Phthalocyanine-based covalent organic frameworks as novel anode materials for high-performance lithium-ion/sodium-ion batteries
Phthalocyanine-based covalent organic frameworks (NA-NiPc, PPDA-NiPc and DAB-NiPc) with different pore sizes are synthesized by a catalyst-free coupling reaction, which inhibits dissolution in the electrolyte and provides large specific surface area and open mesoporous channels for Li+. As the pore...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 425; p. 131630 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phthalocyanine-based covalent organic frameworks (NA-NiPc, PPDA-NiPc and DAB-NiPc) with different pore sizes are synthesized by a catalyst-free coupling reaction, which inhibits dissolution in the electrolyte and provides large specific surface area and open mesoporous channels for Li+. As the pore size of the frame increases, the surface area of the material increases accordingly, resulting in improved electrochemical behaviors. The NA-NiPc, PPDA-NiPc and DAB-NiPc electrodes display high capacity, long cycling stability, and excellent rate capability both in LIBs and NIBs.
[Display omitted]
•Pc-based frameworks with different pore sizes of 1.55, 2.11 and 2.74 nm are synthesized.•No solubility in electrolyte and large specific surface areas are observed.•The surface area increases with the pore size, resulting in improved electrochemical behaviors.•Excellent capacity, cycle stability, and rate capability both in LIBs and NIBs are observed.
In this work, three kinds of phthalocyanine-based covalent organic frameworks, NA-NiPc (4-nitronickel phthalocyanine + 4-aminonickel phthalocyanine), PPDA-NiPc (4-nitronickel phthalocyanine + p-phenylenediamine) and DAB-NiPc (4-nitronickel phthalocyanine + 4,4′-diaminobiphenyl), with different pore sizes are synthesized by a catalyst-free coupling reaction. The X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Transmission electron microscopy (TEM) test results indicate that the pore sizes of the NA-NiPc, PPDA-NiPc and DAB-NiPc frameworks are approximately 1.55 nm, 2.11 nm and 2.74 nm, respectively, which is consistent with the simulated results after optimizing the geometric conformation by HyperChem software; additionally, the specific surface areas are 382, 471 and 575 m2 g−1 respectively. As the pore size of the frame increases, the surface area of the material increases accordingly, resulting in different electrochemical behaviors. The initial capacities of the NA-NiPc, PPDA-NiPc and DAB-NiPc electrodes in lithium-ion batteries are 422, 469 and 566 mAh/g, respectively, and after 700 cycles, the capacities remain at 557, 670 and 941 mAh/g, demonstrating capacity retention rates of 131.8%, 142.9% and 166%, respectively, at a current density of 100 mA/g. Even at a high current density of 2 A/g, high specific capacities of 385, 512 and 767 mAh/g can still be observed. Moreover, the use of the NA-NiPc, PPDA-NiPc and DAB-NiPc electrodes in sodium-ion batteries also display excellent behaviors, such as high capacities, stable cycling performances and excellent rate capabilities. With increasing framework porosity, the performances of both lithium-ion and sodium-ion batteries gradually improve, fully indicating that the size of the framework is the key factor in determining the performance of a battery. |
---|---|
AbstractList | Phthalocyanine-based covalent organic frameworks (NA-NiPc, PPDA-NiPc and DAB-NiPc) with different pore sizes are synthesized by a catalyst-free coupling reaction, which inhibits dissolution in the electrolyte and provides large specific surface area and open mesoporous channels for Li+. As the pore size of the frame increases, the surface area of the material increases accordingly, resulting in improved electrochemical behaviors. The NA-NiPc, PPDA-NiPc and DAB-NiPc electrodes display high capacity, long cycling stability, and excellent rate capability both in LIBs and NIBs.
[Display omitted]
•Pc-based frameworks with different pore sizes of 1.55, 2.11 and 2.74 nm are synthesized.•No solubility in electrolyte and large specific surface areas are observed.•The surface area increases with the pore size, resulting in improved electrochemical behaviors.•Excellent capacity, cycle stability, and rate capability both in LIBs and NIBs are observed.
In this work, three kinds of phthalocyanine-based covalent organic frameworks, NA-NiPc (4-nitronickel phthalocyanine + 4-aminonickel phthalocyanine), PPDA-NiPc (4-nitronickel phthalocyanine + p-phenylenediamine) and DAB-NiPc (4-nitronickel phthalocyanine + 4,4′-diaminobiphenyl), with different pore sizes are synthesized by a catalyst-free coupling reaction. The X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Transmission electron microscopy (TEM) test results indicate that the pore sizes of the NA-NiPc, PPDA-NiPc and DAB-NiPc frameworks are approximately 1.55 nm, 2.11 nm and 2.74 nm, respectively, which is consistent with the simulated results after optimizing the geometric conformation by HyperChem software; additionally, the specific surface areas are 382, 471 and 575 m2 g−1 respectively. As the pore size of the frame increases, the surface area of the material increases accordingly, resulting in different electrochemical behaviors. The initial capacities of the NA-NiPc, PPDA-NiPc and DAB-NiPc electrodes in lithium-ion batteries are 422, 469 and 566 mAh/g, respectively, and after 700 cycles, the capacities remain at 557, 670 and 941 mAh/g, demonstrating capacity retention rates of 131.8%, 142.9% and 166%, respectively, at a current density of 100 mA/g. Even at a high current density of 2 A/g, high specific capacities of 385, 512 and 767 mAh/g can still be observed. Moreover, the use of the NA-NiPc, PPDA-NiPc and DAB-NiPc electrodes in sodium-ion batteries also display excellent behaviors, such as high capacities, stable cycling performances and excellent rate capabilities. With increasing framework porosity, the performances of both lithium-ion and sodium-ion batteries gradually improve, fully indicating that the size of the framework is the key factor in determining the performance of a battery. |
ArticleNumber | 131630 |
Author | Zhong, Shengwen Fu, Haikuo Wu, Lijue Zhou, Miaomiao Chen, Jun Zhang, Qian Tao, Lihong Wang, Hua Zhao, Jianjun Li, Zhifeng |
Author_xml | – sequence: 1 givenname: Jianjun surname: Zhao fullname: Zhao, Jianjun organization: School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China – sequence: 2 givenname: Miaomiao surname: Zhou fullname: Zhou, Miaomiao organization: School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China – sequence: 3 givenname: Jun surname: Chen fullname: Chen, Jun email: chenjun@jxust.edu.cn organization: School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China – sequence: 4 givenname: Lihong surname: Tao fullname: Tao, Lihong organization: School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China – sequence: 5 givenname: Qian surname: Zhang fullname: Zhang, Qian organization: School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China – sequence: 6 givenname: Zhifeng surname: Li fullname: Li, Zhifeng organization: School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China – sequence: 7 givenname: Shengwen surname: Zhong fullname: Zhong, Shengwen email: zhongshw@126.com organization: School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China – sequence: 8 givenname: Haikuo surname: Fu fullname: Fu, Haikuo organization: Guangdong Jiana Energy Technology Co Ltd, Qingyuan Jiazhi New Material Research Institute Co. Ltd., Qingyuan 511500, China – sequence: 9 givenname: Hua surname: Wang fullname: Wang, Hua organization: Guangdong Jiana Energy Technology Co Ltd, Qingyuan Jiazhi New Material Research Institute Co. Ltd., Qingyuan 511500, China – sequence: 10 givenname: Lijue surname: Wu fullname: Wu, Lijue organization: Guangdong Jiana Energy Technology Co Ltd, Qingyuan Jiazhi New Material Research Institute Co. Ltd., Qingyuan 511500, China |
BookMark | eNp9kE1LAzEQhoNUsK3-AG_5A9smm-1-4EmKXyDoQc9hNpl0U3eTkqyVnvzrprRnT_MyzDPMPDMycd4hIbecLTjj5XK7ULhd5CznCy54KdgFmfK6EpnIeT5JWdSrrG6K6orMYtwyxsqGN1Py-96NHfReHcBZh1kLETVVfg89upH6sEl9RU2AAX98-IoUInV-jz0F5zXSAUYMFvpIjQ-0s5su22FIeQCnkPZ27Oz3kFnvltHrc6QtjEcM4zW5NAnGm3Odk8_Hh4_1c_b69vSyvn_NVN5UY4bCACug1m1VM1FoXRqNdVtAoYTQOec1bwy2SjWlEMwAVNjUeZMbU-EK0syc8NNeFXyMAY3cBTtAOEjO5NGg3MpkUB4NypPBxNydGEyH7S0GGZXF9JW2AdUotbf_0H_Aun8v |
CitedBy_id | crossref_primary_10_1039_D3DT03559J crossref_primary_10_1002_macp_202300427 crossref_primary_10_1016_j_cej_2023_142434 crossref_primary_10_1016_j_est_2023_109070 crossref_primary_10_1002_cssc_202301118 crossref_primary_10_1016_j_ensm_2022_08_022 crossref_primary_10_1016_j_mtcomm_2023_106677 crossref_primary_10_1021_acsami_3c08481 crossref_primary_10_1039_D4MH00313F crossref_primary_10_1016_j_molliq_2024_125143 crossref_primary_10_1016_j_mtcomm_2023_107768 crossref_primary_10_1088_2752_5724_acdd86 crossref_primary_10_1002_smtd_202301302 crossref_primary_10_1002_advs_202401804 crossref_primary_10_1002_batt_202200413 crossref_primary_10_1039_D2EE02742A crossref_primary_10_1002_smll_202306272 crossref_primary_10_1039_D3AY02298F crossref_primary_10_1039_D3DT03994C crossref_primary_10_1002_bkcs_12823 crossref_primary_10_1007_s10008_022_05162_6 crossref_primary_10_1016_j_ijft_2023_100531 crossref_primary_10_1002_aenm_202400521 crossref_primary_10_1039_D2SE00853J crossref_primary_10_1016_j_cej_2024_151110 crossref_primary_10_2139_ssrn_4137012 crossref_primary_10_1007_s11664_022_09674_9 crossref_primary_10_1021_acsaem_2c02658 crossref_primary_10_1002_aenm_202200057 crossref_primary_10_3390_nano13101660 crossref_primary_10_1002_batt_202200545 crossref_primary_10_1021_acsami_3c17710 crossref_primary_10_1016_j_synthmet_2023_117284 crossref_primary_10_1002_batt_202200429 crossref_primary_10_1016_j_jallcom_2022_166524 crossref_primary_10_1016_j_cej_2023_143941 crossref_primary_10_1016_j_ensm_2022_05_021 crossref_primary_10_1002_smll_202301578 crossref_primary_10_1002_aenm_202401314 crossref_primary_10_1002_smll_202303353 crossref_primary_10_1007_s40843_021_2027_3 crossref_primary_10_1021_acsami_2c14509 crossref_primary_10_1039_D2TA04371H crossref_primary_10_1039_D3CP00007A crossref_primary_10_1002_adma_202203139 crossref_primary_10_1016_j_cej_2022_139016 crossref_primary_10_1016_j_snb_2023_135191 crossref_primary_10_1039_D3DT03354F crossref_primary_10_34133_energymatadv_0078 crossref_primary_10_1002_aesr_202300166 crossref_primary_10_1007_s10800_023_01964_2 |
Cites_doi | 10.1007/s10008-016-3419-9 10.1246/cl.150496 10.1002/adma.201800561 10.1038/s41467-018-02889-7 10.1038/srep07404 10.1039/c3ce40706c 10.1002/anie.201109187 10.1007/s40843-017-9210-1 10.1016/j.jpowsour.2016.06.037 10.1039/C6CS00173D 10.1016/j.jpowsour.2019.04.027 10.1021/acs.nanolett.5b04105 10.1002/anie.202006783 10.1021/acsami.9b19953 10.1039/C5EE03360H 10.1039/c2cs35157a 10.1016/j.carbpol.2020.117400 10.1038/ncomms2359 10.1021/acs.accounts.7b00520 10.1002/adfm.201601631 10.1039/C9NR06186J 10.1038/s41467-019-13739-5 10.1016/j.ensm.2020.09.007 10.1039/C8TA10513H 10.1002/aenm.201301651 10.1039/C6TA02880B 10.1039/C6RA09826F 10.1002/anie.201809907 10.1002/aenm.201800802 10.1039/c2jm14305d 10.1002/adfm.201400436 10.1002/aenm.201904199 10.1039/C6MH00072J 10.1021/ma060733p 10.1002/anie.202008726 10.1038/35035045 10.1039/C9EE03637G 10.1021/ja409421d 10.1038/ncomms13065 10.1021/jp204401t 10.1002/anie.201410154 10.1007/s10008-016-3126-6 10.1002/advs.201700592 10.1126/science.aab3798 10.1002/cjoc.201400550 10.1021/cm504435m 10.1126/science.1100103 10.1002/chem.201203753 10.1021/acs.accounts.0c00465 10.1002/anie.201805540 10.1126/science.1120411 10.1002/chem.201403800 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2021.131630 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2021_131630 S1385894721032113 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AAXKI AAYXX ABTAH ABXDB AFFNX AFJKZ AKRWK ASPBG AVWKF AZFZN BKOMP CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW ZY4 |
ID | FETCH-LOGICAL-c297t-e3fa04a8db78034dd6fde8b4a4c33d211819febcc96330faa7e98292ff7e5ac33 |
IEDL.DBID | AIKHN |
ISSN | 1385-8947 |
IngestDate | Thu Sep 26 18:03:26 EDT 2024 Fri Feb 23 02:44:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Covalent organic frameworks Phthalocyanine Lithium/Sodium ion batteries Organic electrode Energy storage |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-e3fa04a8db78034dd6fde8b4a4c33d211819febcc96330faa7e98292ff7e5ac33 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2021_131630 elsevier_sciencedirect_doi_10_1016_j_cej_2021_131630 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liao, Li, Xu, Xing, Liao, Ren, Fan, Yu, Xu, Li (b0035) 2018; 8 Cui, Tian, Chen, Yuan (b0155) 2016; 4 Winter, Brodd (b0010) 2004; 104 Lei, Yang, Xu, Guo, Sun, Liu, Lv, Zhang, Wang (b0175) 2018; 9 Xu, Zhou, Dong, Chen, Demeaux, MacIntosh, Garsuch, Lucht (b0020) 2016; 9 Shao, Sun, Dai, Jiang (b0075) 2011; 115 Zheng, Tang, Li, Hu, Zhang, Xue, Pang (b0080) 2018; 5 Xu, Chen, Zhu, Zhang, Jiang, Wang, Zhang, Ding, Huang, Zhong (b0110) 2018; 61 Xu, Chen, Xiao, Ou, Lv, Tao, Zhong (b0120) 2019; 11 Sun, Xie, Guo, Li, Zhang (b0230) 2020; 10 Gao, Bai, Zhang, Wang, Li, Zeng, Zou, Zhao (b0210) 2014; 33 Li, Su, Sun, Wang (b0055) 2016; 26 Yuan, Huang, Qian, Rahmand, Ajayand, Sun (b0100) 2021; 225 Su, Liu, Liu, Wu, Zhuang, Zhang, Feng (b0145) 2015; 54 Rabbani, Sekizkardes, Kahveci, Reich, Ding, Kaderi (b0200) 2013; 19 Neti, Wu, Deng, Echegoyen (b0250) 2013; 15 Li, Yan, Ma, Yu, Xia, Huang, Chu, Wu (b0040) 2014; 24 Chen, Guo, Zhang, Wang, Ding, Zhang, Yang, Liu, Li, Li, Zhong, Wang (b0130) 2016; 6 Tang, Jiang, Liu, Li, Chen, Wu, Ma, Wang (b0225) 2020; 27 Shi, Liu, Lu, Wang, Li, Li, Yan, Chen (b0180) 2020; 11 Chen, Xu, Cao, Zhu, Liu, Li, Zhong (b0240) 2019; 426 Thote, Aiyappa, Deshpande, Díaz, Kurungot, Banerjee (b0215) 2014; 20 Zhou, Le, Cheng, Zhao, Shen, Xie, Hu, Yang, Chen, Chen (b0235) 2020; 12 Tian, Lin, Doeff (b0090) 2018; 51 Wang, Chen, Jiang, Ding, Zhong (b0255) 2016; 21 Kim, Song, Son, Ono, Qi (b0030) 2019; 7 Jin, Xiai, Lu, Wang (b0060) 2016; 16 He, Jin, Miao, Cai, Chen (b0165) 2020; 39 Schon, McAllister, Li, Seferos (b0275) 2016; 45 Ashourirad, Sekizkardes, Altarawneh, Kaderi (b0205) 2015; 27 DeBlase, Silberstein, Truong, Abruña, Dichtel (b0270) 2013; 135 Chen, Ding, Li, Zhang, Zhong (b0135) 2015; 27 Tian, Ning, Tang, Peng, Yu, Chen, Xiao, Su, Loh (b0140) 2016; 3 Han, Qing, Sun, Sun (b0280) 2012; 51 Wang, Ni, Hou, Chen, Li, Chen (b0115) 2020; 59 R. Rajagopalan, Z. N. Zhang, Y. G. Tang, C. K. Jia, X. B. Ji, H. Y. Wang, Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON materials, Energy Environ. Sci. 34 (202) 171–193. Patel, Je, Park, Chen, Jung, Yavuz, Coskun (b0265) 2013; 4 Côté, Eenin, Ockwing, O'Keeffe, Matzger, Yaghi (b0195) 2005; 310 Wang, Yuan, Ma, Huang, Meng, Zhang (b0185) 2014; 4 Feng, Ding, Jiang (b0190) 2012; 41 Li, Zhang, Guan, Wang, Liu, Lou (b0065) 2016; 7 Jiang, Tang, Zhu, Zhang, Wu, Chen, Xia, Wang, Hu (b0220) 2018; 57 He, Yu, Li, Zhou (b0085) 2012; 22 Kwon, Aram, Park, Cheon, Kang, Jo, Kim, Hong, Joo, Yang, Lee (b0150) 2014; 4 Chen, Wang (b0125) 2020; 53 Luo, Liu, Ning, Lei, Lu, Li, Chen (b0160) 2018; 57 Poizot, Laruelle, Grugeon, Dupont, Tarascon (b0095) 2000; 407 Rajagopalan, Tang, Jia, Ji, Wang (b0050) 2020; 13 Chen, Gao, Jiang (b0245) 2015; 44 Moniruzzaman, Winey (b0170) 2006; 39 Bao, Mondal, Xu, Wang, Su, Wang (b0015) 2016; 325 Chen, Zhang, Zeng, Ding, Li, Zhong, Zhang, Wang, Yang (b0105) 2016; 20 Pacala, Socolow (b0005) 2004; 305 Lin, Chen, Liu, Yang, Bi, Xu (b0070) 2015; 350 Narayanan (b0260) 2000; 38 Li, Lu, Chen, Amine (b0025) 2018; 30 Li (10.1016/j.cej.2021.131630_b0065) 2016; 7 Lin (10.1016/j.cej.2021.131630_b0070) 2015; 350 Ashourirad (10.1016/j.cej.2021.131630_b0205) 2015; 27 Shi (10.1016/j.cej.2021.131630_b0180) 2020; 11 Li (10.1016/j.cej.2021.131630_b0040) 2014; 24 Chen (10.1016/j.cej.2021.131630_b0130) 2016; 6 Kim (10.1016/j.cej.2021.131630_b0030) 2019; 7 Lei (10.1016/j.cej.2021.131630_b0175) 2018; 9 Thote (10.1016/j.cej.2021.131630_b0215) 2014; 20 Chen (10.1016/j.cej.2021.131630_b0240) 2019; 426 Côté (10.1016/j.cej.2021.131630_b0195) 2005; 310 Zheng (10.1016/j.cej.2021.131630_b0080) 2018; 5 10.1016/j.cej.2021.131630_b0045 Tian (10.1016/j.cej.2021.131630_b0090) 2018; 51 Su (10.1016/j.cej.2021.131630_b0145) 2015; 54 Yuan (10.1016/j.cej.2021.131630_b0100) 2021; 225 Gao (10.1016/j.cej.2021.131630_b0210) 2014; 33 Jiang (10.1016/j.cej.2021.131630_b0220) 2018; 57 Han (10.1016/j.cej.2021.131630_b0280) 2012; 51 Xu (10.1016/j.cej.2021.131630_b0120) 2019; 11 DeBlase (10.1016/j.cej.2021.131630_b0270) 2013; 135 He (10.1016/j.cej.2021.131630_b0085) 2012; 22 Luo (10.1016/j.cej.2021.131630_b0160) 2018; 57 Bao (10.1016/j.cej.2021.131630_b0015) 2016; 325 Xu (10.1016/j.cej.2021.131630_b0110) 2018; 61 Zhou (10.1016/j.cej.2021.131630_b0235) 2020; 12 Patel (10.1016/j.cej.2021.131630_b0265) 2013; 4 Tian (10.1016/j.cej.2021.131630_b0140) 2016; 3 Chen (10.1016/j.cej.2021.131630_b0135) 2015; 27 Shao (10.1016/j.cej.2021.131630_b0075) 2011; 115 Pacala (10.1016/j.cej.2021.131630_b0005) 2004; 305 Wang (10.1016/j.cej.2021.131630_b0185) 2014; 4 Winter (10.1016/j.cej.2021.131630_b0010) 2004; 104 Sun (10.1016/j.cej.2021.131630_b0230) 2020; 10 Moniruzzaman (10.1016/j.cej.2021.131630_b0170) 2006; 39 Rabbani (10.1016/j.cej.2021.131630_b0200) 2013; 19 Narayanan (10.1016/j.cej.2021.131630_b0260) 2000; 38 Liao (10.1016/j.cej.2021.131630_b0035) 2018; 8 Neti (10.1016/j.cej.2021.131630_b0250) 2013; 15 Wang (10.1016/j.cej.2021.131630_b0115) 2020; 59 Tang (10.1016/j.cej.2021.131630_b0225) 2020; 27 Xu (10.1016/j.cej.2021.131630_b0020) 2016; 9 Kwon (10.1016/j.cej.2021.131630_b0150) 2014; 4 Li (10.1016/j.cej.2021.131630_b0025) 2018; 30 He (10.1016/j.cej.2021.131630_b0165) 2020; 39 Chen (10.1016/j.cej.2021.131630_b0125) 2020; 53 Cui (10.1016/j.cej.2021.131630_b0155) 2016; 4 Poizot (10.1016/j.cej.2021.131630_b0095) 2000; 407 Feng (10.1016/j.cej.2021.131630_b0190) 2012; 41 Chen (10.1016/j.cej.2021.131630_b0105) 2016; 20 Chen (10.1016/j.cej.2021.131630_b0245) 2015; 44 Li (10.1016/j.cej.2021.131630_b0055) 2016; 26 Wang (10.1016/j.cej.2021.131630_b0255) 2016; 21 Schon (10.1016/j.cej.2021.131630_b0275) 2016; 45 Jin (10.1016/j.cej.2021.131630_b0060) 2016; 16 Rajagopalan (10.1016/j.cej.2021.131630_b0050) 2020; 13 |
References_xml | – volume: 51 start-page: 89 year: 2018 end-page: 96 ident: b0090 article-title: Electrochemical characteristics of layered transition metal oxide cathode materials for lithium ion batteries: surface, bulk behavior, and thermal properties publication-title: Acc. Chem. Res. contributor: fullname: Doeff – volume: 20 start-page: 15961 year: 2014 end-page: 15965 ident: b0215 article-title: A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production publication-title: Chem. Eur. J. contributor: fullname: Banerjee – volume: 115 start-page: 12120 year: 2011 end-page: 12125 ident: b0075 article-title: Electrochemical windows of sulfonebased electrolytes for high-voltage Li-ion batteries publication-title: J. Phys. Chem. B contributor: fullname: Jiang – volume: 39 start-page: 5197 year: 2006 end-page: 5205 ident: b0170 article-title: Polymer nanocomposites containing carbon nanotubes publication-title: Macromolecules contributor: fullname: Winey – volume: 350 start-page: 62 year: 2015 end-page: 67 ident: b0070 article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage publication-title: Science contributor: fullname: Xu – volume: 19 start-page: 3324 year: 2013 end-page: 3328 ident: b0200 article-title: A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications publication-title: Chem. Eur. J. contributor: fullname: Kaderi – volume: 30 start-page: 1800561 year: 2018 ident: b0025 article-title: 30 Years of lithium-ion batteries publication-title: Adv. Mater. contributor: fullname: Amine – volume: 3 start-page: 429 year: 2016 end-page: 433 ident: b0140 article-title: Polyquinoneimines for lithium storage: more than the sum of its parts publication-title: Mater. Horiz. contributor: fullname: Loh – volume: 24 start-page: 5112 year: 2014 end-page: 5118 ident: b0040 article-title: Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: towards better electrochemical performance publication-title: Adv. Funct. Mater. contributor: fullname: Wu – volume: 9 start-page: 576 year: 2018 end-page: 588 ident: b0175 article-title: Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry publication-title: Nat. Commun. contributor: fullname: Wang – volume: 426 start-page: 169 year: 2019 end-page: 177 ident: b0240 article-title: A stable 2D nano-columnar sandwich layered phthalocyanine negative electrode for lithium-ion batteries publication-title: J. Power Sources contributor: fullname: Zhong – volume: 22 start-page: 3680 year: 2012 end-page: 3695 ident: b0085 article-title: Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries publication-title: J. Mater. Chem. contributor: fullname: Zhou – volume: 57 start-page: 16072 year: 2018 end-page: 16076 ident: b0220 article-title: Constructing universal ionic sieves via alignment of two-dimensional covalent organic frameworks publication-title: Angew. Chem. Int. Ed. contributor: fullname: Hu – volume: 45 start-page: 6345 year: 2016 end-page: 6404 ident: b0275 article-title: The rise of organic electrode materials for energy storage publication-title: Chem. Soc. Rev. contributor: fullname: Seferos – volume: 11 start-page: 15881 year: 2019 end-page: 15891 ident: b0120 article-title: Porous diatomite-mixed 1,4,5,8-NTCDA nanowires as high-performance electrode materials for lithium-ion batteries publication-title: Nanoscale contributor: fullname: Zhong – volume: 38 start-page: 524 year: 2000 ident: b0260 article-title: Essentials of biophysics publication-title: Anshan contributor: fullname: Narayanan – volume: 4 start-page: 1301651 year: 2014 ident: b0185 article-title: Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries publication-title: Adv. Energy Mater. contributor: fullname: Zhang – volume: 4 start-page: 7404 year: 2014 ident: b0150 article-title: Synthesis of ordered mesoporous phenanthrenequinonecarbon via π-π interaction-dependent vapor pressure for rechargeable batteries publication-title: Sci. Rep. contributor: fullname: Lee – volume: 44 start-page: 1257 year: 2015 end-page: 1259 ident: b0245 article-title: Designed synthesis of porphyrin-based two-dimensional covalent organic frameworks with highly ordered structures publication-title: Chem. Lett. contributor: fullname: Jiang – volume: 8 start-page: 1800802 year: 2018 ident: b0035 article-title: Designing low impedance interface films simultaneously on anode and cathode for high energy batteries publication-title: Adv. Energy Mater. contributor: fullname: Li – volume: 59 start-page: 22126 year: 2020 end-page: 22131 ident: b0115 article-title: A Two-Dimensional Metal-Organic Polymer Enabled by Robust Nickel-Nitrogen and Hydrogen Bonds for Exceptional Sodium-Ion Storage publication-title: Angew. Chem. Int. Ed. contributor: fullname: Chen – volume: 10 start-page: 1904199 year: 2020 ident: b0230 article-title: Covalent-organic frameworks: advanced organic electrode materials for rechargeable batteries publication-title: Adv. Energy Mater. contributor: fullname: Zhang – volume: 13 start-page: 1568 year: 2020 end-page: 1592 ident: b0050 article-title: Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions publication-title: Energy Environ. Sci. contributor: fullname: Wang – volume: 407 start-page: 496 year: 2000 end-page: 499 ident: b0095 article-title: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries publication-title: Nature contributor: fullname: Tarascon – volume: 9 start-page: 1308 year: 2016 end-page: 1319 ident: b0020 article-title: Development of novel lithium borate additives for designed surface modification of high voltage LiNi publication-title: Energy Environ. Sci. contributor: fullname: Lucht – volume: 39 start-page: 16705 year: 2020 end-page: 16711 ident: b0165 article-title: 3D hydroxylated mxene/carbon nanotubes composite as scaffold for dendrite-free sodium-Metal electrode publication-title: Angew. Chem. Int. Ed. contributor: fullname: Chen – volume: 11 start-page: 178 year: 2020 ident: b0180 article-title: Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries publication-title: Nat. Commun. contributor: fullname: Chen – volume: 4 start-page: 9177 year: 2016 end-page: 9183 ident: b0155 article-title: Graphene wrapped 3,4,9,10-perylenetetracarboxylic dianhydride as a high-performance organic cathode for lithium ion batteries publication-title: J. Mater. Chem. A. contributor: fullname: Yuan – volume: 310 start-page: 1166 year: 2005 end-page: 1170 ident: b0195 article-title: Porous, crystalline, covalent organic frameworks publication-title: Science contributor: fullname: Yaghi – volume: 26 start-page: 8345 year: 2016 end-page: 8353 ident: b0055 article-title: Carbon nanotubes rooted in porous ternary metal sulfide@N/Sdoped carbon dodecahedron: bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries publication-title: Adv. Funct. Mater. contributor: fullname: Wang – volume: 41 start-page: 6010 year: 2012 end-page: 6022 ident: b0190 article-title: Covalent organic frameworks publication-title: Chem. Soc. Rev. contributor: fullname: Jiang – volume: 305 start-page: 968 year: 2004 end-page: 972 ident: b0005 article-title: Stabilization wedges: Solving the climate problem for the next 50 years with current technologies publication-title: Science contributor: fullname: Socolow – volume: 135 start-page: 16821 year: 2013 end-page: 16824 ident: b0270 article-title: β-ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage publication-title: J. Am. Chem. Soc. contributor: fullname: Dichtel – volume: 20 start-page: 1285 year: 2016 end-page: 1294 ident: b0105 article-title: Carboxyl-conjugated phthalocyanines used as novel electrode materials with high specific capacity for lithium-ion batteries publication-title: J. Solid State Electr. contributor: fullname: Yang – volume: 27 start-page: 35 year: 2020 end-page: 42 ident: b0225 article-title: Small amount COFs enhancing storage of large anions publication-title: Energy Stor. Mater. contributor: fullname: Wang – volume: 104 start-page: 4245 year: 2004 end-page: 4269 ident: b0010 article-title: What Are Batteries, Fuel Cells, and Supercapacitors? publication-title: Cheminform contributor: fullname: Brodd – volume: 54 start-page: 1812 year: 2015 end-page: 1816 ident: b0145 article-title: Compact coupled graphene and porous polyaryltriazine-derivedframeworks as high performance cathodes for lithium-ion batteries publication-title: Angew. Chem. Int. Ed. contributor: fullname: Feng – volume: 33 start-page: 90 year: 2014 end-page: 94 ident: b0210 article-title: Synthesis of microporous nitrogen-rich covalent-organic framework and its application in CO publication-title: Chinese J. Chem. contributor: fullname: Zhao – volume: 61 start-page: 707 year: 2018 end-page: 718 ident: b0110 article-title: High-performance of sodium carboxylate-derived materials for electrochemical energy storage publication-title: Sci. China Mater. contributor: fullname: Zhong – volume: 4 start-page: 1357 year: 2013 ident: b0265 article-title: Unprecedented high-temperature CO publication-title: Nat. Commun. contributor: fullname: Coskun – volume: 6 start-page: 52850 year: 2016 end-page: 52853 ident: b0130 article-title: Electrochemical properties of carbonyl substituted phthalocyanines as electrode materials for lithium-ion batteries publication-title: RSC Adv. contributor: fullname: Wang – volume: 57 start-page: 9443 year: 2018 end-page: 9446 ident: b0160 article-title: A microporous covalentorganic framework with abundant accessible carbonyl group for Lithium-ion batteries publication-title: Angew. Chem. Int. Ed. Engl. contributor: fullname: Chen – volume: 15 start-page: 6892 year: 2013 end-page: 6895 ident: b0250 article-title: Synthesis of a phthalocyanine 2D covalent organic framework publication-title: CrystEngComm contributor: fullname: Echegoyen – volume: 7 start-page: 2942 year: 2019 end-page: 2964 ident: b0030 article-title: Lithium-ion batteries: outlook on present, future, and hybridized technologies publication-title: J. Mater. Chem. A contributor: fullname: Qi – volume: 16 start-page: 440 year: 2016 end-page: 447 ident: b0060 article-title: Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries publication-title: Nano Lett. contributor: fullname: Wang – volume: 27 start-page: 1349 year: 2015 end-page: 1358 ident: b0205 article-title: Exceptional gas adsorption properties by nitrogen-doped porous carbons derived from benzimidazole-linked polymers publication-title: J. Mater. Chem. contributor: fullname: Kaderi – volume: 51 start-page: 5147 year: 2012 end-page: 5151 ident: b0280 article-title: How many lithium ions can be inserted onto fused C publication-title: Angew. Chem. Int. Ed. contributor: fullname: Sun – volume: 225 start-page: 117400 year: 2021 ident: b0100 article-title: Free-standing SnS/carbonized cellulose film as durable anode for lithium-ion batteries publication-title: Carbohydr. Polym. contributor: fullname: Sun – volume: 7 start-page: 13065 year: 2016 ident: b0065 article-title: A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries publication-title: Nat. Commun. contributor: fullname: Lou – volume: 5 start-page: 1700592 year: 2018 end-page: 1700616 ident: b0080 article-title: Hierarchically nanostructured transition metal oxides for lithium-ion batteries publication-title: Adv. Sci. (Weinh) contributor: fullname: Pang – volume: 53 start-page: 2637 year: 2020 end-page: 2647 ident: b0125 article-title: Designing High Performance Organic Batteries publication-title: Acc. Chem. Res. contributor: fullname: Wang – volume: 12 start-page: 8198 year: 2020 end-page: 8205 ident: b0235 article-title: Simple transformation of covalent organic frameworks to highly proton conductive electrolytes publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Chen – volume: 325 start-page: 286 year: 2016 end-page: 291 ident: b0015 article-title: 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors publication-title: J. Power Sources contributor: fullname: Wang – volume: 21 start-page: 947 year: 2016 end-page: 954 ident: b0255 article-title: Tetra-β-nitro-substituted phthalocyanines: a new organic electrode material for lithium batteries publication-title: J. Solid State Electr. contributor: fullname: Zhong – volume: 27 start-page: 1291 year: 2015 end-page: 1301 ident: b0135 article-title: Organic cathode material for lithium ion battery publication-title: Prog. Chem. contributor: fullname: Zhong – volume: 21 start-page: 947 year: 2016 ident: 10.1016/j.cej.2021.131630_b0255 article-title: Tetra-β-nitro-substituted phthalocyanines: a new organic electrode material for lithium batteries publication-title: J. Solid State Electr. doi: 10.1007/s10008-016-3419-9 contributor: fullname: Wang – volume: 44 start-page: 1257 year: 2015 ident: 10.1016/j.cej.2021.131630_b0245 article-title: Designed synthesis of porphyrin-based two-dimensional covalent organic frameworks with highly ordered structures publication-title: Chem. Lett. doi: 10.1246/cl.150496 contributor: fullname: Chen – volume: 30 start-page: 1800561 year: 2018 ident: 10.1016/j.cej.2021.131630_b0025 article-title: 30 Years of lithium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201800561 contributor: fullname: Li – volume: 9 start-page: 576 year: 2018 ident: 10.1016/j.cej.2021.131630_b0175 article-title: Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry publication-title: Nat. Commun. doi: 10.1038/s41467-018-02889-7 contributor: fullname: Lei – volume: 4 start-page: 7404 year: 2014 ident: 10.1016/j.cej.2021.131630_b0150 article-title: Synthesis of ordered mesoporous phenanthrenequinonecarbon via π-π interaction-dependent vapor pressure for rechargeable batteries publication-title: Sci. Rep. doi: 10.1038/srep07404 contributor: fullname: Kwon – volume: 15 start-page: 6892 year: 2013 ident: 10.1016/j.cej.2021.131630_b0250 article-title: Synthesis of a phthalocyanine 2D covalent organic framework publication-title: CrystEngComm doi: 10.1039/c3ce40706c contributor: fullname: Neti – volume: 51 start-page: 5147 year: 2012 ident: 10.1016/j.cej.2021.131630_b0280 article-title: How many lithium ions can be inserted onto fused C6 aromatic ring systems? publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201109187 contributor: fullname: Han – volume: 61 start-page: 707 year: 2018 ident: 10.1016/j.cej.2021.131630_b0110 article-title: High-performance of sodium carboxylate-derived materials for electrochemical energy storage publication-title: Sci. China Mater. doi: 10.1007/s40843-017-9210-1 contributor: fullname: Xu – volume: 325 start-page: 286 year: 2016 ident: 10.1016/j.cej.2021.131630_b0015 article-title: 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.037 contributor: fullname: Bao – volume: 45 start-page: 6345 year: 2016 ident: 10.1016/j.cej.2021.131630_b0275 article-title: The rise of organic electrode materials for energy storage publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00173D contributor: fullname: Schon – volume: 426 start-page: 169 year: 2019 ident: 10.1016/j.cej.2021.131630_b0240 article-title: A stable 2D nano-columnar sandwich layered phthalocyanine negative electrode for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.04.027 contributor: fullname: Chen – volume: 16 start-page: 440 year: 2016 ident: 10.1016/j.cej.2021.131630_b0060 article-title: Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04105 contributor: fullname: Jin – volume: 39 start-page: 16705 year: 2020 ident: 10.1016/j.cej.2021.131630_b0165 article-title: 3D hydroxylated mxene/carbon nanotubes composite as scaffold for dendrite-free sodium-Metal electrode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006783 contributor: fullname: He – volume: 12 start-page: 8198 year: 2020 ident: 10.1016/j.cej.2021.131630_b0235 article-title: Simple transformation of covalent organic frameworks to highly proton conductive electrolytes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b19953 contributor: fullname: Zhou – volume: 9 start-page: 1308 year: 2016 ident: 10.1016/j.cej.2021.131630_b0020 article-title: Development of novel lithium borate additives for designed surface modification of high voltage LiNi0.5Mn1.5O4 cathodes publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03360H contributor: fullname: Xu – volume: 41 start-page: 6010 year: 2012 ident: 10.1016/j.cej.2021.131630_b0190 article-title: Covalent organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35157a contributor: fullname: Feng – volume: 225 start-page: 117400 year: 2021 ident: 10.1016/j.cej.2021.131630_b0100 article-title: Free-standing SnS/carbonized cellulose film as durable anode for lithium-ion batteries publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.117400 contributor: fullname: Yuan – volume: 4 start-page: 1357 year: 2013 ident: 10.1016/j.cej.2021.131630_b0265 article-title: Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers publication-title: Nat. Commun. doi: 10.1038/ncomms2359 contributor: fullname: Patel – volume: 51 start-page: 89 year: 2018 ident: 10.1016/j.cej.2021.131630_b0090 article-title: Electrochemical characteristics of layered transition metal oxide cathode materials for lithium ion batteries: surface, bulk behavior, and thermal properties publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00520 contributor: fullname: Tian – volume: 26 start-page: 8345 year: 2016 ident: 10.1016/j.cej.2021.131630_b0055 article-title: Carbon nanotubes rooted in porous ternary metal sulfide@N/Sdoped carbon dodecahedron: bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601631 contributor: fullname: Li – volume: 11 start-page: 15881 year: 2019 ident: 10.1016/j.cej.2021.131630_b0120 article-title: Porous diatomite-mixed 1,4,5,8-NTCDA nanowires as high-performance electrode materials for lithium-ion batteries publication-title: Nanoscale doi: 10.1039/C9NR06186J contributor: fullname: Xu – volume: 11 start-page: 178 year: 2020 ident: 10.1016/j.cej.2021.131630_b0180 article-title: Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries publication-title: Nat. Commun. doi: 10.1038/s41467-019-13739-5 contributor: fullname: Shi – volume: 27 start-page: 35 year: 2020 ident: 10.1016/j.cej.2021.131630_b0225 article-title: Small amount COFs enhancing storage of large anions publication-title: Energy Stor. Mater. contributor: fullname: Tang – ident: 10.1016/j.cej.2021.131630_b0045 doi: 10.1016/j.ensm.2020.09.007 – volume: 7 start-page: 2942 year: 2019 ident: 10.1016/j.cej.2021.131630_b0030 article-title: Lithium-ion batteries: outlook on present, future, and hybridized technologies publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10513H contributor: fullname: Kim – volume: 4 start-page: 1301651 year: 2014 ident: 10.1016/j.cej.2021.131630_b0185 article-title: Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301651 contributor: fullname: Wang – volume: 4 start-page: 9177 year: 2016 ident: 10.1016/j.cej.2021.131630_b0155 article-title: Graphene wrapped 3,4,9,10-perylenetetracarboxylic dianhydride as a high-performance organic cathode for lithium ion batteries publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA02880B contributor: fullname: Cui – volume: 6 start-page: 52850 year: 2016 ident: 10.1016/j.cej.2021.131630_b0130 article-title: Electrochemical properties of carbonyl substituted phthalocyanines as electrode materials for lithium-ion batteries publication-title: RSC Adv. doi: 10.1039/C6RA09826F contributor: fullname: Chen – volume: 57 start-page: 16072 year: 2018 ident: 10.1016/j.cej.2021.131630_b0220 article-title: Constructing universal ionic sieves via alignment of two-dimensional covalent organic frameworks publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201809907 contributor: fullname: Jiang – volume: 8 start-page: 1800802 year: 2018 ident: 10.1016/j.cej.2021.131630_b0035 article-title: Designing low impedance interface films simultaneously on anode and cathode for high energy batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800802 contributor: fullname: Liao – volume: 22 start-page: 3680 year: 2012 ident: 10.1016/j.cej.2021.131630_b0085 article-title: Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries publication-title: J. Mater. Chem. doi: 10.1039/c2jm14305d contributor: fullname: He – volume: 24 start-page: 5112 year: 2014 ident: 10.1016/j.cej.2021.131630_b0040 article-title: Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: towards better electrochemical performance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400436 contributor: fullname: Li – volume: 10 start-page: 1904199 year: 2020 ident: 10.1016/j.cej.2021.131630_b0230 article-title: Covalent-organic frameworks: advanced organic electrode materials for rechargeable batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201904199 contributor: fullname: Sun – volume: 3 start-page: 429 year: 2016 ident: 10.1016/j.cej.2021.131630_b0140 article-title: Polyquinoneimines for lithium storage: more than the sum of its parts publication-title: Mater. Horiz. doi: 10.1039/C6MH00072J contributor: fullname: Tian – volume: 39 start-page: 5197 year: 2006 ident: 10.1016/j.cej.2021.131630_b0170 article-title: Polymer nanocomposites containing carbon nanotubes publication-title: Macromolecules doi: 10.1021/ma060733p contributor: fullname: Moniruzzaman – volume: 59 start-page: 22126 year: 2020 ident: 10.1016/j.cej.2021.131630_b0115 article-title: A Two-Dimensional Metal-Organic Polymer Enabled by Robust Nickel-Nitrogen and Hydrogen Bonds for Exceptional Sodium-Ion Storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202008726 contributor: fullname: Wang – volume: 407 start-page: 496 year: 2000 ident: 10.1016/j.cej.2021.131630_b0095 article-title: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries publication-title: Nature doi: 10.1038/35035045 contributor: fullname: Poizot – volume: 13 start-page: 1568 year: 2020 ident: 10.1016/j.cej.2021.131630_b0050 article-title: Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03637G contributor: fullname: Rajagopalan – volume: 135 start-page: 16821 year: 2013 ident: 10.1016/j.cej.2021.131630_b0270 article-title: β-ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409421d contributor: fullname: DeBlase – volume: 7 start-page: 13065 year: 2016 ident: 10.1016/j.cej.2021.131630_b0065 article-title: A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries publication-title: Nat. Commun. doi: 10.1038/ncomms13065 contributor: fullname: Li – volume: 115 start-page: 12120 year: 2011 ident: 10.1016/j.cej.2021.131630_b0075 article-title: Electrochemical windows of sulfonebased electrolytes for high-voltage Li-ion batteries publication-title: J. Phys. Chem. B doi: 10.1021/jp204401t contributor: fullname: Shao – volume: 54 start-page: 1812 year: 2015 ident: 10.1016/j.cej.2021.131630_b0145 article-title: Compact coupled graphene and porous polyaryltriazine-derivedframeworks as high performance cathodes for lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410154 contributor: fullname: Su – volume: 20 start-page: 1285 year: 2016 ident: 10.1016/j.cej.2021.131630_b0105 article-title: Carboxyl-conjugated phthalocyanines used as novel electrode materials with high specific capacity for lithium-ion batteries publication-title: J. Solid State Electr. doi: 10.1007/s10008-016-3126-6 contributor: fullname: Chen – volume: 5 start-page: 1700592 year: 2018 ident: 10.1016/j.cej.2021.131630_b0080 article-title: Hierarchically nanostructured transition metal oxides for lithium-ion batteries publication-title: Adv. Sci. (Weinh) doi: 10.1002/advs.201700592 contributor: fullname: Zheng – volume: 27 start-page: 1291 year: 2015 ident: 10.1016/j.cej.2021.131630_b0135 article-title: Organic cathode material for lithium ion battery publication-title: Prog. Chem. contributor: fullname: Chen – volume: 350 start-page: 62 year: 2015 ident: 10.1016/j.cej.2021.131630_b0070 article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage publication-title: Science doi: 10.1126/science.aab3798 contributor: fullname: Lin – volume: 33 start-page: 90 year: 2014 ident: 10.1016/j.cej.2021.131630_b0210 article-title: Synthesis of microporous nitrogen-rich covalent-organic framework and its application in CO2 capture publication-title: Chinese J. Chem. doi: 10.1002/cjoc.201400550 contributor: fullname: Gao – volume: 27 start-page: 1349 year: 2015 ident: 10.1016/j.cej.2021.131630_b0205 article-title: Exceptional gas adsorption properties by nitrogen-doped porous carbons derived from benzimidazole-linked polymers publication-title: J. Mater. Chem. doi: 10.1021/cm504435m contributor: fullname: Ashourirad – volume: 104 start-page: 4245 year: 2004 ident: 10.1016/j.cej.2021.131630_b0010 article-title: What Are Batteries, Fuel Cells, and Supercapacitors? publication-title: Cheminform contributor: fullname: Winter – volume: 305 start-page: 968 year: 2004 ident: 10.1016/j.cej.2021.131630_b0005 article-title: Stabilization wedges: Solving the climate problem for the next 50 years with current technologies publication-title: Science doi: 10.1126/science.1100103 contributor: fullname: Pacala – volume: 19 start-page: 3324 year: 2013 ident: 10.1016/j.cej.2021.131630_b0200 article-title: A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications publication-title: Chem. Eur. J. doi: 10.1002/chem.201203753 contributor: fullname: Rabbani – volume: 38 start-page: 524 year: 2000 ident: 10.1016/j.cej.2021.131630_b0260 article-title: Essentials of biophysics publication-title: Anshan contributor: fullname: Narayanan – volume: 53 start-page: 2637 year: 2020 ident: 10.1016/j.cej.2021.131630_b0125 article-title: Designing High Performance Organic Batteries publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00465 contributor: fullname: Chen – volume: 57 start-page: 9443 year: 2018 ident: 10.1016/j.cej.2021.131630_b0160 article-title: A microporous covalentorganic framework with abundant accessible carbonyl group for Lithium-ion batteries publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201805540 contributor: fullname: Luo – volume: 310 start-page: 1166 year: 2005 ident: 10.1016/j.cej.2021.131630_b0195 article-title: Porous, crystalline, covalent organic frameworks publication-title: Science doi: 10.1126/science.1120411 contributor: fullname: Côté – volume: 20 start-page: 15961 year: 2014 ident: 10.1016/j.cej.2021.131630_b0215 article-title: A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production publication-title: Chem. Eur. J. doi: 10.1002/chem.201403800 contributor: fullname: Thote |
SSID | ssj0006919 |
Score | 2.6073341 |
Snippet | Phthalocyanine-based covalent organic frameworks (NA-NiPc, PPDA-NiPc and DAB-NiPc) with different pore sizes are synthesized by a catalyst-free coupling... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 131630 |
SubjectTerms | Covalent organic frameworks Energy storage Lithium/Sodium ion batteries Organic electrode Phthalocyanine |
Title | Phthalocyanine-based covalent organic frameworks as novel anode materials for high-performance lithium-ion/sodium-ion batteries |
URI | https://dx.doi.org/10.1016/j.cej.2021.131630 |
Volume | 425 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qvehBfOKbHDwJabO76e7mKMVSLYr4wN6WvJZWdLfYKnjRv-5kH1pBL552N2Rg-ZLMfJOZTACOYuYbpv2YIjuIKQ9xzQkVhVRGkgkWauEptzVwcRn27_j5sDNsQLc-C-PSKivdX-r0QltXLe0KzfZkPG7feC6mJTi6MCxANyZYgMUiSNSExZOzQf_ySyGHorjfw_WnTqAObhZpXto-oJfoey0vQGrCfjdPcyantworFVckJ-XvrEHDZuuwPFdBcAM-rkazkUSD9CYzbKXOKBmic5w_aE1IeWeTJmmdgjUlckqy_NU-EpnlxhIkrOUcJMheiSteTCffZwkIkvTR-OWJ4ui1p7mpXokqqnKik70Jd73T226fVncqUO2LaEZtkErGZWxUFLOAGxOmxsaKS66DwPjuGKpIrdIaF2bAUikjK2Jf-Gka2Y7EPlvQzPLMbgORaP2V4sjhRAflQ_Q1pYotgmiZlUztwHENZTIpS2ckdU7ZQ4K4Jw73pMR9B3gNdvJj_BNU7X-L7f5PbA-W3FeZlrIPzdnziz1AcjFTh7DQevcOqynknoPr-8EncATRoQ |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61PagH8Yn1mYMnITbdTXc3x1IsrX0g2EJvS15LW3S32Fbw5F93sg-toBdvSzYDy5fJzDebmQlCNwF1NFVOQIAdBIR5sOe49D0ifEE59RSvS_trYDD0OmP2MGlMSqhV1MLYtMrc9mc2PbXW-UgtR7O2mM1qT3V7psUZhDDUhTDG3UIVYAMclL3S7PY6wy-D7PH0fg87n1iB4nAzTfNSZg5RolO_q7tATejv7mnD5bT30V7OFXEz-5wDVDLxIdrd6CB4hD4ep6upAIf0LmIYJdYpaawS0B_wJji7s0nhqEjBWmKxxHHyZp6xiBNtMBDWTAcxsFdsmxeTxXctAQaSPp2tXwisXm2Z6PwRy7QrJwTZx2jcvh-1OiS_U4Eoh_srYtxIUCYCLf2AukxrL9ImkEww5brasWWoPDJSKdiYLo2E8A0PHO5EkW8aAuacoHKcxOYUYQHeX0oGHI43QN6DWFPIwACIhhpBZRXdFlCGi6x1RljklM1DwD20uIcZ7lXECrDDH-sfgmn_W-zsf2LXaLszGvTDfnfYO0c79k2WonKByqvXtbkEorGSV7kifQILP9H7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phthalocyanine-based+covalent+organic+frameworks+as+novel+anode+materials+for+high-performance+lithium-ion%2Fsodium-ion+batteries&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhao%2C+Jianjun&rft.au=Zhou%2C+Miaomiao&rft.au=Chen%2C+Jun&rft.au=Tao%2C+Lihong&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=425&rft_id=info:doi/10.1016%2Fj.cej.2021.131630&rft.externalDocID=S1385894721032113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |