Phthalocyanine-based covalent organic frameworks as novel anode materials for high-performance lithium-ion/sodium-ion batteries

Phthalocyanine-based covalent organic frameworks (NA-NiPc, PPDA-NiPc and DAB-NiPc) with different pore sizes are synthesized by a catalyst-free coupling reaction, which inhibits dissolution in the electrolyte and provides large specific surface area and open mesoporous channels for Li+. As the pore...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 425; p. 131630
Main Authors Zhao, Jianjun, Zhou, Miaomiao, Chen, Jun, Tao, Lihong, Zhang, Qian, Li, Zhifeng, Zhong, Shengwen, Fu, Haikuo, Wang, Hua, Wu, Lijue
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phthalocyanine-based covalent organic frameworks (NA-NiPc, PPDA-NiPc and DAB-NiPc) with different pore sizes are synthesized by a catalyst-free coupling reaction, which inhibits dissolution in the electrolyte and provides large specific surface area and open mesoporous channels for Li+. As the pore size of the frame increases, the surface area of the material increases accordingly, resulting in improved electrochemical behaviors. The NA-NiPc, PPDA-NiPc and DAB-NiPc electrodes display high capacity, long cycling stability, and excellent rate capability both in LIBs and NIBs. [Display omitted] •Pc-based frameworks with different pore sizes of 1.55, 2.11 and 2.74 nm are synthesized.•No solubility in electrolyte and large specific surface areas are observed.•The surface area increases with the pore size, resulting in improved electrochemical behaviors.•Excellent capacity, cycle stability, and rate capability both in LIBs and NIBs are observed. In this work, three kinds of phthalocyanine-based covalent organic frameworks, NA-NiPc (4-nitronickel phthalocyanine + 4-aminonickel phthalocyanine), PPDA-NiPc (4-nitronickel phthalocyanine + p-phenylenediamine) and DAB-NiPc (4-nitronickel phthalocyanine + 4,4′-diaminobiphenyl), with different pore sizes are synthesized by a catalyst-free coupling reaction. The X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Transmission electron microscopy (TEM) test results indicate that the pore sizes of the NA-NiPc, PPDA-NiPc and DAB-NiPc frameworks are approximately 1.55 nm, 2.11 nm and 2.74 nm, respectively, which is consistent with the simulated results after optimizing the geometric conformation by HyperChem software; additionally, the specific surface areas are 382, 471 and 575 m2 g−1 respectively. As the pore size of the frame increases, the surface area of the material increases accordingly, resulting in different electrochemical behaviors. The initial capacities of the NA-NiPc, PPDA-NiPc and DAB-NiPc electrodes in lithium-ion batteries are 422, 469 and 566 mAh/g, respectively, and after 700 cycles, the capacities remain at 557, 670 and 941 mAh/g, demonstrating capacity retention rates of 131.8%, 142.9% and 166%, respectively, at a current density of 100 mA/g. Even at a high current density of 2 A/g, high specific capacities of 385, 512 and 767 mAh/g can still be observed. Moreover, the use of the NA-NiPc, PPDA-NiPc and DAB-NiPc electrodes in sodium-ion batteries also display excellent behaviors, such as high capacities, stable cycling performances and excellent rate capabilities. With increasing framework porosity, the performances of both lithium-ion and sodium-ion batteries gradually improve, fully indicating that the size of the framework is the key factor in determining the performance of a battery.
AbstractList Phthalocyanine-based covalent organic frameworks (NA-NiPc, PPDA-NiPc and DAB-NiPc) with different pore sizes are synthesized by a catalyst-free coupling reaction, which inhibits dissolution in the electrolyte and provides large specific surface area and open mesoporous channels for Li+. As the pore size of the frame increases, the surface area of the material increases accordingly, resulting in improved electrochemical behaviors. The NA-NiPc, PPDA-NiPc and DAB-NiPc electrodes display high capacity, long cycling stability, and excellent rate capability both in LIBs and NIBs. [Display omitted] •Pc-based frameworks with different pore sizes of 1.55, 2.11 and 2.74 nm are synthesized.•No solubility in electrolyte and large specific surface areas are observed.•The surface area increases with the pore size, resulting in improved electrochemical behaviors.•Excellent capacity, cycle stability, and rate capability both in LIBs and NIBs are observed. In this work, three kinds of phthalocyanine-based covalent organic frameworks, NA-NiPc (4-nitronickel phthalocyanine + 4-aminonickel phthalocyanine), PPDA-NiPc (4-nitronickel phthalocyanine + p-phenylenediamine) and DAB-NiPc (4-nitronickel phthalocyanine + 4,4′-diaminobiphenyl), with different pore sizes are synthesized by a catalyst-free coupling reaction. The X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Transmission electron microscopy (TEM) test results indicate that the pore sizes of the NA-NiPc, PPDA-NiPc and DAB-NiPc frameworks are approximately 1.55 nm, 2.11 nm and 2.74 nm, respectively, which is consistent with the simulated results after optimizing the geometric conformation by HyperChem software; additionally, the specific surface areas are 382, 471 and 575 m2 g−1 respectively. As the pore size of the frame increases, the surface area of the material increases accordingly, resulting in different electrochemical behaviors. The initial capacities of the NA-NiPc, PPDA-NiPc and DAB-NiPc electrodes in lithium-ion batteries are 422, 469 and 566 mAh/g, respectively, and after 700 cycles, the capacities remain at 557, 670 and 941 mAh/g, demonstrating capacity retention rates of 131.8%, 142.9% and 166%, respectively, at a current density of 100 mA/g. Even at a high current density of 2 A/g, high specific capacities of 385, 512 and 767 mAh/g can still be observed. Moreover, the use of the NA-NiPc, PPDA-NiPc and DAB-NiPc electrodes in sodium-ion batteries also display excellent behaviors, such as high capacities, stable cycling performances and excellent rate capabilities. With increasing framework porosity, the performances of both lithium-ion and sodium-ion batteries gradually improve, fully indicating that the size of the framework is the key factor in determining the performance of a battery.
ArticleNumber 131630
Author Zhong, Shengwen
Fu, Haikuo
Wu, Lijue
Zhou, Miaomiao
Chen, Jun
Zhang, Qian
Tao, Lihong
Wang, Hua
Zhao, Jianjun
Li, Zhifeng
Author_xml – sequence: 1
  givenname: Jianjun
  surname: Zhao
  fullname: Zhao, Jianjun
  organization: School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
– sequence: 2
  givenname: Miaomiao
  surname: Zhou
  fullname: Zhou, Miaomiao
  organization: School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
– sequence: 3
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  email: chenjun@jxust.edu.cn
  organization: School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
– sequence: 4
  givenname: Lihong
  surname: Tao
  fullname: Tao, Lihong
  organization: School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
– sequence: 5
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
  organization: School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
– sequence: 6
  givenname: Zhifeng
  surname: Li
  fullname: Li, Zhifeng
  organization: School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
– sequence: 7
  givenname: Shengwen
  surname: Zhong
  fullname: Zhong, Shengwen
  email: zhongshw@126.com
  organization: School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
– sequence: 8
  givenname: Haikuo
  surname: Fu
  fullname: Fu, Haikuo
  organization: Guangdong Jiana Energy Technology Co Ltd, Qingyuan Jiazhi New Material Research Institute Co. Ltd., Qingyuan 511500, China
– sequence: 9
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  organization: Guangdong Jiana Energy Technology Co Ltd, Qingyuan Jiazhi New Material Research Institute Co. Ltd., Qingyuan 511500, China
– sequence: 10
  givenname: Lijue
  surname: Wu
  fullname: Wu, Lijue
  organization: Guangdong Jiana Energy Technology Co Ltd, Qingyuan Jiazhi New Material Research Institute Co. Ltd., Qingyuan 511500, China
BookMark eNp9kE1LAzEQhoNUsK3-AG_5A9smm-1-4EmKXyDoQc9hNpl0U3eTkqyVnvzrprRnT_MyzDPMPDMycd4hIbecLTjj5XK7ULhd5CznCy54KdgFmfK6EpnIeT5JWdSrrG6K6orMYtwyxsqGN1Py-96NHfReHcBZh1kLETVVfg89upH6sEl9RU2AAX98-IoUInV-jz0F5zXSAUYMFvpIjQ-0s5su22FIeQCnkPZ27Oz3kFnvltHrc6QtjEcM4zW5NAnGm3Odk8_Hh4_1c_b69vSyvn_NVN5UY4bCACug1m1VM1FoXRqNdVtAoYTQOec1bwy2SjWlEMwAVNjUeZMbU-EK0syc8NNeFXyMAY3cBTtAOEjO5NGg3MpkUB4NypPBxNydGEyH7S0GGZXF9JW2AdUotbf_0H_Aun8v
CitedBy_id crossref_primary_10_1039_D3DT03559J
crossref_primary_10_1002_macp_202300427
crossref_primary_10_1016_j_cej_2023_142434
crossref_primary_10_1016_j_est_2023_109070
crossref_primary_10_1002_cssc_202301118
crossref_primary_10_1016_j_ensm_2022_08_022
crossref_primary_10_1016_j_mtcomm_2023_106677
crossref_primary_10_1021_acsami_3c08481
crossref_primary_10_1039_D4MH00313F
crossref_primary_10_1016_j_molliq_2024_125143
crossref_primary_10_1016_j_mtcomm_2023_107768
crossref_primary_10_1088_2752_5724_acdd86
crossref_primary_10_1002_smtd_202301302
crossref_primary_10_1002_advs_202401804
crossref_primary_10_1002_batt_202200413
crossref_primary_10_1039_D2EE02742A
crossref_primary_10_1002_smll_202306272
crossref_primary_10_1039_D3AY02298F
crossref_primary_10_1039_D3DT03994C
crossref_primary_10_1002_bkcs_12823
crossref_primary_10_1007_s10008_022_05162_6
crossref_primary_10_1016_j_ijft_2023_100531
crossref_primary_10_1002_aenm_202400521
crossref_primary_10_1039_D2SE00853J
crossref_primary_10_1016_j_cej_2024_151110
crossref_primary_10_2139_ssrn_4137012
crossref_primary_10_1007_s11664_022_09674_9
crossref_primary_10_1021_acsaem_2c02658
crossref_primary_10_1002_aenm_202200057
crossref_primary_10_3390_nano13101660
crossref_primary_10_1002_batt_202200545
crossref_primary_10_1021_acsami_3c17710
crossref_primary_10_1016_j_synthmet_2023_117284
crossref_primary_10_1002_batt_202200429
crossref_primary_10_1016_j_jallcom_2022_166524
crossref_primary_10_1016_j_cej_2023_143941
crossref_primary_10_1016_j_ensm_2022_05_021
crossref_primary_10_1002_smll_202301578
crossref_primary_10_1002_aenm_202401314
crossref_primary_10_1002_smll_202303353
crossref_primary_10_1007_s40843_021_2027_3
crossref_primary_10_1021_acsami_2c14509
crossref_primary_10_1039_D2TA04371H
crossref_primary_10_1039_D3CP00007A
crossref_primary_10_1002_adma_202203139
crossref_primary_10_1016_j_cej_2022_139016
crossref_primary_10_1016_j_snb_2023_135191
crossref_primary_10_1039_D3DT03354F
crossref_primary_10_34133_energymatadv_0078
crossref_primary_10_1002_aesr_202300166
crossref_primary_10_1007_s10800_023_01964_2
Cites_doi 10.1007/s10008-016-3419-9
10.1246/cl.150496
10.1002/adma.201800561
10.1038/s41467-018-02889-7
10.1038/srep07404
10.1039/c3ce40706c
10.1002/anie.201109187
10.1007/s40843-017-9210-1
10.1016/j.jpowsour.2016.06.037
10.1039/C6CS00173D
10.1016/j.jpowsour.2019.04.027
10.1021/acs.nanolett.5b04105
10.1002/anie.202006783
10.1021/acsami.9b19953
10.1039/C5EE03360H
10.1039/c2cs35157a
10.1016/j.carbpol.2020.117400
10.1038/ncomms2359
10.1021/acs.accounts.7b00520
10.1002/adfm.201601631
10.1039/C9NR06186J
10.1038/s41467-019-13739-5
10.1016/j.ensm.2020.09.007
10.1039/C8TA10513H
10.1002/aenm.201301651
10.1039/C6TA02880B
10.1039/C6RA09826F
10.1002/anie.201809907
10.1002/aenm.201800802
10.1039/c2jm14305d
10.1002/adfm.201400436
10.1002/aenm.201904199
10.1039/C6MH00072J
10.1021/ma060733p
10.1002/anie.202008726
10.1038/35035045
10.1039/C9EE03637G
10.1021/ja409421d
10.1038/ncomms13065
10.1021/jp204401t
10.1002/anie.201410154
10.1007/s10008-016-3126-6
10.1002/advs.201700592
10.1126/science.aab3798
10.1002/cjoc.201400550
10.1021/cm504435m
10.1126/science.1100103
10.1002/chem.201203753
10.1021/acs.accounts.0c00465
10.1002/anie.201805540
10.1126/science.1120411
10.1002/chem.201403800
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2021.131630
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2021_131630
S1385894721032113
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AAXKI
AAYXX
ABTAH
ABXDB
AFFNX
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
ZY4
ID FETCH-LOGICAL-c297t-e3fa04a8db78034dd6fde8b4a4c33d211819febcc96330faa7e98292ff7e5ac33
IEDL.DBID AIKHN
ISSN 1385-8947
IngestDate Thu Sep 26 18:03:26 EDT 2024
Fri Feb 23 02:44:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Covalent organic frameworks
Phthalocyanine
Lithium/Sodium ion batteries
Organic electrode
Energy storage
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-e3fa04a8db78034dd6fde8b4a4c33d211819febcc96330faa7e98292ff7e5ac33
ParticipantIDs crossref_primary_10_1016_j_cej_2021_131630
elsevier_sciencedirect_doi_10_1016_j_cej_2021_131630
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liao, Li, Xu, Xing, Liao, Ren, Fan, Yu, Xu, Li (b0035) 2018; 8
Cui, Tian, Chen, Yuan (b0155) 2016; 4
Winter, Brodd (b0010) 2004; 104
Lei, Yang, Xu, Guo, Sun, Liu, Lv, Zhang, Wang (b0175) 2018; 9
Xu, Zhou, Dong, Chen, Demeaux, MacIntosh, Garsuch, Lucht (b0020) 2016; 9
Shao, Sun, Dai, Jiang (b0075) 2011; 115
Zheng, Tang, Li, Hu, Zhang, Xue, Pang (b0080) 2018; 5
Xu, Chen, Zhu, Zhang, Jiang, Wang, Zhang, Ding, Huang, Zhong (b0110) 2018; 61
Xu, Chen, Xiao, Ou, Lv, Tao, Zhong (b0120) 2019; 11
Sun, Xie, Guo, Li, Zhang (b0230) 2020; 10
Gao, Bai, Zhang, Wang, Li, Zeng, Zou, Zhao (b0210) 2014; 33
Li, Su, Sun, Wang (b0055) 2016; 26
Yuan, Huang, Qian, Rahmand, Ajayand, Sun (b0100) 2021; 225
Su, Liu, Liu, Wu, Zhuang, Zhang, Feng (b0145) 2015; 54
Rabbani, Sekizkardes, Kahveci, Reich, Ding, Kaderi (b0200) 2013; 19
Neti, Wu, Deng, Echegoyen (b0250) 2013; 15
Li, Yan, Ma, Yu, Xia, Huang, Chu, Wu (b0040) 2014; 24
Chen, Guo, Zhang, Wang, Ding, Zhang, Yang, Liu, Li, Li, Zhong, Wang (b0130) 2016; 6
Tang, Jiang, Liu, Li, Chen, Wu, Ma, Wang (b0225) 2020; 27
Shi, Liu, Lu, Wang, Li, Li, Yan, Chen (b0180) 2020; 11
Chen, Xu, Cao, Zhu, Liu, Li, Zhong (b0240) 2019; 426
Thote, Aiyappa, Deshpande, Díaz, Kurungot, Banerjee (b0215) 2014; 20
Zhou, Le, Cheng, Zhao, Shen, Xie, Hu, Yang, Chen, Chen (b0235) 2020; 12
Tian, Lin, Doeff (b0090) 2018; 51
Wang, Chen, Jiang, Ding, Zhong (b0255) 2016; 21
Kim, Song, Son, Ono, Qi (b0030) 2019; 7
Jin, Xiai, Lu, Wang (b0060) 2016; 16
He, Jin, Miao, Cai, Chen (b0165) 2020; 39
Schon, McAllister, Li, Seferos (b0275) 2016; 45
Ashourirad, Sekizkardes, Altarawneh, Kaderi (b0205) 2015; 27
DeBlase, Silberstein, Truong, Abruña, Dichtel (b0270) 2013; 135
Chen, Ding, Li, Zhang, Zhong (b0135) 2015; 27
Tian, Ning, Tang, Peng, Yu, Chen, Xiao, Su, Loh (b0140) 2016; 3
Han, Qing, Sun, Sun (b0280) 2012; 51
Wang, Ni, Hou, Chen, Li, Chen (b0115) 2020; 59
R. Rajagopalan, Z. N. Zhang, Y. G. Tang, C. K. Jia, X. B. Ji, H. Y. Wang, Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON materials, Energy Environ. Sci. 34 (202) 171–193.
Patel, Je, Park, Chen, Jung, Yavuz, Coskun (b0265) 2013; 4
Côté, Eenin, Ockwing, O'Keeffe, Matzger, Yaghi (b0195) 2005; 310
Wang, Yuan, Ma, Huang, Meng, Zhang (b0185) 2014; 4
Feng, Ding, Jiang (b0190) 2012; 41
Li, Zhang, Guan, Wang, Liu, Lou (b0065) 2016; 7
Jiang, Tang, Zhu, Zhang, Wu, Chen, Xia, Wang, Hu (b0220) 2018; 57
He, Yu, Li, Zhou (b0085) 2012; 22
Kwon, Aram, Park, Cheon, Kang, Jo, Kim, Hong, Joo, Yang, Lee (b0150) 2014; 4
Chen, Wang (b0125) 2020; 53
Luo, Liu, Ning, Lei, Lu, Li, Chen (b0160) 2018; 57
Poizot, Laruelle, Grugeon, Dupont, Tarascon (b0095) 2000; 407
Rajagopalan, Tang, Jia, Ji, Wang (b0050) 2020; 13
Chen, Gao, Jiang (b0245) 2015; 44
Moniruzzaman, Winey (b0170) 2006; 39
Bao, Mondal, Xu, Wang, Su, Wang (b0015) 2016; 325
Chen, Zhang, Zeng, Ding, Li, Zhong, Zhang, Wang, Yang (b0105) 2016; 20
Pacala, Socolow (b0005) 2004; 305
Lin, Chen, Liu, Yang, Bi, Xu (b0070) 2015; 350
Narayanan (b0260) 2000; 38
Li, Lu, Chen, Amine (b0025) 2018; 30
Li (10.1016/j.cej.2021.131630_b0065) 2016; 7
Lin (10.1016/j.cej.2021.131630_b0070) 2015; 350
Ashourirad (10.1016/j.cej.2021.131630_b0205) 2015; 27
Shi (10.1016/j.cej.2021.131630_b0180) 2020; 11
Li (10.1016/j.cej.2021.131630_b0040) 2014; 24
Chen (10.1016/j.cej.2021.131630_b0130) 2016; 6
Kim (10.1016/j.cej.2021.131630_b0030) 2019; 7
Lei (10.1016/j.cej.2021.131630_b0175) 2018; 9
Thote (10.1016/j.cej.2021.131630_b0215) 2014; 20
Chen (10.1016/j.cej.2021.131630_b0240) 2019; 426
Côté (10.1016/j.cej.2021.131630_b0195) 2005; 310
Zheng (10.1016/j.cej.2021.131630_b0080) 2018; 5
10.1016/j.cej.2021.131630_b0045
Tian (10.1016/j.cej.2021.131630_b0090) 2018; 51
Su (10.1016/j.cej.2021.131630_b0145) 2015; 54
Yuan (10.1016/j.cej.2021.131630_b0100) 2021; 225
Gao (10.1016/j.cej.2021.131630_b0210) 2014; 33
Jiang (10.1016/j.cej.2021.131630_b0220) 2018; 57
Han (10.1016/j.cej.2021.131630_b0280) 2012; 51
Xu (10.1016/j.cej.2021.131630_b0120) 2019; 11
DeBlase (10.1016/j.cej.2021.131630_b0270) 2013; 135
He (10.1016/j.cej.2021.131630_b0085) 2012; 22
Luo (10.1016/j.cej.2021.131630_b0160) 2018; 57
Bao (10.1016/j.cej.2021.131630_b0015) 2016; 325
Xu (10.1016/j.cej.2021.131630_b0110) 2018; 61
Zhou (10.1016/j.cej.2021.131630_b0235) 2020; 12
Patel (10.1016/j.cej.2021.131630_b0265) 2013; 4
Tian (10.1016/j.cej.2021.131630_b0140) 2016; 3
Chen (10.1016/j.cej.2021.131630_b0135) 2015; 27
Shao (10.1016/j.cej.2021.131630_b0075) 2011; 115
Pacala (10.1016/j.cej.2021.131630_b0005) 2004; 305
Wang (10.1016/j.cej.2021.131630_b0185) 2014; 4
Winter (10.1016/j.cej.2021.131630_b0010) 2004; 104
Sun (10.1016/j.cej.2021.131630_b0230) 2020; 10
Moniruzzaman (10.1016/j.cej.2021.131630_b0170) 2006; 39
Rabbani (10.1016/j.cej.2021.131630_b0200) 2013; 19
Narayanan (10.1016/j.cej.2021.131630_b0260) 2000; 38
Liao (10.1016/j.cej.2021.131630_b0035) 2018; 8
Neti (10.1016/j.cej.2021.131630_b0250) 2013; 15
Wang (10.1016/j.cej.2021.131630_b0115) 2020; 59
Tang (10.1016/j.cej.2021.131630_b0225) 2020; 27
Xu (10.1016/j.cej.2021.131630_b0020) 2016; 9
Kwon (10.1016/j.cej.2021.131630_b0150) 2014; 4
Li (10.1016/j.cej.2021.131630_b0025) 2018; 30
He (10.1016/j.cej.2021.131630_b0165) 2020; 39
Chen (10.1016/j.cej.2021.131630_b0125) 2020; 53
Cui (10.1016/j.cej.2021.131630_b0155) 2016; 4
Poizot (10.1016/j.cej.2021.131630_b0095) 2000; 407
Feng (10.1016/j.cej.2021.131630_b0190) 2012; 41
Chen (10.1016/j.cej.2021.131630_b0105) 2016; 20
Chen (10.1016/j.cej.2021.131630_b0245) 2015; 44
Li (10.1016/j.cej.2021.131630_b0055) 2016; 26
Wang (10.1016/j.cej.2021.131630_b0255) 2016; 21
Schon (10.1016/j.cej.2021.131630_b0275) 2016; 45
Jin (10.1016/j.cej.2021.131630_b0060) 2016; 16
Rajagopalan (10.1016/j.cej.2021.131630_b0050) 2020; 13
References_xml – volume: 51
  start-page: 89
  year: 2018
  end-page: 96
  ident: b0090
  article-title: Electrochemical characteristics of layered transition metal oxide cathode materials for lithium ion batteries: surface, bulk behavior, and thermal properties
  publication-title: Acc. Chem. Res.
  contributor:
    fullname: Doeff
– volume: 20
  start-page: 15961
  year: 2014
  end-page: 15965
  ident: b0215
  article-title: A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production
  publication-title: Chem. Eur. J.
  contributor:
    fullname: Banerjee
– volume: 115
  start-page: 12120
  year: 2011
  end-page: 12125
  ident: b0075
  article-title: Electrochemical windows of sulfonebased electrolytes for high-voltage Li-ion batteries
  publication-title: J. Phys. Chem. B
  contributor:
    fullname: Jiang
– volume: 39
  start-page: 5197
  year: 2006
  end-page: 5205
  ident: b0170
  article-title: Polymer nanocomposites containing carbon nanotubes
  publication-title: Macromolecules
  contributor:
    fullname: Winey
– volume: 350
  start-page: 62
  year: 2015
  end-page: 67
  ident: b0070
  article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage
  publication-title: Science
  contributor:
    fullname: Xu
– volume: 19
  start-page: 3324
  year: 2013
  end-page: 3328
  ident: b0200
  article-title: A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications
  publication-title: Chem. Eur. J.
  contributor:
    fullname: Kaderi
– volume: 30
  start-page: 1800561
  year: 2018
  ident: b0025
  article-title: 30 Years of lithium-ion batteries
  publication-title: Adv. Mater.
  contributor:
    fullname: Amine
– volume: 3
  start-page: 429
  year: 2016
  end-page: 433
  ident: b0140
  article-title: Polyquinoneimines for lithium storage: more than the sum of its parts
  publication-title: Mater. Horiz.
  contributor:
    fullname: Loh
– volume: 24
  start-page: 5112
  year: 2014
  end-page: 5118
  ident: b0040
  article-title: Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: towards better electrochemical performance
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Wu
– volume: 9
  start-page: 576
  year: 2018
  end-page: 588
  ident: b0175
  article-title: Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry
  publication-title: Nat. Commun.
  contributor:
    fullname: Wang
– volume: 426
  start-page: 169
  year: 2019
  end-page: 177
  ident: b0240
  article-title: A stable 2D nano-columnar sandwich layered phthalocyanine negative electrode for lithium-ion batteries
  publication-title: J. Power Sources
  contributor:
    fullname: Zhong
– volume: 22
  start-page: 3680
  year: 2012
  end-page: 3695
  ident: b0085
  article-title: Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries
  publication-title: J. Mater. Chem.
  contributor:
    fullname: Zhou
– volume: 57
  start-page: 16072
  year: 2018
  end-page: 16076
  ident: b0220
  article-title: Constructing universal ionic sieves via alignment of two-dimensional covalent organic frameworks
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Hu
– volume: 45
  start-page: 6345
  year: 2016
  end-page: 6404
  ident: b0275
  article-title: The rise of organic electrode materials for energy storage
  publication-title: Chem. Soc. Rev.
  contributor:
    fullname: Seferos
– volume: 11
  start-page: 15881
  year: 2019
  end-page: 15891
  ident: b0120
  article-title: Porous diatomite-mixed 1,4,5,8-NTCDA nanowires as high-performance electrode materials for lithium-ion batteries
  publication-title: Nanoscale
  contributor:
    fullname: Zhong
– volume: 38
  start-page: 524
  year: 2000
  ident: b0260
  article-title: Essentials of biophysics
  publication-title: Anshan
  contributor:
    fullname: Narayanan
– volume: 4
  start-page: 1301651
  year: 2014
  ident: b0185
  article-title: Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Zhang
– volume: 4
  start-page: 7404
  year: 2014
  ident: b0150
  article-title: Synthesis of ordered mesoporous phenanthrenequinonecarbon via π-π interaction-dependent vapor pressure for rechargeable batteries
  publication-title: Sci. Rep.
  contributor:
    fullname: Lee
– volume: 44
  start-page: 1257
  year: 2015
  end-page: 1259
  ident: b0245
  article-title: Designed synthesis of porphyrin-based two-dimensional covalent organic frameworks with highly ordered structures
  publication-title: Chem. Lett.
  contributor:
    fullname: Jiang
– volume: 8
  start-page: 1800802
  year: 2018
  ident: b0035
  article-title: Designing low impedance interface films simultaneously on anode and cathode for high energy batteries
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Li
– volume: 59
  start-page: 22126
  year: 2020
  end-page: 22131
  ident: b0115
  article-title: A Two-Dimensional Metal-Organic Polymer Enabled by Robust Nickel-Nitrogen and Hydrogen Bonds for Exceptional Sodium-Ion Storage
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Chen
– volume: 10
  start-page: 1904199
  year: 2020
  ident: b0230
  article-title: Covalent-organic frameworks: advanced organic electrode materials for rechargeable batteries
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Zhang
– volume: 13
  start-page: 1568
  year: 2020
  end-page: 1592
  ident: b0050
  article-title: Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Wang
– volume: 407
  start-page: 496
  year: 2000
  end-page: 499
  ident: b0095
  article-title: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
  publication-title: Nature
  contributor:
    fullname: Tarascon
– volume: 9
  start-page: 1308
  year: 2016
  end-page: 1319
  ident: b0020
  article-title: Development of novel lithium borate additives for designed surface modification of high voltage LiNi
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Lucht
– volume: 39
  start-page: 16705
  year: 2020
  end-page: 16711
  ident: b0165
  article-title: 3D hydroxylated mxene/carbon nanotubes composite as scaffold for dendrite-free sodium-Metal electrode
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Chen
– volume: 11
  start-page: 178
  year: 2020
  ident: b0180
  article-title: Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries
  publication-title: Nat. Commun.
  contributor:
    fullname: Chen
– volume: 4
  start-page: 9177
  year: 2016
  end-page: 9183
  ident: b0155
  article-title: Graphene wrapped 3,4,9,10-perylenetetracarboxylic dianhydride as a high-performance organic cathode for lithium ion batteries
  publication-title: J. Mater. Chem. A.
  contributor:
    fullname: Yuan
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  ident: b0195
  article-title: Porous, crystalline, covalent organic frameworks
  publication-title: Science
  contributor:
    fullname: Yaghi
– volume: 26
  start-page: 8345
  year: 2016
  end-page: 8353
  ident: b0055
  article-title: Carbon nanotubes rooted in porous ternary metal sulfide@N/Sdoped carbon dodecahedron: bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Wang
– volume: 41
  start-page: 6010
  year: 2012
  end-page: 6022
  ident: b0190
  article-title: Covalent organic frameworks
  publication-title: Chem. Soc. Rev.
  contributor:
    fullname: Jiang
– volume: 305
  start-page: 968
  year: 2004
  end-page: 972
  ident: b0005
  article-title: Stabilization wedges: Solving the climate problem for the next 50 years with current technologies
  publication-title: Science
  contributor:
    fullname: Socolow
– volume: 135
  start-page: 16821
  year: 2013
  end-page: 16824
  ident: b0270
  article-title: β-ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Dichtel
– volume: 20
  start-page: 1285
  year: 2016
  end-page: 1294
  ident: b0105
  article-title: Carboxyl-conjugated phthalocyanines used as novel electrode materials with high specific capacity for lithium-ion batteries
  publication-title: J. Solid State Electr.
  contributor:
    fullname: Yang
– volume: 27
  start-page: 35
  year: 2020
  end-page: 42
  ident: b0225
  article-title: Small amount COFs enhancing storage of large anions
  publication-title: Energy Stor. Mater.
  contributor:
    fullname: Wang
– volume: 104
  start-page: 4245
  year: 2004
  end-page: 4269
  ident: b0010
  article-title: What Are Batteries, Fuel Cells, and Supercapacitors?
  publication-title: Cheminform
  contributor:
    fullname: Brodd
– volume: 54
  start-page: 1812
  year: 2015
  end-page: 1816
  ident: b0145
  article-title: Compact coupled graphene and porous polyaryltriazine-derivedframeworks as high performance cathodes for lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Feng
– volume: 33
  start-page: 90
  year: 2014
  end-page: 94
  ident: b0210
  article-title: Synthesis of microporous nitrogen-rich covalent-organic framework and its application in CO
  publication-title: Chinese J. Chem.
  contributor:
    fullname: Zhao
– volume: 61
  start-page: 707
  year: 2018
  end-page: 718
  ident: b0110
  article-title: High-performance of sodium carboxylate-derived materials for electrochemical energy storage
  publication-title: Sci. China Mater.
  contributor:
    fullname: Zhong
– volume: 4
  start-page: 1357
  year: 2013
  ident: b0265
  article-title: Unprecedented high-temperature CO
  publication-title: Nat. Commun.
  contributor:
    fullname: Coskun
– volume: 6
  start-page: 52850
  year: 2016
  end-page: 52853
  ident: b0130
  article-title: Electrochemical properties of carbonyl substituted phthalocyanines as electrode materials for lithium-ion batteries
  publication-title: RSC Adv.
  contributor:
    fullname: Wang
– volume: 57
  start-page: 9443
  year: 2018
  end-page: 9446
  ident: b0160
  article-title: A microporous covalentorganic framework with abundant accessible carbonyl group for Lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed. Engl.
  contributor:
    fullname: Chen
– volume: 15
  start-page: 6892
  year: 2013
  end-page: 6895
  ident: b0250
  article-title: Synthesis of a phthalocyanine 2D covalent organic framework
  publication-title: CrystEngComm
  contributor:
    fullname: Echegoyen
– volume: 7
  start-page: 2942
  year: 2019
  end-page: 2964
  ident: b0030
  article-title: Lithium-ion batteries: outlook on present, future, and hybridized technologies
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Qi
– volume: 16
  start-page: 440
  year: 2016
  end-page: 447
  ident: b0060
  article-title: Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries
  publication-title: Nano Lett.
  contributor:
    fullname: Wang
– volume: 27
  start-page: 1349
  year: 2015
  end-page: 1358
  ident: b0205
  article-title: Exceptional gas adsorption properties by nitrogen-doped porous carbons derived from benzimidazole-linked polymers
  publication-title: J. Mater. Chem.
  contributor:
    fullname: Kaderi
– volume: 51
  start-page: 5147
  year: 2012
  end-page: 5151
  ident: b0280
  article-title: How many lithium ions can be inserted onto fused C
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Sun
– volume: 225
  start-page: 117400
  year: 2021
  ident: b0100
  article-title: Free-standing SnS/carbonized cellulose film as durable anode for lithium-ion batteries
  publication-title: Carbohydr. Polym.
  contributor:
    fullname: Sun
– volume: 7
  start-page: 13065
  year: 2016
  ident: b0065
  article-title: A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries
  publication-title: Nat. Commun.
  contributor:
    fullname: Lou
– volume: 5
  start-page: 1700592
  year: 2018
  end-page: 1700616
  ident: b0080
  article-title: Hierarchically nanostructured transition metal oxides for lithium-ion batteries
  publication-title: Adv. Sci. (Weinh)
  contributor:
    fullname: Pang
– volume: 53
  start-page: 2637
  year: 2020
  end-page: 2647
  ident: b0125
  article-title: Designing High Performance Organic Batteries
  publication-title: Acc. Chem. Res.
  contributor:
    fullname: Wang
– volume: 12
  start-page: 8198
  year: 2020
  end-page: 8205
  ident: b0235
  article-title: Simple transformation of covalent organic frameworks to highly proton conductive electrolytes
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Chen
– volume: 325
  start-page: 286
  year: 2016
  end-page: 291
  ident: b0015
  article-title: 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors
  publication-title: J. Power Sources
  contributor:
    fullname: Wang
– volume: 21
  start-page: 947
  year: 2016
  end-page: 954
  ident: b0255
  article-title: Tetra-β-nitro-substituted phthalocyanines: a new organic electrode material for lithium batteries
  publication-title: J. Solid State Electr.
  contributor:
    fullname: Zhong
– volume: 27
  start-page: 1291
  year: 2015
  end-page: 1301
  ident: b0135
  article-title: Organic cathode material for lithium ion battery
  publication-title: Prog. Chem.
  contributor:
    fullname: Zhong
– volume: 21
  start-page: 947
  year: 2016
  ident: 10.1016/j.cej.2021.131630_b0255
  article-title: Tetra-β-nitro-substituted phthalocyanines: a new organic electrode material for lithium batteries
  publication-title: J. Solid State Electr.
  doi: 10.1007/s10008-016-3419-9
  contributor:
    fullname: Wang
– volume: 44
  start-page: 1257
  year: 2015
  ident: 10.1016/j.cej.2021.131630_b0245
  article-title: Designed synthesis of porphyrin-based two-dimensional covalent organic frameworks with highly ordered structures
  publication-title: Chem. Lett.
  doi: 10.1246/cl.150496
  contributor:
    fullname: Chen
– volume: 30
  start-page: 1800561
  year: 2018
  ident: 10.1016/j.cej.2021.131630_b0025
  article-title: 30 Years of lithium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800561
  contributor:
    fullname: Li
– volume: 9
  start-page: 576
  year: 2018
  ident: 10.1016/j.cej.2021.131630_b0175
  article-title: Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02889-7
  contributor:
    fullname: Lei
– volume: 4
  start-page: 7404
  year: 2014
  ident: 10.1016/j.cej.2021.131630_b0150
  article-title: Synthesis of ordered mesoporous phenanthrenequinonecarbon via π-π interaction-dependent vapor pressure for rechargeable batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep07404
  contributor:
    fullname: Kwon
– volume: 15
  start-page: 6892
  year: 2013
  ident: 10.1016/j.cej.2021.131630_b0250
  article-title: Synthesis of a phthalocyanine 2D covalent organic framework
  publication-title: CrystEngComm
  doi: 10.1039/c3ce40706c
  contributor:
    fullname: Neti
– volume: 51
  start-page: 5147
  year: 2012
  ident: 10.1016/j.cej.2021.131630_b0280
  article-title: How many lithium ions can be inserted onto fused C6 aromatic ring systems?
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201109187
  contributor:
    fullname: Han
– volume: 61
  start-page: 707
  year: 2018
  ident: 10.1016/j.cej.2021.131630_b0110
  article-title: High-performance of sodium carboxylate-derived materials for electrochemical energy storage
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-017-9210-1
  contributor:
    fullname: Xu
– volume: 325
  start-page: 286
  year: 2016
  ident: 10.1016/j.cej.2021.131630_b0015
  article-title: 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.037
  contributor:
    fullname: Bao
– volume: 45
  start-page: 6345
  year: 2016
  ident: 10.1016/j.cej.2021.131630_b0275
  article-title: The rise of organic electrode materials for energy storage
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00173D
  contributor:
    fullname: Schon
– volume: 426
  start-page: 169
  year: 2019
  ident: 10.1016/j.cej.2021.131630_b0240
  article-title: A stable 2D nano-columnar sandwich layered phthalocyanine negative electrode for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.04.027
  contributor:
    fullname: Chen
– volume: 16
  start-page: 440
  year: 2016
  ident: 10.1016/j.cej.2021.131630_b0060
  article-title: Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04105
  contributor:
    fullname: Jin
– volume: 39
  start-page: 16705
  year: 2020
  ident: 10.1016/j.cej.2021.131630_b0165
  article-title: 3D hydroxylated mxene/carbon nanotubes composite as scaffold for dendrite-free sodium-Metal electrode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202006783
  contributor:
    fullname: He
– volume: 12
  start-page: 8198
  year: 2020
  ident: 10.1016/j.cej.2021.131630_b0235
  article-title: Simple transformation of covalent organic frameworks to highly proton conductive electrolytes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b19953
  contributor:
    fullname: Zhou
– volume: 9
  start-page: 1308
  year: 2016
  ident: 10.1016/j.cej.2021.131630_b0020
  article-title: Development of novel lithium borate additives for designed surface modification of high voltage LiNi0.5Mn1.5O4 cathodes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03360H
  contributor:
    fullname: Xu
– volume: 41
  start-page: 6010
  year: 2012
  ident: 10.1016/j.cej.2021.131630_b0190
  article-title: Covalent organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35157a
  contributor:
    fullname: Feng
– volume: 225
  start-page: 117400
  year: 2021
  ident: 10.1016/j.cej.2021.131630_b0100
  article-title: Free-standing SnS/carbonized cellulose film as durable anode for lithium-ion batteries
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.117400
  contributor:
    fullname: Yuan
– volume: 4
  start-page: 1357
  year: 2013
  ident: 10.1016/j.cej.2021.131630_b0265
  article-title: Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2359
  contributor:
    fullname: Patel
– volume: 51
  start-page: 89
  year: 2018
  ident: 10.1016/j.cej.2021.131630_b0090
  article-title: Electrochemical characteristics of layered transition metal oxide cathode materials for lithium ion batteries: surface, bulk behavior, and thermal properties
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00520
  contributor:
    fullname: Tian
– volume: 26
  start-page: 8345
  year: 2016
  ident: 10.1016/j.cej.2021.131630_b0055
  article-title: Carbon nanotubes rooted in porous ternary metal sulfide@N/Sdoped carbon dodecahedron: bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601631
  contributor:
    fullname: Li
– volume: 11
  start-page: 15881
  year: 2019
  ident: 10.1016/j.cej.2021.131630_b0120
  article-title: Porous diatomite-mixed 1,4,5,8-NTCDA nanowires as high-performance electrode materials for lithium-ion batteries
  publication-title: Nanoscale
  doi: 10.1039/C9NR06186J
  contributor:
    fullname: Xu
– volume: 11
  start-page: 178
  year: 2020
  ident: 10.1016/j.cej.2021.131630_b0180
  article-title: Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13739-5
  contributor:
    fullname: Shi
– volume: 27
  start-page: 35
  year: 2020
  ident: 10.1016/j.cej.2021.131630_b0225
  article-title: Small amount COFs enhancing storage of large anions
  publication-title: Energy Stor. Mater.
  contributor:
    fullname: Tang
– ident: 10.1016/j.cej.2021.131630_b0045
  doi: 10.1016/j.ensm.2020.09.007
– volume: 7
  start-page: 2942
  year: 2019
  ident: 10.1016/j.cej.2021.131630_b0030
  article-title: Lithium-ion batteries: outlook on present, future, and hybridized technologies
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10513H
  contributor:
    fullname: Kim
– volume: 4
  start-page: 1301651
  year: 2014
  ident: 10.1016/j.cej.2021.131630_b0185
  article-title: Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301651
  contributor:
    fullname: Wang
– volume: 4
  start-page: 9177
  year: 2016
  ident: 10.1016/j.cej.2021.131630_b0155
  article-title: Graphene wrapped 3,4,9,10-perylenetetracarboxylic dianhydride as a high-performance organic cathode for lithium ion batteries
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA02880B
  contributor:
    fullname: Cui
– volume: 6
  start-page: 52850
  year: 2016
  ident: 10.1016/j.cej.2021.131630_b0130
  article-title: Electrochemical properties of carbonyl substituted phthalocyanines as electrode materials for lithium-ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/C6RA09826F
  contributor:
    fullname: Chen
– volume: 57
  start-page: 16072
  year: 2018
  ident: 10.1016/j.cej.2021.131630_b0220
  article-title: Constructing universal ionic sieves via alignment of two-dimensional covalent organic frameworks
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201809907
  contributor:
    fullname: Jiang
– volume: 8
  start-page: 1800802
  year: 2018
  ident: 10.1016/j.cej.2021.131630_b0035
  article-title: Designing low impedance interface films simultaneously on anode and cathode for high energy batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800802
  contributor:
    fullname: Liao
– volume: 22
  start-page: 3680
  year: 2012
  ident: 10.1016/j.cej.2021.131630_b0085
  article-title: Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm14305d
  contributor:
    fullname: He
– volume: 24
  start-page: 5112
  year: 2014
  ident: 10.1016/j.cej.2021.131630_b0040
  article-title: Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: towards better electrochemical performance
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400436
  contributor:
    fullname: Li
– volume: 10
  start-page: 1904199
  year: 2020
  ident: 10.1016/j.cej.2021.131630_b0230
  article-title: Covalent-organic frameworks: advanced organic electrode materials for rechargeable batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201904199
  contributor:
    fullname: Sun
– volume: 3
  start-page: 429
  year: 2016
  ident: 10.1016/j.cej.2021.131630_b0140
  article-title: Polyquinoneimines for lithium storage: more than the sum of its parts
  publication-title: Mater. Horiz.
  doi: 10.1039/C6MH00072J
  contributor:
    fullname: Tian
– volume: 39
  start-page: 5197
  year: 2006
  ident: 10.1016/j.cej.2021.131630_b0170
  article-title: Polymer nanocomposites containing carbon nanotubes
  publication-title: Macromolecules
  doi: 10.1021/ma060733p
  contributor:
    fullname: Moniruzzaman
– volume: 59
  start-page: 22126
  year: 2020
  ident: 10.1016/j.cej.2021.131630_b0115
  article-title: A Two-Dimensional Metal-Organic Polymer Enabled by Robust Nickel-Nitrogen and Hydrogen Bonds for Exceptional Sodium-Ion Storage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202008726
  contributor:
    fullname: Wang
– volume: 407
  start-page: 496
  year: 2000
  ident: 10.1016/j.cej.2021.131630_b0095
  article-title: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
  publication-title: Nature
  doi: 10.1038/35035045
  contributor:
    fullname: Poizot
– volume: 13
  start-page: 1568
  year: 2020
  ident: 10.1016/j.cej.2021.131630_b0050
  article-title: Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03637G
  contributor:
    fullname: Rajagopalan
– volume: 135
  start-page: 16821
  year: 2013
  ident: 10.1016/j.cej.2021.131630_b0270
  article-title: β-ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409421d
  contributor:
    fullname: DeBlase
– volume: 7
  start-page: 13065
  year: 2016
  ident: 10.1016/j.cej.2021.131630_b0065
  article-title: A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13065
  contributor:
    fullname: Li
– volume: 115
  start-page: 12120
  year: 2011
  ident: 10.1016/j.cej.2021.131630_b0075
  article-title: Electrochemical windows of sulfonebased electrolytes for high-voltage Li-ion batteries
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp204401t
  contributor:
    fullname: Shao
– volume: 54
  start-page: 1812
  year: 2015
  ident: 10.1016/j.cej.2021.131630_b0145
  article-title: Compact coupled graphene and porous polyaryltriazine-derivedframeworks as high performance cathodes for lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410154
  contributor:
    fullname: Su
– volume: 20
  start-page: 1285
  year: 2016
  ident: 10.1016/j.cej.2021.131630_b0105
  article-title: Carboxyl-conjugated phthalocyanines used as novel electrode materials with high specific capacity for lithium-ion batteries
  publication-title: J. Solid State Electr.
  doi: 10.1007/s10008-016-3126-6
  contributor:
    fullname: Chen
– volume: 5
  start-page: 1700592
  year: 2018
  ident: 10.1016/j.cej.2021.131630_b0080
  article-title: Hierarchically nanostructured transition metal oxides for lithium-ion batteries
  publication-title: Adv. Sci. (Weinh)
  doi: 10.1002/advs.201700592
  contributor:
    fullname: Zheng
– volume: 27
  start-page: 1291
  year: 2015
  ident: 10.1016/j.cej.2021.131630_b0135
  article-title: Organic cathode material for lithium ion battery
  publication-title: Prog. Chem.
  contributor:
    fullname: Chen
– volume: 350
  start-page: 62
  year: 2015
  ident: 10.1016/j.cej.2021.131630_b0070
  article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage
  publication-title: Science
  doi: 10.1126/science.aab3798
  contributor:
    fullname: Lin
– volume: 33
  start-page: 90
  year: 2014
  ident: 10.1016/j.cej.2021.131630_b0210
  article-title: Synthesis of microporous nitrogen-rich covalent-organic framework and its application in CO2 capture
  publication-title: Chinese J. Chem.
  doi: 10.1002/cjoc.201400550
  contributor:
    fullname: Gao
– volume: 27
  start-page: 1349
  year: 2015
  ident: 10.1016/j.cej.2021.131630_b0205
  article-title: Exceptional gas adsorption properties by nitrogen-doped porous carbons derived from benzimidazole-linked polymers
  publication-title: J. Mater. Chem.
  doi: 10.1021/cm504435m
  contributor:
    fullname: Ashourirad
– volume: 104
  start-page: 4245
  year: 2004
  ident: 10.1016/j.cej.2021.131630_b0010
  article-title: What Are Batteries, Fuel Cells, and Supercapacitors?
  publication-title: Cheminform
  contributor:
    fullname: Winter
– volume: 305
  start-page: 968
  year: 2004
  ident: 10.1016/j.cej.2021.131630_b0005
  article-title: Stabilization wedges: Solving the climate problem for the next 50 years with current technologies
  publication-title: Science
  doi: 10.1126/science.1100103
  contributor:
    fullname: Pacala
– volume: 19
  start-page: 3324
  year: 2013
  ident: 10.1016/j.cej.2021.131630_b0200
  article-title: A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201203753
  contributor:
    fullname: Rabbani
– volume: 38
  start-page: 524
  year: 2000
  ident: 10.1016/j.cej.2021.131630_b0260
  article-title: Essentials of biophysics
  publication-title: Anshan
  contributor:
    fullname: Narayanan
– volume: 53
  start-page: 2637
  year: 2020
  ident: 10.1016/j.cej.2021.131630_b0125
  article-title: Designing High Performance Organic Batteries
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00465
  contributor:
    fullname: Chen
– volume: 57
  start-page: 9443
  year: 2018
  ident: 10.1016/j.cej.2021.131630_b0160
  article-title: A microporous covalentorganic framework with abundant accessible carbonyl group for Lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201805540
  contributor:
    fullname: Luo
– volume: 310
  start-page: 1166
  year: 2005
  ident: 10.1016/j.cej.2021.131630_b0195
  article-title: Porous, crystalline, covalent organic frameworks
  publication-title: Science
  doi: 10.1126/science.1120411
  contributor:
    fullname: Côté
– volume: 20
  start-page: 15961
  year: 2014
  ident: 10.1016/j.cej.2021.131630_b0215
  article-title: A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201403800
  contributor:
    fullname: Thote
SSID ssj0006919
Score 2.6073341
Snippet Phthalocyanine-based covalent organic frameworks (NA-NiPc, PPDA-NiPc and DAB-NiPc) with different pore sizes are synthesized by a catalyst-free coupling...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 131630
SubjectTerms Covalent organic frameworks
Energy storage
Lithium/Sodium ion batteries
Organic electrode
Phthalocyanine
Title Phthalocyanine-based covalent organic frameworks as novel anode materials for high-performance lithium-ion/sodium-ion batteries
URI https://dx.doi.org/10.1016/j.cej.2021.131630
Volume 425
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qvehBfOKbHDwJabO76e7mKMVSLYr4wN6WvJZWdLfYKnjRv-5kH1pBL552N2Rg-ZLMfJOZTACOYuYbpv2YIjuIKQ9xzQkVhVRGkgkWauEptzVwcRn27_j5sDNsQLc-C-PSKivdX-r0QltXLe0KzfZkPG7feC6mJTi6MCxANyZYgMUiSNSExZOzQf_ySyGHorjfw_WnTqAObhZpXto-oJfoey0vQGrCfjdPcyantworFVckJ-XvrEHDZuuwPFdBcAM-rkazkUSD9CYzbKXOKBmic5w_aE1IeWeTJmmdgjUlckqy_NU-EpnlxhIkrOUcJMheiSteTCffZwkIkvTR-OWJ4ui1p7mpXokqqnKik70Jd73T226fVncqUO2LaEZtkErGZWxUFLOAGxOmxsaKS66DwPjuGKpIrdIaF2bAUikjK2Jf-Gka2Y7EPlvQzPLMbgORaP2V4sjhRAflQ_Q1pYotgmiZlUztwHENZTIpS2ckdU7ZQ4K4Jw73pMR9B3gNdvJj_BNU7X-L7f5PbA-W3FeZlrIPzdnziz1AcjFTh7DQevcOqynknoPr-8EncATRoQ
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61PagH8Yn1mYMnITbdTXc3x1IsrX0g2EJvS15LW3S32Fbw5F93sg-toBdvSzYDy5fJzDebmQlCNwF1NFVOQIAdBIR5sOe49D0ifEE59RSvS_trYDD0OmP2MGlMSqhV1MLYtMrc9mc2PbXW-UgtR7O2mM1qT3V7psUZhDDUhTDG3UIVYAMclL3S7PY6wy-D7PH0fg87n1iB4nAzTfNSZg5RolO_q7tATejv7mnD5bT30V7OFXEz-5wDVDLxIdrd6CB4hD4ep6upAIf0LmIYJdYpaawS0B_wJji7s0nhqEjBWmKxxHHyZp6xiBNtMBDWTAcxsFdsmxeTxXctAQaSPp2tXwisXm2Z6PwRy7QrJwTZx2jcvh-1OiS_U4Eoh_srYtxIUCYCLf2AukxrL9ImkEww5brasWWoPDJSKdiYLo2E8A0PHO5EkW8aAuacoHKcxOYUYQHeX0oGHI43QN6DWFPIwACIhhpBZRXdFlCGi6x1RljklM1DwD20uIcZ7lXECrDDH-sfgmn_W-zsf2LXaLszGvTDfnfYO0c79k2WonKByqvXtbkEorGSV7kifQILP9H7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phthalocyanine-based+covalent+organic+frameworks+as+novel+anode+materials+for+high-performance+lithium-ion%2Fsodium-ion+batteries&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhao%2C+Jianjun&rft.au=Zhou%2C+Miaomiao&rft.au=Chen%2C+Jun&rft.au=Tao%2C+Lihong&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=425&rft_id=info:doi/10.1016%2Fj.cej.2021.131630&rft.externalDocID=S1385894721032113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon