Nonlocal difference equations with sign-changing coefficients

We consider second-order difference equations of the form −A∑j=1Nαj(utj)qΔ2u(n)=λf(n,u(n+1))subject to the Dirichlet boundary conditions u(0)=0=u(b+2). We demonstrate that using a nonstandard cone and associated open set can allow one to deduce the existence of at least one positive solution even in...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics letters Vol. 106; p. 106371
Main Authors Goodrich, Christopher S., Lyons, Benjamin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2020
Subjects
Online AccessGet full text
ISSN0893-9659
1873-5452
DOI10.1016/j.aml.2020.106371

Cover

Loading…
Abstract We consider second-order difference equations of the form −A∑j=1Nαj(utj)qΔ2u(n)=λf(n,u(n+1))subject to the Dirichlet boundary conditions u(0)=0=u(b+2). We demonstrate that using a nonstandard cone and associated open set can allow one to deduce the existence of at least one positive solution even in the case where the function A may change sign. Jensen’s inequality plays an important role in our analysis.
AbstractList We consider second-order difference equations of the form −A∑j=1Nαj(utj)qΔ2u(n)=λf(n,u(n+1))subject to the Dirichlet boundary conditions u(0)=0=u(b+2). We demonstrate that using a nonstandard cone and associated open set can allow one to deduce the existence of at least one positive solution even in the case where the function A may change sign. Jensen’s inequality plays an important role in our analysis.
ArticleNumber 106371
Author Lyons, Benjamin
Goodrich, Christopher S.
Author_xml – sequence: 1
  givenname: Christopher S.
  surname: Goodrich
  fullname: Goodrich, Christopher S.
  email: c.goodrich@unsw.edu.au
  organization: School of Mathematics and Statistics, UNSW Australia, Sydney, NSW 2052, Australia
– sequence: 2
  givenname: Benjamin
  surname: Lyons
  fullname: Lyons, Benjamin
  email: 2021178@creightonprep.org
  organization: Department of Mathematics, Creighton Preparatory School, Omaha, NE 68114, USA
BookMark eNp9z8tKAzEUgOEgFazVB3A3LzA1l-aGuJDiDYpudB0ymZM2ZZrRJCq-vTPWlYuuDofDf-A7RZPYR0DoguA5wURcbud2180ppuMumCRHaEqUZDVfcDpBU6w0q7Xg-gSd5rzFGDPN1BRdP_Wx653tqjZ4DwmigwreP2wJfczVVyibKod1rN3GxnWI68r14H1wAWLJZ-jY2y7D-d-code725flQ716vn9c3qxqR7UsNXDvWyBiQbXiVgpBW0W8wkRpip1rZCOZbr2gTjPOGxhOjWuYBKXVAqxiM0T2f13qc07gzVsKO5u-DcFm9JutGfxm9Ju9f2jkv8aF8ssqyYbuYHm1L2EgfQZIJo9cB21I4Ipp-3Cg_gHOUneH
CitedBy_id crossref_primary_10_1007_s11784_021_00914_9
crossref_primary_10_1142_S0129167X21500579
crossref_primary_10_1002_mma_7757
crossref_primary_10_1080_10236198_2021_1929945
Cites_doi 10.1103/RevModPhys.63.129
10.1016/j.jde.2017.09.011
10.1016/S0362-546X(01)00478-3
10.1016/S0895-7177(00)00154-0
10.1007/s11117-016-0427-z
10.1080/10236198.2015.1125896
10.1007/s10231-018-0738-8
10.1080/10236198.2019.1639684
10.1016/j.anihpc.2004.12.001
10.1016/j.aml.2007.02.019
10.1016/S0362-546X(96)00165-4
10.1080/17476933.2015.1064404
10.1080/10236190008808220
10.1016/j.jmaa.2016.04.023
10.1016/S0034-4877(99)80005-6
10.1016/j.na.2004.08.010
10.1103/PhysRevE.49.3771
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.aml.2020.106371
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5452
ExternalDocumentID 10_1016_j_aml_2020_106371
S0893965920301646
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-e5ffde1642985a7662d81f8018920ccb7b739df62c9355bef80bcb37e8984ea83
IEDL.DBID IXB
ISSN 0893-9659
IngestDate Thu Apr 24 22:53:58 EDT 2025
Tue Jul 01 00:38:24 EDT 2025
Fri Feb 23 02:47:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Jensen’s inequality
Sign-changing coefficient
Nonlocal difference equation
Coercivity
Positive solution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-e5ffde1642985a7662d81f8018920ccb7b739df62c9355bef80bcb37e8984ea83
ParticipantIDs crossref_primary_10_1016_j_aml_2020_106371
crossref_citationtrail_10_1016_j_aml_2020_106371
elsevier_sciencedirect_doi_10_1016_j_aml_2020_106371
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Applied mathematics letters
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Goodrich (b1) 2020
Bohner, Peterson (b10) 2001
Goodrich (b22) 2017; 21
Aly (b2) 1994; 49
Goodrich (b17) 2018; 264
Biler, Krzywicki, Nadzieja (b4) 1998; 42
Dahal, Goodrich (b19) 2019; 25
Erbe, Peterson (b12) 2000; 6
Erbe, Peterson (b11) 2000; 32
Ma, Zhong (b15) 2011; 15
do Ó, Lorca, Sánchez, Ubilla (b6) 2016; 61
Graef, Kong, Wang (b14) 2008; 21
Bavaud (b3) 1991; 63
Stańczy (b8) 2001; 47
Yan, Wang (b9) 2016; 442
Goodrich (b20) 2016; 22
Goodrich, Peterson (b13) 2015
Corrêa (b21) 2004; 59
Goodrich (b18) 2018; 197
Webb (b16) 2009; 13
Esposito, Grossi, Pistoia (b7) 2005; 22
Biler, Nadzieja (b5) 1997; 30
Guo, Lakshmikantham (b23) 1988
Bohner (10.1016/j.aml.2020.106371_b10) 2001
Goodrich (10.1016/j.aml.2020.106371_b20) 2016; 22
Dahal (10.1016/j.aml.2020.106371_b19) 2019; 25
Guo (10.1016/j.aml.2020.106371_b23) 1988
do Ó (10.1016/j.aml.2020.106371_b6) 2016; 61
Goodrich (10.1016/j.aml.2020.106371_b22) 2017; 21
Aly (10.1016/j.aml.2020.106371_b2) 1994; 49
Corrêa (10.1016/j.aml.2020.106371_b21) 2004; 59
Goodrich (10.1016/j.aml.2020.106371_b17) 2018; 264
Biler (10.1016/j.aml.2020.106371_b5) 1997; 30
Yan (10.1016/j.aml.2020.106371_b9) 2016; 442
Erbe (10.1016/j.aml.2020.106371_b11) 2000; 32
Graef (10.1016/j.aml.2020.106371_b14) 2008; 21
Esposito (10.1016/j.aml.2020.106371_b7) 2005; 22
Webb (10.1016/j.aml.2020.106371_b16) 2009; 13
Goodrich (10.1016/j.aml.2020.106371_b18) 2018; 197
Biler (10.1016/j.aml.2020.106371_b4) 1998; 42
Stańczy (10.1016/j.aml.2020.106371_b8) 2001; 47
Erbe (10.1016/j.aml.2020.106371_b12) 2000; 6
Ma (10.1016/j.aml.2020.106371_b15) 2011; 15
Goodrich (10.1016/j.aml.2020.106371_b1) 2020
Goodrich (10.1016/j.aml.2020.106371_b13) 2015
Bavaud (10.1016/j.aml.2020.106371_b3) 1991; 63
References_xml – volume: 42
  start-page: 359
  year: 1998
  end-page: 372
  ident: b4
  article-title: Self-interaction of Brownian particles coupled with thermodynamic processes
  publication-title: Reports Math. Phys.
– year: 2001
  ident: b10
  article-title: Dynamic Equations on Time Scales: An Introduction with Applications
– volume: 49
  start-page: 3771
  year: 1994
  end-page: 3783
  ident: b2
  article-title: Thermodynamics of a two-dimensional self-gravitating system
  publication-title: Phys. Rev. E.
– volume: 15
  start-page: 529
  year: 2011
  end-page: 538
  ident: b15
  article-title: Existence of positive solutions for integral equations with vanishing kernels
  publication-title: Commun. Appl. Anal.
– year: 2020
  ident: b1
  article-title: A topological approach to nonlocal elliptic partial differential equations on an annulus
  publication-title: Math. Nachr.
– volume: 22
  start-page: 227
  year: 2005
  end-page: 257
  ident: b7
  article-title: On the existence of blowing-up solutions for a mean field equation
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
– volume: 25
  start-page: 882
  year: 2019
  end-page: 903
  ident: b19
  article-title: An application of a nonstandard cone to discrete boundary value problems with unbounded indefinite forcing
  publication-title: J. Difference Equ. Appl.
– volume: 264
  start-page: 236
  year: 2018
  end-page: 262
  ident: b17
  article-title: New Harnack inequalities and existence theorems for radially symmetric solutions of elliptic PDEs with sign changing or vanishing Green’s function
  publication-title: J. Differential Equations
– volume: 59
  start-page: 1147
  year: 2004
  end-page: 1155
  ident: b21
  article-title: On positive solutions of nonlocal and nonvariational elliptic problems
  publication-title: Nonlinear Anal.
– volume: 21
  start-page: 377
  year: 2017
  end-page: 394
  ident: b22
  article-title: Coercive nonlocal elements in fractional differential equations
  publication-title: Positivity
– year: 1988
  ident: b23
  article-title: Nonlinear Problems in Abstract Cones
– volume: 197
  start-page: 1585
  year: 2018
  end-page: 1611
  ident: b18
  article-title: Radially symmetric solutions of elliptic PDEs with uniformly negative weight
  publication-title: Ann. Mat. Pura Appl. (4)
– year: 2015
  ident: b13
  article-title: Discrete Fractional Calculus
– volume: 22
  start-page: 623
  year: 2016
  end-page: 636
  ident: b20
  article-title: Coercivity of linear functionals on finite dimensional spaces and its application to discrete BVPs
  publication-title: J. Difference Equ. Appl.
– volume: 47
  start-page: 3579
  year: 2001
  end-page: 3584
  ident: b8
  article-title: Nonlocal elliptic equations
  publication-title: Nonlinear Anal.
– volume: 30
  start-page: 5343
  year: 1997
  end-page: 5350
  ident: b5
  article-title: Nonlocal parabolic problems in statistical mechanics
  publication-title: Nonlinear Anal.
– volume: 32
  start-page: 571
  year: 2000
  end-page: 585
  ident: b11
  article-title: Positive solutions for a nonlinear differential equation on a measure chain
  publication-title: Math. Comput. Modelling
– volume: 6
  start-page: 165
  year: 2000
  end-page: 191
  ident: b12
  article-title: Eigenvalue conditions and positive solutions
  publication-title: J. Difference Equ. Appl.
– volume: 61
  start-page: 297
  year: 2016
  end-page: 314
  ident: b6
  article-title: Positive solutions for some nonlocal and nonvariational elliptic systems
  publication-title: Complex Var. Elliptic Equ.
– volume: 21
  start-page: 176
  year: 2008
  end-page: 180
  ident: b14
  article-title: A periodic boundary value problem with vanishing Green’s function
  publication-title: Appl. Math. Lett.
– volume: 63
  start-page: 129
  year: 1991
  end-page: 148
  ident: b3
  article-title: Equilibrium properties of the vlasov functional: the generalized Poisson–Boltzmann-Emden equation
  publication-title: Rev. Modern Phys.
– volume: 442
  start-page: 72
  year: 2016
  end-page: 102
  ident: b9
  article-title: The multiplicity of positive solutions for a class of nonlocal elliptic problem
  publication-title: J. Math. Anal. Appl.
– volume: 13
  start-page: 587
  year: 2009
  end-page: 595
  ident: b16
  article-title: Boundary value problems with vanishing Green’s function
  publication-title: Commun. Appl. Anal.
– volume: 63
  start-page: 129
  year: 1991
  ident: 10.1016/j.aml.2020.106371_b3
  article-title: Equilibrium properties of the vlasov functional: the generalized Poisson–Boltzmann-Emden equation
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.63.129
– volume: 264
  start-page: 236
  year: 2018
  ident: 10.1016/j.aml.2020.106371_b17
  article-title: New Harnack inequalities and existence theorems for radially symmetric solutions of elliptic PDEs with sign changing or vanishing Green’s function
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2017.09.011
– volume: 47
  start-page: 3579
  year: 2001
  ident: 10.1016/j.aml.2020.106371_b8
  article-title: Nonlocal elliptic equations
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(01)00478-3
– volume: 32
  start-page: 571
  year: 2000
  ident: 10.1016/j.aml.2020.106371_b11
  article-title: Positive solutions for a nonlinear differential equation on a measure chain
  publication-title: Math. Comput. Modelling
  doi: 10.1016/S0895-7177(00)00154-0
– volume: 21
  start-page: 377
  year: 2017
  ident: 10.1016/j.aml.2020.106371_b22
  article-title: Coercive nonlocal elements in fractional differential equations
  publication-title: Positivity
  doi: 10.1007/s11117-016-0427-z
– volume: 22
  start-page: 623
  year: 2016
  ident: 10.1016/j.aml.2020.106371_b20
  article-title: Coercivity of linear functionals on finite dimensional spaces and its application to discrete BVPs
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236198.2015.1125896
– year: 2001
  ident: 10.1016/j.aml.2020.106371_b10
– volume: 197
  start-page: 1585
  year: 2018
  ident: 10.1016/j.aml.2020.106371_b18
  article-title: Radially symmetric solutions of elliptic PDEs with uniformly negative weight
  publication-title: Ann. Mat. Pura Appl. (4)
  doi: 10.1007/s10231-018-0738-8
– volume: 25
  start-page: 882
  year: 2019
  ident: 10.1016/j.aml.2020.106371_b19
  article-title: An application of a nonstandard cone to discrete boundary value problems with unbounded indefinite forcing
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236198.2019.1639684
– volume: 22
  start-page: 227
  year: 2005
  ident: 10.1016/j.aml.2020.106371_b7
  article-title: On the existence of blowing-up solutions for a mean field equation
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2004.12.001
– volume: 21
  start-page: 176
  year: 2008
  ident: 10.1016/j.aml.2020.106371_b14
  article-title: A periodic boundary value problem with vanishing Green’s function
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2007.02.019
– volume: 30
  start-page: 5343
  year: 1997
  ident: 10.1016/j.aml.2020.106371_b5
  article-title: Nonlocal parabolic problems in statistical mechanics
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(96)00165-4
– volume: 61
  start-page: 297
  year: 2016
  ident: 10.1016/j.aml.2020.106371_b6
  article-title: Positive solutions for some nonlocal and nonvariational elliptic systems
  publication-title: Complex Var. Elliptic Equ.
  doi: 10.1080/17476933.2015.1064404
– volume: 6
  start-page: 165
  year: 2000
  ident: 10.1016/j.aml.2020.106371_b12
  article-title: Eigenvalue conditions and positive solutions
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236190008808220
– volume: 442
  start-page: 72
  year: 2016
  ident: 10.1016/j.aml.2020.106371_b9
  article-title: The multiplicity of positive solutions for a class of nonlocal elliptic problem
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.04.023
– volume: 13
  start-page: 587
  year: 2009
  ident: 10.1016/j.aml.2020.106371_b16
  article-title: Boundary value problems with vanishing Green’s function
  publication-title: Commun. Appl. Anal.
– volume: 15
  start-page: 529
  year: 2011
  ident: 10.1016/j.aml.2020.106371_b15
  article-title: Existence of positive solutions for integral equations with vanishing kernels
  publication-title: Commun. Appl. Anal.
– year: 2020
  ident: 10.1016/j.aml.2020.106371_b1
  article-title: A topological approach to nonlocal elliptic partial differential equations on an annulus
  publication-title: Math. Nachr.
– volume: 42
  start-page: 359
  year: 1998
  ident: 10.1016/j.aml.2020.106371_b4
  article-title: Self-interaction of Brownian particles coupled with thermodynamic processes
  publication-title: Reports Math. Phys.
  doi: 10.1016/S0034-4877(99)80005-6
– volume: 59
  start-page: 1147
  year: 2004
  ident: 10.1016/j.aml.2020.106371_b21
  article-title: On positive solutions of nonlocal and nonvariational elliptic problems
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2004.08.010
– year: 1988
  ident: 10.1016/j.aml.2020.106371_b23
– volume: 49
  start-page: 3771
  year: 1994
  ident: 10.1016/j.aml.2020.106371_b2
  article-title: Thermodynamics of a two-dimensional self-gravitating system
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.49.3771
– year: 2015
  ident: 10.1016/j.aml.2020.106371_b13
SSID ssj0003938
Score 2.288373
Snippet We consider second-order difference equations of the form −A∑j=1Nαj(utj)qΔ2u(n)=λf(n,u(n+1))subject to the Dirichlet boundary conditions u(0)=0=u(b+2). We...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106371
SubjectTerms Coercivity
Jensen’s inequality
Nonlocal difference equation
Positive solution
Sign-changing coefficient
Title Nonlocal difference equations with sign-changing coefficients
URI https://dx.doi.org/10.1016/j.aml.2020.106371
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VssCAeIryqDIwIZkmjpM4A0OpqAqoXaBStyh-SUU0LbSs_HZ8TlKBBAyMTs5S8jm6O8fffQdwwYUfqSCWJJUmJ0wZaf2gDEiolW-zU8MYxXrn4SgejNn9JJo0oFfXwiCtsvL9pU933rq60qnQ7Cym086jb0MtyuFRzOpjhrLbIeOuiG9ys_bGYeq6WaMxQev6ZNNxvPIZnj5QHMdhEvwcm77Em_4u7FSJotctn2UPGrrYh-3hWmV1eQDXo3nhYpFXtzmR2tOvpXj30sNfrB7yM4ir7rUxypNz7SQjkD1xCOP-7VNvQKp2CETSNFkRHRmjtH1TmvIoT-KYKh4YG2G4hUBKkYgkTJWJqUTNdKHtLSFFmGiecqZzHh5Bs5gX-hg8u4ugEtOr3BdMcSqU9EWkrR21O21DW-DXQGSy0grHlhUvWU0Ke84sdhlil5XYteByPWVRCmX8ZcxqdLNvq51ZR_77tJP_TTuFLRyVtL0zaK7e3vW5TSVWog0bVx9BGza7dw-DUdt9OZ8yB8iD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgAD4inKMwMTktXEcRxnYICKqoW2C63UzYofkUCQFlr-P748KpCAgTHxWUq-WN-d47vvAC6F8iMTcE0SnaWEmUw7HtQBCa3xXXSaMUax3nk44r0Ju59G0wZ06loYTKusuL_k9IKtqzvtCs32_Omp_eg7V4tyeBSjes74Gqy7aIDj0u5Pb1d0HCZFO2u0JmheH20WSV7pKx4_ULzmYRz87Jy-OJzuDmxXkaJ3Uz7MLjRsvgdbw5XM6mIfrkezvHBGXt3nRFvPvpXq3QsP_7F6mKBBivJe56Q8PbOFZgSmTxzApHs37vRI1Q-BaJrES2KjLDPWvSpNRJTGnFMjgsy5GOEw0FrFKg4Tk3GqUTRdWTektApjKxLBbCrCQ2jms9wegee2EVRjfJX6ihlBldG-iqyzo26rndEW-DUQUldi4diz4kXWWWHP0mEnETtZYteCq9WUeamU8Zcxq9GV3z63dEz--7Tj_027gI3eeDiQg_7o4QQ2caTM4TuF5vL9w565uGKpzot18wljdcke
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlocal+difference+equations+with+sign-changing+coefficients&rft.jtitle=Applied+mathematics+letters&rft.au=Goodrich%2C+Christopher+S.&rft.au=Lyons%2C+Benjamin&rft.date=2020-08-01&rft.pub=Elsevier+Ltd&rft.issn=0893-9659&rft.eissn=1873-5452&rft.volume=106&rft_id=info:doi/10.1016%2Fj.aml.2020.106371&rft.externalDocID=S0893965920301646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-9659&client=summon