Maximizing the utilization of Calcium species in the supercages of CaNa-FAU zeolite for efficient CO2 capture
[Display omitted] •Migration regulation of Ca2+ species in the CaNaX zeolite was revealed in detail.•Utilization of hydroxylated Ca2+ species in the supercages of CaNaX zeolite was maximized via low-temperature calcination.•Remarkable CO2 uptakes and selectivity on the 0.05CaNaX-250 zeolite were ach...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 481; p. 148661 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Migration regulation of Ca2+ species in the CaNaX zeolite was revealed in detail.•Utilization of hydroxylated Ca2+ species in the supercages of CaNaX zeolite was maximized via low-temperature calcination.•Remarkable CO2 uptakes and selectivity on the 0.05CaNaX-250 zeolite were achieved.•This new sorbent displayed low heat of adsorption, fast kinetics and superior recyclability.•The formation of Ca(OH)+∙∙∙(CO2)2 adducts revealed by CO2-dosing FTIR experiments.
Ca-FAU zeolite sorbents have been recognized as one of promising CO2 capture materials, while it is subject to the change in the speciations and locations of Ca2+ species as adsorption sites in the FAU zeolite due to its susceptible migration. In this paper, a facile strategy is reported by tuning calcination temperatures and Ca loadings, to maximize the utilization of Ca2+ species in the supercages of CaNaX zeolites. Detail characterizations of TG-MS, in situ FTIR spectroscopy and XRD Rietveld refinement reveal the changeable regular in the chemical speciations, locations and number of Ca2+ species in the CaNaX zeolites. Synthetic 0.05CaNaX-250 zeolite (calcined at 250 °C and Ca loading of 1.58 wt%) guarantees at least 21 Ca(OH)+ species (depicted as hydroxylated Ca2+ species) in the supercages per FAU cell unit, close to theoretical value. Such sorbent apparently improves the CO2 uptakes and the separation from CO2/N2 and CO2/CH4, along with fast kinetics, low heat of adsorption, measured by dynamic and gravimetric adsorption methods, respectively. In addition, it keeps a superior recyclability after 10 times regeneration. CO2-dosing FTIR experiments further illustrate that excellent CO2 adsorption performance are benefited from the formation of Ca(OH)+∙∙∙(CO2)2 adducts with an appropriate interaction. This work is of great significance to better understand the role of cations in FAU zeolites, and also provides an important reference value for the directional design of effective adsorption sites in other excellent CO2 zeolite sorbents. |
---|---|
AbstractList | [Display omitted]
•Migration regulation of Ca2+ species in the CaNaX zeolite was revealed in detail.•Utilization of hydroxylated Ca2+ species in the supercages of CaNaX zeolite was maximized via low-temperature calcination.•Remarkable CO2 uptakes and selectivity on the 0.05CaNaX-250 zeolite were achieved.•This new sorbent displayed low heat of adsorption, fast kinetics and superior recyclability.•The formation of Ca(OH)+∙∙∙(CO2)2 adducts revealed by CO2-dosing FTIR experiments.
Ca-FAU zeolite sorbents have been recognized as one of promising CO2 capture materials, while it is subject to the change in the speciations and locations of Ca2+ species as adsorption sites in the FAU zeolite due to its susceptible migration. In this paper, a facile strategy is reported by tuning calcination temperatures and Ca loadings, to maximize the utilization of Ca2+ species in the supercages of CaNaX zeolites. Detail characterizations of TG-MS, in situ FTIR spectroscopy and XRD Rietveld refinement reveal the changeable regular in the chemical speciations, locations and number of Ca2+ species in the CaNaX zeolites. Synthetic 0.05CaNaX-250 zeolite (calcined at 250 °C and Ca loading of 1.58 wt%) guarantees at least 21 Ca(OH)+ species (depicted as hydroxylated Ca2+ species) in the supercages per FAU cell unit, close to theoretical value. Such sorbent apparently improves the CO2 uptakes and the separation from CO2/N2 and CO2/CH4, along with fast kinetics, low heat of adsorption, measured by dynamic and gravimetric adsorption methods, respectively. In addition, it keeps a superior recyclability after 10 times regeneration. CO2-dosing FTIR experiments further illustrate that excellent CO2 adsorption performance are benefited from the formation of Ca(OH)+∙∙∙(CO2)2 adducts with an appropriate interaction. This work is of great significance to better understand the role of cations in FAU zeolites, and also provides an important reference value for the directional design of effective adsorption sites in other excellent CO2 zeolite sorbents. |
ArticleNumber | 148661 |
Author | Mei, Yi Zu, Yun Li, Sihan Liu, Meiyu Zhang, Quanqi Sun, Xinyu Zhang, Yiming He, Binbin |
Author_xml | – sequence: 1 givenname: Xinyu surname: Sun fullname: Sun, Xinyu organization: Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China – sequence: 2 givenname: Quanqi surname: Zhang fullname: Zhang, Quanqi organization: Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China – sequence: 3 givenname: Sihan surname: Li fullname: Li, Sihan organization: Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China – sequence: 4 givenname: Yiming surname: Zhang fullname: Zhang, Yiming organization: Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China – sequence: 5 givenname: Meiyu surname: Liu fullname: Liu, Meiyu organization: Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China – sequence: 6 givenname: Binbin surname: He fullname: He, Binbin email: 346462065@qq.com organization: Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China – sequence: 7 givenname: Yi surname: Mei fullname: Mei, Yi organization: Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China – sequence: 8 givenname: Yun orcidid: 0000-0002-2062-676X surname: Zu fullname: Zu, Yun email: zuyun1990@126.com organization: Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China |
BookMark | eNp9kMFOAjEQhhuDiYA-gLe-wGLb3W238USIqAnKRc5NKVMcsuySthjl6V3AkwdOM5n83yTfPyC9pm2AkHvORpxx-bAZOdiMBBPFiBeVlPyK9Hml8iwXXPS6Pa_KrNKFuiGDGDeMMam57pPtm_3GLR6wWdP0CXSfsMaDTdg2tPV0YmuH-y2NO3AIkWJzSsX9DoKz6-5yCr3bbDpe0AO0NSagvg0UvMcOaRKdzAV1dpf2AW7Jtbd1hLu_OSSL6dPH5CWbzZ9fJ-NZ5oRWKYNyWRVFybgWmhe-VJIvS7ArKbXzEmRnubTWW-4qoZRQmue5LoRiojOvoMiHRJ3_utDGGMAbh-kklYLF2nBmjq2ZjelaM8fWzLm1juT_yF3ArQ0_F5nHMwOd0hdCMPFo7mCFAVwyqxYv0L8Ei4Zv |
CitedBy_id | crossref_primary_10_1002_smll_202402529 crossref_primary_10_1016_j_fuel_2024_133555 crossref_primary_10_1016_j_cej_2024_151733 crossref_primary_10_1021_acs_iecr_4c04027 crossref_primary_10_1016_j_psep_2024_07_027 crossref_primary_10_1016_j_gsme_2024_11_002 crossref_primary_10_1016_j_seppur_2024_129114 crossref_primary_10_3390_molecules29235713 crossref_primary_10_1016_j_cej_2025_161703 crossref_primary_10_1021_acs_jpcc_4c05835 crossref_primary_10_3390_magnetochemistry10110087 crossref_primary_10_1016_j_seppur_2025_131729 crossref_primary_10_1016_j_seppur_2024_127662 crossref_primary_10_1021_acsaenm_4c00285 crossref_primary_10_1016_j_jece_2025_116272 crossref_primary_10_1016_j_seppur_2024_127974 |
Cites_doi | 10.1021/acs.chemmater.7b02133 10.1016/j.cej.2019.122014 10.1016/j.chempr.2021.12.013 10.1016/j.jcou.2020.101297 10.1021/acs.jpcc.1c04254 10.1016/S0032-9592(98)00112-5 10.1016/j.seppur.2009.03.045 10.1021/jacs.9b05539 10.1021/jacs.5b00838 10.1021/acs.jpcc.6b11582 10.1126/science.1176731 10.1016/j.cej.2021.129584 10.1016/j.memsci.2016.03.051 10.1016/j.apsusc.2016.09.161 10.1002/chem.202201659 10.1016/j.cej.2020.127056 10.1021/ie100757u 10.1016/B978-0-12-800127-1.00002-3 10.1016/j.cej.2019.122319 10.1039/D2CS00508E 10.1039/b927476f 10.1021/acs.jpclett.2c03294 10.1073/pnas.2211544119 10.1039/C2EE23337A 10.1006/jcat.1993.1145 10.1016/j.jcou.2020.101251 10.1016/j.micromeso.2019.05.051 10.1021/jacs.8b07969 10.1021/ja0570032 10.1039/D0CS00025F 10.1021/acsaem.2c03605 10.1021/acs.jpcc.8b09996 10.1038/532435a 10.1016/j.vibspec.2021.103313 10.1039/b814908a 10.1163/156856799X00392 10.1039/f19736901056 10.1002/anie.201101891 10.1016/j.fuel.2022.124097 10.1016/j.jechem.2019.04.010 10.1016/j.cej.2010.07.030 10.1038/natrevmats.2017.45 10.1038/s41467-023-36646-2 10.1016/j.cej.2021.133800 10.1039/D1QI01564H 10.1016/j.apcatb.2016.10.008 10.1021/ja309274y 10.1021/jp810038b 10.1016/j.cattod.2013.10.036 10.1038/srep23382 10.1016/j.apsusc.2013.11.036 10.1021/acs.chemrev.7b00738 10.1021/acsami.9b08487 10.1016/j.rser.2022.112902 10.1021/acs.jpcc.8b11811 10.1016/j.jechem.2022.03.035 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2024.148661 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2024_148661 S1385894724001463 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- SSH ZY4 |
ID | FETCH-LOGICAL-c297t-e5b84450192914f5761b5ead669cf6e6024baafa1c82772791339427028668e43 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 02:11:37 EDT 2025 Thu Apr 24 23:12:46 EDT 2025 Sat Apr 27 15:44:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CaNa-FAU zeolite Migration regular of Ca2+ species Low-temperature calcination CO2 capture Adsorption mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-e5b84450192914f5761b5ead669cf6e6024baafa1c82772791339427028668e43 |
ORCID | 0000-0002-2062-676X |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2024_148661 crossref_primary_10_1016_j_cej_2024_148661 elsevier_sciencedirect_doi_10_1016_j_cej_2024_148661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Deng, Zhang, Dong, Huang, Li, Jin, Gao, Zhang, Fan, Zhang, Gong (b0260) 2016; 6 Zu, Qin, Gao, Liu, Zhang, Zhang, Song (b0265) 2017; 203 Chakarova, Mihaylov, Hadjiivanov (b0185) 2022; 345 Galhotra, Navea, Larsen, Grassian (b0290) 2009; 2 A.C. Larson, R.B. Von Dreele, General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 2004. Santos, Grande, Rodrigues (b0150) 2011; 50 Gao, Liang, Wang, Jiang, Zhang, Zheng, Xie, Toe, Zhu, Wang, Huang, Gao, Wang, Jo, Wang, Wang, Liu, Louis, Scott, Roger, Amal, He, Park (b0005) 2020; 49 Thang, Grajciar, Nachtigall, Bludský, Areán, Frýdová, Bulánek (b0200) 2014; 227 Shao, Wang, Gong, Liu, Qian, Hu, Hu (b0080) 2023; 14 Choi, Hong (b0135) 2022; 433 Hadjiivanov (b0255) 2014; 57 Jedli, Almoneef, Mbarek, Jbara, Slimi (b0230) 2022; 321 Yang, Yang, Wu (b0310) 2021; 125 Plaza, García, Rubiera, Pis, Pevida (b0060) 2010; 163 Min, Kemp, Hong (b0155) 2017; 121 Zu, Zhang, Qin, Zhang, Zhang, Liu, Gao, Song (b0250) 2019; 39 Yue, Liu, Chai, Wu, Guan, Li (b0090) 2022; 71 Jacobs, van Cauwelaert, Vansant, Uytterhoeven (b0305) 1973; 1 Liu, Chen, Yue, Wang, Qin, Chai, Wu, Li, Han, da-Silva, Manuel, Day, Thompson, Guan, Yang, Li (b0115) 2022; 28 Min, Kemp, Lee, Hong (b0120) 2018; 122 P. Vasiliev, O. Cheung, Z. Bacsik, N. Hedin, Zeolite type a sorbent, US 2017/0158519 A1, 2017. Ozkan, Akhavi, Coley, Shang, Ma (b0050) 2022; 8 Aniruddha, Sreedhar, Reddy (b0075) 2020; 42 Hui, Zheng, Qin, Du, Zu, Yang, Sun, Gao, Sun, Song (b0205) 2022; 9 Georgieva, Bruce, Verbraeken, Scott, Jr, Brandani, Wright (b0140) 2019; 141 Dusselier, Davis (b0105) 2018; 118 Yoon, Lee, Lee (b0085) 2021; 421 Peters, Pillai, Jasra (b0195) 2022; 68 Herzberg (b0280) 1950 Pirngruber, Raybaud, Belmabkhout, Čejka, Zukal (b0190) 2010; 12 Mason, McDonald, Bae, Bachman, Sumida, Dutton, Kaye, Long (b0025) 2015; 137 Drenchev, Ivanova, Mihaylov, Aleksandrov, Vayssilov, Hadjiivanov (b0315) 2023; 14 Boer, Langerak, Pescarmona (b0045) 2023; 6 Polisi, Grand, Arletti, Barrier, Komaty, Zaarour, Mintova, Vezzalini (b0180) 2019; 123 Rochelle (b0015) 2009; 325 Vjunov, Wang, Govind, Huthwelker, Shi, Mei, Fulton, Lercher (b0240) 2017; 29 Bekhti, Boucheffa, Blal, Travert (b0295) 2021; 117 Nakamoto (b0285) 1970 Sholl, Lively (b0010) 2016; 532 Yang, Yang, Wu (b0175) 2021; 404 Bae, Hudson, Mason, Queen, Dutton, Sumida, Micklash, Kaye, Brown, Long (b0100) 2013; 6 Shang, Li, Singh, Gu, Nairn, Bastow, Medhekar, Doherty, Hill, Liu, Webley (b0145) 2012; 134 Pulido, Nachtigall, Zukal, Dominguez, Cejka (b0160) 2009; 113 Zu, Hui, Qin, Zhang, Liu, Zhang, Guo, Song, Gao (b0210) 2019; 375 Kumar, Srivastava, Koh (b0110) 2020; 41 Fu, Park, Davis (b0165) 2022; 119 Saha, Kienbaum (b0065) 2019; 287 Qin, Mo, Yu, Dong, Duan, Gao, Song (b0275) 2014; 292 Ridha, Webley (b0130) 2009; 67 Garshasbi, Jahangiri, Anbia (b0225) 2017; 393 Millward, Yaghi (b0095) 2005; 127 Zhao, Feron, Deng, Favre, Chabanon, Yan, Hou, Chen, Qi (b0040) 2016; 511 Wang, Jaegers, Lee, Wan, Hu, Shi, Mei, Burton, Camaioni, Gutiérrez, Glezakou, Rousseau, Wang, Lercher (b0245) 2019; 141 Ho (b0235) 1999; 34 Zu, Guo, Zheng, Hui, Wang, Qin, Zhang, Liu, Gao, Song (b0215) 2020; 380 Trickett, Helal, Al-Maythalony, Yamani, Cordova, Yaghi (b0070) 2017; 2 Bae, Snurr (b0030) 2011; 50 Meng, Meng, Ju, Han, Lin, Jiang (b0020) 2022; 168 Fu, Davis (b0055) 2022; 51 Pardakhti, Jafari, Tobin, Dutta, Moharreri, Shemshaki, Suib, Srivastava (b0035) 2019; 11 Choi, Jo, Hong (b0125) 2022; 446 Emeis (b0270) 1993; 141 Martra, Coluccia, Davit, Gianotti, Marchese, Tsuji, Hattori (b0300) 1999; 25 Wang (10.1016/j.cej.2024.148661_b0245) 2019; 141 Martra (10.1016/j.cej.2024.148661_b0300) 1999; 25 Zu (10.1016/j.cej.2024.148661_b0210) 2019; 375 Polisi (10.1016/j.cej.2024.148661_b0180) 2019; 123 10.1016/j.cej.2024.148661_b0220 Georgieva (10.1016/j.cej.2024.148661_b0140) 2019; 141 Boer (10.1016/j.cej.2024.148661_b0045) 2023; 6 Liu (10.1016/j.cej.2024.148661_b0115) 2022; 28 Ho (10.1016/j.cej.2024.148661_b0235) 1999; 34 Garshasbi (10.1016/j.cej.2024.148661_b0225) 2017; 393 Min (10.1016/j.cej.2024.148661_b0155) 2017; 121 Herzberg (10.1016/j.cej.2024.148661_b0280) 1950 Dusselier (10.1016/j.cej.2024.148661_b0105) 2018; 118 Sholl (10.1016/j.cej.2024.148661_b0010) 2016; 532 Bae (10.1016/j.cej.2024.148661_b0100) 2013; 6 Emeis (10.1016/j.cej.2024.148661_b0270) 1993; 141 Qin (10.1016/j.cej.2024.148661_b0275) 2014; 292 Hui (10.1016/j.cej.2024.148661_b0205) 2022; 9 Peters (10.1016/j.cej.2024.148661_b0195) 2022; 68 Deng (10.1016/j.cej.2024.148661_b0260) 2016; 6 Yue (10.1016/j.cej.2024.148661_b0090) 2022; 71 Jedli (10.1016/j.cej.2024.148661_b0230) 2022; 321 Vjunov (10.1016/j.cej.2024.148661_b0240) 2017; 29 10.1016/j.cej.2024.148661_b0170 Chakarova (10.1016/j.cej.2024.148661_b0185) 2022; 345 Mason (10.1016/j.cej.2024.148661_b0025) 2015; 137 Santos (10.1016/j.cej.2024.148661_b0150) 2011; 50 Pulido (10.1016/j.cej.2024.148661_b0160) 2009; 113 Bekhti (10.1016/j.cej.2024.148661_b0295) 2021; 117 Yang (10.1016/j.cej.2024.148661_b0175) 2021; 404 Choi (10.1016/j.cej.2024.148661_b0125) 2022; 446 Bae (10.1016/j.cej.2024.148661_b0030) 2011; 50 Zhao (10.1016/j.cej.2024.148661_b0040) 2016; 511 Saha (10.1016/j.cej.2024.148661_b0065) 2019; 287 Ridha (10.1016/j.cej.2024.148661_b0130) 2009; 67 Hadjiivanov (10.1016/j.cej.2024.148661_b0255) 2014; 57 Gao (10.1016/j.cej.2024.148661_b0005) 2020; 49 Meng (10.1016/j.cej.2024.148661_b0020) 2022; 168 Shao (10.1016/j.cej.2024.148661_b0080) 2023; 14 Aniruddha (10.1016/j.cej.2024.148661_b0075) 2020; 42 Galhotra (10.1016/j.cej.2024.148661_b0290) 2009; 2 Fu (10.1016/j.cej.2024.148661_b0165) 2022; 119 Fu (10.1016/j.cej.2024.148661_b0055) 2022; 51 Plaza (10.1016/j.cej.2024.148661_b0060) 2010; 163 Shang (10.1016/j.cej.2024.148661_b0145) 2012; 134 Min (10.1016/j.cej.2024.148661_b0120) 2018; 122 Rochelle (10.1016/j.cej.2024.148661_b0015) 2009; 325 Nakamoto (10.1016/j.cej.2024.148661_b0285) 1970 Pardakhti (10.1016/j.cej.2024.148661_b0035) 2019; 11 Choi (10.1016/j.cej.2024.148661_b0135) 2022; 433 Zu (10.1016/j.cej.2024.148661_b0250) 2019; 39 Yoon (10.1016/j.cej.2024.148661_b0085) 2021; 421 Ozkan (10.1016/j.cej.2024.148661_b0050) 2022; 8 Drenchev (10.1016/j.cej.2024.148661_b0315) 2023; 14 Trickett (10.1016/j.cej.2024.148661_b0070) 2017; 2 Thang (10.1016/j.cej.2024.148661_b0200) 2014; 227 Yang (10.1016/j.cej.2024.148661_b0310) 2021; 125 Kumar (10.1016/j.cej.2024.148661_b0110) 2020; 41 Millward (10.1016/j.cej.2024.148661_b0095) 2005; 127 Jacobs (10.1016/j.cej.2024.148661_b0305) 1973; 1 Pirngruber (10.1016/j.cej.2024.148661_b0190) 2010; 12 Zu (10.1016/j.cej.2024.148661_b0215) 2020; 380 Zu (10.1016/j.cej.2024.148661_b0265) 2017; 203 |
References_xml | – volume: 393 start-page: 225 year: 2017 end-page: 233 ident: b0225 article-title: Equilibrium CO publication-title: Appl. Surf. Sci. – volume: 121 start-page: 3404 year: 2017 end-page: 3409 ident: b0155 article-title: Zeolites ZSM-25 and PST-20: Selective carbon dioxide adsorbents at high pressures publication-title: J. Phys. Chem. C – volume: 28 start-page: e202201659 year: 2022 ident: b0115 article-title: Regulating extra-framework cations in faujasite zeolites for capture of trace carbon dioxide publication-title: Chem. Eur. J. – volume: 511 start-page: 180 year: 2016 end-page: 206 ident: b0040 article-title: Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments publication-title: J. Membr. Sci. – volume: 8 start-page: 141 year: 2022 end-page: 173 ident: b0050 article-title: Progress in carbon dioxide capture materials for deep decarbonization publication-title: Chem – volume: 345 year: 2022 ident: b0185 article-title: Can two CO2 molecules be simultaneously bound to one Na+ site in NaY zeolite? publication-title: A Detailed FTIR Investigation, Microporous Mesoporous Mater. – volume: 9 start-page: 1354 year: 2022 end-page: 1365 ident: b0205 article-title: Insight into the nature and the transformation of the hydroxyl species in the CeY zeolite publication-title: Inorg. Chem. Front. – volume: 41 year: 2020 ident: b0110 article-title: Utilization of zeolites as CO publication-title: J. CO – volume: 2 start-page: 401 year: 2009 end-page: 409 ident: b0290 article-title: Carbon dioxide (C16O2 and C18O2) adsorption in zeolite Y materials: effect of cation, adsorbed water and particle size publication-title: Energy Environ. Sci. – volume: 421 year: 2021 ident: b0085 article-title: Mass transfer enhanced CaO pellets for CO publication-title: Chem. Eng. J. – volume: 67 start-page: 336 year: 2009 end-page: 343 ident: b0130 article-title: Anomalous Henry's law behavior of nitrogen and carbon dioxide adsorption on alkali-exchanged chabazite zeolites publication-title: Sep. Purif. Technol. – volume: 375 year: 2019 ident: b0210 article-title: Facile Fabrication of effective Cerium (III) hydroxylated species as adsorption active sites in CeY zeolite adsorbents towards ultra-deep desulfurization publication-title: Chem. Eng. J. – volume: 51 start-page: 9340 year: 2022 end-page: 9370 ident: b0055 article-title: Carbon dioxide capture with zeotype materials publication-title: Chem. Soc. Rev. – volume: 127 start-page: 17998 year: 2005 end-page: 17999 ident: b0095 article-title: Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature publication-title: J. Am. Chem. Soc. – reference: P. Vasiliev, O. Cheung, Z. Bacsik, N. Hedin, Zeolite type a sorbent, US 2017/0158519 A1, 2017. – volume: 137 start-page: 4787 year: 2015 end-page: 4803 ident: b0025 article-title: Application of a high-throughput analyzer in evaluating solid adsorbents for post combustion carbon capture via multicomponent adsorption of CO publication-title: J. Am. Chem. Soc. – volume: 292 start-page: 5 year: 2014 end-page: 15 ident: b0275 article-title: Adsorption behaviors of thiophene, benzene, and cyclohexene on FAU zeolites: comparison of CeY obtained by liquid-, and solid-state ion exchange publication-title: Appl. Surf. Sci. – volume: 227 start-page: 50 year: 2014 end-page: 56 ident: b0200 article-title: Adsorption of CO publication-title: Catal. Today – volume: 6 start-page: 128 year: 2013 end-page: 138 ident: b0100 article-title: Evaluation of cation-exchanged zeolite adsorbents for post combustion carbon dioxide capture publication-title: Energy Environ. Sci. – volume: 141 start-page: 3444 year: 2019 end-page: 3455 ident: b0245 article-title: Genesis and stability of hydronium ions in zeolite channels publication-title: J. Am. Chem. Soc. – volume: 404 year: 2021 ident: b0175 article-title: Insights into the enhancement of CO publication-title: Chem. Eng. J. – year: 1970 ident: b0285 article-title: Infrared spectra of inorganic and coordination compounds – volume: 380 year: 2020 ident: b0215 article-title: Investigation of Cu(I)-Y zeolites with different Cu/Al ratios towards the ultra-deep adsorption desulfurization: Discrimination and role of the specific adsorption active sites publication-title: Chem. Eng. J. – volume: 119 start-page: e221154411 year: 2022 ident: b0165 article-title: Confinement effects facilitate low-concentration carbon dioxide capture with zeolites publication-title: PNAS – volume: 123 start-page: 2361 year: 2019 end-page: 2369 ident: b0180 article-title: CO publication-title: J. Phys. Chem. C – volume: 163 start-page: 41 year: 2010 end-page: 47 ident: b0060 article-title: Post-combustion CO publication-title: Chem. Eng. J. – volume: 532 start-page: 435 year: 2016 end-page: 437 ident: b0010 article-title: Seven chemical separations to change the world publication-title: Nature – volume: 141 start-page: 347 year: 1993 end-page: 354 ident: b0270 article-title: Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts publication-title: J. Catal. – volume: 25 start-page: 77 year: 1999 end-page: 93 ident: b0300 article-title: Acidic and basic sites in NaX and NaY faujasites investigated by NH publication-title: Res. Chem. Intermed. – volume: 113 start-page: 2928 year: 2009 end-page: 2935 ident: b0160 article-title: Adsorption of CO publication-title: J. Phys. Chem. C – volume: 57 start-page: 99 year: 2014 end-page: 318 ident: b0255 article-title: Identification and characterization of surface hydroxyl groups by infrared spectroscopy publication-title: Adv. Catal. – volume: 141 start-page: 12744 year: 2019 end-page: 12759 ident: b0140 article-title: Triggered gate opening and breathing effects during selective CO publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 996 year: 2023 ident: b0080 article-title: Synergistic promotions between CO publication-title: Nat. Commun. – reference: A.C. Larson, R.B. Von Dreele, General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 2004. – volume: 125 start-page: 15676 year: 2021 end-page: 15686 ident: b0310 article-title: Quantitatively understanding the insights into CO publication-title: J. Phys. Chem. C – volume: 50 start-page: 11586 year: 2011 end-page: 11596 ident: b0030 article-title: Development and evaluation of porous materials for carbon dioxide separation and capture publication-title: Angew. Chem. Int. Ed. – volume: 203 start-page: 96 year: 2017 end-page: 107 ident: b0265 article-title: Insight into the correlation between the adsorption-transformation behaviors of methylthiophenes and the active sites of zeolites Y publication-title: Appl. Catal. b: Environ. – volume: 287 start-page: 29 year: 2019 end-page: 55 ident: b0065 article-title: Role of oxygen, nitrogen and sulfur functionalities on the surface of nanoporous carbons in CO publication-title: Microporous Mesoporous Mater. – volume: 29 start-page: 9030 year: 2017 end-page: 9042 ident: b0240 article-title: Tracking the chemical transformations at the Brønsted acid site upon water-induced deprotonation in a zeolite pore publication-title: Chem. Mater. – volume: 68 start-page: 85 year: 2022 end-page: 92 ident: b0195 article-title: Significance of extra-framework monovalent and divalent cation motion upon CO publication-title: Mater. Today: Proceed. – volume: 2 start-page: 1 year: 2017 end-page: 16 ident: b0070 article-title: The chemistry of metal-organic frameworks for CO publication-title: Nat. Rev. Mater. – volume: 6 start-page: 2634 year: 2023 end-page: 2656 ident: b0045 article-title: Zeolites as selective adsorbents for CO publication-title: ACS Appl. Energy Mater. – volume: 118 start-page: 5265 year: 2018 end-page: 5329 ident: b0105 article-title: Small-pore zeolites: Synthesis and catalysis publication-title: Chem. Rev. – volume: 14 start-page: 1564 year: 2023 end-page: 1569 ident: b0315 article-title: One Ca2+ site in CaNaY zeolite can attach three CO2 molecules publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 13534 year: 2010 end-page: 13546 ident: b0190 article-title: The role of the extra-framework cations in the adsorption of CO publication-title: Phys. Chem. Chem. Phys. – year: 1950 ident: b0280 article-title: Molecular spectra and molecular structure – volume: 321 year: 2022 ident: b0230 article-title: Adsorption of CO publication-title: Fuel – volume: 39 start-page: 256 year: 2019 end-page: 267 ident: b0250 article-title: Ultra-deep adsorptive removal of thiophenic sulfur compounds from FCC gasoline over the specific active sites of CeHY zeolite publication-title: J. Energy Chem. – volume: 134 start-page: 19246 year: 2012 end-page: 19253 ident: b0145 article-title: Discriminative separation of gases by a “Molecular Trapdoor” mechanism in chabazite zeolites publication-title: J. Am. Chem. Soc. – volume: 117 year: 2021 ident: b0295 article-title: In situ FTIR investigation of CO publication-title: Vib. Spectrosc. – volume: 1 start-page: 1056 year: 1973 end-page: 1068 ident: b0305 article-title: Surface probing of synthetic faujasites by adsorption of carbon dioxide. Part I. Infra-red study of carbon dioxide adsorbed on Na-Ca-Y and Na-Mg-Y zeolites publication-title: J. Chem. Soc., Faraday Trans. – volume: 446 year: 2022 ident: b0125 article-title: Effect of framework Si/Al ratio on the adsorption mechanism of CO publication-title: Chem. Eng. J. – volume: 325 start-page: 1652 year: 2009 end-page: 1654 ident: b0015 article-title: Amine scrubbing for CO publication-title: Science – volume: 49 start-page: 8584 year: 2020 end-page: 8686 ident: b0005 article-title: Industrial carbon dioxide capture and utilization: state of the art and future challenges publication-title: Chem. Soc. Rev. – volume: 42 year: 2020 ident: b0075 article-title: MOFs in carbon capture-past, present and future publication-title: J. CO – volume: 122 start-page: 28815 year: 2018 end-page: 28824 ident: b0120 article-title: CO publication-title: J. Phys. Chem. C – volume: 168 year: 2022 ident: b0020 article-title: Research progress of aqueous amine solution for CO publication-title: Renew. Sust. Energy Rev. – volume: 34 start-page: 451 year: 1999 end-page: 465 ident: b0235 article-title: Pseudo-second order model for sorption processes publication-title: Process Biochem. – volume: 433 year: 2022 ident: b0135 article-title: Effect of framework Si/Al ratio on the mechanism of CO publication-title: Chem. Eng. J. – volume: 71 start-page: 288 year: 2022 end-page: 303 ident: b0090 article-title: Zeolites for separation: Fundamental and application publication-title: J. Energy Chem. – volume: 11 start-page: 34533 year: 2019 end-page: 34559 ident: b0035 article-title: Trends in solid adsorbent materials development for CO publication-title: ACS Appl. Mater. Interf. – volume: 50 start-page: 974 year: 2011 end-page: 985 ident: b0150 article-title: Pressure swing adsorption for biogas upgrading. Effect of recycling streams in pressure swing adsorption design publication-title: Ind. Eng. Chem. Res. – volume: 6 start-page: 23382 year: 2016 ident: b0260 article-title: The effect of positioning cations on acidity and stability of the framework structure of Y zeolite publication-title: Sci. Rep. – volume: 29 start-page: 9030 year: 2017 ident: 10.1016/j.cej.2024.148661_b0240 article-title: Tracking the chemical transformations at the Brønsted acid site upon water-induced deprotonation in a zeolite pore publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02133 – volume: 375 year: 2019 ident: 10.1016/j.cej.2024.148661_b0210 article-title: Facile Fabrication of effective Cerium (III) hydroxylated species as adsorption active sites in CeY zeolite adsorbents towards ultra-deep desulfurization publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122014 – volume: 8 start-page: 141 year: 2022 ident: 10.1016/j.cej.2024.148661_b0050 article-title: Progress in carbon dioxide capture materials for deep decarbonization publication-title: Chem doi: 10.1016/j.chempr.2021.12.013 – volume: 42 year: 2020 ident: 10.1016/j.cej.2024.148661_b0075 article-title: MOFs in carbon capture-past, present and future publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2020.101297 – volume: 125 start-page: 15676 year: 2021 ident: 10.1016/j.cej.2024.148661_b0310 article-title: Quantitatively understanding the insights into CO2 adsorption on faujasite from the heterogeneity and occupancy sequence of adsorption sites publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c04254 – volume: 34 start-page: 451 year: 1999 ident: 10.1016/j.cej.2024.148661_b0235 article-title: Pseudo-second order model for sorption processes publication-title: Process Biochem. doi: 10.1016/S0032-9592(98)00112-5 – volume: 67 start-page: 336 year: 2009 ident: 10.1016/j.cej.2024.148661_b0130 article-title: Anomalous Henry's law behavior of nitrogen and carbon dioxide adsorption on alkali-exchanged chabazite zeolites publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2009.03.045 – volume: 141 start-page: 12744 year: 2019 ident: 10.1016/j.cej.2024.148661_b0140 article-title: Triggered gate opening and breathing effects during selective CO2 adsorption by merlinoite zeolite publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05539 – volume: 137 start-page: 4787 year: 2015 ident: 10.1016/j.cej.2024.148661_b0025 article-title: Application of a high-throughput analyzer in evaluating solid adsorbents for post combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00838 – volume: 121 start-page: 3404 year: 2017 ident: 10.1016/j.cej.2024.148661_b0155 article-title: Zeolites ZSM-25 and PST-20: Selective carbon dioxide adsorbents at high pressures publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b11582 – volume: 345 year: 2022 ident: 10.1016/j.cej.2024.148661_b0185 article-title: Can two CO2 molecules be simultaneously bound to one Na+ site in NaY zeolite? publication-title: A Detailed FTIR Investigation, Microporous Mesoporous Mater. – volume: 325 start-page: 1652 year: 2009 ident: 10.1016/j.cej.2024.148661_b0015 article-title: Amine scrubbing for CO2 capture publication-title: Science doi: 10.1126/science.1176731 – volume: 68 start-page: 85 year: 2022 ident: 10.1016/j.cej.2024.148661_b0195 article-title: Significance of extra-framework monovalent and divalent cation motion upon CO2 and N2 sorption in zeolite X publication-title: Mater. Today: Proceed. – volume: 421 year: 2021 ident: 10.1016/j.cej.2024.148661_b0085 article-title: Mass transfer enhanced CaO pellets for CO2 sorption: Utilization of CO2 emitted from CaCO3 pellets during calcination publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129584 – volume: 511 start-page: 180 year: 2016 ident: 10.1016/j.cej.2024.148661_b0040 article-title: Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.03.051 – volume: 393 start-page: 225 year: 2017 ident: 10.1016/j.cej.2024.148661_b0225 article-title: Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.09.161 – volume: 28 start-page: e202201659 year: 2022 ident: 10.1016/j.cej.2024.148661_b0115 article-title: Regulating extra-framework cations in faujasite zeolites for capture of trace carbon dioxide publication-title: Chem. Eur. J. doi: 10.1002/chem.202201659 – volume: 404 year: 2021 ident: 10.1016/j.cej.2024.148661_b0175 article-title: Insights into the enhancement of CO2 adsorption on faujasite with a low Si/Al ratio: Understanding the formation sequence of adsorption complexes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127056 – volume: 50 start-page: 974 year: 2011 ident: 10.1016/j.cej.2024.148661_b0150 article-title: Pressure swing adsorption for biogas upgrading. Effect of recycling streams in pressure swing adsorption design publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie100757u – volume: 57 start-page: 99 year: 2014 ident: 10.1016/j.cej.2024.148661_b0255 article-title: Identification and characterization of surface hydroxyl groups by infrared spectroscopy publication-title: Adv. Catal. doi: 10.1016/B978-0-12-800127-1.00002-3 – volume: 380 year: 2020 ident: 10.1016/j.cej.2024.148661_b0215 article-title: Investigation of Cu(I)-Y zeolites with different Cu/Al ratios towards the ultra-deep adsorption desulfurization: Discrimination and role of the specific adsorption active sites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122319 – volume: 51 start-page: 9340 year: 2022 ident: 10.1016/j.cej.2024.148661_b0055 article-title: Carbon dioxide capture with zeotype materials publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00508E – volume: 12 start-page: 13534 year: 2010 ident: 10.1016/j.cej.2024.148661_b0190 article-title: The role of the extra-framework cations in the adsorption of CO2 on faujasite Y publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b927476f – year: 1950 ident: 10.1016/j.cej.2024.148661_b0280 – volume: 14 start-page: 1564 year: 2023 ident: 10.1016/j.cej.2024.148661_b0315 article-title: One Ca2+ site in CaNaY zeolite can attach three CO2 molecules publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c03294 – year: 1970 ident: 10.1016/j.cej.2024.148661_b0285 – volume: 119 start-page: e221154411 year: 2022 ident: 10.1016/j.cej.2024.148661_b0165 article-title: Confinement effects facilitate low-concentration carbon dioxide capture with zeolites publication-title: PNAS doi: 10.1073/pnas.2211544119 – volume: 446 year: 2022 ident: 10.1016/j.cej.2024.148661_b0125 article-title: Effect of framework Si/Al ratio on the adsorption mechanism of CO2 on small-pore zeolites: II. Merlinoite publication-title: Chem. Eng. J. – volume: 6 start-page: 128 year: 2013 ident: 10.1016/j.cej.2024.148661_b0100 article-title: Evaluation of cation-exchanged zeolite adsorbents for post combustion carbon dioxide capture publication-title: Energy Environ. Sci. doi: 10.1039/C2EE23337A – volume: 141 start-page: 347 year: 1993 ident: 10.1016/j.cej.2024.148661_b0270 article-title: Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts publication-title: J. Catal. doi: 10.1006/jcat.1993.1145 – volume: 41 year: 2020 ident: 10.1016/j.cej.2024.148661_b0110 article-title: Utilization of zeolites as CO2 capturing agents: Advances and future perspectives publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2020.101251 – volume: 287 start-page: 29 year: 2019 ident: 10.1016/j.cej.2024.148661_b0065 article-title: Role of oxygen, nitrogen and sulfur functionalities on the surface of nanoporous carbons in CO2 adsorption: A critical review publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2019.05.051 – volume: 141 start-page: 3444 year: 2019 ident: 10.1016/j.cej.2024.148661_b0245 article-title: Genesis and stability of hydronium ions in zeolite channels publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07969 – volume: 127 start-page: 17998 year: 2005 ident: 10.1016/j.cej.2024.148661_b0095 article-title: Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0570032 – volume: 49 start-page: 8584 year: 2020 ident: 10.1016/j.cej.2024.148661_b0005 article-title: Industrial carbon dioxide capture and utilization: state of the art and future challenges publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00025F – volume: 6 start-page: 2634 year: 2023 ident: 10.1016/j.cej.2024.148661_b0045 article-title: Zeolites as selective adsorbents for CO2 separation publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.2c03605 – volume: 122 start-page: 28815 year: 2018 ident: 10.1016/j.cej.2024.148661_b0120 article-title: CO2 adsorption in the RHO family of embedded isoreticular zeolites publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b09996 – volume: 532 start-page: 435 year: 2016 ident: 10.1016/j.cej.2024.148661_b0010 article-title: Seven chemical separations to change the world publication-title: Nature doi: 10.1038/532435a – volume: 117 year: 2021 ident: 10.1016/j.cej.2024.148661_b0295 article-title: In situ FTIR investigation of CO2 adsorption over MgO-impregnated NaY zeolites publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2021.103313 – volume: 2 start-page: 401 year: 2009 ident: 10.1016/j.cej.2024.148661_b0290 article-title: Carbon dioxide (C16O2 and C18O2) adsorption in zeolite Y materials: effect of cation, adsorbed water and particle size publication-title: Energy Environ. Sci. doi: 10.1039/b814908a – volume: 25 start-page: 77 year: 1999 ident: 10.1016/j.cej.2024.148661_b0300 article-title: Acidic and basic sites in NaX and NaY faujasites investigated by NH3, CO2 and CO molecular probes publication-title: Res. Chem. Intermed. doi: 10.1163/156856799X00392 – volume: 1 start-page: 1056 year: 1973 ident: 10.1016/j.cej.2024.148661_b0305 article-title: Surface probing of synthetic faujasites by adsorption of carbon dioxide. Part I. Infra-red study of carbon dioxide adsorbed on Na-Ca-Y and Na-Mg-Y zeolites publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/f19736901056 – volume: 50 start-page: 11586 year: 2011 ident: 10.1016/j.cej.2024.148661_b0030 article-title: Development and evaluation of porous materials for carbon dioxide separation and capture publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201101891 – volume: 321 year: 2022 ident: 10.1016/j.cej.2024.148661_b0230 article-title: Adsorption of CO2 onto zeolite ZSM-5: Kinetic, equilibrium and thermodynamic studies publication-title: Fuel doi: 10.1016/j.fuel.2022.124097 – volume: 39 start-page: 256 year: 2019 ident: 10.1016/j.cej.2024.148661_b0250 article-title: Ultra-deep adsorptive removal of thiophenic sulfur compounds from FCC gasoline over the specific active sites of CeHY zeolite publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.04.010 – volume: 163 start-page: 41 year: 2010 ident: 10.1016/j.cej.2024.148661_b0060 article-title: Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.07.030 – volume: 2 start-page: 1 year: 2017 ident: 10.1016/j.cej.2024.148661_b0070 article-title: The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.45 – volume: 14 start-page: 996 year: 2023 ident: 10.1016/j.cej.2024.148661_b0080 article-title: Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-023-36646-2 – volume: 433 year: 2022 ident: 10.1016/j.cej.2024.148661_b0135 article-title: Effect of framework Si/Al ratio on the mechanism of CO2 adsorption on the small-pore zeolite gismondine publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133800 – volume: 9 start-page: 1354 year: 2022 ident: 10.1016/j.cej.2024.148661_b0205 article-title: Insight into the nature and the transformation of the hydroxyl species in the CeY zeolite publication-title: Inorg. Chem. Front. doi: 10.1039/D1QI01564H – ident: 10.1016/j.cej.2024.148661_b0170 – volume: 203 start-page: 96 year: 2017 ident: 10.1016/j.cej.2024.148661_b0265 article-title: Insight into the correlation between the adsorption-transformation behaviors of methylthiophenes and the active sites of zeolites Y publication-title: Appl. Catal. b: Environ. doi: 10.1016/j.apcatb.2016.10.008 – volume: 134 start-page: 19246 year: 2012 ident: 10.1016/j.cej.2024.148661_b0145 article-title: Discriminative separation of gases by a “Molecular Trapdoor” mechanism in chabazite zeolites publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309274y – volume: 113 start-page: 2928 year: 2009 ident: 10.1016/j.cej.2024.148661_b0160 article-title: Adsorption of CO2 on sodium-exchanged Ferrierites: The bridged CO2 complexes formed between two extraframework cations publication-title: J. Phys. Chem. C doi: 10.1021/jp810038b – volume: 227 start-page: 50 year: 2014 ident: 10.1016/j.cej.2024.148661_b0200 article-title: Adsorption of CO2 in FAU zeolites: Effect of zeolite composition publication-title: Catal. Today doi: 10.1016/j.cattod.2013.10.036 – volume: 6 start-page: 23382 year: 2016 ident: 10.1016/j.cej.2024.148661_b0260 article-title: The effect of positioning cations on acidity and stability of the framework structure of Y zeolite publication-title: Sci. Rep. doi: 10.1038/srep23382 – volume: 292 start-page: 5 year: 2014 ident: 10.1016/j.cej.2024.148661_b0275 article-title: Adsorption behaviors of thiophene, benzene, and cyclohexene on FAU zeolites: comparison of CeY obtained by liquid-, and solid-state ion exchange publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.11.036 – ident: 10.1016/j.cej.2024.148661_b0220 – volume: 118 start-page: 5265 year: 2018 ident: 10.1016/j.cej.2024.148661_b0105 article-title: Small-pore zeolites: Synthesis and catalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00738 – volume: 11 start-page: 34533 year: 2019 ident: 10.1016/j.cej.2024.148661_b0035 article-title: Trends in solid adsorbent materials development for CO2 capture publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.9b08487 – volume: 168 year: 2022 ident: 10.1016/j.cej.2024.148661_b0020 article-title: Research progress of aqueous amine solution for CO2 capture: A review publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2022.112902 – volume: 123 start-page: 2361 year: 2019 ident: 10.1016/j.cej.2024.148661_b0180 article-title: CO2 adsorption/desorption in FAU zeolite nanocrystals: in situ synchrotron X-ray powder diffraction and in situ Fourier transform infrared spectroscopic study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b11811 – volume: 71 start-page: 288 year: 2022 ident: 10.1016/j.cej.2024.148661_b0090 article-title: Zeolites for separation: Fundamental and application publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.03.035 |
SSID | ssj0006919 |
Score | 2.5406163 |
Snippet | [Display omitted]
•Migration regulation of Ca2+ species in the CaNaX zeolite was revealed in detail.•Utilization of hydroxylated Ca2+ species in the supercages... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 148661 |
SubjectTerms | Adsorption mechanism CaNa-FAU zeolite CO2 capture Low-temperature calcination Migration regular of Ca2+ species |
Title | Maximizing the utilization of Calcium species in the supercages of CaNa-FAU zeolite for efficient CO2 capture |
URI | https://dx.doi.org/10.1016/j.cej.2024.148661 |
Volume | 481 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrG-yMGTENtsZ7ObY1ks1WIFtdjbko0JbOljqS2IB3-7k334APXgackygd1vZyffkG8mhJxpEInVtsU0TzwG3NNM6hCYCCX3uFWg8kLhm4HoDeF65I9qJKpqYZyssoz9RUzPo3V5p1mi2czStHnP3Z6WhMCpIPF_dx0_AQLn5RdvnzIPIfPDPZwxc9bVzmau8dJmjCmiBxgvQiH4z2vTl_Wmu0U2S6JIO8WzbJOame2QjS_tA3fJ9Ea9pNP0FQcUeRxFH5qUZZV0bmmkJjpdTakrpsR8mKaz3Op5lZmFxjDyXBgNFOt2hvTVOCWcoUhiqcn7SuByRKNbj2qVuW2GPTLsXj5EPVYen8C0J4MlM34SAviOw0kOFhMLnvjoOEJIbYUR-N6JUlZxHXrIsQOJ6aoEV5-GWIQG2vukPpvPzAGhOBDcBqrlK4AnRBSSQHOLuadoI4N4apBWBVysy97i7oiLSVyJyMYxYh07rOMC6wY5_5iSFY01_jKG6mvE37wjxsD_-7TD_007IutuVGizj0l9uViZE6Qey-Q0961Tsta56vcG7tq_e-y_A7LN1zs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MT63IMnYWk33WyyxxIsrdp40EJvYbPdhUhfaAvSX-9sHlJBPXjcZAaSL5PZb5jHAtxoLlKrbZNqlnqUM09TqUNORSiZx6ziKm8U7seiO-D3Q3-4AVHVC-PKKkvfX_j03FuXVxolmo15ljWemctpSR64Kkj831ubsOWmU_k12Gr3Hrrxl0MWMj_fw8lTp1AlN_MyL21eMUr0OLqMUAj28_a0tuV09mGv5IqkXTzOAWyY6SHsrk0QPIJJX31kk2yFC4JUjqAZjcvOSjKzJFJjnS0nxPVTYkhMsmku9b6cmzeNnuS9EIoV7bQHZGVcMZwhyGOJyUdL4I5EoiePaDV3mYZjGHTuXqIuLU9QoNqTwYIaPw059x2Nk4xbjC1Y6qPtCCG1FUbge6dKWcV06CHNDiRGrJK7FjXEIjS8dQK16WxqToHgQjAbqKavOB8hojwNNLMYfooWkohRHZoVcIkux4u7Uy7GSVVH9pog1onDOimwrsPtl8q8mK3xlzCvvkbyzUAS9P2_q539T-0atrsv_cfksRc_nMOOu1OUal9AbfG2NJfIRBbpVWlpn2fO2Ek |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximizing+the+utilization+of+Calcium+species+in+the+supercages+of+CaNa-FAU+zeolite+for+efficient+CO2+capture&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Sun%2C+Xinyu&rft.au=Zhang%2C+Quanqi&rft.au=Li%2C+Sihan&rft.au=Zhang%2C+Yiming&rft.date=2024-02-01&rft.issn=1385-8947&rft.volume=481&rft.spage=148661&rft_id=info:doi/10.1016%2Fj.cej.2024.148661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2024_148661 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |