Establishing a kinetic model of biomass-derived disaccharide hydrolysis over solid acid: A case study on hierarchically porous niobium phosphate
[Display omitted] •Macroscopic kinetic models of disaccharides hydrolysis were established.•NbP showed high catalytic performance in hydrolysis of disacchrides.•The reaction order is 1.0 over all the substrates and 0.45–0.82 over the acid site.•Decomposition is more sensitive to temperature change t...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 430; p. 132756 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Macroscopic kinetic models of disaccharides hydrolysis were established.•NbP showed high catalytic performance in hydrolysis of disacchrides.•The reaction order is 1.0 over all the substrates and 0.45–0.82 over the acid site.•Decomposition is more sensitive to temperature change than hydrolysis.•The consecutive reaction of monosaccharides occurred in bulk aqueous solution.
Macroscopic kinetic models were established to describe the overall hydrolysis process of disaccharides with different type of glycosidic bond and constituted monosaccharides over hierarchically porous niobium phosphate (NbP) aiming for evaluating reaction efficiency of saccharide hydrolysis over solid acid. The NbP sample was synthesized by a sol–gel method accompanied by phase separation with co-continuous macroporous structure and high P/Nb molar ratio. The synthesized NbP sample showed high catalytic performance in the hydrolysis of disaccharides in an aqueous solution. Sucrose with α(1 → 2) glycosidic bond was the most easily hydrolyzed, with almost 100% conversion and monosaccharide yield, followed by melibiose α(1 → 6) and maltose α(1 → 4), while cellobiose β(1 → 4) was the strongest against to be hydrolyzed. The kinetic analysis showed that the reaction order is 1.0 over all the substrates and varied from 0.45 to 0.82 over the acid site, depending on the type of disaccharide. The activation of the decomposition reaction was larger than that of hydrolysis reaction, indicating that decomposition is more sensitive to temperature change than hydrolysis. Accordingly, direct decomposition of the disaccharides and the constituent monosaccharides synergistically determined the final yield and selectivity of the monosaccharides. Further, the decomposition and dehydration of glucose and galactose were found to occur in the bulk aqueous solution instead of on the surface of NbP. |
---|---|
AbstractList | [Display omitted]
•Macroscopic kinetic models of disaccharides hydrolysis were established.•NbP showed high catalytic performance in hydrolysis of disacchrides.•The reaction order is 1.0 over all the substrates and 0.45–0.82 over the acid site.•Decomposition is more sensitive to temperature change than hydrolysis.•The consecutive reaction of monosaccharides occurred in bulk aqueous solution.
Macroscopic kinetic models were established to describe the overall hydrolysis process of disaccharides with different type of glycosidic bond and constituted monosaccharides over hierarchically porous niobium phosphate (NbP) aiming for evaluating reaction efficiency of saccharide hydrolysis over solid acid. The NbP sample was synthesized by a sol–gel method accompanied by phase separation with co-continuous macroporous structure and high P/Nb molar ratio. The synthesized NbP sample showed high catalytic performance in the hydrolysis of disaccharides in an aqueous solution. Sucrose with α(1 → 2) glycosidic bond was the most easily hydrolyzed, with almost 100% conversion and monosaccharide yield, followed by melibiose α(1 → 6) and maltose α(1 → 4), while cellobiose β(1 → 4) was the strongest against to be hydrolyzed. The kinetic analysis showed that the reaction order is 1.0 over all the substrates and varied from 0.45 to 0.82 over the acid site, depending on the type of disaccharide. The activation of the decomposition reaction was larger than that of hydrolysis reaction, indicating that decomposition is more sensitive to temperature change than hydrolysis. Accordingly, direct decomposition of the disaccharides and the constituent monosaccharides synergistically determined the final yield and selectivity of the monosaccharides. Further, the decomposition and dehydration of glucose and galactose were found to occur in the bulk aqueous solution instead of on the surface of NbP. |
ArticleNumber | 132756 |
Author | Liu, Qian Gao, Da-Ming Liu, Haichao |
Author_xml | – sequence: 1 givenname: Qian surname: Liu fullname: Liu, Qian organization: National-local Joint Engineering Research Center of Biomass Refine and High-Quality Utilization, Changzhou University, Changzhou 213164, China – sequence: 2 givenname: Haichao surname: Liu fullname: Liu, Haichao organization: Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China – sequence: 3 givenname: Da-Ming surname: Gao fullname: Gao, Da-Ming email: gaodaminggyw@yahoo.com organization: National-local Joint Engineering Research Center of Biomass Refine and High-Quality Utilization, Changzhou University, Changzhou 213164, China |
BookMark | eNp9kLtu3DAQRYnABvzKB7jjD2jDh1aUksownAdgII1dE9RwFM1GKy443AX0F_nkyNhUKVzNneJc4J4bcTGnGYW412qjlW4-7TaAu41RRm-0NW7bfBDXunW2skabizXbdlu1Xe2uxA3zTinVdLq7Fn-euIR-Ih5p_iWD_E0zFgK5TxEnmQbZU9oH5ipiphNGGYkDwBgyRZTjEnOaFiaW6YRZcpooygAUP8sHCYFRcjnGRaZZjoQ5ZBgJwjQt8pByOrKcKfV03MvDmPgwhoJ34nIIE-PHf_dWvH59enn8Xj3__Pbj8eG5AtO5UqGysUGNShuHCE7VaAfXNXXX1XU0YAGb9TXQ62ZonYl1i23vbFv3WzNEZW-FO_dCTswZBw9UQqE0lxxo8lr5N7F-51ex_k2sP4tdSf0feci0D3l5l_lyZnCddFpNeAbCGTBSRig-JnqH_gs9v5YQ |
CitedBy_id | crossref_primary_10_3390_catal12101189 crossref_primary_10_1016_j_checat_2022_11_009 crossref_primary_10_1021_acs_iecr_2c03358 crossref_primary_10_1007_s13399_022_02607_w crossref_primary_10_1021_acssuschemeng_4c06938 crossref_primary_10_1039_D4CY01112K crossref_primary_10_3390_pr12112587 crossref_primary_10_1021_acsomega_3c09246 crossref_primary_10_3390_catal12101142 |
Cites_doi | 10.1016/j.apcatb.2016.04.012 10.1007/s10562-010-0466-1 10.1016/j.supflu.2009.05.009 10.1016/j.jcat.2010.08.006 10.5458/jag.jag.JAG-2013_006 10.1002/adsc.200700259 10.1021/ie200938h 10.1016/j.pecs.2012.04.001 10.3866/PKU.WHXB201207312 10.1016/S0021-9258(19)84947-5 10.1016/j.catcom.2011.12.030 10.1002/anie.200904791 10.1016/j.jechem.2015.11.010 10.1016/j.micromeso.2012.10.003 10.1021/cr60260a001 10.1039/b207976c 10.1007/s00449-020-02406-5 10.1002/cssc.201000300 10.1080/01614940701313127 10.1039/b300323j 10.1016/j.carres.2011.10.018 10.1039/b913737h 10.1021/ie051088y 10.1021/cr0103569 10.1021/acssuschemeng.9b00292 10.1039/c3gc40136g 10.1021/ja808537j 10.1016/j.molcata.2010.10.006 10.1016/j.bej.2003.08.002 10.1016/j.fuel.2014.08.047 10.1039/C3GC42444H 10.1016/0926-860X(92)80229-6 10.1002/aic.10018 10.1016/j.jcat.2012.12.028 10.1016/j.micromeso.2008.08.001 10.1016/j.apenergy.2012.01.027 10.1016/j.biortech.2010.10.023 10.1002/cssc.200900296 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2021.132756 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2021_132756 S1385894721043345 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-e03d6e1e0127eec704e3f79649944d2c3ce67962cb16f872d48e8b7384b52fd03 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 04:27:53 EDT 2025 Thu Apr 24 23:13:29 EDT 2025 Fri Feb 23 02:41:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrolysis Kinetic model Niobium phosphate Disaccharide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-e03d6e1e0127eec704e3f79649944d2c3ce67962cb16f872d48e8b7384b52fd03 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2021_132756 crossref_primary_10_1016_j_cej_2021_132756 elsevier_sciencedirect_doi_10_1016_j_cej_2021_132756 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-15 |
PublicationDateYYYYMMDD | 2022-02-15 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sarkar, Pramanik (b0140) 2009; 117 Okuhara (b0090) 2002; 102 Feng, Zhen, Xu, Jr (b0175) 2012; 38 Sınağ, Gülbay, Uskan, Güllü (b0045) 2009; 50 Florentino, Cartraud, Magnoux, Guisnet (b0095) 1992; 89 Charmot, Katz (b0215) 2010; 276 Marzo, Gervasini, Carniti (b0065) 2012; 347 Kobayashi, Komanoya, Hara, Fukuoka (b0085) 2010; 3 Zhang, Wang, Li, Liu, Xia, Hu, Lu, Wang (b0120) 2015; 139 Mal, Bhaumik, Kumar, Fujiwara (b0135) 2003 Sasaki, Adschiri, Arai (b0050) 2004; 50 Liao, Liu, Wang, Long, Ma, Zhang (b0015) 2014; 16 Oomori, Khajavi, Kimura, Adachi, Matsuno (b0035) 2004; 18 Ordomsky, Sushkevich, Schouten, Schaaf, Nijhuis (b0115) 2013; 300 Fengli, Qishun, Xuefang, Yuguang (b0110) 2011; 102 Capon (b0220) 1969; 69 Kourieh, Bennici, Marzo, Gervasini, Auroux (b0180) 2012; 19 Mäki-Arvela, Holmbom, Salmi, Murzin (b0005) 2007; 49 Gao, Zhao, Liu, Morisato, Kanamori, He, Zeng, Wu, Chen, Nakanishi (b0105) 2018; 8 Shimizu, Furukawa, Kobayashi, Itaya, Satsum (b0080) 2009; 11 Jiang, Zhu, Ma, Liu, Han (b0030) 2011; 334 Tewari, Goldberg (b0170) 1989; 264 Kishor Mal, Fujiwara (b0130) 2002 Deng, He, Li, Duan, zhang (b0195) 2020; 43 Chandra, Takeuchi, Hasegawa (b0055) 2012; 94 Caio, Atsushi, Ai, Kazuhiro, Kondo, Kohki, Shigenobu, Takashi, Kazunari (b0155) 2010; 49 Degirmenci, Uner, Cinlar, Shanks, Yilmaz, Santen, Hensen (b0185) 2011; 141 Li, Zhang, Xia (b0125) 2012; 28 Huang, Yao (b0165) 2013; 15 Carniti, Gervasini, Bossola, Dal Santo (b0070) 2016; 193 Li, Zhao (b0020) 2007; 349 Gao, Shen, Zhao, Liu, Nakanishi, Chen, Kanamori, Wu, He, Zeng, Liu (b0145) 2019; 7 Zhou, Shi, Cai, Lin, Hu, Yang, Chen, Jie (b0200) 2013; 169 Lai, Deng, Guo, Fu (b0210) 2011; 4 Binder, Raines (b0010) 2009; 131 Joksimovic, Markovic (b0205) 2007; 8 Lai, Deng, Li, Liao, Guo, Fu (b0190) 2011; 4 Amarasekara, Wiredu (b0025) 2011; 50 Zajšek, Goršek (b0060) 2010; 100 Son, Wilson (b0100) 2012; 2 Salak Asghari, Yoshida (b0160) 2006; 45 Gao, Kobayashi, Adachi (b0040) 2014; 61 Zhou, Liu, Bai, Lu, Yang, Xu (b0075) 2016; 25 Yao, Hoff, Emdadi, Wu, Bouraima, Liu (b0150) 2014; 4 Binder (10.1016/j.cej.2021.132756_b0010) 2009; 131 Tewari (10.1016/j.cej.2021.132756_b0170) 1989; 264 Okuhara (10.1016/j.cej.2021.132756_b0090) 2002; 102 Capon (10.1016/j.cej.2021.132756_b0220) 1969; 69 Florentino (10.1016/j.cej.2021.132756_b0095) 1992; 89 Sınağ (10.1016/j.cej.2021.132756_b0045) 2009; 50 Sarkar (10.1016/j.cej.2021.132756_b0140) 2009; 117 Gao (10.1016/j.cej.2021.132756_b0145) 2019; 7 Caio (10.1016/j.cej.2021.132756_b0155) 2010; 49 Degirmenci (10.1016/j.cej.2021.132756_b0185) 2011; 141 Shimizu (10.1016/j.cej.2021.132756_b0080) 2009; 11 Li (10.1016/j.cej.2021.132756_b0020) 2007; 349 Zajšek (10.1016/j.cej.2021.132756_b0060) 2010; 100 Fengli (10.1016/j.cej.2021.132756_b0110) 2011; 102 Mal (10.1016/j.cej.2021.132756_b0135) 2003 Kourieh (10.1016/j.cej.2021.132756_b0180) 2012; 19 Charmot (10.1016/j.cej.2021.132756_b0215) 2010; 276 Oomori (10.1016/j.cej.2021.132756_b0035) 2004; 18 Sasaki (10.1016/j.cej.2021.132756_b0050) 2004; 50 Chandra (10.1016/j.cej.2021.132756_b0055) 2012; 94 Gao (10.1016/j.cej.2021.132756_b0040) 2014; 61 Liao (10.1016/j.cej.2021.132756_b0015) 2014; 16 Son (10.1016/j.cej.2021.132756_b0100) 2012; 2 Li (10.1016/j.cej.2021.132756_b0125) 2012; 28 Salak Asghari (10.1016/j.cej.2021.132756_b0160) 2006; 45 Lai (10.1016/j.cej.2021.132756_b0210) 2011; 4 Ordomsky (10.1016/j.cej.2021.132756_b0115) 2013; 300 Yao (10.1016/j.cej.2021.132756_b0150) 2014; 4 Joksimovic (10.1016/j.cej.2021.132756_b0205) 2007; 8 Carniti (10.1016/j.cej.2021.132756_b0070) 2016; 193 Feng (10.1016/j.cej.2021.132756_b0175) 2012; 38 Marzo (10.1016/j.cej.2021.132756_b0065) 2012; 347 Mäki-Arvela (10.1016/j.cej.2021.132756_b0005) 2007; 49 Zhou (10.1016/j.cej.2021.132756_b0075) 2016; 25 Deng (10.1016/j.cej.2021.132756_b0195) 2020; 43 Kobayashi (10.1016/j.cej.2021.132756_b0085) 2010; 3 Zhang (10.1016/j.cej.2021.132756_b0120) 2015; 139 Jiang (10.1016/j.cej.2021.132756_b0030) 2011; 334 Gao (10.1016/j.cej.2021.132756_b0105) 2018; 8 Kishor Mal (10.1016/j.cej.2021.132756_b0130) 2002 Lai (10.1016/j.cej.2021.132756_b0190) 2011; 4 Huang (10.1016/j.cej.2021.132756_b0165) 2013; 15 Zhou (10.1016/j.cej.2021.132756_b0200) 2013; 169 Amarasekara (10.1016/j.cej.2021.132756_b0025) 2011; 50 |
References_xml | – volume: 49 start-page: 1128 year: 2010 end-page: 1132 ident: b0155 article-title: Highly active mesoporous Nb-W oxide solid-acid catalyst publication-title: Angew Chem. Int. Ed. – volume: 102 start-page: 3424 year: 2011 end-page: 3429 ident: b0110 article-title: Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst publication-title: Bioresource Technol. – volume: 2 start-page: 2485 year: 2012 end-page: 2491 ident: b0100 article-title: Mesoporous niobium phosphate: An excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water, Catal publication-title: Sci. Technol. – start-page: 2702 year: 2002 end-page: 2703 ident: b0130 article-title: Synthesis of hexagonal and cubic super-microporous niobium phosphates with anion exchange capacity and catalytic properties publication-title: Chem. Commun. – volume: 141 start-page: 33 year: 2011 end-page: 42 ident: b0185 article-title: Sulfated zirconia modified SBA-15 catalysts for cellobiose hydrolysis publication-title: Catal. Lett. – volume: 276 start-page: 1 year: 2010 end-page: 5 ident: b0215 article-title: Unexpected phosphate salt-catalyzed hydrolysis of glycosidic bonds in model disaccharides: Cellobiose and maltose publication-title: J. Catal. – volume: 131 start-page: 1979 year: 2009 end-page: 1985 ident: b0010 article-title: Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 3305 year: 2014 end-page: 3312 ident: b0015 article-title: Zirconium phosphate combined with Ru/C as a highly efficient catalyst for the direct transformation of cellulose to C-6 alditols publication-title: Green Chem. – volume: 18 start-page: 143 year: 2004 end-page: 147 ident: b0035 article-title: Hydrolysis of disaccharides containing glucose residue in subcritical water publication-title: Biochem. Eng. J. – volume: 7 start-page: 8512 year: 2019 end-page: 8521 ident: b0145 article-title: Macroporous niobium Phosphate-Supported magnesia catalysts for isomerization of Glucose-to-Fructose publication-title: ACS Sustain. Chem. Eng. – volume: 45 start-page: 2163 year: 2006 end-page: 2173 ident: b0160 article-title: Acid-Catalyzed production of 5-Hydroxymethyl furfural from D-Fructose in subcritical water publication-title: Ind. Eng. Chem. Res. – volume: 193 start-page: 93 year: 2016 end-page: 102 ident: b0070 article-title: Cooperative action of Brønsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water publication-title: Appl. Catal. B Environ. – volume: 169 start-page: 54 year: 2013 end-page: 59 ident: b0200 article-title: Hydrolysis of hemicellulose catalyzed by hierarchical H-USY zeolites - the role of acidity and pore structure publication-title: Micropor. Mesopor. Mat. – volume: 50 start-page: 12276 year: 2011 end-page: 12280 ident: b0025 article-title: Degradation of cellulose in dilute aqueous solutions of acidic ionic liquid 1-(1-Propylsulfonic)-3-methylimidazolium chloride, and p-Toluenesulfonic acid at moderate temperatures and pressures publication-title: Ind. Eng. Chem. Res. – volume: 50 start-page: 121 year: 2009 end-page: 127 ident: b0045 article-title: Comparative studies of intermediates produced from hydrothermal treatments of sawdust and cellulose publication-title: J. Supercrit. Fluid. – volume: 43 start-page: 2209 year: 2020 end-page: 2217 ident: b0195 article-title: Enhanced biochemical characteristics of publication-title: Bioprocess Biosys. Eng. – volume: 300 start-page: 37 year: 2013 end-page: 46 ident: b0115 article-title: Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts publication-title: J. Catal. – volume: 15 start-page: 1095 year: 2013 end-page: 1111 ident: b0165 article-title: Hydrolysis of cellulose to glucose by solid acid catalysts publication-title: Green Chem. – volume: 349 start-page: 1847 year: 2007 end-page: 1850 ident: b0020 article-title: Efficient Acid-Catalyzed hydrolysis of cellulose in ionic liquid publication-title: Adv. Synth. Catal. – volume: 8 start-page: 3675 year: 2018 end-page: 3685 ident: b0105 article-title: Synthesis of a hierarchically porous niobium phosphate monolith by a sol-gel method for fructose dehydration to 5-hydroxymethylfurfural, Catal publication-title: Sci. Technol. – start-page: 872 year: 2003 end-page: 873 ident: b0135 article-title: Microporous niobium phosphates and catalytic properties prepared by a supramolecular templating mechanism publication-title: Chem. Commun. – volume: 11 start-page: 1627 year: 2009 end-page: 1632 ident: b0080 article-title: Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose publication-title: Green Chem. – volume: 19 start-page: 119 year: 2012 end-page: 126 ident: b0180 article-title: Investigation of the WO publication-title: Catal. Commun. – volume: 50 start-page: 192 year: 2004 end-page: 202 ident: b0050 article-title: Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water publication-title: AIChE J. – volume: 264 start-page: 3966 year: 1989 end-page: 3971 ident: b0170 article-title: Thermodynamics of hydrolysis of disaccharides. Cellobiose, gentiobiose, isomaltose, and maltose publication-title: J. Biol. Chem. – volume: 69 start-page: 407 year: 1969 end-page: 498 ident: b0220 article-title: Mechanism in carbohydrate chemistry publication-title: Chem. Rev. – volume: 61 start-page: 9 year: 2014 end-page: 13 ident: b0040 article-title: Kinetics of sucrose hydrolysis in a subcritical water-ethanol mixture publication-title: J. Appl. Glycoscience – volume: 347 start-page: 23 year: 2012 end-page: 31 ident: b0065 article-title: Hydrolysis of disaccharides over solid acid catalysts under green conditions publication-title: Carbohyd. Res. – volume: 25 start-page: 141 year: 2016 end-page: 145 ident: b0075 article-title: Hydrolysis of cellobiose catalyzed by zeolites—the role of acidity and micropore structure publication-title: J. Energy Chem. – volume: 28 start-page: 2349 year: 2012 end-page: 2354 ident: b0125 article-title: One-Pot catalytic conversion of xylose to furfural on mesoporous niobium phosphate publication-title: Acta Phys.-Chim. Sin. – volume: 94 start-page: 129 year: 2012 end-page: 140 ident: b0055 article-title: Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production publication-title: Appl. Energ. – volume: 49 start-page: 197 year: 2007 end-page: 340 ident: b0005 article-title: Recent progress in synthesis of fine and specialty chemicals from wood and other biomass by heterogeneous catalytic processes publication-title: Catal. Rev. – volume: 100 start-page: 265 year: 2010 end-page: 276 ident: b0060 article-title: A kinetic study of sucrose hydrolysis over Amberlite IR-120 as a heterogeneous catalyst using in situ FTIR spectroscopy publication-title: React. Kinet. Mech. Catal. – volume: 139 start-page: 301 year: 2015 end-page: 307 ident: b0120 article-title: Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts publication-title: Fuel – volume: 4 start-page: 3064 year: 2014 end-page: 3073 ident: b0150 article-title: Catalytic consequences of micropore topology, mesoporosity, and acidity on the hydrolysis of sucrose over zeolite catalysts, Catal publication-title: Sci. Technol. – volume: 38 start-page: 672 year: 2012 end-page: 690 ident: b0175 article-title: Solid acid mediated hydrolysis of biomass for producing biofuels publication-title: Prog. Energy Combust. Sci. – volume: 8 start-page: 50 year: 2007 end-page: 52 ident: b0205 article-title: Investigation of the mechanism of acidic hydrolysis of cellulose publication-title: Acta Agriculturae Serbica – volume: 334 start-page: 8 year: 2011 end-page: 12 ident: b0030 article-title: Direct conversion and NMR observation of cellulose to glucose and 5-hydroxymethylfurfural (HMF) catalyzed by the acidic ionic liquids publication-title: J. Mol. Catal. A Chem. – volume: 117 start-page: 580 year: 2009 end-page: 585 ident: b0140 article-title: Synthesis of mesoporous niobium oxophosphate using niobium tartrate precursor by soft templating method publication-title: Micropor. Mesopor. Mat. – volume: 4 start-page: 3552 year: 2011 end-page: 3557 ident: b0210 article-title: Hydrolysis of biomass by magnetic solid acid, Energ publication-title: Environ. Sci. – volume: 102 start-page: 3641 year: 2002 end-page: 3666 ident: b0090 article-title: Water-Tolerant solid acid catalysts publication-title: Chem. Rev. – volume: 3 start-page: 440 year: 2010 end-page: 443 ident: b0085 article-title: Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose publication-title: Chem. Sus. Chem. – volume: 89 start-page: 143 year: 1992 end-page: 153 ident: b0095 article-title: Textural, acidic and catalytic properties of niobium phosphate and of niobium oxide: Influence of the pretreatment temperature publication-title: Appl. Catal. A Gen. – volume: 4 start-page: 55 year: 2011 end-page: 58 ident: b0190 article-title: Hydrolysis of cellulose into glucose by magnetic solid acid publication-title: Chem. Sus. Chem. – volume: 193 start-page: 93 year: 2016 ident: 10.1016/j.cej.2021.132756_b0070 article-title: Cooperative action of Brønsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.04.012 – volume: 141 start-page: 33 year: 2011 ident: 10.1016/j.cej.2021.132756_b0185 article-title: Sulfated zirconia modified SBA-15 catalysts for cellobiose hydrolysis publication-title: Catal. Lett. doi: 10.1007/s10562-010-0466-1 – volume: 50 start-page: 121 year: 2009 ident: 10.1016/j.cej.2021.132756_b0045 article-title: Comparative studies of intermediates produced from hydrothermal treatments of sawdust and cellulose publication-title: J. Supercrit. Fluid. doi: 10.1016/j.supflu.2009.05.009 – volume: 100 start-page: 265 year: 2010 ident: 10.1016/j.cej.2021.132756_b0060 article-title: A kinetic study of sucrose hydrolysis over Amberlite IR-120 as a heterogeneous catalyst using in situ FTIR spectroscopy publication-title: React. Kinet. Mech. Catal. – volume: 276 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.cej.2021.132756_b0215 article-title: Unexpected phosphate salt-catalyzed hydrolysis of glycosidic bonds in model disaccharides: Cellobiose and maltose publication-title: J. Catal. doi: 10.1016/j.jcat.2010.08.006 – volume: 61 start-page: 9 year: 2014 ident: 10.1016/j.cej.2021.132756_b0040 article-title: Kinetics of sucrose hydrolysis in a subcritical water-ethanol mixture publication-title: J. Appl. Glycoscience doi: 10.5458/jag.jag.JAG-2013_006 – volume: 349 start-page: 1847 year: 2007 ident: 10.1016/j.cej.2021.132756_b0020 article-title: Efficient Acid-Catalyzed hydrolysis of cellulose in ionic liquid publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200700259 – volume: 50 start-page: 12276 year: 2011 ident: 10.1016/j.cej.2021.132756_b0025 article-title: Degradation of cellulose in dilute aqueous solutions of acidic ionic liquid 1-(1-Propylsulfonic)-3-methylimidazolium chloride, and p-Toluenesulfonic acid at moderate temperatures and pressures publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie200938h – volume: 38 start-page: 672 year: 2012 ident: 10.1016/j.cej.2021.132756_b0175 article-title: Solid acid mediated hydrolysis of biomass for producing biofuels publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2012.04.001 – volume: 28 start-page: 2349 year: 2012 ident: 10.1016/j.cej.2021.132756_b0125 article-title: One-Pot catalytic conversion of xylose to furfural on mesoporous niobium phosphate publication-title: Acta Phys.-Chim. Sin. doi: 10.3866/PKU.WHXB201207312 – volume: 264 start-page: 3966 year: 1989 ident: 10.1016/j.cej.2021.132756_b0170 article-title: Thermodynamics of hydrolysis of disaccharides. Cellobiose, gentiobiose, isomaltose, and maltose publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)84947-5 – volume: 19 start-page: 119 year: 2012 ident: 10.1016/j.cej.2021.132756_b0180 article-title: Investigation of the WO3/ZrO2 surface acidic properties for the aqueous hydrolysis of cellobiose publication-title: Catal. Commun. doi: 10.1016/j.catcom.2011.12.030 – volume: 49 start-page: 1128 year: 2010 ident: 10.1016/j.cej.2021.132756_b0155 article-title: Highly active mesoporous Nb-W oxide solid-acid catalyst publication-title: Angew Chem. Int. Ed. doi: 10.1002/anie.200904791 – volume: 4 start-page: 3552 year: 2011 ident: 10.1016/j.cej.2021.132756_b0210 article-title: Hydrolysis of biomass by magnetic solid acid, Energ publication-title: Environ. Sci. – volume: 25 start-page: 141 year: 2016 ident: 10.1016/j.cej.2021.132756_b0075 article-title: Hydrolysis of cellobiose catalyzed by zeolites—the role of acidity and micropore structure publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2015.11.010 – volume: 169 start-page: 54 year: 2013 ident: 10.1016/j.cej.2021.132756_b0200 article-title: Hydrolysis of hemicellulose catalyzed by hierarchical H-USY zeolites - the role of acidity and pore structure publication-title: Micropor. Mesopor. Mat. doi: 10.1016/j.micromeso.2012.10.003 – volume: 69 start-page: 407 issue: 4 year: 1969 ident: 10.1016/j.cej.2021.132756_b0220 article-title: Mechanism in carbohydrate chemistry publication-title: Chem. Rev. doi: 10.1021/cr60260a001 – start-page: 2702 issue: 22 year: 2002 ident: 10.1016/j.cej.2021.132756_b0130 article-title: Synthesis of hexagonal and cubic super-microporous niobium phosphates with anion exchange capacity and catalytic properties publication-title: Chem. Commun. doi: 10.1039/b207976c – volume: 8 start-page: 3675 year: 2018 ident: 10.1016/j.cej.2021.132756_b0105 article-title: Synthesis of a hierarchically porous niobium phosphate monolith by a sol-gel method for fructose dehydration to 5-hydroxymethylfurfural, Catal publication-title: Sci. Technol. – volume: 43 start-page: 2209 year: 2020 ident: 10.1016/j.cej.2021.132756_b0195 article-title: Enhanced biochemical characteristics of β-glucosidase via adsorption and cross-linked enzyme aggregate for rapid cellobiose hydrolysis publication-title: Bioprocess Biosys. Eng. doi: 10.1007/s00449-020-02406-5 – volume: 4 start-page: 55 year: 2011 ident: 10.1016/j.cej.2021.132756_b0190 article-title: Hydrolysis of cellulose into glucose by magnetic solid acid publication-title: Chem. Sus. Chem. doi: 10.1002/cssc.201000300 – volume: 49 start-page: 197 year: 2007 ident: 10.1016/j.cej.2021.132756_b0005 article-title: Recent progress in synthesis of fine and specialty chemicals from wood and other biomass by heterogeneous catalytic processes publication-title: Catal. Rev. doi: 10.1080/01614940701313127 – start-page: 872 issue: 7 year: 2003 ident: 10.1016/j.cej.2021.132756_b0135 article-title: Microporous niobium phosphates and catalytic properties prepared by a supramolecular templating mechanism publication-title: Chem. Commun. doi: 10.1039/b300323j – volume: 2 start-page: 2485 year: 2012 ident: 10.1016/j.cej.2021.132756_b0100 article-title: Mesoporous niobium phosphate: An excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water, Catal publication-title: Sci. Technol. – volume: 347 start-page: 23 year: 2012 ident: 10.1016/j.cej.2021.132756_b0065 article-title: Hydrolysis of disaccharides over solid acid catalysts under green conditions publication-title: Carbohyd. Res. doi: 10.1016/j.carres.2011.10.018 – volume: 11 start-page: 1627 year: 2009 ident: 10.1016/j.cej.2021.132756_b0080 article-title: Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose publication-title: Green Chem. doi: 10.1039/b913737h – volume: 45 start-page: 2163 year: 2006 ident: 10.1016/j.cej.2021.132756_b0160 article-title: Acid-Catalyzed production of 5-Hydroxymethyl furfural from D-Fructose in subcritical water publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie051088y – volume: 102 start-page: 3641 issue: 10 year: 2002 ident: 10.1016/j.cej.2021.132756_b0090 article-title: Water-Tolerant solid acid catalysts publication-title: Chem. Rev. doi: 10.1021/cr0103569 – volume: 7 start-page: 8512 year: 2019 ident: 10.1016/j.cej.2021.132756_b0145 article-title: Macroporous niobium Phosphate-Supported magnesia catalysts for isomerization of Glucose-to-Fructose publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b00292 – volume: 15 start-page: 1095 year: 2013 ident: 10.1016/j.cej.2021.132756_b0165 article-title: Hydrolysis of cellulose to glucose by solid acid catalysts publication-title: Green Chem. doi: 10.1039/c3gc40136g – volume: 131 start-page: 1979 year: 2009 ident: 10.1016/j.cej.2021.132756_b0010 article-title: Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808537j – volume: 334 start-page: 8 year: 2011 ident: 10.1016/j.cej.2021.132756_b0030 article-title: Direct conversion and NMR observation of cellulose to glucose and 5-hydroxymethylfurfural (HMF) catalyzed by the acidic ionic liquids publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2010.10.006 – volume: 18 start-page: 143 year: 2004 ident: 10.1016/j.cej.2021.132756_b0035 article-title: Hydrolysis of disaccharides containing glucose residue in subcritical water publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2003.08.002 – volume: 139 start-page: 301 year: 2015 ident: 10.1016/j.cej.2021.132756_b0120 article-title: Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts publication-title: Fuel doi: 10.1016/j.fuel.2014.08.047 – volume: 16 start-page: 3305 year: 2014 ident: 10.1016/j.cej.2021.132756_b0015 article-title: Zirconium phosphate combined with Ru/C as a highly efficient catalyst for the direct transformation of cellulose to C-6 alditols publication-title: Green Chem. doi: 10.1039/C3GC42444H – volume: 4 start-page: 3064 year: 2014 ident: 10.1016/j.cej.2021.132756_b0150 article-title: Catalytic consequences of micropore topology, mesoporosity, and acidity on the hydrolysis of sucrose over zeolite catalysts, Catal publication-title: Sci. Technol. – volume: 89 start-page: 143 issue: 2 year: 1992 ident: 10.1016/j.cej.2021.132756_b0095 article-title: Textural, acidic and catalytic properties of niobium phosphate and of niobium oxide: Influence of the pretreatment temperature publication-title: Appl. Catal. A Gen. doi: 10.1016/0926-860X(92)80229-6 – volume: 8 start-page: 50 year: 2007 ident: 10.1016/j.cej.2021.132756_b0205 article-title: Investigation of the mechanism of acidic hydrolysis of cellulose publication-title: Acta Agriculturae Serbica – volume: 50 start-page: 192 year: 2004 ident: 10.1016/j.cej.2021.132756_b0050 article-title: Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water publication-title: AIChE J. doi: 10.1002/aic.10018 – volume: 300 start-page: 37 year: 2013 ident: 10.1016/j.cej.2021.132756_b0115 article-title: Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2012.12.028 – volume: 117 start-page: 580 year: 2009 ident: 10.1016/j.cej.2021.132756_b0140 article-title: Synthesis of mesoporous niobium oxophosphate using niobium tartrate precursor by soft templating method publication-title: Micropor. Mesopor. Mat. doi: 10.1016/j.micromeso.2008.08.001 – volume: 94 start-page: 129 year: 2012 ident: 10.1016/j.cej.2021.132756_b0055 article-title: Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2012.01.027 – volume: 102 start-page: 3424 year: 2011 ident: 10.1016/j.cej.2021.132756_b0110 article-title: Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2010.10.023 – volume: 3 start-page: 440 year: 2010 ident: 10.1016/j.cej.2021.132756_b0085 article-title: Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose publication-title: Chem. Sus. Chem. doi: 10.1002/cssc.200900296 |
SSID | ssj0006919 |
Score | 2.4414787 |
Snippet | [Display omitted]
•Macroscopic kinetic models of disaccharides hydrolysis were established.•NbP showed high catalytic performance in hydrolysis of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 132756 |
SubjectTerms | Disaccharide Hydrolysis Kinetic model Niobium phosphate |
Title | Establishing a kinetic model of biomass-derived disaccharide hydrolysis over solid acid: A case study on hierarchically porous niobium phosphate |
URI | https://dx.doi.org/10.1016/j.cej.2021.132756 |
Volume | 430 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V5QIHVF6iLVRz4IS0jR9j75pbVLUKRPQAVPRmZXfHikuxoyap1Au_gZ_MjGO3RQIOnCzZM5K1M5rHzuNT6g0VbpaQsxrTYDTajLTNLGlTVREaDHFGcg_58TSfnOGH8-x8Sx0NszDSVtnb_o1N76x1_2bUn-ZoUdejz7HUtArkFEaWcKEMmiMa0fLDH3dtHnnRgXsIsRbqobLZ9Xh5uuAUMYkPOSczgmH9J990z9-c7KjHfaAI482_PFFb1DxVj-6tD3ymfh5zaDfcIsEMvvEnpoYO3QbaCmS2noNjHZjhmgKEejnzMmdVB4L5Tbhqu4UkIG2cwEpYB5j5OryDMXj2btDtnoW2AQHM7koOLNHLG-CYvV0voalbV6-_w2LeLhdzDlqfq7OT4y9HE90jLGifFGalKUpDTjFJ_ZnImwgprWQ4tSgQQ-JTT3LPlHgX55U1SUBL1pnUosuSKkTpC7XdtA29VCB9qgUzY0UFOuMsyz3OifNLXwnHroqGsy19v35cUDAuy6HP7KJkcZQijnIjjl319pZlsdm98S9iHARW_qZAJfuGv7Pt_R_bvnqYyByEIMNkr9T26mpNrzk6WbmDTv0O1IPx--nkVJ7TT1-nvwDI9eb3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPFU9RnnOAC5K7iePEDhKHClpt6eNCK_UW1vZEm9Imq-5u0V74DfwX_iAz2QSKBByQek08keMZzcPz-IR4ibkbKXRW6iQYqW2K0qYWpSnLSBsd4hT5HvLgMBse6w8n6cmK-N73wnBZZaf7lzq91dbdk0F3moNJVQ0-xpzTyjWFMDyES_eVlXu4-EJx2_Tt7nti8iuldraP3g1lBy0gvcrNTGKUhAxj5MQrojeRxqTkrsw81zoon3jkCxblXZyV1qigLVpnEqtdqsoQJfTdG-KmJnXBsAmbX3_VlWR5iybCu5O8vT6V2haVeTylmFTFmxQEGgbN_pMxvGLgdu6I9c4zha3lz98VK1jfE2tX5hXeF9-2yZfsr61gBJ_pFa2GFk4HmhK4mZ-8cRmI4BIDhGo68tzYVQWE8SJcNO0EFOC6USCprwKMfBXewBZ4MqfQDruFpgZG6G5zHCRCZwugIKGZT6GuGlfNz2EybqaTMXnJD8TxtZz7Q7FaNzU-EsCFsTkR6xJz7YyzJGhxhhTQ-pIpNkTUn23hu3nnDLtxVvSFbacFsaNgdhRLdmyI1z9JJsthH_9arHuGFb9JbEHG6O9kj_-P7IW4NTw62C_2dw_3nojbipswGJYmfSpWZxdzfEau0cw9b0URxKfrlv0fD7sgRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishing+a+kinetic+model+of+biomass-derived+disaccharide+hydrolysis+over+solid+acid%3A+A+case+study+on+hierarchically+porous+niobium+phosphate&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Liu%2C+Qian&rft.au=Liu%2C+Haichao&rft.au=Gao%2C+Da-Ming&rft.date=2022-02-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=430&rft_id=info:doi/10.1016%2Fj.cej.2021.132756&rft.externalDocID=S1385894721043345 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |