: 47
  year: 2013
  ident: 10.1016/j.ccr.2022.214864_b0635
  article-title: Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408329q
– volume: 4
  start-page: 7675
  issue: 8
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1765
  article-title: Ru-doped CuO/MoS2 nanostructures as bifunctional water-splitting electrocatalysts in alkaline media
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c00791
– volume: 414
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1370
  article-title: Self-supported Co/CoO anchored on N-doped carbon composite as bifunctional electrocatalyst for efficient overall water splitting
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128804
– volume: 30
  issue: 10
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1580
  article-title: Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
  publication-title: Chinese Phys. B
  doi: 10.1088/1674-1056/ac1339
– volume: 139
  start-page: 15479
  issue: 43
  year: 2017
  ident: 10.1016/j.ccr.2022.214864_b0655
  article-title: Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08881
– volume: 50
  start-page: 7745
  issue: 13
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0975
  article-title: Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00135C
– year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0575
  article-title: Ru doping boosts electrocatalytic water splitting
  publication-title: Dalt. Trans.
  doi: 10.1039/D2DT01394K
– volume: 6
  start-page: 1901308
  issue: 21
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1480
  article-title: Sulfur-induced interface engineering of hybrid NiCo2O4@ NiMo2S4 structure for overall water splitting and flexible hybrid energy storage
  publication-title: Adv. Mater. Interfaces.
  doi: 10.1002/admi.201901308
– ident: 10.1016/j.ccr.2022.214864_b0055
  doi: 10.1039/C6TA02334G
– volume: 30
  start-page: 2003556
  issue: 35
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1695
  article-title: others, Etching-doping sedimentation equilibrium strategy: accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003556
– volume: 307
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0915
  article-title: Ru-incorporated oxygen-vacancy-enriched MoO2 electrocatalysts for hydrogen evolution reaction
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2022.121204
– volume: 32
  start-page: 9591
  issue: 22
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1740
  article-title: Boosting electrocatalytic HER activity of 3D interconnected CoSP via metal doping: active and stable electrocatalysts for pH-universal hydrogen generation
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c03052
– volume: 405
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1235
  article-title: Synergy of copper doping and oxygen vacancies in porous CoOOH nanoplates for efficient water oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126198
– volume: 7
  start-page: 2297
  issue: 10
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0495
  article-title: Appropriate use of electrochemical impedance spectroscopy in water splitting electrocatalysis
  publication-title: ChemElectroChem.
  doi: 10.1002/celc.202000515
– volume: 58
  start-page: 244
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0530
  article-title: Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2019.01.017
– volume: 304
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0810
  article-title: Vanadium-phosphorus incorporation induced interfacial modification on cobalt catalyst and its super electrocatalysis for water splitting in alkaline media
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120985
– volume: 6
  start-page: 2883
  issue: 3
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1090
  article-title: Co-doped CuO nanoarray: an efficient oxygen evolution reaction electrocatalyst with enhanced activity
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b03752
– volume: 56
  start-page: 11910
  issue: 80
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0855
  article-title: Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC05272H
– volume: 562
  start-page: 363
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1310
  article-title: W doping dominated NiO/NiS2 interfaced nanosheets for highly efficient overall water splitting
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.12.044
– volume: 9
  start-page: 5180
  issue: 5
  year: 2015
  ident: 10.1016/j.ccr.2022.214864_b1040
  article-title: Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00520
– ident: 10.1016/j.ccr.2022.214864_b0195
  doi: 10.1021/acsami.1c02129
– volume: 31
  issue: 43
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0745
  article-title: Nickel cobalt oxide nanowires with iron incorporation realizing a promising electrocatalytic oxygen evolution reaction
  publication-title: Nanotechnology.
  doi: 10.1088/1361-6528/aba3d9
– volume: 11
  issue: 5
  year: 2016
  ident: 10.1016/j.ccr.2022.214864_b0895
  article-title: Work function tuning in hydrothermally synthesized vanadium-doped MoO3 and Co3O4 mesostructures for energy conversion devices
  publication-title: Appl. Sci.
  doi: 10.3390/app11052016
– volume: 7
  start-page: 18055
  issue: 21
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1335
  article-title: Activating inert ZnO by surface cobalt doping for efficient water oxidation in neutral media
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b04996
– volume: 9
  start-page: 15506
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0590
  article-title: Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA03452A
– volume: 66
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1010
  article-title: In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2019.104118
– volume: 6
  start-page: 1707
  issue: 9
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1710
  article-title: W-Doped MoO2/MoC Hybrids encapsulated by P-doped carbon shells for enhanced electrocatalytic hydrogen evolution
  publication-title: Energy Technol.
  doi: 10.1002/ente.201700851
– ident: 10.1016/j.ccr.2022.214864_b0235
  doi: 10.1021/acs.accounts.6b00317
– volume: 10
  start-page: 1152
  issue: 2
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1190
  article-title: Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04922
– volume: 6
  start-page: 16121
  issue: 33
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0520
  article-title: Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA05054F
– volume: 11
  start-page: 1
  issue: 22
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0310
  article-title: Dopants in the design of noble metal nanoparticle electrocatalysts and their effect on surface energy and coordination chemistry at the nanocrystal surface
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100265
– volume: 585
  start-page: 61
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1160
  article-title: Promotional effect of Mn-doping on the catalytic performance of NiO sheets for the selective oxidation of styrene
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.11.069
– volume: 417
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0770
  article-title: Charge state manipulation induced through cation intercalation into MnO2 sheet arrays for efficient water splitting
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127894
– volume: 541
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1340
  article-title: Morphology control of Co3O4 with nickel incorporation for highly efficient oxygen evolution reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148221
– volume: 298
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1675
  article-title: Modulating electronic structure of cobalt phosphide porous nanofiber by ruthenium and nickel dual doping for highly-efficiency overall water splitting at high current density
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120488
– volume: 514
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1285
  article-title: Rational design of Ru aerogel and RuCo aerogels with abundant oxygen vacancies for hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2021.230600
– volume: 140
  start-page: 7748
  issue: 25
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0165
  article-title: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04546
– volume: 4
  start-page: 6486
  issue: 4
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0455
  article-title: Electrocatalytic water splitting through the NixSy self-grown superstructures obtained via a wet chemical sulfurization process
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b00132
– volume: 12
  start-page: 4618
  issue: 18
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1650
  article-title: Two-dimensional nanosheet structure of Co, S Co-doped carbon-framework supported MoO2 for hydrogen evolution reaction in alkaline solutions
  publication-title: ChemCatChem.
  doi: 10.1002/cctc.202000526
– volume: 140
  start-page: 7748
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0105
  article-title: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04546
– volume: 4
  start-page: 5417
  issue: 11
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0320
  article-title: First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings
  publication-title: Sustain. Energy Fuels.
  doi: 10.1039/D0SE01087A
– volume: 56
  start-page: 4575
  issue: 33
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0715
  article-title: Modulation of crystal water in cobalt phosphate for promoted water oxidation
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC01023E
– volume: 11
  start-page: 2002731
  issue: 4
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1140
  article-title: Formation of FeOOH nanosheets induces substitutional doping of CeO2- x with high-valence ni for efficient water oxidation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002731
– volume: 303
  start-page: 316
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1525
  article-title: Engineering the electronic structure of Co3O4 by carbon-doping for efficient overall water splitting
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2019.02.091
– volume: 9
  start-page: e202101140
  issue: 5
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0760
  article-title: Boosting surface reconstruction for the oxygen evolution reaction: a combined effect of heteroatom incorporation and anion etching in cobalt silicate precatalyst
  publication-title: ChemElectroChem.
  doi: 10.1002/celc.202200080
– volume: 323
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1550
  article-title: Zeolitic-imidazolate-framework-derived Co@ Co3O4 embedded into iron, nitrogen, sulfur Co-doped reduced graphene oxide as efficient electrocatalysts for overall water splitting and zinc-air batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.134821
– volume: 457
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0430
  article-title: Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214389
– volume: 13
  start-page: 14156
  issue: 33
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1575
  article-title: Electronic modulation and proton transfer by iron and borate co-doping for synergistically triggering the oxygen evolution reaction on a hollow NiO bipyramidal prism
  publication-title: Nanoscale
  doi: 10.1039/D1NR03500B
– volume: 9
  start-page: 5320
  issue: 9
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0540
  article-title: Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA12152E
– volume: 139
  start-page: 8320
  issue: 24
  year: 2017
  ident: 10.1016/j.ccr.2022.214864_b1180
  article-title: Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03507
– volume: 33
  start-page: 2006328
  issue: 20
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0120
  article-title: Recent development of oxygen evolution electrocatalysts in acidic environment
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006328
– ident: 10.1016/j.ccr.2022.214864_b0210
  doi: 10.1021/acs.chemrev.0c01269
– volume: 58
  start-page: 446
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0325
  article-title: Modification strategies on transition metal-based electrocatalysts for efficient water splitting
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.10.010
– volume: 50
  start-page: 5072
  issue: 9
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1365
  article-title: N-doped NiO nanosheet arrays as efficient electrocatalysts for hydrogen evolution reaction
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-021-09053-w
– volume: 2
  start-page: 4105
  issue: 6
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1145
  article-title: Ni–Co codoped RuO2 with outstanding oxygen evolution reaction performance
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00266
– volume: 12
  start-page: 2200029
  issue: 23
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1415
  article-title: P and Mo dual doped ru ultrasmall nanoclusters embedded in p-doped porous carbon toward efficient hydrogen evolution reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200029
– volume: 59
  start-page: 14664
  issue: 34
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1500
  article-title: Sulfur-modified oxygen vacancies in iron–cobalt oxide nanosheets: enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark
  publication-title: Angew. Chemie Int. Ed.
  doi: 10.1002/anie.202006546
– volume: 8
  start-page: 6222
  issue: 16
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1635
  article-title: V-Doping triggered formation and structural evolution of dendritic Ni3S2@ NiO core–shell nanoarrays for accelerating alkaline water splitting
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b06959
– volume: 50
  start-page: 9817
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0410
  article-title: Doping regulation in transition metal compounds for electrocatalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00330E
– volume: 34
  start-page: 13491
  issue: 11
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0525
  article-title: A review on advanced FeNi-based catalysts for water splitting reaction
  publication-title: Energy & Fuels
  doi: 10.1021/acs.energyfuels.0c03084
– volume: 424
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0300
  article-title: Defect-rich Fe-doped Co3O4 derived from bimetallic-organic framework as an enhanced electrocatalyst for oxygen evolution reaction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130400
– volume: 121
  start-page: 649
  issue: 2
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0290
  article-title: Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00454
– volume: 10
  start-page: 42453
  issue: 49
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1025
  article-title: Remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities with trace-level Fe doping in Ni-and Co-layered double hydroxides for overall water-splitting
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.8b16425
– volume: 89
  start-page: 500
  issue: 2
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1315
  article-title: Efficient, highly stable Zn-doped NiO nanocluster electrocatalysts for electrochemical water splitting applications
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-018-4886-5
– year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0600
  article-title: Catalyst activation: Surface doping effects of group VI transition metal dichalcogenides towards hydrogen evolution reaction in acidic media
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.04.023
– volume: 137094
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1410
  article-title: Surface reconstruction of phosphorus-doped cobalt molybdate microarrays in electrochemical water splitting
  publication-title: Chem. Eng. J.
– volume: 405
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1670
  article-title: Engineering of oxygen vacancies regulated core-shell N-doped carbon@ NiFe2O4 nanospheres: A superior bifunctional electrocatalyst for boosting the kinetics of oxygen and hydrogen evaluation reactions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126732
– volume: 12
  start-page: 51437
  issue: 46
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0865
  article-title: Ultralow Ru-induced bimetal electrocatalysts with a Ru-enriched and mixed-valence surface anchored on a hollow carbon matrix for oxygen reduction and water splitting
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.0c14521
– volume: 50
  start-page: 6500
  issue: 19
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0065
  article-title: Recasting Ni-foam into NiF2 nanorod arrays via a hydrothermal process for hydrogen evolution reaction application
  publication-title: Dalt. Trans.
  doi: 10.1039/D1DT00654A
– volume: 56
  start-page: 299
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0775
  article-title: Tuning the electronic structure of the earth-abundant electrocatalysts for oxygen evolution reaction (OER) to achieve efficient alkaline water splitting– A review
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.08.001
– volume: 9
  start-page: 8576
  issue: 13
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0790
  article-title: Superassembly of NiCoOx solid solution hybrids with a 2D/3D porous polyhedron-on-sheet structure for multi-functional electrocatalytic oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA00043H
– ident: 10.1016/j.ccr.2022.214864_b1645
  doi: 10.1016/j.apsusc.2020.146987
– volume: 154099
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1700
  article-title: Synergistically enhancing electrocatalytic activity of Co2P by Cr doping and P vacancies for overall water splitting
  publication-title: Appl. Surf. Sci.
– volume: 292
  start-page: 247
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1735
  article-title: Selenium phosphorus co-doped cobalt oxide nanosheets anhored on Co foil: a self-supported and stable bifunctional electrode for efficient electrochemical water splitting
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2018.09.162
– volume: 117
  start-page: 6225
  issue: 9
  year: 2017
  ident: 10.1016/j.ccr.2022.214864_b0370
  article-title: recent advances in ultrathin two-dimensional nanomaterials
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00558
– volume: 9
  start-page: 6432
  issue: 10
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0780
  article-title: Surface reconstruction induced in situ phosphorus doping in nickel oxides for an enhanced oxygen evolution reaction
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA10925H
– volume: 44
  start-page: 623
  issue: 3
  year: 2015
  ident: 10.1016/j.ccr.2022.214864_b1345
  article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00236A
– volume: 28
  start-page: 9266
  issue: 42
  year: 2016
  ident: 10.1016/j.ccr.2022.214864_b0435
  article-title: Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602270
– volume: 12
  start-page: 266
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0345
  article-title: Incorporation of rare earth elements with transition metal–based materials for electrocatalysis: a review for recent progress
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2019.02.002
– volume: 52
  start-page: 115
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0930
  article-title: Chlorine-anion doping induced multi-factor optimization in perovskties for boosting intrinsic oxygen evolution
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.03.055
– volume: 119
  start-page: 1921
  issue: 4
  year: 2015
  ident: 10.1016/j.ccr.2022.214864_b1715
  article-title: Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp511561k
– ident: 10.1016/j.ccr.2022.214864_b0035
  doi: 10.1039/C7EE03457A
– volume: 7
  start-page: 5875
  issue: 11
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1355
  article-title: Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA12477A
– volume: 5
  start-page: 2964
  issue: 11
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0685
  article-title: The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI00867A
– volume: 4
  start-page: 805
  issue: 4
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0380
  article-title: Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00348
– volume: 15
  start-page: 186
  issue: 1
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0945
  article-title: others, Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3455-3
– volume: 117
  start-page: 10121
  issue: 15
  year: 2017
  ident: 10.1016/j.ccr.2022.214864_b0570
  article-title: Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00051
– volume: 26
  start-page: 6423
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0090
  article-title: Earth-abundant transition-metal-based bifunctional electrocatalysts for overall water splitting in alkaline media
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.202000209
– volume: 606
  start-page: 1695
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1200
  article-title: Molybdenum doped induced amorphous phase in cobalt acid nickel for supercapacitor and oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.08.151
– volume: 13
  start-page: 765
  issue: 1
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0485
  article-title: Activation strategy of MoS2 as HER electrocatalyst through doping-induced lattice strain, band gap engineering, and active crystal plane design
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c20500
– volume: 496
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1485
  article-title: Highly efficient and robust sulfur-doped nickel-cobalt oxide towards oxygen evolution reaction
  publication-title: Mol. Catal.
– volume: 30
  start-page: 2000503
  issue: 27
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0940
  article-title: Recent advances in non-noble bifunctional oxygen electrocatalysts toward large-scale production
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000503
– volume: 368
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1210
  article-title: Mo-doping induced edge-rich cobalt iron oxide ultrathin nanomeshes as efficient bifunctional electrocatalysts for overall water splitting
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2020.137651
– volume: 11
  start-page: 5361
  issue: 10
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0240
  article-title: Doping strategy, properties and application of heteroatom-doped ordered mesoporous carbon
  publication-title: RSC Adv.
  doi: 10.1039/D0RA08993A
– volume: 54
  start-page: 129
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1085
  article-title: Cobalt-doped MnO2 ultrathin nanosheets with abundant oxygen vacancies supported on functionalized carbon nanofibers for efficient oxygen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.008
– volume: 268
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1195
  article-title: Mo doping induced metallic CoSe for enhanced electrocatalytic hydrogen evolution
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118467
– volume: 42
  start-page: 1876
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0560
  article-title: Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63855-X
– volume: 116
  start-page: 14120
  issue: 22
  year: 2016
  ident: 10.1016/j.ccr.2022.214864_b0150
  article-title: Earth-abundant heterogeneous water oxidation catalysts
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00398
– volume: 45
  start-page: 30404
  issue: 55
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1425
  article-title: Stoichiometry control and phosphorus doping as strategies for the enhancement of nickel iron spinel oxides as electrocatalysts for water oxidation
  publication-title: Int. J. Hydrogen Energy.
  doi: 10.1016/j.ijhydene.2020.08.019
– volume: 49
  start-page: 3072
  issue: 10
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0445
  article-title: Metallic nanostructures with low dimensionality for electrochemical water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00013B
– volume: 298
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1730
  article-title: MoO3 crystal facets modulation by doping heteroatom Fe from polyoxometalate for quasi-industrial oxygen evolution reaction
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120582
– volume: 3
  start-page: 14971
  issue: 29
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0110
  article-title: Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C9TA03220G
– volume: 10
  start-page: 7087
  issue: 8
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1570
  article-title: Dual-functional starfish-like P-doped Co–Ni–S nanosheets supported on nickel foams with enhanced electrochemical performance and excellent stability for overall water splitting
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.7b18403
– volume: 13
  start-page: 4294
  issue: 2
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0270
  article-title: A review on non-noble metal based electrocatalysis for the oxygen evolution reaction
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2019.08.006
– volume: 390
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1135
  article-title: Boosting the electrochemical water splitting on Co3O4 through surface decoration of epitaxial S-doped CoO layers
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124591
– volume: 66
  start-page: 829
  issue: 8
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0480
  article-title: A review of transition metal-based bifunctional oxygen electrocatalysts
  publication-title: J. Chinese Chem. Soc.
  doi: 10.1002/jccs.201900001
– volume: 59
  start-page: 11814
  issue: 16
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1565
  article-title: Hollow V-Doped CoMx(M= P, S, O) Nanoboxes as Efficient OER Electrocatalysts for Overall Water Splitting
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c01832
– volume: 57
  start-page: 2029
  issue: 16
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0645
  article-title: Lanthanum-incorporated β-Ni(OH)2 nanoarrays for robust urea electro-oxidation
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC07969C
– volume: 14
  start-page: 10
  issue: 1
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0925
  article-title: Oxygen-deficient cobalt-based oxides for electrocatalytic water splitting
  publication-title: ChemSusChem.
  doi: 10.1002/cssc.202002002
– volume: 26
  start-page: 3930
  issue: 18
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0555
  article-title: Nonmetal doping as a robust route for boosting the hydrogen evolution of metal-based electrocatalysts
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201902998
– volume: 12
  start-page: 838
  issue: 4
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0205
  article-title: Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting
  publication-title: Front. Chem. Sci. Eng.
  doi: 10.1007/s11705-018-1746-3
– volume: 7
  start-page: 21704
  issue: 38
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1030
  article-title: Oxygen defect engineering in cobalt iron oxide nanosheets for promoted overall water splitting
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C9TA06537G
– volume: 33
  start-page: 2004862
  issue: 9
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1705
  article-title: MnO2-based materials for environmental applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004862
– ident: 10.1016/j.ccr.2022.214864_b0190
  doi: 10.1002/celc.202200549
– volume: 252
  start-page: 214
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1065
  article-title: Catalyzing overall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.04.021
– volume: 449
  start-page: 660
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1000
  article-title: Electrocatalytic behavior of transition metal (Ni, Fe, Cr) doped metal oxide nanocomposites for oxygen evolution reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.12.014
– volume: 430
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1605
  article-title: Core-shell trimetallic NiFeV disulfides and amorphous high-valance NiFe hydroxide nanosheets enhancing oxygen evolution reaction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133047
– volume: 17
  start-page: 2002240
  issue: 9
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0450
  article-title: Electronic structure tuning of 2D metal (hydr) oxides nanosheets for electrocatalysis
  publication-title: Small
  doi: 10.1002/smll.202002240
– volume: 440
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0875
  article-title: Surface and interface engineering of MoNi alloy nanograins bound to Mo-doped NiO nanosheets on 3D graphene foam for high-efficiency water splitting catalysis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135847
– volume: 4
  start-page: 17587
  issue: 45
  year: 2016
  ident: 10.1016/j.ccr.2022.214864_b0040
  article-title: A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08075H
– volume: 2
  start-page: 2148
  issue: 11
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1060
  article-title: Improving oxygen vacancies by cobalt doping in MoO2 nanorods for efficient electrocatalytic hydrogen evolution reaction
  publication-title: Nano Sel.
  doi: 10.1002/nano.202100075
– volume: 58
  start-page: 2746
  issue: 16
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0825
  article-title: Fluoride-incorporated cobalt-based electrocatalyst towards enhanced hydrogen evolution reaction
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC05375B
– volume: 30
  start-page: 2002533
  issue: 34
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1680
  article-title: Molybdenum and phosphorous dual doping in cobalt monolayer interfacial assembled cobalt nanowires for efficient overall water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002533
– volume: 8
  start-page: 3688
  issue: 4
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0130
  article-title: Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04286
– volume: 8
  start-page: 10831
  issue: 21
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0830
  article-title: Aliovalent fluorine doping and anodization-induced amorphization enable bifunctional catalysts for efficient water splitting
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA00876A
– volume: 120
  start-page: 851
  issue: 2
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0025
  article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00248
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0050
  article-title: Water splitting: from electrode to green energy system
  publication-title: Nano-Micro Letters
  doi: 10.1007/s40820-020-00469-3
– volume: 23
  issue: 1
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1075
  article-title: A Co-Doped Nanorod-like RuO2 Electrocatalyst with Abundant Oxygen Vacancies for Acidic Water Oxidation
  publication-title: IScience.
  doi: 10.1016/j.isci.2019.100756
– volume: 243
  start-page: 175
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0680
  article-title: Facile synthesis of PdO-doped Co3O4 nanoparticles as an efficient bifunctional oxygen electrocatalyst
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.10.040
– volume: 33
  start-page: 2000381
  issue: 6
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0475
  article-title: Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000381
– year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1520
  article-title: Doping-engineered bifunctional oxygen electrocatalyst with Se/Fe-doped Co3O4/N-doped carbon nanosheets as highly efficient rechargeable zinc-air batteries
  publication-title: J. Colloid Interface Sci.
– volume: 8
  start-page: 10096
  issue: 20
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0765
  article-title: Activation strategies of water-splitting electrocatalysts
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA01680B
– volume: 608
  start-page: 3030
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0820
  article-title: others, Electrochemical incorporation of heteroatom into surface reconstruction induced Ni vacancy of NixO nanosheet for enhanced water oxidation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.11.026
– volume: 15
  start-page: 1804201
  issue: 1
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0030
  article-title: Noble-metal-free electrocatalysts for oxygen evolution
  publication-title: Small
  doi: 10.1002/smll.201804201
– volume: 819
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0095
  article-title: Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.153346
– volume: 7
  start-page: 12501
  issue: 14
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1595
  article-title: In-situ transformed Ni, S-Codoped CoO from amorphous Co–Ni sulfide as an efficient electrocatalyst for hydrogen evolution in alkaline media
  publication-title: ACS Sustain. Chem. Eng.
– volume: 610
  start-page: 173
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0805
  article-title: Motivating borate doped FeNi layered double hydroxides by molten salt method toward efficient oxygen evolution
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.12.031
– volume: 50
  start-page: 915
  issue: 4
  year: 2017
  ident: 10.1016/j.ccr.2022.214864_b0330
  article-title: Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00635
– volume: 427
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0225
  article-title: Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213552
– volume: 5
  start-page: 1347
  issue: 5
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1505
  article-title: Design strategies toward transition metal selenide-based catalysts for electrochemical water splitting
  publication-title: Sustain. Energy Fuels.
  doi: 10.1039/D0SE01722A
– start-page: 2200173
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0910
  article-title: Ru/Rh cation doping and oxygen-vacancy engineering of FeOOH nanoarrays@ Ti3C2Tx MXene heterojunction for highly efficient and stable electrocatalytic oxygen evolution
  publication-title: Small
  doi: 10.1002/smll.202200173
– year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0950
  article-title: Synergistic effect of Mn doping and hollow structure boosting Mn-CoP/Co2P nanotubes as efficient bifunctional electrocatalyst for overall water splitting
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.08.037
– volume: 121
  start-page: 796
  issue: 2
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0160
  article-title: Noble-metal nanoframes and their catalytic applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00940
– volume: 9
  start-page: 14372
  issue: 25
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0960
  article-title: Fe-doping induced localized amorphization in ultrathin α-Ni (OH)2 nanomesh for superior oxygen evolution reaction catalysis
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D1TA02341A
– volume: 7
  start-page: 17950
  issue: 21
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1625
  article-title: Hollow Co3O4/CeO2 heterostructures in situ embedded in N-doped carbon nanofibers enable outstanding oxygen evolution
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b04699
– volume: 606
  start-page: 384
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1400
  article-title: Phosphorus doping and phosphates coating for nickel molybdate/nickel molybdate hydrate enabling efficient overall water splitting
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.08.035
– volume: 358
  start-page: 243
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1020
  article-title: Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.12.020
– volume: 5
  start-page: 6814
  issue: 6
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1390
  article-title: Hierarchically self-supporting phosphorus-doped CoMoO4 nanoflowers arrays toward efficient hydrogen evolution reaction
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.2c00402
– volume: 6
  start-page: 10595
  issue: 23
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0250
  article-title: Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA10569J
– volume: 13
  start-page: 11314
  issue: 26
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1775
  article-title: Nonmetal-doping of noble metal-based catalysts for electrocatalysis
  publication-title: Nanoscale.
  doi: 10.1039/D1NR02019F
– volume: 7
  start-page: 13577
  issue: 22
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0675
  article-title: Copper-incorporated hierarchical wire-on-sheet α-Ni(OH) 2 nanoarrays as robust trifunctional catalysts for synergistic hydrogen generation and urea oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02891A
– year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0795
  article-title: Cerium-induced lattice disordering in Co-based nanocatalysts promoting the hydrazine electro-oxidation behavior
  publication-title: Chem. Commun.
– volume: 627
  start-page: 891
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0800
  article-title: Oriented interlayered charge transfer in NiCoFe layered double hydroxide/MoO3 stacked heterostructure promoting the oxygen-evolving behavior
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.07.114
– volume: 28
  issue: 16
  year: 2017
  ident: 10.1016/j.ccr.2022.214864_b1375
  article-title: N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts
  publication-title: Nanotechnology.
  doi: 10.1088/1361-6528/aa6381
– volume: 50
  start-page: 8428
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0990
  article-title: Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00962H
– volume: 873
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0580
  article-title: Electrodeposition of superhydrophilic and binder-free Mo-doped Ni–Fe nanosheets as cost-effective and efficient bifunctional electrocatalyst for overall water splitting
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2020.114351
– volume: 6
  start-page: 167
  issue: 1
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1070
  article-title: A Co-doped Ni–Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA07956G
– volume: 31
  start-page: 1808167
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0045
  article-title: Support and interface effects in water-splitting electrocatalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808167
– volume: 8
  start-page: 12030
  issue: 12
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1080
  article-title: Understanding synergism of cobalt metal and copper oxide toward highly efficient electrocatalytic oxygen evolution
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03702
– volume: 11
  start-page: 39706
  issue: 43
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1055
  article-title: Tuning the electrocatalytic activity of Co3O4 through discrete elemental doping
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b06815
– volume: 45
  start-page: 1529
  issue: 6
  year: 2016
  ident: 10.1016/j.ccr.2022.214864_b0355
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00434A
– volume: 80
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0015
  article-title: “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105514
– year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1260
  article-title: Ru-doping modulated cobalt phosphide nanoarrays as efficient electrocatalyst for hydrogen evolution rection
  publication-title: J. Colloid Interface Sci.
– volume: 12
  start-page: 24701
  issue: 22
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0840
  article-title: Crystalline cobalt/amorphous LaCoOx hybrid nanoparticles embedded in porous nitrogen-doped carbon as efficient electrocatalysts for hydrazine-assisted hydrogen production
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c02124
– volume: 41
  start-page: 772
  year: 2017
  ident: 10.1016/j.ccr.2022.214864_b1530
  article-title: Co-N-doped MoO2 nanowires as efficient electrocatalysts for the oxygen reduction reaction and hydrogen evolution reaction
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2017.03.032
– volume: 299
  start-page: 231
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1540
  article-title: Fluorine-doped nickel cobalt oxide spinel as efficiently bifunctional catalyst for overall water splitting
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2019.01.012
– volume: 5
  start-page: 2000988
  issue: 4
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0315
  article-title: Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy
  publication-title: Small Methods.
  doi: 10.1002/smtd.202000988
– volume: 422
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1100
  article-title: Co-doped NixPy loading on Co3O4 embedded in Ni foam as a hierarchically porous self-supported electrode for overall water splitting
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130062
– volume: 398
  start-page: 54
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0400
  article-title: Strategies to improve cobalt-based electrocatalysts for electrochemical water splitting
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2021.04.003
– volume: 7
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1230
  article-title: Copper doped manganese oxides to produce enhanced catalytic performance for CO oxidation
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2019.103055
– volume: 71
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0750
  article-title: Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104652
– volume: 56
  start-page: 7649
  issue: 55
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0850
  article-title: Supercritical CO2 synthesis of Co-doped MoO3–x nanocrystals for multifunctional light utilization
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC02079F
– volume: 11
  start-page: 16
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0265
  article-title: Recent advances in transition metal–based catalysts with heterointerfaces for energy conversion and storage
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2018.09.003
– volume: 60
  start-page: 4034
  issue: 6
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0725
  article-title: Electrospun Fe-incorporated ZIF-67 nanofibers for effective electrocatalytic water splitting
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c00097
– volume: 597
  start-page: 361
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1750
  article-title: N and Mn dual-doped cactus-like cobalt oxide nanoarchitecture derived from cobalt carbonate hydroxide as efficient electrocatalysts for oxygen evolution reactions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.04.013
– volume: 15
  start-page: 1902551
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0285
  article-title: Fe2+ doped layered double (Ni, Fe) hydroxides as efficient electrocatalysts for water splitting and self-powered electrochemical systems
  publication-title: Small.
  doi: 10.1002/smll.201902551
– volume: 400
  start-page: 31
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0365
  article-title: Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – A review
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2018.07.125
– volume: 388
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1110
  article-title: Synergy of Mn and Ni enhanced catalytic performance for toluene combustion over Ni-doped α-MnO2 catalysts
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124244
– volume: 8
  start-page: 20802
  issue: 32
  year: 2016
  ident: 10.1016/j.ccr.2022.214864_b1185
  article-title: Ni-and Mn-promoted mesoporous Co3O4: a stable bifunctional catalyst with surface-structure-dependent activity for oxygen reduction reaction and oxygen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.6b06103
– volume: 84
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0660
  article-title: others, Selective dopant segregation modulates mesoscale reaction kinetics in layered transition metal oxide
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2021.105926
– volume: 10
  start-page: 745
  issue: 1
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b1475
  article-title: Nanoporous sulfur-doped copper oxide (Cu2OxS1–x) for overall water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16280
– volume: 113
  start-page: 7666
  issue: 18
  year: 2009
  ident: 10.1016/j.ccr.2022.214864_b0630
  article-title: ZnO nanoparticles- CdS quantum dots/N3 dye molecules: dual photosensitization
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp901224n
– volume: 118
  start-page: 6236
  issue: 13
  year: 2018
  ident: 10.1016/j.ccr.2022.214864_b0900
  article-title: Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00633
– volume: 42
  start-page: 2275
  issue: 12
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1435
  article-title: Template-free synthesis of Co3O4 microtubes for enhanced oxygen evolution reaction
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(21)63902-5
– volume: 13
  start-page: 19840
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0650
  article-title: Recent advances in heteroatom doping of perovskite oxides for efficient electrocatalytic reactions
  publication-title: Nanoscale.
  doi: 10.1039/D1NR05797A
– volume: 45
  start-page: 24828
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0995
  article-title: High-performance bifunctional Fe-doped molybdenum oxide-based electrocatalysts with in situ grown epitaxial heterojunctions for overall water splitting
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.06.283
– volume: 120
  start-page: 12217
  issue: 21
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0295
  article-title: others, Advanced electrocatalysts with single-metal-atom active sites
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00594
– volume: 137
  start-page: 2688
  issue: 7
  year: 2015
  ident: 10.1016/j.ccr.2022.214864_b1380
  article-title: In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5127165
– year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1725
  article-title: Synergistic modulation of inverse spinel Fe3O4 by doping with chromium and nitrogen for efficient electrocatalytic water splitting
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.04.141
– volume: 49
  start-page: 6355
  issue: 19
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1005
  article-title: 2D Fe-doped NiO nanosheets with grain boundary defects for the advanced oxygen evolution reaction
  publication-title: Dalt. Trans.
  doi: 10.1039/C9DT04633J
– volume: 106
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0260
  article-title: Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2019.100574
– volume: 50
  start-page: 13951
  issue: 39
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1290
  article-title: Ru doping induces the construction of a unique core–shell microflower self-supporting electrocatalyst for highly efficient overall water splitting
  publication-title: Dalt. Trans.
  doi: 10.1039/D1DT02341A
– volume: 557
  start-page: 28
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b1805
  article-title: Mn and S dual-doping of MOF-derived Co3O4 electrode array increases the efficiency of electrocatalytic generation of oxygen
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.09.009
– volume: 8
  start-page: 23123
  issue: 44
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0215
  article-title: Noble-metal-free electrocatalysts toward H2O2 production
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA08894C
– volume: 9
  start-page: 20518
  issue: 36
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0550
  article-title: Ru/Mo 2 C@ NC Schottky junction-loaded hollow nanospheres as an efficient hydrogen evolution electrocatalyst
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D1TA05876B
– volume: 44
  start-page: 5148
  issue: 15
  year: 2015
  ident: 10.1016/j.ccr.2022.214864_b0305
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– volume: 303
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1800
  article-title: In-situ grown metal-organic framework-derived carbon-coated Fe-doped cobalt oxide nanocomposite on fluorine-doped tin oxide glass for acidic oxygen evolution reaction
  publication-title: Appl. Catal. B Environ.
– volume: 925
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1420
  article-title: Phosphorus modified hollow, porous nickel-Cobalt oxides nanocubes with heterostructure for oxygen evolution reaction in alkaline
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.166338
– volume: 426
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1295
  article-title: Synergistic engineering of morphology and electronic structure in constructing metal-organic framework-derived Ru doped cobalt-nickel oxide heterostructure towards efficient alkaline hydrogen evolution reaction
  publication-title: Chem. Eng. J.
– volume: 124
  start-page: 9971
  issue: 18
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1445
  article-title: Microwave-induced plasma synthesis of defect-rich, highly ordered porous phosphorus-doped cobalt oxides for overall water electrolysis
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.0c01135
– volume: 46
  start-page: 19962
  issue: 38
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1795
  article-title: Double doping of V and F on Co3O4 nanoneedles as efficient electrocatalyst for oxygen evolution
  publication-title: Int. J. Hydrogen Energy.
  doi: 10.1016/j.ijhydene.2021.03.141
– volume: 823
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1130
  article-title: Low Ni-doped Co3O4 porous nanoplates for enhanced hydrogen and oxygen evolution reaction
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.153750
– volume: 526
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1360
  article-title: Polyaniline engineering defect-induced nitrogen doped carbon-supported Co3O4 hybrid composite as a high-efficiency electrocatalyst for oxygen evolution reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146626
– volume: 444
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1760
  article-title: Material libraries for electrocatalytic overall water splitting
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214049
– volume: 5
  issue: 5
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b1105
  article-title: Regulating the heterostructure of metal/oxide toward the enhanced hydrogen evolution reaction
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c03970
– volume: 12
  start-page: 11600
  issue: 10
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1120
  article-title: Top-open hollow nanocubes of Ni-doped Cu oxides on Ni foam: scalable oxygen evolution electrode via galvanic displacement and face-selective etching
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.9b21534
– volume: 31
  start-page: 1804672
  issue: 7
  year: 2019
  ident: 10.1016/j.ccr.2022.214864_b0070
  article-title: Doping of carbon materials for metal-free electrocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804672
– volume: 17
  start-page: 2100129
  issue: 37
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0115
  article-title: Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges
  publication-title: Small.
  doi: 10.1002/smll.202100129
– volume: 12
  start-page: 2200332
  issue: 21
  year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0545
  article-title: Advanced Ru/Ni/WC@ NPC Multi-Interfacial Electrocatalyst for Efficient Sustainable Hydrogen and Chlor-Alkali Co-Production
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200332
– volume: 157
  start-page: 515
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1660
  article-title: others, Hybrid Ni/NiO composite with N-doped activated carbon from waste cauliflower leaves: a sustainable bifunctional electrocatalyst for efficient water splitting
  publication-title: Carbon N. Y.
  doi: 10.1016/j.carbon.2019.09.080
– volume: 49
  start-page: 2196
  issue: 7
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b0460
  article-title: A review on fundamentals for designing oxygen evolution electrocatalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00607A
– year: 2022
  ident: 10.1016/j.ccr.2022.214864_b0500
  article-title: Recent advances in non-precious Ni-based promising catalysts for water splitting application
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.8458
– ident: 10.1016/j.ccr.2022.214864_b0985
  doi: 10.1002/aenm.202201713
– volume: 7
  start-page: 2188
  issue: 11
  year: 2020
  ident: 10.1016/j.ccr.2022.214864_b1545
  article-title: Highly efficient water splitting over a RuO2/F-doped graphene electrocatalyst with ultra-low ruthenium content
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI00095G
– volume: 449
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b0585
  article-title: others, Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214209
– volume: 50
  start-page: 11604
  issue: 33
  year: 2021
  ident: 10.1016/j.ccr.2022.214864_b1585
  article-title: Fe, Ni-codoped W18O49 grown on nickel foam as a bifunctional electrocatalyst for boosted water splitting
  publication-title: Dalt. Trans.
  doi: 10.1039/D1DT01468D
SSID ssj0016992
Score 2.7128623
SecondaryResourceType review_article
Snippet The effects of heteroatom-doping on transition metal oxide-based electrocatalysts toward overall water splitting performance. [Display omitted] •The basics of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 214864
SubjectTerms Electrocatalysts
Electrochemical water splitting
Metal and non-metal-doping
Transition metal oxides
Title Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts
URI https://dx.doi.org/10.1016/j.ccr.2022.214864
Volume 474
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvQiPrE-Sg6ehLSbNJt0j6VYqmJPFntbNy-oaFvaFfTib3eS3a0K6sHjhoQNw-zMl-w33yB0zkRHZkpZolwmCXesS1REDdFciszXokdBu_N2JIZjfj2JJzXUr2phPK2yjP1FTA_Ruhxpl9ZsL6ZTX-PrmfNeEdzjksQrfnJ4A_h0631N86AiSQrFcIg3fnb1ZzNwvLT2kqCMtRicCgT_OTd9yTeDHbRdAkXcK_ayi2p2toc2-1V_tn30cA8wcYlXgCIDdxkvPmsA8NzhZwu4Gmczg-GET8ITMfOFNTj3-SlQtcpJ89epsbjsiBMudN5W-eoAjQeXd_0hKfslEM0SmROrhI1jLTVkJpPYrpSaioxzazLrFUABynm1u1hJp6wU1DFnGQTKhAsXdeBLPER12JE9QjiiSknDYyotnJ2dUIzqRDEHA1Qz7hooqiyV6lJM3Pe0eEor1thjCsZNvXHTwrgNdLFesiiUNP6azCvzp9_cIYVI__uy4_8tO0Fbvot8cbNyiur58sWeAdbIVTM4UxNt9K5uhqMPyHvTaA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BO5QF8RTl6YEJyTRxHbsZq4qqpY-pFd1C7NhSEbRRGyT499iJU0ACBsZYPsn65Nx9tu--A7gmrMljIRQWOuaYatLCwvMTLClnsa1F93LtztGY9ab0fhbMtqBT1sLYtErn-wufnntrN9JwaDbS-dzW-NrMeasIbnlJ2NyGqlWnCipQbfcHvfHmMYGFYSEablyONSgfN_M0LymtKight8QcDBj9OTx9CTndPdh1XBG1i-Xsw5ZaHECtU7ZoO4THB8MUV2htiGSevozSzzIAtNToRRlqjeJFgswhH-dfOFmmKkGZDVF5tpabtHybJwq5pjj5nc77OlsfwbR7N-n0sGuZgCUJeYaVYCoIJJcmOCWhanEufRZTqpJYWRFQw-as4F0guBaKM18TrYjxlSFl2muan_EYKmZF6gSQ5wvBExr4XJnjs2aC-DIURJsBXxKq6-CVSEXS6YnbthbPUZk49hQZcCMLblSAW4ebjUlaiGn8NZmW8EffdkRknP3vZqf_M7uCWm8yGkbD_nhwBju2qXxx0XIOlWz1qi4M9cjEpdtaHxhe1hk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+splitting+performance+of+metal+and+non-metal-doped+transition+metal+oxide+electrocatalysts&rft.jtitle=Coordination+chemistry+reviews&rft.au=Al-Naggar%2C+Ahmed+H.&rft.au=Shinde%2C+Nanasaheb+M.&rft.au=Kim%2C+Jeom-Soo&rft.au=Mane%2C+Rajaram+S.&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=0010-8545&rft.eissn=1873-3840&rft.volume=474&rft_id=info:doi/10.1016%2Fj.ccr.2022.214864&rft.externalDocID=S0010854522004593
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon