A lifted-space dynamic programming algorithm for the Quadratic Knapsack Problem

The Quadratic Knapsack Problem (QKP) is a well-known combinatorial optimization problem which amounts to maximizing a quadratic function of binary variables, subject to a single linear constraint. It has many applications in finance, logistics, telecommunications, facility location, etc. The QKP is...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Applied Mathematics Vol. 335; pp. 52 - 68
Main Author Djeumou Fomeni, Franklin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Quadratic Knapsack Problem (QKP) is a well-known combinatorial optimization problem which amounts to maximizing a quadratic function of binary variables, subject to a single linear constraint. It has many applications in finance, logistics, telecommunications, facility location, etc. The QKP is NP-hard in the strong sense and the state-of-the-art algorithm for solving the QKP can only handle problems of small and moderate sizes. In this paper, we present a novel deterministic heuristic algorithm for finding good QKP feasible solutions. This algorithm consists of combining the dynamic programming approach with a local search procedure, with the novelty that both are adapted and implemented in the space of lifted variables of the QKP. The algorithm runs in O(n3c) time and is able to find optimal solutions to more than 97% of standard instances, about 80% of some well-known hard QKP instances, as well as optimality gaps of 0.1% or less for other instances.
AbstractList The Quadratic Knapsack Problem (QKP) is a well-known combinatorial optimization problem which amounts to maximizing a quadratic function of binary variables, subject to a single linear constraint. It has many applications in finance, logistics, telecommunications, facility location, etc. The QKP is NP-hard in the strong sense and the state-of-the-art algorithm for solving the QKP can only handle problems of small and moderate sizes. In this paper, we present a novel deterministic heuristic algorithm for finding good QKP feasible solutions. This algorithm consists of combining the dynamic programming approach with a local search procedure, with the novelty that both are adapted and implemented in the space of lifted variables of the QKP. The algorithm runs in O(n3c) time and is able to find optimal solutions to more than 97% of standard instances, about 80% of some well-known hard QKP instances, as well as optimality gaps of 0.1% or less for other instances.
Author Djeumou Fomeni, Franklin
Author_xml – sequence: 1
  givenname: Franklin
  surname: Djeumou Fomeni
  fullname: Djeumou Fomeni, Franklin
  email: Djeumou_Fomeni.Franklin@uqam.ca
  organization: GERAD, CIRRELT & Department of Analytics, Operations and Information Technologies (AOTI), University of Quebec in Montreal, Canada
BookMark eNp9kNtKAzEQhoNUsK0-gHd5gV1z6J7wqhRPWKiCgnchm0za1N3NkkShb2-KXnnRq2GY_xtmvhmaDG4AhK4pySmh5c0-17LPGWE8JywnhJ-hKa0rlpVVRSdomjJlxmj9cYFmIewJITR1U7RZ4s6aCDoLo1SA9WGQvVV49G7rZd_bYYtlt3Xexl2PjfM47gC_fkntZUy550GOQapP_OJd20F_ic6N7AJc_dU5er-_e1s9ZuvNw9Nquc4Ua6qYAV1IqplJtze8qReStQXn2kimirZoNLC6pbwmBeElJQraumC6roxpIA0043NU_e5V3oXgwQhlY7rIDdFL2wlKxNGL2IvkRRy9CMJE8pJI-o8cve2lP5xkbn8ZSC99W_AiKAuDAm09qCi0syfoH_IKfX4
CitedBy_id crossref_primary_10_1016_j_ejor_2024_12_032
crossref_primary_10_3390_electronics12214547
crossref_primary_10_1016_j_ejor_2024_12_019
crossref_primary_10_1016_j_ejor_2024_06_034
Cites_doi 10.1007/s10589-015-9763-3
10.1287/opre.22.1.180
10.1287/opre.28.5.1130
10.1016/S0167-6377(02)00122-0
10.1287/ijoc.2015.0678
10.1016/j.cor.2016.08.006
10.1016/j.orl.2016.05.005
10.1016/0377-2217(94)00229-0
10.1016/S0377-2217(03)00244-3
10.1023/A:1009898604624
10.1287/ijoc.1030.0029
10.1007/BFb0120892
10.1016/j.ejor.2016.06.013
10.1016/j.swevo.2015.09.005
10.1002/(SICI)1098-2418(199810/12)13:3/4<457::AID-RSA14>3.0.CO;2-W
10.1023/A:1009841107478
10.1137/S0097539705447037
10.1007/s00186-020-00702-0
10.1287/ijoc.2013.0555
10.1287/ijoc.1050.0172
10.1287/ijoc.11.2.125
10.1016/j.dam.2006.08.007
10.1016/j.ejor.2019.08.027
10.1007/s00453-008-9248-1
10.1016/j.endm.2014.11.035
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.dam.2023.02.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 68
ExternalDocumentID 10_1016_j_dam_2023_02_003
S0166218X23000422
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
ID FETCH-LOGICAL-c297t-e14a1d2f10193984a2b533dfa2c5b59de28b1380503610ceb852d87ff9e8b1d23
IEDL.DBID .~1
ISSN 0166-218X
IngestDate Tue Jul 01 01:43:14 EDT 2025
Thu Apr 24 23:07:17 EDT 2025
Sat May 20 23:43:24 EDT 2023
IsPeerReviewed true
IsScholarly true
Keywords Integer programming
Local search
Knapsack problems
Binary quadratic optimization
Dynamic programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-e14a1d2f10193984a2b533dfa2c5b59de28b1380503610ceb852d87ff9e8b1d23
PageCount 17
ParticipantIDs crossref_citationtrail_10_1016_j_dam_2023_02_003
crossref_primary_10_1016_j_dam_2023_02_003
elsevier_sciencedirect_doi_10_1016_j_dam_2023_02_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-15
PublicationDateYYYYMMDD 2023-08-15
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Discrete Applied Mathematics
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kellerer, Strusevich (b24) 2010; 57
Glover, Kochenberger (b18) 2002
Fomeni, Letchford (b16) 2014; 26
Alon, Krivelevich, Sudakov (b2) 1998; 13
Fomeni, Kaparis, Letchford (b15) 2022; 44
Kellerer, Pferschy, Pisinger (b23) 2004
Billionet, Soutif (b8) 2004; 16
Fampa, Lubke, Wang, Wolkowicz (b14) 2020; 281
Taylor (b35) 2016; 44
Pisinger, Rasmussen, Sandvik (b30) 2007; 19
Balas, Zemel (b3) 1980; 28
Billionet, Calmels (b6) 1996; 92
P. Chaillou, P. Hansen, Y. Mahieu, Best network flow bound for the quadratic knapsack problem, in: Presented at the International Workshop on Network Flow Optimization, NETFLOW, Pisa, Italy, 1983.
Khot (b25) 2006; 36
Billionet, Soutif (b7) 2004; 157
Pisinger (b29) 2007; 155
Gu, Nemhauser, Savelsbergh (b20) 2000; 4
Karp (b22) 1972
Caprara, Pisinger, Toth (b10) 1998; 11
Chen, Hao (b12) 2017; 77
Bellman (b4) 1957
Cacchiani, Iori, Locatelli, Martello (b9) 2022
Cunha, Lucena (b13) 2016; 63
Gallo, Hammer, Simeone (b17) 1980; 12
Helmberg, Rendl, Weismantel (b21) 2000; 4
Toumi, Cheikh, Jarboui (b36) 2015; 47
Glover, Woolsey (b19) 1974; 22
Rader, Woeginger (b32) 2002; 30
Schauer (b33) 2016; 255
Pferschy, Schauer (b28) 2016; 28
Bhaskara, Charikar, Chlamtac, Feige, Vijayaraghavan (b5) 2010
Patvardhan, Bansal, Srivastav (b27) 2016; 26
Schulze, Stiglmayr, Paquete, Fonseca, Willems, Ruzika (b34) 2020; 92
Alon, Arora, Manokaran, Moshkovitz, Weinstein (b1) 2011
Martello, Toth (b26) 1990
Rader (b31) 1997
Pisinger (10.1016/j.dam.2023.02.003_b29) 2007; 155
Gu (10.1016/j.dam.2023.02.003_b20) 2000; 4
Helmberg (10.1016/j.dam.2023.02.003_b21) 2000; 4
Alon (10.1016/j.dam.2023.02.003_b2) 1998; 13
Schulze (10.1016/j.dam.2023.02.003_b34) 2020; 92
Cunha (10.1016/j.dam.2023.02.003_b13) 2016; 63
Billionet (10.1016/j.dam.2023.02.003_b6) 1996; 92
Bellman (10.1016/j.dam.2023.02.003_b4) 1957
Bhaskara (10.1016/j.dam.2023.02.003_b5) 2010
Karp (10.1016/j.dam.2023.02.003_b22) 1972
Patvardhan (10.1016/j.dam.2023.02.003_b27) 2016; 26
Kellerer (10.1016/j.dam.2023.02.003_b24) 2010; 57
Fomeni (10.1016/j.dam.2023.02.003_b15) 2022; 44
Pisinger (10.1016/j.dam.2023.02.003_b30) 2007; 19
Balas (10.1016/j.dam.2023.02.003_b3) 1980; 28
Caprara (10.1016/j.dam.2023.02.003_b10) 1998; 11
10.1016/j.dam.2023.02.003_b11
Glover (10.1016/j.dam.2023.02.003_b19) 1974; 22
Fomeni (10.1016/j.dam.2023.02.003_b16) 2014; 26
Gallo (10.1016/j.dam.2023.02.003_b17) 1980; 12
Schauer (10.1016/j.dam.2023.02.003_b33) 2016; 255
Pferschy (10.1016/j.dam.2023.02.003_b28) 2016; 28
Chen (10.1016/j.dam.2023.02.003_b12) 2017; 77
Khot (10.1016/j.dam.2023.02.003_b25) 2006; 36
Billionet (10.1016/j.dam.2023.02.003_b7) 2004; 157
Toumi (10.1016/j.dam.2023.02.003_b36) 2015; 47
Kellerer (10.1016/j.dam.2023.02.003_b23) 2004
Taylor (10.1016/j.dam.2023.02.003_b35) 2016; 44
Glover (10.1016/j.dam.2023.02.003_b18) 2002
Rader (10.1016/j.dam.2023.02.003_b31) 1997
Rader (10.1016/j.dam.2023.02.003_b32) 2002; 30
Alon (10.1016/j.dam.2023.02.003_b1) 2011
Billionet (10.1016/j.dam.2023.02.003_b8) 2004; 16
Cacchiani (10.1016/j.dam.2023.02.003_b9) 2022
Martello (10.1016/j.dam.2023.02.003_b26) 1990
Fampa (10.1016/j.dam.2023.02.003_b14) 2020; 281
References_xml – volume: 26
  start-page: 173
  year: 2014
  end-page: 183
  ident: b16
  article-title: A dynamic programming heuristic for the quadratic knapsack problem
  publication-title: INFORMS J. Comput.
– volume: 4
  start-page: 197
  year: 2000
  end-page: 215
  ident: b21
  article-title: A semidefinite programming approach to the quadratic knapsack problem
  publication-title: J. Comb. Optim.
– volume: 155
  start-page: 623
  year: 2007
  end-page: 648
  ident: b29
  article-title: The quadratic knapsack problem–a survey
  publication-title: Discrete and Applied Mathematics
– volume: 36
  start-page: 1025
  year: 2006
  end-page: 1071
  ident: b25
  article-title: Ruling out PTAS for graph min-bisection, dense
  publication-title: SIAM J. Comput.
– volume: 281
  start-page: 36
  year: 2020
  end-page: 49
  ident: b14
  article-title: Parametric convex quadratic relaxation of the quadratic knapsack
  publication-title: European J. Oper. Res.
– volume: 92
  start-page: 107
  year: 2020
  end-page: 132
  ident: b34
  article-title: On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem
  publication-title: Math. Methods Oper. Res.
– year: 2011
  ident: b1
  article-title: Inapproximabilty of Densest k-Subgraph from Average Case Hardness
– volume: 77
  start-page: 226
  year: 2017
  end-page: 239
  ident: b12
  article-title: An iterated “hyperplane exploration” approach for the quadratic knapsack problem
  publication-title: Comput. Oper. Res.
– volume: 44
  year: 2022
  ident: b15
  article-title: A cut-and-branch algorithm for the quadratic knapsack problem
  publication-title: Discrete Optim.
– year: 2022
  ident: b9
  article-title: Knapsack problems–An overview of recent advances, Part II: Multiple, multidimensional, and quadratic knapsack problems
  publication-title: Comput. Oper. Res.
– volume: 28
  start-page: 1130
  year: 1980
  end-page: 1154
  ident: b3
  article-title: An algorithm for large zero-one knapsack problems
  publication-title: Oper. Res.
– volume: 47
  start-page: 269
  year: 2015
  end-page: 276
  ident: b36
  article-title: 0–1 quadratic knapsack problem solved with VNS algorithm
  publication-title: Electron. Notes Discrete Math.
– volume: 92
  start-page: 310
  year: 1996
  end-page: 325
  ident: b6
  article-title: Linear programming for the quadratic knapsack problem
  publication-title: European J. Oper. Res.
– volume: 63
  start-page: 97
  year: 2016
  end-page: 120
  ident: b13
  article-title: Lagrangian heuristics for the quadratic knapsack problem
  publication-title: Comput. Optim. Appl.
– volume: 28
  start-page: 308
  year: 2016
  end-page: 318
  ident: b28
  article-title: Approximation of the quadratic knapsack problem
  publication-title: INFORMS J. Comput.
– volume: 57
  start-page: 769
  year: 2010
  end-page: 795
  ident: b24
  article-title: Fully polynomial approximation schemes for a symmetric quadratic knapsack problem and its scheduling applications
  publication-title: Algorithmica
– start-page: 85
  year: 1972
  end-page: 103
  ident: b22
  article-title: Reducibility among combinatorial problems
  publication-title: Complexity of Computer Computations
– year: 2010
  ident: b5
  article-title: Detecting high log-densities: an
  publication-title: Proceedings of the 42nd ACM Symposium on Theory of Computing
– volume: 4
  start-page: 109
  year: 2000
  end-page: 129
  ident: b20
  article-title: Sequence–independent lifting in mixed integer programming
  publication-title: J. Comb. Optim.
– volume: 255
  start-page: 357
  year: 2016
  end-page: 363
  ident: b33
  article-title: Asymptotic behavior of the quadratic knapsack problem
  publication-title: European J. Oper. Res.
– year: 1957
  ident: b4
  article-title: Dynamic Programming
– year: 1997
  ident: b31
  article-title: Lifting Results for the Quadratic 0–1 Knapsack Polytope
– volume: 44
  start-page: 495
  year: 2016
  end-page: 497
  ident: b35
  article-title: Approximation of the quadratic knapsack problem
  publication-title: Oper. Res. Lett.
– volume: 11
  start-page: 125
  year: 1998
  end-page: 137
  ident: b10
  article-title: Exact solution of the quadratic knapsack problem
  publication-title: INFORMS J. Comput.
– volume: 13
  start-page: 457
  year: 1998
  end-page: 466
  ident: b2
  article-title: Finding a large hidden clique in a random graph
  publication-title: Random Struct. Algorithms
– volume: 12
  start-page: 132
  year: 1980
  end-page: 149
  ident: b17
  article-title: Quadratic knapsack problems
  publication-title: Math. Program. Stud.
– year: 2002
  ident: b18
  article-title: Solving quadratic knapsack problems by reformulation and tabu search, single constraint case
  publication-title: Combinatorial and Global Optimization, Vol. 14
– volume: 22
  start-page: 180
  year: 1974
  end-page: 182
  ident: b19
  article-title: Converting the 0–1 polynomial programming problem to a 0–1 linear program
  publication-title: Oper. Res.
– volume: 26
  start-page: 175
  year: 2016
  end-page: 190
  ident: b27
  article-title: Parallel improved quantum inspired evolutionary algorithm to solve large size quadratic knapsack problems
  publication-title: Swarm Evol. Comput.
– volume: 157
  start-page: 565
  year: 2004
  end-page: 575
  ident: b7
  article-title: An exact method based on Lagrangian decompositionfor the 0–1 quadratic knapsack problem
  publication-title: European J. Oper. Res.
– volume: 16
  start-page: 188
  year: 2004
  end-page: 197
  ident: b8
  article-title: Using a mixed integer programming tool for solving the 0–1 quadratic knapsack problem
  publication-title: INFORMS J. Comput.
– year: 2004
  ident: b23
  article-title: Knapsack Problems
– year: 1990
  ident: b26
  article-title: Knapsack Problems: Algorithms and Computer Implementations
– volume: 30
  start-page: 159
  year: 2002
  end-page: 166
  ident: b32
  article-title: The quadratic 0–1 knapsack problem with series–parallel support
  publication-title: Oper. Res. Lett.
– reference: P. Chaillou, P. Hansen, Y. Mahieu, Best network flow bound for the quadratic knapsack problem, in: Presented at the International Workshop on Network Flow Optimization, NETFLOW, Pisa, Italy, 1983.
– volume: 19
  start-page: 280
  year: 2007
  end-page: 290
  ident: b30
  article-title: Solution of large quadratic knapsack problems through aggressive reduction
  publication-title: INFORMS J. Comput.
– year: 1957
  ident: 10.1016/j.dam.2023.02.003_b4
– year: 2010
  ident: 10.1016/j.dam.2023.02.003_b5
  article-title: Detecting high log-densities: an O(n1/4) approximation for densest k-subgraph
– volume: 63
  start-page: 97
  year: 2016
  ident: 10.1016/j.dam.2023.02.003_b13
  article-title: Lagrangian heuristics for the quadratic knapsack problem
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-015-9763-3
– year: 2011
  ident: 10.1016/j.dam.2023.02.003_b1
– volume: 22
  start-page: 180
  year: 1974
  ident: 10.1016/j.dam.2023.02.003_b19
  article-title: Converting the 0–1 polynomial programming problem to a 0–1 linear program
  publication-title: Oper. Res.
  doi: 10.1287/opre.22.1.180
– volume: 28
  start-page: 1130
  year: 1980
  ident: 10.1016/j.dam.2023.02.003_b3
  article-title: An algorithm for large zero-one knapsack problems
  publication-title: Oper. Res.
  doi: 10.1287/opre.28.5.1130
– volume: 30
  start-page: 159
  year: 2002
  ident: 10.1016/j.dam.2023.02.003_b32
  article-title: The quadratic 0–1 knapsack problem with series–parallel support
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(02)00122-0
– ident: 10.1016/j.dam.2023.02.003_b11
– volume: 28
  start-page: 308
  year: 2016
  ident: 10.1016/j.dam.2023.02.003_b28
  article-title: Approximation of the quadratic knapsack problem
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2015.0678
– year: 1997
  ident: 10.1016/j.dam.2023.02.003_b31
– year: 2002
  ident: 10.1016/j.dam.2023.02.003_b18
  article-title: Solving quadratic knapsack problems by reformulation and tabu search, single constraint case
– year: 1990
  ident: 10.1016/j.dam.2023.02.003_b26
– year: 2022
  ident: 10.1016/j.dam.2023.02.003_b9
  article-title: Knapsack problems–An overview of recent advances, Part II: Multiple, multidimensional, and quadratic knapsack problems
  publication-title: Comput. Oper. Res.
– volume: 77
  start-page: 226
  year: 2017
  ident: 10.1016/j.dam.2023.02.003_b12
  article-title: An iterated “hyperplane exploration” approach for the quadratic knapsack problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.08.006
– volume: 44
  start-page: 495
  year: 2016
  ident: 10.1016/j.dam.2023.02.003_b35
  article-title: Approximation of the quadratic knapsack problem
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2016.05.005
– volume: 92
  start-page: 310
  year: 1996
  ident: 10.1016/j.dam.2023.02.003_b6
  article-title: Linear programming for the quadratic knapsack problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/0377-2217(94)00229-0
– volume: 157
  start-page: 565
  year: 2004
  ident: 10.1016/j.dam.2023.02.003_b7
  article-title: An exact method based on Lagrangian decompositionfor the 0–1 quadratic knapsack problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/S0377-2217(03)00244-3
– volume: 44
  year: 2022
  ident: 10.1016/j.dam.2023.02.003_b15
  article-title: A cut-and-branch algorithm for the quadratic knapsack problem
  publication-title: Discrete Optim.
– volume: 4
  start-page: 197
  year: 2000
  ident: 10.1016/j.dam.2023.02.003_b21
  article-title: A semidefinite programming approach to the quadratic knapsack problem
  publication-title: J. Comb. Optim.
  doi: 10.1023/A:1009898604624
– year: 2004
  ident: 10.1016/j.dam.2023.02.003_b23
– volume: 16
  start-page: 188
  year: 2004
  ident: 10.1016/j.dam.2023.02.003_b8
  article-title: Using a mixed integer programming tool for solving the 0–1 quadratic knapsack problem
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1030.0029
– volume: 12
  start-page: 132
  year: 1980
  ident: 10.1016/j.dam.2023.02.003_b17
  article-title: Quadratic knapsack problems
  publication-title: Math. Program. Stud.
  doi: 10.1007/BFb0120892
– volume: 255
  start-page: 357
  year: 2016
  ident: 10.1016/j.dam.2023.02.003_b33
  article-title: Asymptotic behavior of the quadratic knapsack problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2016.06.013
– volume: 26
  start-page: 175
  year: 2016
  ident: 10.1016/j.dam.2023.02.003_b27
  article-title: Parallel improved quantum inspired evolutionary algorithm to solve large size quadratic knapsack problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.09.005
– volume: 13
  start-page: 457
  year: 1998
  ident: 10.1016/j.dam.2023.02.003_b2
  article-title: Finding a large hidden clique in a random graph
  publication-title: Random Struct. Algorithms
  doi: 10.1002/(SICI)1098-2418(199810/12)13:3/4<457::AID-RSA14>3.0.CO;2-W
– volume: 4
  start-page: 109
  year: 2000
  ident: 10.1016/j.dam.2023.02.003_b20
  article-title: Sequence–independent lifting in mixed integer programming
  publication-title: J. Comb. Optim.
  doi: 10.1023/A:1009841107478
– start-page: 85
  year: 1972
  ident: 10.1016/j.dam.2023.02.003_b22
  article-title: Reducibility among combinatorial problems
– volume: 36
  start-page: 1025
  year: 2006
  ident: 10.1016/j.dam.2023.02.003_b25
  article-title: Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539705447037
– volume: 92
  start-page: 107
  year: 2020
  ident: 10.1016/j.dam.2023.02.003_b34
  article-title: On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-020-00702-0
– volume: 26
  start-page: 173
  year: 2014
  ident: 10.1016/j.dam.2023.02.003_b16
  article-title: A dynamic programming heuristic for the quadratic knapsack problem
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2013.0555
– volume: 19
  start-page: 280
  year: 2007
  ident: 10.1016/j.dam.2023.02.003_b30
  article-title: Solution of large quadratic knapsack problems through aggressive reduction
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1050.0172
– volume: 11
  start-page: 125
  year: 1998
  ident: 10.1016/j.dam.2023.02.003_b10
  article-title: Exact solution of the quadratic knapsack problem
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.11.2.125
– volume: 155
  start-page: 623
  year: 2007
  ident: 10.1016/j.dam.2023.02.003_b29
  article-title: The quadratic knapsack problem–a survey
  publication-title: Discrete and Applied Mathematics
  doi: 10.1016/j.dam.2006.08.007
– volume: 281
  start-page: 36
  year: 2020
  ident: 10.1016/j.dam.2023.02.003_b14
  article-title: Parametric convex quadratic relaxation of the quadratic knapsack
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2019.08.027
– volume: 57
  start-page: 769
  year: 2010
  ident: 10.1016/j.dam.2023.02.003_b24
  article-title: Fully polynomial approximation schemes for a symmetric quadratic knapsack problem and its scheduling applications
  publication-title: Algorithmica
  doi: 10.1007/s00453-008-9248-1
– volume: 47
  start-page: 269
  year: 2015
  ident: 10.1016/j.dam.2023.02.003_b36
  article-title: 0–1 quadratic knapsack problem solved with VNS algorithm
  publication-title: Electron. Notes Discrete Math.
  doi: 10.1016/j.endm.2014.11.035
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.4061065
Snippet The Quadratic Knapsack Problem (QKP) is a well-known combinatorial optimization problem which amounts to maximizing a quadratic function of binary variables,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 52
SubjectTerms Binary quadratic optimization
Dynamic programming
Integer programming
Knapsack problems
Local search
Title A lifted-space dynamic programming algorithm for the Quadratic Knapsack Problem
URI https://dx.doi.org/10.1016/j.dam.2023.02.003
Volume 335
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvODB-IxPsgdPJivt7pbuHgmRoATUKAm3ZtvtKgqFQLn6253tAzFRDx77mKb9Mpn5ujvzDUKX0gg_UowSxZVDuNSUSJ6VWBk74sRoru06ZH_Q7A753cgbVVC77IWxZZVF7M9jehatizONAs3GfDxuPAFZaUKCGgGJzpSsbAc7962XX3-4GxJSVh-tVi66fO0xQK7lhfJ3k9jnlHueWfWXVrZNnbJc0JP9nLU2MlFnF-0UFBK38rfcQ5U42Ufb_bX-6vIA3bfwZGyATBIIGFGMdT53HhfVWFPIV1hNXmaLcfo6xcBbMRjjx5XS1iEi3EvUfKmid_yQz5s5RMPOzXO7S4rRCSSi0k9J7HLlamrgaySTgisaAq_TRtHICz2pYypClwkrBgP8KYpD4VEtfGNkDBc0ZUeomsyS-BhhZRSwOs2o1ACYJwVTVBghhWMEg7_PE-SU0ARRoStux1tMgrKA7C0ANAOLZuBQK0Z6gq7WJvNcVOOvm3mJd_DNMwII-r-bnf7P7AzV7JFdNXa9c1RNF6v4AmhHGtYzv6qjrdZtrzv4BHsk0b4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BewAOiFWU1QdOSFFb22ntY1VRBboAAqTeIieOodBNXf6fceIUkIAD1zgTJU-jmZfx-A3ApTSiHitGPcVVxeNSU0_ytMXK2BEnRnNt65DdXi145rd9v78GzfwsjG2rdLE_i-lptHZXyg7N8nQwKD8iWalhguojiU6VrNahaNWp_AIUGzftoPdFRcpKpG3mdZfPbQZMt9yJf9c8-6h82zNtANPKnlSnLNP0ZD8nri_JqLUD245Fkkb2oruwloz3YKu7kmCd78NdgwwHBvmkhzEjTojORs8T15A1wpRF1PBlMhssXkcEqStBY_KwVNr6REzaYzWdq_id3GcjZw7guXX91Aw8Nz3Bi6msL7ykylVVU4NfI5kUXNEIqZ02isZ-5EudUBFVmbB6MEih4iQSPtWiboxMcEFTdgiF8WScHAFRRiGx04xKjYD5UjBFhRFSVIxg-ANagkoOTRg7aXE74WIY5j1kbyGiGVo0wwq1eqQluFqZTDNdjb9u5jne4TfnCDHu_252_D-zC9gInrqdsHPTa5_Apl2xReSqfwqFxWyZnCELWUTnzss-AMav1G8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lifted-space+dynamic+programming+algorithm+for+the+Quadratic+Knapsack+Problem&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Djeumou+Fomeni%2C+Franklin&rft.date=2023-08-15&rft.issn=0166-218X&rft.volume=335&rft.spage=52&rft.epage=68&rft_id=info:doi/10.1016%2Fj.dam.2023.02.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dam_2023_02_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon