Establishing a kinetic model of biomass-derived disaccharide hydrolysis over solid acid: A case study on hierarchically porous niobium phosphate

[Display omitted] •Macroscopic kinetic models of disaccharides hydrolysis were established.•NbP showed high catalytic performance in hydrolysis of disacchrides.•The reaction order is 1.0 over all the substrates and 0.45–0.82 over the acid site.•Decomposition is more sensitive to temperature change t...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 430; p. 132756
Main Authors Liu, Qian, Liu, Haichao, Gao, Da-Ming
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Macroscopic kinetic models of disaccharides hydrolysis were established.•NbP showed high catalytic performance in hydrolysis of disacchrides.•The reaction order is 1.0 over all the substrates and 0.45–0.82 over the acid site.•Decomposition is more sensitive to temperature change than hydrolysis.•The consecutive reaction of monosaccharides occurred in bulk aqueous solution. Macroscopic kinetic models were established to describe the overall hydrolysis process of disaccharides with different type of glycosidic bond and constituted monosaccharides over hierarchically porous niobium phosphate (NbP) aiming for evaluating reaction efficiency of saccharide hydrolysis over solid acid. The NbP sample was synthesized by a sol–gel method accompanied by phase separation with co-continuous macroporous structure and high P/Nb molar ratio. The synthesized NbP sample showed high catalytic performance in the hydrolysis of disaccharides in an aqueous solution. Sucrose with α(1 → 2) glycosidic bond was the most easily hydrolyzed, with almost 100% conversion and monosaccharide yield, followed by melibiose α(1 → 6) and maltose α(1 → 4), while cellobiose β(1 → 4) was the strongest against to be hydrolyzed. The kinetic analysis showed that the reaction order is 1.0 over all the substrates and varied from 0.45 to 0.82 over the acid site, depending on the type of disaccharide. The activation of the decomposition reaction was larger than that of hydrolysis reaction, indicating that decomposition is more sensitive to temperature change than hydrolysis. Accordingly, direct decomposition of the disaccharides and the constituent monosaccharides synergistically determined the final yield and selectivity of the monosaccharides. Further, the decomposition and dehydration of glucose and galactose were found to occur in the bulk aqueous solution instead of on the surface of NbP.
AbstractList [Display omitted] •Macroscopic kinetic models of disaccharides hydrolysis were established.•NbP showed high catalytic performance in hydrolysis of disacchrides.•The reaction order is 1.0 over all the substrates and 0.45–0.82 over the acid site.•Decomposition is more sensitive to temperature change than hydrolysis.•The consecutive reaction of monosaccharides occurred in bulk aqueous solution. Macroscopic kinetic models were established to describe the overall hydrolysis process of disaccharides with different type of glycosidic bond and constituted monosaccharides over hierarchically porous niobium phosphate (NbP) aiming for evaluating reaction efficiency of saccharide hydrolysis over solid acid. The NbP sample was synthesized by a sol–gel method accompanied by phase separation with co-continuous macroporous structure and high P/Nb molar ratio. The synthesized NbP sample showed high catalytic performance in the hydrolysis of disaccharides in an aqueous solution. Sucrose with α(1 → 2) glycosidic bond was the most easily hydrolyzed, with almost 100% conversion and monosaccharide yield, followed by melibiose α(1 → 6) and maltose α(1 → 4), while cellobiose β(1 → 4) was the strongest against to be hydrolyzed. The kinetic analysis showed that the reaction order is 1.0 over all the substrates and varied from 0.45 to 0.82 over the acid site, depending on the type of disaccharide. The activation of the decomposition reaction was larger than that of hydrolysis reaction, indicating that decomposition is more sensitive to temperature change than hydrolysis. Accordingly, direct decomposition of the disaccharides and the constituent monosaccharides synergistically determined the final yield and selectivity of the monosaccharides. Further, the decomposition and dehydration of glucose and galactose were found to occur in the bulk aqueous solution instead of on the surface of NbP.
ArticleNumber 132756
Author Liu, Qian
Gao, Da-Ming
Liu, Haichao
Author_xml – sequence: 1
  givenname: Qian
  surname: Liu
  fullname: Liu, Qian
  organization: National-local Joint Engineering Research Center of Biomass Refine and High-Quality Utilization, Changzhou University, Changzhou 213164, China
– sequence: 2
  givenname: Haichao
  surname: Liu
  fullname: Liu, Haichao
  organization: Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
– sequence: 3
  givenname: Da-Ming
  surname: Gao
  fullname: Gao, Da-Ming
  email: gaodaminggyw@yahoo.com
  organization: National-local Joint Engineering Research Center of Biomass Refine and High-Quality Utilization, Changzhou University, Changzhou 213164, China
BookMark eNp9kLtu3DAQRYnABvzKB7jjD2jDh1aUksownAdgII1dE9RwFM1GKy443AX0F_nkyNhUKVzNneJc4J4bcTGnGYW412qjlW4-7TaAu41RRm-0NW7bfBDXunW2skabizXbdlu1Xe2uxA3zTinVdLq7Fn-euIR-Ih5p_iWD_E0zFgK5TxEnmQbZU9oH5ipiphNGGYkDwBgyRZTjEnOaFiaW6YRZcpooygAUP8sHCYFRcjnGRaZZjoQ5ZBgJwjQt8pByOrKcKfV03MvDmPgwhoJ34nIIE-PHf_dWvH59enn8Xj3__Pbj8eG5AtO5UqGysUGNShuHCE7VaAfXNXXX1XU0YAGb9TXQ62ZonYl1i23vbFv3WzNEZW-FO_dCTswZBw9UQqE0lxxo8lr5N7F-51ex_k2sP4tdSf0feci0D3l5l_lyZnCddFpNeAbCGTBSRig-JnqH_gs9v5YQ
CitedBy_id crossref_primary_10_3390_catal12101189
crossref_primary_10_1016_j_checat_2022_11_009
crossref_primary_10_1021_acs_iecr_2c03358
crossref_primary_10_1007_s13399_022_02607_w
crossref_primary_10_1021_acssuschemeng_4c06938
crossref_primary_10_1039_D4CY01112K
crossref_primary_10_3390_pr12112587
crossref_primary_10_1021_acsomega_3c09246
crossref_primary_10_3390_catal12101142
Cites_doi 10.1016/j.apcatb.2016.04.012
10.1007/s10562-010-0466-1
10.1016/j.supflu.2009.05.009
10.1016/j.jcat.2010.08.006
10.5458/jag.jag.JAG-2013_006
10.1002/adsc.200700259
10.1021/ie200938h
10.1016/j.pecs.2012.04.001
10.3866/PKU.WHXB201207312
10.1016/S0021-9258(19)84947-5
10.1016/j.catcom.2011.12.030
10.1002/anie.200904791
10.1016/j.jechem.2015.11.010
10.1016/j.micromeso.2012.10.003
10.1021/cr60260a001
10.1039/b207976c
10.1007/s00449-020-02406-5
10.1002/cssc.201000300
10.1080/01614940701313127
10.1039/b300323j
10.1016/j.carres.2011.10.018
10.1039/b913737h
10.1021/ie051088y
10.1021/cr0103569
10.1021/acssuschemeng.9b00292
10.1039/c3gc40136g
10.1021/ja808537j
10.1016/j.molcata.2010.10.006
10.1016/j.bej.2003.08.002
10.1016/j.fuel.2014.08.047
10.1039/C3GC42444H
10.1016/0926-860X(92)80229-6
10.1002/aic.10018
10.1016/j.jcat.2012.12.028
10.1016/j.micromeso.2008.08.001
10.1016/j.apenergy.2012.01.027
10.1016/j.biortech.2010.10.023
10.1002/cssc.200900296
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2021.132756
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2021_132756
S1385894721043345
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c297t-e03d6e1e0127eec704e3f79649944d2c3ce67962cb16f872d48e8b7384b52fd03
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 04:27:53 EDT 2025
Thu Apr 24 23:13:29 EDT 2025
Fri Feb 23 02:41:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrolysis
Kinetic model
Niobium phosphate
Disaccharide
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-e03d6e1e0127eec704e3f79649944d2c3ce67962cb16f872d48e8b7384b52fd03
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2021_132756
crossref_primary_10_1016_j_cej_2021_132756
elsevier_sciencedirect_doi_10_1016_j_cej_2021_132756
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sarkar, Pramanik (b0140) 2009; 117
Okuhara (b0090) 2002; 102
Feng, Zhen, Xu, Jr (b0175) 2012; 38
Sınağ, Gülbay, Uskan, Güllü (b0045) 2009; 50
Florentino, Cartraud, Magnoux, Guisnet (b0095) 1992; 89
Charmot, Katz (b0215) 2010; 276
Marzo, Gervasini, Carniti (b0065) 2012; 347
Kobayashi, Komanoya, Hara, Fukuoka (b0085) 2010; 3
Zhang, Wang, Li, Liu, Xia, Hu, Lu, Wang (b0120) 2015; 139
Mal, Bhaumik, Kumar, Fujiwara (b0135) 2003
Sasaki, Adschiri, Arai (b0050) 2004; 50
Liao, Liu, Wang, Long, Ma, Zhang (b0015) 2014; 16
Oomori, Khajavi, Kimura, Adachi, Matsuno (b0035) 2004; 18
Ordomsky, Sushkevich, Schouten, Schaaf, Nijhuis (b0115) 2013; 300
Fengli, Qishun, Xuefang, Yuguang (b0110) 2011; 102
Capon (b0220) 1969; 69
Kourieh, Bennici, Marzo, Gervasini, Auroux (b0180) 2012; 19
Mäki-Arvela, Holmbom, Salmi, Murzin (b0005) 2007; 49
Gao, Zhao, Liu, Morisato, Kanamori, He, Zeng, Wu, Chen, Nakanishi (b0105) 2018; 8
Shimizu, Furukawa, Kobayashi, Itaya, Satsum (b0080) 2009; 11
Jiang, Zhu, Ma, Liu, Han (b0030) 2011; 334
Tewari, Goldberg (b0170) 1989; 264
Kishor Mal, Fujiwara (b0130) 2002
Deng, He, Li, Duan, zhang (b0195) 2020; 43
Chandra, Takeuchi, Hasegawa (b0055) 2012; 94
Caio, Atsushi, Ai, Kazuhiro, Kondo, Kohki, Shigenobu, Takashi, Kazunari (b0155) 2010; 49
Degirmenci, Uner, Cinlar, Shanks, Yilmaz, Santen, Hensen (b0185) 2011; 141
Li, Zhang, Xia (b0125) 2012; 28
Huang, Yao (b0165) 2013; 15
Carniti, Gervasini, Bossola, Dal Santo (b0070) 2016; 193
Li, Zhao (b0020) 2007; 349
Gao, Shen, Zhao, Liu, Nakanishi, Chen, Kanamori, Wu, He, Zeng, Liu (b0145) 2019; 7
Zhou, Shi, Cai, Lin, Hu, Yang, Chen, Jie (b0200) 2013; 169
Lai, Deng, Guo, Fu (b0210) 2011; 4
Binder, Raines (b0010) 2009; 131
Joksimovic, Markovic (b0205) 2007; 8
Lai, Deng, Li, Liao, Guo, Fu (b0190) 2011; 4
Amarasekara, Wiredu (b0025) 2011; 50
Zajšek, Goršek (b0060) 2010; 100
Son, Wilson (b0100) 2012; 2
Salak Asghari, Yoshida (b0160) 2006; 45
Gao, Kobayashi, Adachi (b0040) 2014; 61
Zhou, Liu, Bai, Lu, Yang, Xu (b0075) 2016; 25
Yao, Hoff, Emdadi, Wu, Bouraima, Liu (b0150) 2014; 4
Binder (10.1016/j.cej.2021.132756_b0010) 2009; 131
Tewari (10.1016/j.cej.2021.132756_b0170) 1989; 264
Okuhara (10.1016/j.cej.2021.132756_b0090) 2002; 102
Capon (10.1016/j.cej.2021.132756_b0220) 1969; 69
Florentino (10.1016/j.cej.2021.132756_b0095) 1992; 89
Sınağ (10.1016/j.cej.2021.132756_b0045) 2009; 50
Sarkar (10.1016/j.cej.2021.132756_b0140) 2009; 117
Gao (10.1016/j.cej.2021.132756_b0145) 2019; 7
Caio (10.1016/j.cej.2021.132756_b0155) 2010; 49
Degirmenci (10.1016/j.cej.2021.132756_b0185) 2011; 141
Shimizu (10.1016/j.cej.2021.132756_b0080) 2009; 11
Li (10.1016/j.cej.2021.132756_b0020) 2007; 349
Zajšek (10.1016/j.cej.2021.132756_b0060) 2010; 100
Fengli (10.1016/j.cej.2021.132756_b0110) 2011; 102
Mal (10.1016/j.cej.2021.132756_b0135) 2003
Kourieh (10.1016/j.cej.2021.132756_b0180) 2012; 19
Charmot (10.1016/j.cej.2021.132756_b0215) 2010; 276
Oomori (10.1016/j.cej.2021.132756_b0035) 2004; 18
Sasaki (10.1016/j.cej.2021.132756_b0050) 2004; 50
Chandra (10.1016/j.cej.2021.132756_b0055) 2012; 94
Gao (10.1016/j.cej.2021.132756_b0040) 2014; 61
Liao (10.1016/j.cej.2021.132756_b0015) 2014; 16
Son (10.1016/j.cej.2021.132756_b0100) 2012; 2
Li (10.1016/j.cej.2021.132756_b0125) 2012; 28
Salak Asghari (10.1016/j.cej.2021.132756_b0160) 2006; 45
Lai (10.1016/j.cej.2021.132756_b0210) 2011; 4
Ordomsky (10.1016/j.cej.2021.132756_b0115) 2013; 300
Yao (10.1016/j.cej.2021.132756_b0150) 2014; 4
Joksimovic (10.1016/j.cej.2021.132756_b0205) 2007; 8
Carniti (10.1016/j.cej.2021.132756_b0070) 2016; 193
Feng (10.1016/j.cej.2021.132756_b0175) 2012; 38
Marzo (10.1016/j.cej.2021.132756_b0065) 2012; 347
Mäki-Arvela (10.1016/j.cej.2021.132756_b0005) 2007; 49
Zhou (10.1016/j.cej.2021.132756_b0075) 2016; 25
Deng (10.1016/j.cej.2021.132756_b0195) 2020; 43
Kobayashi (10.1016/j.cej.2021.132756_b0085) 2010; 3
Zhang (10.1016/j.cej.2021.132756_b0120) 2015; 139
Jiang (10.1016/j.cej.2021.132756_b0030) 2011; 334
Gao (10.1016/j.cej.2021.132756_b0105) 2018; 8
Kishor Mal (10.1016/j.cej.2021.132756_b0130) 2002
Lai (10.1016/j.cej.2021.132756_b0190) 2011; 4
Huang (10.1016/j.cej.2021.132756_b0165) 2013; 15
Zhou (10.1016/j.cej.2021.132756_b0200) 2013; 169
Amarasekara (10.1016/j.cej.2021.132756_b0025) 2011; 50
References_xml – volume: 49
  start-page: 1128
  year: 2010
  end-page: 1132
  ident: b0155
  article-title: Highly active mesoporous Nb-W oxide solid-acid catalyst
  publication-title: Angew Chem. Int. Ed.
– volume: 102
  start-page: 3424
  year: 2011
  end-page: 3429
  ident: b0110
  article-title: Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst
  publication-title: Bioresource Technol.
– volume: 2
  start-page: 2485
  year: 2012
  end-page: 2491
  ident: b0100
  article-title: Mesoporous niobium phosphate: An excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water, Catal
  publication-title: Sci. Technol.
– start-page: 2702
  year: 2002
  end-page: 2703
  ident: b0130
  article-title: Synthesis of hexagonal and cubic super-microporous niobium phosphates with anion exchange capacity and catalytic properties
  publication-title: Chem. Commun.
– volume: 141
  start-page: 33
  year: 2011
  end-page: 42
  ident: b0185
  article-title: Sulfated zirconia modified SBA-15 catalysts for cellobiose hydrolysis
  publication-title: Catal. Lett.
– volume: 276
  start-page: 1
  year: 2010
  end-page: 5
  ident: b0215
  article-title: Unexpected phosphate salt-catalyzed hydrolysis of glycosidic bonds in model disaccharides: Cellobiose and maltose
  publication-title: J. Catal.
– volume: 131
  start-page: 1979
  year: 2009
  end-page: 1985
  ident: b0010
  article-title: Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 3305
  year: 2014
  end-page: 3312
  ident: b0015
  article-title: Zirconium phosphate combined with Ru/C as a highly efficient catalyst for the direct transformation of cellulose to C-6 alditols
  publication-title: Green Chem.
– volume: 18
  start-page: 143
  year: 2004
  end-page: 147
  ident: b0035
  article-title: Hydrolysis of disaccharides containing glucose residue in subcritical water
  publication-title: Biochem. Eng. J.
– volume: 7
  start-page: 8512
  year: 2019
  end-page: 8521
  ident: b0145
  article-title: Macroporous niobium Phosphate-Supported magnesia catalysts for isomerization of Glucose-to-Fructose
  publication-title: ACS Sustain. Chem. Eng.
– volume: 45
  start-page: 2163
  year: 2006
  end-page: 2173
  ident: b0160
  article-title: Acid-Catalyzed production of 5-Hydroxymethyl furfural from D-Fructose in subcritical water
  publication-title: Ind. Eng. Chem. Res.
– volume: 193
  start-page: 93
  year: 2016
  end-page: 102
  ident: b0070
  article-title: Cooperative action of Brønsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water
  publication-title: Appl. Catal. B Environ.
– volume: 169
  start-page: 54
  year: 2013
  end-page: 59
  ident: b0200
  article-title: Hydrolysis of hemicellulose catalyzed by hierarchical H-USY zeolites - the role of acidity and pore structure
  publication-title: Micropor. Mesopor. Mat.
– volume: 50
  start-page: 12276
  year: 2011
  end-page: 12280
  ident: b0025
  article-title: Degradation of cellulose in dilute aqueous solutions of acidic ionic liquid 1-(1-Propylsulfonic)-3-methylimidazolium chloride, and p-Toluenesulfonic acid at moderate temperatures and pressures
  publication-title: Ind. Eng. Chem. Res.
– volume: 50
  start-page: 121
  year: 2009
  end-page: 127
  ident: b0045
  article-title: Comparative studies of intermediates produced from hydrothermal treatments of sawdust and cellulose
  publication-title: J. Supercrit. Fluid.
– volume: 43
  start-page: 2209
  year: 2020
  end-page: 2217
  ident: b0195
  article-title: Enhanced biochemical characteristics of
  publication-title: Bioprocess Biosys. Eng.
– volume: 300
  start-page: 37
  year: 2013
  end-page: 46
  ident: b0115
  article-title: Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts
  publication-title: J. Catal.
– volume: 15
  start-page: 1095
  year: 2013
  end-page: 1111
  ident: b0165
  article-title: Hydrolysis of cellulose to glucose by solid acid catalysts
  publication-title: Green Chem.
– volume: 349
  start-page: 1847
  year: 2007
  end-page: 1850
  ident: b0020
  article-title: Efficient Acid-Catalyzed hydrolysis of cellulose in ionic liquid
  publication-title: Adv. Synth. Catal.
– volume: 8
  start-page: 3675
  year: 2018
  end-page: 3685
  ident: b0105
  article-title: Synthesis of a hierarchically porous niobium phosphate monolith by a sol-gel method for fructose dehydration to 5-hydroxymethylfurfural, Catal
  publication-title: Sci. Technol.
– start-page: 872
  year: 2003
  end-page: 873
  ident: b0135
  article-title: Microporous niobium phosphates and catalytic properties prepared by a supramolecular templating mechanism
  publication-title: Chem. Commun.
– volume: 11
  start-page: 1627
  year: 2009
  end-page: 1632
  ident: b0080
  article-title: Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose
  publication-title: Green Chem.
– volume: 19
  start-page: 119
  year: 2012
  end-page: 126
  ident: b0180
  article-title: Investigation of the WO
  publication-title: Catal. Commun.
– volume: 50
  start-page: 192
  year: 2004
  end-page: 202
  ident: b0050
  article-title: Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water
  publication-title: AIChE J.
– volume: 264
  start-page: 3966
  year: 1989
  end-page: 3971
  ident: b0170
  article-title: Thermodynamics of hydrolysis of disaccharides. Cellobiose, gentiobiose, isomaltose, and maltose
  publication-title: J. Biol. Chem.
– volume: 69
  start-page: 407
  year: 1969
  end-page: 498
  ident: b0220
  article-title: Mechanism in carbohydrate chemistry
  publication-title: Chem. Rev.
– volume: 61
  start-page: 9
  year: 2014
  end-page: 13
  ident: b0040
  article-title: Kinetics of sucrose hydrolysis in a subcritical water-ethanol mixture
  publication-title: J. Appl. Glycoscience
– volume: 347
  start-page: 23
  year: 2012
  end-page: 31
  ident: b0065
  article-title: Hydrolysis of disaccharides over solid acid catalysts under green conditions
  publication-title: Carbohyd. Res.
– volume: 25
  start-page: 141
  year: 2016
  end-page: 145
  ident: b0075
  article-title: Hydrolysis of cellobiose catalyzed by zeolites—the role of acidity and micropore structure
  publication-title: J. Energy Chem.
– volume: 28
  start-page: 2349
  year: 2012
  end-page: 2354
  ident: b0125
  article-title: One-Pot catalytic conversion of xylose to furfural on mesoporous niobium phosphate
  publication-title: Acta Phys.-Chim. Sin.
– volume: 94
  start-page: 129
  year: 2012
  end-page: 140
  ident: b0055
  article-title: Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production
  publication-title: Appl. Energ.
– volume: 49
  start-page: 197
  year: 2007
  end-page: 340
  ident: b0005
  article-title: Recent progress in synthesis of fine and specialty chemicals from wood and other biomass by heterogeneous catalytic processes
  publication-title: Catal. Rev.
– volume: 100
  start-page: 265
  year: 2010
  end-page: 276
  ident: b0060
  article-title: A kinetic study of sucrose hydrolysis over Amberlite IR-120 as a heterogeneous catalyst using in situ FTIR spectroscopy
  publication-title: React. Kinet. Mech. Catal.
– volume: 139
  start-page: 301
  year: 2015
  end-page: 307
  ident: b0120
  article-title: Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts
  publication-title: Fuel
– volume: 4
  start-page: 3064
  year: 2014
  end-page: 3073
  ident: b0150
  article-title: Catalytic consequences of micropore topology, mesoporosity, and acidity on the hydrolysis of sucrose over zeolite catalysts, Catal
  publication-title: Sci. Technol.
– volume: 38
  start-page: 672
  year: 2012
  end-page: 690
  ident: b0175
  article-title: Solid acid mediated hydrolysis of biomass for producing biofuels
  publication-title: Prog. Energy Combust. Sci.
– volume: 8
  start-page: 50
  year: 2007
  end-page: 52
  ident: b0205
  article-title: Investigation of the mechanism of acidic hydrolysis of cellulose
  publication-title: Acta Agriculturae Serbica
– volume: 334
  start-page: 8
  year: 2011
  end-page: 12
  ident: b0030
  article-title: Direct conversion and NMR observation of cellulose to glucose and 5-hydroxymethylfurfural (HMF) catalyzed by the acidic ionic liquids
  publication-title: J. Mol. Catal. A Chem.
– volume: 117
  start-page: 580
  year: 2009
  end-page: 585
  ident: b0140
  article-title: Synthesis of mesoporous niobium oxophosphate using niobium tartrate precursor by soft templating method
  publication-title: Micropor. Mesopor. Mat.
– volume: 4
  start-page: 3552
  year: 2011
  end-page: 3557
  ident: b0210
  article-title: Hydrolysis of biomass by magnetic solid acid, Energ
  publication-title: Environ. Sci.
– volume: 102
  start-page: 3641
  year: 2002
  end-page: 3666
  ident: b0090
  article-title: Water-Tolerant solid acid catalysts
  publication-title: Chem. Rev.
– volume: 3
  start-page: 440
  year: 2010
  end-page: 443
  ident: b0085
  article-title: Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose
  publication-title: Chem. Sus. Chem.
– volume: 89
  start-page: 143
  year: 1992
  end-page: 153
  ident: b0095
  article-title: Textural, acidic and catalytic properties of niobium phosphate and of niobium oxide: Influence of the pretreatment temperature
  publication-title: Appl. Catal. A Gen.
– volume: 4
  start-page: 55
  year: 2011
  end-page: 58
  ident: b0190
  article-title: Hydrolysis of cellulose into glucose by magnetic solid acid
  publication-title: Chem. Sus. Chem.
– volume: 193
  start-page: 93
  year: 2016
  ident: 10.1016/j.cej.2021.132756_b0070
  article-title: Cooperative action of Brønsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.04.012
– volume: 141
  start-page: 33
  year: 2011
  ident: 10.1016/j.cej.2021.132756_b0185
  article-title: Sulfated zirconia modified SBA-15 catalysts for cellobiose hydrolysis
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-010-0466-1
– volume: 50
  start-page: 121
  year: 2009
  ident: 10.1016/j.cej.2021.132756_b0045
  article-title: Comparative studies of intermediates produced from hydrothermal treatments of sawdust and cellulose
  publication-title: J. Supercrit. Fluid.
  doi: 10.1016/j.supflu.2009.05.009
– volume: 100
  start-page: 265
  year: 2010
  ident: 10.1016/j.cej.2021.132756_b0060
  article-title: A kinetic study of sucrose hydrolysis over Amberlite IR-120 as a heterogeneous catalyst using in situ FTIR spectroscopy
  publication-title: React. Kinet. Mech. Catal.
– volume: 276
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.cej.2021.132756_b0215
  article-title: Unexpected phosphate salt-catalyzed hydrolysis of glycosidic bonds in model disaccharides: Cellobiose and maltose
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2010.08.006
– volume: 61
  start-page: 9
  year: 2014
  ident: 10.1016/j.cej.2021.132756_b0040
  article-title: Kinetics of sucrose hydrolysis in a subcritical water-ethanol mixture
  publication-title: J. Appl. Glycoscience
  doi: 10.5458/jag.jag.JAG-2013_006
– volume: 349
  start-page: 1847
  year: 2007
  ident: 10.1016/j.cej.2021.132756_b0020
  article-title: Efficient Acid-Catalyzed hydrolysis of cellulose in ionic liquid
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.200700259
– volume: 50
  start-page: 12276
  year: 2011
  ident: 10.1016/j.cej.2021.132756_b0025
  article-title: Degradation of cellulose in dilute aqueous solutions of acidic ionic liquid 1-(1-Propylsulfonic)-3-methylimidazolium chloride, and p-Toluenesulfonic acid at moderate temperatures and pressures
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie200938h
– volume: 38
  start-page: 672
  year: 2012
  ident: 10.1016/j.cej.2021.132756_b0175
  article-title: Solid acid mediated hydrolysis of biomass for producing biofuels
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2012.04.001
– volume: 28
  start-page: 2349
  year: 2012
  ident: 10.1016/j.cej.2021.132756_b0125
  article-title: One-Pot catalytic conversion of xylose to furfural on mesoporous niobium phosphate
  publication-title: Acta Phys.-Chim. Sin.
  doi: 10.3866/PKU.WHXB201207312
– volume: 264
  start-page: 3966
  year: 1989
  ident: 10.1016/j.cej.2021.132756_b0170
  article-title: Thermodynamics of hydrolysis of disaccharides. Cellobiose, gentiobiose, isomaltose, and maltose
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)84947-5
– volume: 19
  start-page: 119
  year: 2012
  ident: 10.1016/j.cej.2021.132756_b0180
  article-title: Investigation of the WO3/ZrO2 surface acidic properties for the aqueous hydrolysis of cellobiose
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2011.12.030
– volume: 49
  start-page: 1128
  year: 2010
  ident: 10.1016/j.cej.2021.132756_b0155
  article-title: Highly active mesoporous Nb-W oxide solid-acid catalyst
  publication-title: Angew Chem. Int. Ed.
  doi: 10.1002/anie.200904791
– volume: 4
  start-page: 3552
  year: 2011
  ident: 10.1016/j.cej.2021.132756_b0210
  article-title: Hydrolysis of biomass by magnetic solid acid, Energ
  publication-title: Environ. Sci.
– volume: 25
  start-page: 141
  year: 2016
  ident: 10.1016/j.cej.2021.132756_b0075
  article-title: Hydrolysis of cellobiose catalyzed by zeolites—the role of acidity and micropore structure
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2015.11.010
– volume: 169
  start-page: 54
  year: 2013
  ident: 10.1016/j.cej.2021.132756_b0200
  article-title: Hydrolysis of hemicellulose catalyzed by hierarchical H-USY zeolites - the role of acidity and pore structure
  publication-title: Micropor. Mesopor. Mat.
  doi: 10.1016/j.micromeso.2012.10.003
– volume: 69
  start-page: 407
  issue: 4
  year: 1969
  ident: 10.1016/j.cej.2021.132756_b0220
  article-title: Mechanism in carbohydrate chemistry
  publication-title: Chem. Rev.
  doi: 10.1021/cr60260a001
– start-page: 2702
  issue: 22
  year: 2002
  ident: 10.1016/j.cej.2021.132756_b0130
  article-title: Synthesis of hexagonal and cubic super-microporous niobium phosphates with anion exchange capacity and catalytic properties
  publication-title: Chem. Commun.
  doi: 10.1039/b207976c
– volume: 8
  start-page: 3675
  year: 2018
  ident: 10.1016/j.cej.2021.132756_b0105
  article-title: Synthesis of a hierarchically porous niobium phosphate monolith by a sol-gel method for fructose dehydration to 5-hydroxymethylfurfural, Catal
  publication-title: Sci. Technol.
– volume: 43
  start-page: 2209
  year: 2020
  ident: 10.1016/j.cej.2021.132756_b0195
  article-title: Enhanced biochemical characteristics of β-glucosidase via adsorption and cross-linked enzyme aggregate for rapid cellobiose hydrolysis
  publication-title: Bioprocess Biosys. Eng.
  doi: 10.1007/s00449-020-02406-5
– volume: 4
  start-page: 55
  year: 2011
  ident: 10.1016/j.cej.2021.132756_b0190
  article-title: Hydrolysis of cellulose into glucose by magnetic solid acid
  publication-title: Chem. Sus. Chem.
  doi: 10.1002/cssc.201000300
– volume: 49
  start-page: 197
  year: 2007
  ident: 10.1016/j.cej.2021.132756_b0005
  article-title: Recent progress in synthesis of fine and specialty chemicals from wood and other biomass by heterogeneous catalytic processes
  publication-title: Catal. Rev.
  doi: 10.1080/01614940701313127
– start-page: 872
  issue: 7
  year: 2003
  ident: 10.1016/j.cej.2021.132756_b0135
  article-title: Microporous niobium phosphates and catalytic properties prepared by a supramolecular templating mechanism
  publication-title: Chem. Commun.
  doi: 10.1039/b300323j
– volume: 2
  start-page: 2485
  year: 2012
  ident: 10.1016/j.cej.2021.132756_b0100
  article-title: Mesoporous niobium phosphate: An excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water, Catal
  publication-title: Sci. Technol.
– volume: 347
  start-page: 23
  year: 2012
  ident: 10.1016/j.cej.2021.132756_b0065
  article-title: Hydrolysis of disaccharides over solid acid catalysts under green conditions
  publication-title: Carbohyd. Res.
  doi: 10.1016/j.carres.2011.10.018
– volume: 11
  start-page: 1627
  year: 2009
  ident: 10.1016/j.cej.2021.132756_b0080
  article-title: Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose
  publication-title: Green Chem.
  doi: 10.1039/b913737h
– volume: 45
  start-page: 2163
  year: 2006
  ident: 10.1016/j.cej.2021.132756_b0160
  article-title: Acid-Catalyzed production of 5-Hydroxymethyl furfural from D-Fructose in subcritical water
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie051088y
– volume: 102
  start-page: 3641
  issue: 10
  year: 2002
  ident: 10.1016/j.cej.2021.132756_b0090
  article-title: Water-Tolerant solid acid catalysts
  publication-title: Chem. Rev.
  doi: 10.1021/cr0103569
– volume: 7
  start-page: 8512
  year: 2019
  ident: 10.1016/j.cej.2021.132756_b0145
  article-title: Macroporous niobium Phosphate-Supported magnesia catalysts for isomerization of Glucose-to-Fructose
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b00292
– volume: 15
  start-page: 1095
  year: 2013
  ident: 10.1016/j.cej.2021.132756_b0165
  article-title: Hydrolysis of cellulose to glucose by solid acid catalysts
  publication-title: Green Chem.
  doi: 10.1039/c3gc40136g
– volume: 131
  start-page: 1979
  year: 2009
  ident: 10.1016/j.cej.2021.132756_b0010
  article-title: Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808537j
– volume: 334
  start-page: 8
  year: 2011
  ident: 10.1016/j.cej.2021.132756_b0030
  article-title: Direct conversion and NMR observation of cellulose to glucose and 5-hydroxymethylfurfural (HMF) catalyzed by the acidic ionic liquids
  publication-title: J. Mol. Catal. A Chem.
  doi: 10.1016/j.molcata.2010.10.006
– volume: 18
  start-page: 143
  year: 2004
  ident: 10.1016/j.cej.2021.132756_b0035
  article-title: Hydrolysis of disaccharides containing glucose residue in subcritical water
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2003.08.002
– volume: 139
  start-page: 301
  year: 2015
  ident: 10.1016/j.cej.2021.132756_b0120
  article-title: Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.08.047
– volume: 16
  start-page: 3305
  year: 2014
  ident: 10.1016/j.cej.2021.132756_b0015
  article-title: Zirconium phosphate combined with Ru/C as a highly efficient catalyst for the direct transformation of cellulose to C-6 alditols
  publication-title: Green Chem.
  doi: 10.1039/C3GC42444H
– volume: 4
  start-page: 3064
  year: 2014
  ident: 10.1016/j.cej.2021.132756_b0150
  article-title: Catalytic consequences of micropore topology, mesoporosity, and acidity on the hydrolysis of sucrose over zeolite catalysts, Catal
  publication-title: Sci. Technol.
– volume: 89
  start-page: 143
  issue: 2
  year: 1992
  ident: 10.1016/j.cej.2021.132756_b0095
  article-title: Textural, acidic and catalytic properties of niobium phosphate and of niobium oxide: Influence of the pretreatment temperature
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/0926-860X(92)80229-6
– volume: 8
  start-page: 50
  year: 2007
  ident: 10.1016/j.cej.2021.132756_b0205
  article-title: Investigation of the mechanism of acidic hydrolysis of cellulose
  publication-title: Acta Agriculturae Serbica
– volume: 50
  start-page: 192
  year: 2004
  ident: 10.1016/j.cej.2021.132756_b0050
  article-title: Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water
  publication-title: AIChE J.
  doi: 10.1002/aic.10018
– volume: 300
  start-page: 37
  year: 2013
  ident: 10.1016/j.cej.2021.132756_b0115
  article-title: Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.12.028
– volume: 117
  start-page: 580
  year: 2009
  ident: 10.1016/j.cej.2021.132756_b0140
  article-title: Synthesis of mesoporous niobium oxophosphate using niobium tartrate precursor by soft templating method
  publication-title: Micropor. Mesopor. Mat.
  doi: 10.1016/j.micromeso.2008.08.001
– volume: 94
  start-page: 129
  year: 2012
  ident: 10.1016/j.cej.2021.132756_b0055
  article-title: Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2012.01.027
– volume: 102
  start-page: 3424
  year: 2011
  ident: 10.1016/j.cej.2021.132756_b0110
  article-title: Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2010.10.023
– volume: 3
  start-page: 440
  year: 2010
  ident: 10.1016/j.cej.2021.132756_b0085
  article-title: Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose
  publication-title: Chem. Sus. Chem.
  doi: 10.1002/cssc.200900296
SSID ssj0006919
Score 2.4414787
Snippet [Display omitted] •Macroscopic kinetic models of disaccharides hydrolysis were established.•NbP showed high catalytic performance in hydrolysis of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 132756
SubjectTerms Disaccharide
Hydrolysis
Kinetic model
Niobium phosphate
Title Establishing a kinetic model of biomass-derived disaccharide hydrolysis over solid acid: A case study on hierarchically porous niobium phosphate
URI https://dx.doi.org/10.1016/j.cej.2021.132756
Volume 430
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V5QIHVF6iLVRz4IS0jR9j75pbVLUKRPQAVPRmZXfHikuxoyap1Au_gZ_MjGO3RQIOnCzZM5K1M5rHzuNT6g0VbpaQsxrTYDTajLTNLGlTVREaDHFGcg_58TSfnOGH8-x8Sx0NszDSVtnb_o1N76x1_2bUn-ZoUdejz7HUtArkFEaWcKEMmiMa0fLDH3dtHnnRgXsIsRbqobLZ9Xh5uuAUMYkPOSczgmH9J990z9-c7KjHfaAI482_PFFb1DxVj-6tD3ymfh5zaDfcIsEMvvEnpoYO3QbaCmS2noNjHZjhmgKEejnzMmdVB4L5Tbhqu4UkIG2cwEpYB5j5OryDMXj2btDtnoW2AQHM7koOLNHLG-CYvV0voalbV6-_w2LeLhdzDlqfq7OT4y9HE90jLGifFGalKUpDTjFJ_ZnImwgprWQ4tSgQQ-JTT3LPlHgX55U1SUBL1pnUosuSKkTpC7XdtA29VCB9qgUzY0UFOuMsyz3OifNLXwnHroqGsy19v35cUDAuy6HP7KJkcZQijnIjjl319pZlsdm98S9iHARW_qZAJfuGv7Pt_R_bvnqYyByEIMNkr9T26mpNrzk6WbmDTv0O1IPx--nkVJ7TT1-nvwDI9eb3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPFU9RnnOAC5K7iePEDhKHClpt6eNCK_UW1vZEm9Imq-5u0V74DfwX_iAz2QSKBByQek08keMZzcPz-IR4ibkbKXRW6iQYqW2K0qYWpSnLSBsd4hT5HvLgMBse6w8n6cmK-N73wnBZZaf7lzq91dbdk0F3moNJVQ0-xpzTyjWFMDyES_eVlXu4-EJx2_Tt7nti8iuldraP3g1lBy0gvcrNTGKUhAxj5MQrojeRxqTkrsw81zoon3jkCxblXZyV1qigLVpnEqtdqsoQJfTdG-KmJnXBsAmbX3_VlWR5iybCu5O8vT6V2haVeTylmFTFmxQEGgbN_pMxvGLgdu6I9c4zha3lz98VK1jfE2tX5hXeF9-2yZfsr61gBJ_pFa2GFk4HmhK4mZ-8cRmI4BIDhGo68tzYVQWE8SJcNO0EFOC6USCprwKMfBXewBZ4MqfQDruFpgZG6G5zHCRCZwugIKGZT6GuGlfNz2EybqaTMXnJD8TxtZz7Q7FaNzU-EsCFsTkR6xJz7YyzJGhxhhTQ-pIpNkTUn23hu3nnDLtxVvSFbacFsaNgdhRLdmyI1z9JJsthH_9arHuGFb9JbEHG6O9kj_-P7IW4NTw62C_2dw_3nojbipswGJYmfSpWZxdzfEau0cw9b0URxKfrlv0fD7sgRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishing+a+kinetic+model+of+biomass-derived+disaccharide+hydrolysis+over+solid+acid%3A+A+case+study+on+hierarchically+porous+niobium+phosphate&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Liu%2C+Qian&rft.au=Liu%2C+Haichao&rft.au=Gao%2C+Da-Ming&rft.date=2022-02-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=430&rft_id=info:doi/10.1016%2Fj.cej.2021.132756&rft.externalDocID=S1385894721043345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon