Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery
Predictive maintenance of lithium-ion batteries has been one of the popular research subjects in recent years. Lithium-ion batteries can be used as the energy supply for industrial equipment, such as automated guided vehicles and battery electric vehicles. Predictive maintenance plays an important r...
Saved in:
Published in | Advanced engineering informatics Vol. 50; p. 101405 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predictive maintenance of lithium-ion batteries has been one of the popular research subjects in recent years. Lithium-ion batteries can be used as the energy supply for industrial equipment, such as automated guided vehicles and battery electric vehicles. Predictive maintenance plays an important role in the application of smart manufacturing. This mechanism can provide different levels of pre-diagnosis for machines or components. Remaining useful life (RUL) prediction is crucial for the implementation of predictive maintenance strategies. RUL refers to the estimated useful life remaining before the machine cannot operate after a certain period of operation. This study develops a hybrid data science model based on empirical mode decomposition (EMD), grey relational analysis (GRA), and deep recurrent neural networks (RNN) for the RUL prediction of lithium-ion batteries. The EMD and GRA methods are first adopted to extract the characteristics of time series data. Then, various deep RNNs, including vanilla RNN, gated recurrent unit, long short-term memory network (LSTM), and bidirectional LSTM, are established to forecast state of health (SOH) and the RUL of lithium-ion batteries. Bayesian optimization is also used to find the best hyperparameters of deep RNNs. Experimental results with the lithium-ion batteries data of NASA Ames Prognostics Data Repository show that the proposed hybrid data science model can accurately predict the SOH and RUL of lithium-ion batteries. The LSTM network has the optimal results. The proposed hybrid data science model with multiple artificial intelligence-based technologies also demonstrates critical digital-technology enablers for digital transformation of smart manufacturing and transportation. |
---|---|
AbstractList | Predictive maintenance of lithium-ion batteries has been one of the popular research subjects in recent years. Lithium-ion batteries can be used as the energy supply for industrial equipment, such as automated guided vehicles and battery electric vehicles. Predictive maintenance plays an important role in the application of smart manufacturing. This mechanism can provide different levels of pre-diagnosis for machines or components. Remaining useful life (RUL) prediction is crucial for the implementation of predictive maintenance strategies. RUL refers to the estimated useful life remaining before the machine cannot operate after a certain period of operation. This study develops a hybrid data science model based on empirical mode decomposition (EMD), grey relational analysis (GRA), and deep recurrent neural networks (RNN) for the RUL prediction of lithium-ion batteries. The EMD and GRA methods are first adopted to extract the characteristics of time series data. Then, various deep RNNs, including vanilla RNN, gated recurrent unit, long short-term memory network (LSTM), and bidirectional LSTM, are established to forecast state of health (SOH) and the RUL of lithium-ion batteries. Bayesian optimization is also used to find the best hyperparameters of deep RNNs. Experimental results with the lithium-ion batteries data of NASA Ames Prognostics Data Repository show that the proposed hybrid data science model can accurately predict the SOH and RUL of lithium-ion batteries. The LSTM network has the optimal results. The proposed hybrid data science model with multiple artificial intelligence-based technologies also demonstrates critical digital-technology enablers for digital transformation of smart manufacturing and transportation. |
ArticleNumber | 101405 |
Author | Cheng, C.C. Chen, Tzu-Li Li, Meng-Gung Liu, Wei-Jun Chen, James C. |
Author_xml | – sequence: 1 givenname: James C. surname: Chen fullname: Chen, James C. organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC – sequence: 2 givenname: Tzu-Li surname: Chen fullname: Chen, Tzu-Li email: chentzuli@gmail.com organization: Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan, ROC – sequence: 3 givenname: Wei-Jun surname: Liu fullname: Liu, Wei-Jun organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC – sequence: 4 givenname: C.C. surname: Cheng fullname: Cheng, C.C. organization: Cal-Comp Automation and Industrial 4.0 Service, Samut Sakhon, Thailand – sequence: 5 givenname: Meng-Gung surname: Li fullname: Li, Meng-Gung organization: Cal-Comp Automation and Industrial 4.0 Service, Samut Sakhon, Thailand |
BookMark | eNp9kMtKAzEUQINUsK1-gLv8wNRkXpnBlRRfILjRdcgkd_TWTjIkaaX482aoKxdd3ee5cM-CzKyzQMg1ZyvOeH2zWSnAVc5yPtUlq87InDeiyKoiZ7OUl6LMWFHWF2QRwoYlpmnFnPys3dChRftBYRjRo1ZbOjgD1IB2w-gCRnSWKmtSB0bqQe-8BxuphZ1Pyxbit_NfgfbO09GDQR1xD3RQaCNYZTVQ19Mtxk_cDdl0rFMxgj9ckvNebQNc_cUleX-4f1s_ZS-vj8_ru5dM562ImemF0W1egTFV34k6Z13fdFA2heYcSm6YaNsa8rpUkIa84JXRjW47KGplOlEsCT_e1d6F4KGXo8dB-YPkTE725EYme3KyJ4_2EiP-MRqjmlREr3B7krw9kpBe2iN4GTRCsmAwuYvSODxB_wK7OY9u |
CitedBy_id | crossref_primary_10_1016_j_aei_2024_103053 crossref_primary_10_1016_j_jechem_2024_06_017 crossref_primary_10_1016_j_aei_2024_102916 crossref_primary_10_1016_j_aei_2022_101547 crossref_primary_10_1016_j_est_2024_111626 crossref_primary_10_1149_1945_7111_ad0ea2 crossref_primary_10_1016_j_est_2023_109069 crossref_primary_10_1177_01423312241257305 crossref_primary_10_3390_su142114536 crossref_primary_10_1016_j_ijepes_2023_109764 crossref_primary_10_1016_j_ress_2023_109123 crossref_primary_10_1016_j_isci_2024_110979 crossref_primary_10_1016_j_ymssp_2024_111376 crossref_primary_10_1016_j_tranpol_2023_05_012 crossref_primary_10_1115_1_4063430 crossref_primary_10_1016_j_aei_2024_103083 crossref_primary_10_1109_ACCESS_2024_3455255 crossref_primary_10_1016_j_rser_2024_115045 crossref_primary_10_3390_en16165952 crossref_primary_10_1007_s00170_023_10981_6 crossref_primary_10_1016_j_aei_2024_102408 crossref_primary_10_1016_j_aei_2024_102804 crossref_primary_10_1088_1742_6596_2741_1_012073 crossref_primary_10_1149_1945_7111_ad24c1 crossref_primary_10_1016_j_measurement_2023_112615 crossref_primary_10_1007_s11227_023_05859_z crossref_primary_10_1016_j_ijfatigue_2023_107722 crossref_primary_10_1007_s10489_021_03004_y crossref_primary_10_1109_TAES_2024_3402199 crossref_primary_10_1016_j_aei_2023_102066 crossref_primary_10_20964_2022_08_30 crossref_primary_10_1016_j_est_2023_109014 crossref_primary_10_3390_app14020898 crossref_primary_10_1016_j_est_2023_108763 crossref_primary_10_1016_j_jechem_2024_03_013 crossref_primary_10_1039_D2GC04574E crossref_primary_10_1016_j_jpowsour_2025_236607 crossref_primary_10_1016_j_est_2023_107868 crossref_primary_10_1016_j_cscee_2024_100902 crossref_primary_10_1007_s00170_024_14916_7 crossref_primary_10_1016_j_aei_2022_101806 crossref_primary_10_3390_en17071695 crossref_primary_10_1016_j_aei_2023_102219 crossref_primary_10_1016_j_eswa_2025_126905 crossref_primary_10_3390_batteries8020018 crossref_primary_10_1016_j_isatra_2022_04_042 crossref_primary_10_1016_j_rser_2023_114224 crossref_primary_10_1016_j_aei_2021_101447 crossref_primary_10_1016_j_est_2024_110874 crossref_primary_10_1002_ente_202100767 crossref_primary_10_1016_j_electacta_2022_141404 crossref_primary_10_1016_j_est_2023_109285 crossref_primary_10_1007_s11581_024_05868_9 crossref_primary_10_1109_TIE_2023_3274874 crossref_primary_10_1002_cta_3624 crossref_primary_10_1016_j_jpowsour_2024_234674 crossref_primary_10_1016_j_aei_2024_102373 crossref_primary_10_1016_j_energy_2022_125278 crossref_primary_10_1016_j_jechem_2023_03_026 crossref_primary_10_1016_j_neucom_2023_126380 crossref_primary_10_1088_1361_6501_ad34f0 crossref_primary_10_1016_j_est_2023_109884 crossref_primary_10_1016_j_est_2023_107862 crossref_primary_10_1016_j_inffus_2024_102462 crossref_primary_10_3390_pr11030678 crossref_primary_10_1016_j_cie_2022_108265 crossref_primary_10_3390_su16114755 crossref_primary_10_1016_j_engappai_2023_105860 crossref_primary_10_3390_machines10090796 crossref_primary_10_1016_j_aei_2023_101954 crossref_primary_10_1088_1361_6501_ac656a crossref_primary_10_1016_j_aei_2023_102125 crossref_primary_10_1016_j_ress_2022_108920 crossref_primary_10_1007_s00170_023_12648_8 crossref_primary_10_1016_j_aei_2022_101772 crossref_primary_10_1016_j_engappai_2024_108285 crossref_primary_10_1016_j_est_2023_109198 crossref_primary_10_1002_tcr_202200131 crossref_primary_10_1016_j_ress_2023_109352 crossref_primary_10_1016_j_etran_2023_100294 |
Cites_doi | 10.1016/j.aei.2020.101043 10.1109/TIE.2020.2973876 10.1016/j.neucom.2017.05.063 10.1016/j.ress.2014.09.014 10.3390/en12050801 10.3390/en13020375 10.1016/j.ymssp.2017.11.016 10.1109/ACCESS.2020.2981261 10.1016/j.ress.2019.03.018 10.1109/TVT.2018.2805189 10.1016/j.jpowsour.2016.04.119 10.1016/j.dss.2019.113100 10.1016/j.ress.2019.106682 10.3390/en11030526 10.3390/en14061596 10.1016/j.jclepro.2018.09.065 10.1016/j.aei.2020.101054 10.1109/AUS.2016.7748035 10.1109/TVT.2019.2932605 10.1109/ACCESS.2018.2858856 10.1016/j.ress.2018.02.022 10.1016/j.ymssp.2018.05.050 10.1109/ACCESS.2019.2925468 10.1016/j.isatra.2019.07.004 10.1109/ICEMI.2011.6037773 10.1109/ICPHM.2017.7998311 10.1016/j.aei.2016.11.007 10.1016/j.neucom.2020.03.041 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.aei.2021.101405 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1873-5320 |
ExternalDocumentID | 10_1016_j_aei_2021_101405 S1474034621001579 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSB SSD SST SSV SSZ T5K UHS XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-df7dc925edd5fb7620bf8be483c11e41d07996e264ae6201315dc8c9be36adb73 |
IEDL.DBID | .~1 |
ISSN | 1474-0346 |
IngestDate | Thu Apr 24 22:54:50 EDT 2025 Tue Jul 01 02:02:38 EDT 2025 Fri Feb 23 02:44:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Empirical mode decomposition Lithium-Ion battery Deep recurrent neural network Remaining useful life Bayesian optimization Predictive maintenance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-df7dc925edd5fb7620bf8be483c11e41d07996e264ae6201315dc8c9be36adb73 |
ParticipantIDs | crossref_primary_10_1016_j_aei_2021_101405 crossref_citationtrail_10_1016_j_aei_2021_101405 elsevier_sciencedirect_doi_10_1016_j_aei_2021_101405 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | Advanced engineering informatics |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Liu, Wang, Sun, Di Cairano-Gilfedder, Titmus, Syntetos (b0020) 2020; 44 B. Saha, K. Goebel, Battery Data Set, NASA Ames Prognostics Data Repository (http://ti.arc.nasa.gov/project/prognostic-data-repository), NASA Ames Research Center, Moffett Field, CA, 2007. S. Zheng, K. Ristovski, A. Farahat, C. Gupta, Long short-term memory network for remaining useful life estimation, In: 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). IEEE, 2017, pp. 88-95. Li, Zhang, Wang, Dong (b0090) 2019; 21 Qu, Liu, Ma, Fan (b0115) 2019; 7 Kordestani, Saif, Orchard, Razavi-Far, Khorasani (b0055) 2019 Kraus, Feuerriegel (b0060) 2019; 125 Wu, Hu, Cheng, Zhu, Shao, Wang (b0170) 2020; 97 Da Costa, Akçay, Zhang, Kaymak (b0025) 2020; 195 Jin, Zheng, Kong, Wang, Bai, Su, Lin (b0050) 2021; 14 Zhang, Xiong, He, Pecht (b0230) 2018; 67 Yu (b0190) 2018; 174 Li, Zhang, Xiong, Ding, Hou, Luo, Rong, Li (b0085) 2020; 459 Lipu, Hannan, Hussain, Hoque, Ker, Saad, Ayob (b0080) 2018; 205 Wang, Ni, Lu, Wang, Zhang (b0165) 2019; 68 Liu, Shang, Ouyang, Widanage (b0100) 2020; 68 Zhang, Zhai, Guo, Wang, Peng, Zhang (b0210) 2019; 26 Lei, Li, Guo, Li, Yan, Lin (b0075) 2018; 104 Erick, Carlos, Hector, Gil, Henrik (b0035) 2018; 11 Wu, Yuan, Dong, Lin, Liu (b0175) 2018; 275 Yu, Hu, Si, Zheng, Zhang (b0195) 2020; 402 M. Yuan, Y. Wu, L. Lin, Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network, in: 2016 IEEE International Conference on Aircraft Utility Systems (AUS) (2016) 135-140. IEEE. An, Kim, Choi (b0010) 2015; 133 Zhou, Huang, Chen, Tao (b0255) 2016; 321 Asmai, Hussin, Yusof (b0015) 2010 Ren, Zhao, Hong, Zhao, Wang, Zhang (b0125) 2018; 6 Tian, Qin, Li, Zhao (b0155) 2020; 120813 Jia, Liang, Shi, Wen, Pang, Zeng (b0045) 2020; 13 Lee, Huang, Liu, Lan (b0065) 2019; 12 Aheleroff, Xu, Lu, Aristizabal, Velásquez, Joa, Valencia (b0005) 2020; 43 Nguyen, Medjaher (b0105) 2019; 188 Zhou, Li, Zhu, Zhang, Hou (b0245) 2020; 8 Trappey, Trappey, Hareesh Govindarajan, Chuang, Sun (b0160) 2017; 33 C. Xiongzi, Y. Jinsong, T. Diyin, W. Yingxun, Remaining useful life prognostic estimation for aircraft subsystems or components: a review. In: IEEE 2011 10th International Conference on Electronic Measurement & Instruments 2 (2011) 94-98. IEEE. Zhao, Yan, Chen, Mao, Wang, Gao (b0235) 2019; 115 Chen (10.1016/j.aei.2021.101405_b0020) 2020; 44 An (10.1016/j.aei.2021.101405_b0010) 2015; 133 Yu (10.1016/j.aei.2021.101405_b0190) 2018; 174 Li (10.1016/j.aei.2021.101405_b0085) 2020; 459 10.1016/j.aei.2021.101405_b0185 10.1016/j.aei.2021.101405_b0240 Ren (10.1016/j.aei.2021.101405_b0125) 2018; 6 Jin (10.1016/j.aei.2021.101405_b0050) 2021; 14 Liu (10.1016/j.aei.2021.101405_b0100) 2020; 68 Wu (10.1016/j.aei.2021.101405_b0170) 2020; 97 Asmai (10.1016/j.aei.2021.101405_b0015) 2010 Zhou (10.1016/j.aei.2021.101405_b0245) 2020; 8 Qu (10.1016/j.aei.2021.101405_b0115) 2019; 7 Lipu (10.1016/j.aei.2021.101405_b0080) 2018; 205 Aheleroff (10.1016/j.aei.2021.101405_b0005) 2020; 43 10.1016/j.aei.2021.101405_b0180 Lee (10.1016/j.aei.2021.101405_b0065) 2019; 12 Li (10.1016/j.aei.2021.101405_b0090) 2019; 21 Da Costa (10.1016/j.aei.2021.101405_b0025) 2020; 195 Zhou (10.1016/j.aei.2021.101405_b0255) 2016; 321 Wu (10.1016/j.aei.2021.101405_b0175) 2018; 275 10.1016/j.aei.2021.101405_b0135 Yu (10.1016/j.aei.2021.101405_b0195) 2020; 402 Nguyen (10.1016/j.aei.2021.101405_b0105) 2019; 188 Zhang (10.1016/j.aei.2021.101405_b0230) 2018; 67 Tian (10.1016/j.aei.2021.101405_b0155) 2020; 120813 Kordestani (10.1016/j.aei.2021.101405_b0055) 2019 Zhao (10.1016/j.aei.2021.101405_b0235) 2019; 115 Kraus (10.1016/j.aei.2021.101405_b0060) 2019; 125 Trappey (10.1016/j.aei.2021.101405_b0160) 2017; 33 Jia (10.1016/j.aei.2021.101405_b0045) 2020; 13 Lei (10.1016/j.aei.2021.101405_b0075) 2018; 104 Erick (10.1016/j.aei.2021.101405_b0035) 2018; 11 Wang (10.1016/j.aei.2021.101405_b0165) 2019; 68 Zhang (10.1016/j.aei.2021.101405_b0210) 2019; 26 |
References_xml | – start-page: 241 year: 2010 end-page: 245 ident: b0015 publication-title: A framework of an intelligent maintenance prognosis tool – volume: 6 start-page: 50587 year: 2018 end-page: 50598 ident: b0125 article-title: Remaining useful life prediction for lithium-ion battery: a deep learning approach publication-title: IEEE Access – reference: M. Yuan, Y. Wu, L. Lin, Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network, in: 2016 IEEE International Conference on Aircraft Utility Systems (AUS) (2016) 135-140. IEEE. – volume: 174 start-page: 82 year: 2018 end-page: 95 ident: b0190 article-title: State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble publication-title: Reliab. Eng. Syst. Saf. – volume: 44 year: 2020 ident: b0020 article-title: Predictive maintenance using cox proportional hazard deep learning publication-title: Adv. Eng. Inf. – volume: 205 start-page: 115 year: 2018 end-page: 133 ident: b0080 article-title: A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: challenges and recommendations publication-title: J. Cleaner Prod. – volume: 275 start-page: 167 year: 2018 end-page: 179 ident: b0175 article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks publication-title: Neurocomputing – volume: 43 year: 2020 ident: b0005 article-title: IoT-enabled smart appliances under industry 4.0: a case study publication-title: Adv. Eng. Inf. – volume: 402 start-page: 134 year: 2020 end-page: 147 ident: b0195 article-title: Averaged Bi-LSTM networks for RUL prognostics with non-life-cycle labeled dataset publication-title: Neurocomputing – reference: B. Saha, K. Goebel, Battery Data Set, NASA Ames Prognostics Data Repository (http://ti.arc.nasa.gov/project/prognostic-data-repository), NASA Ames Research Center, Moffett Field, CA, 2007. – volume: 68 start-page: 9543 year: 2019 end-page: 9553 ident: b0165 article-title: Remaining useful life prediction of lithium-ion batteries using support vector regression optimized by artificial bee colony publication-title: IEEE Trans. Veh. Technol. – reference: C. Xiongzi, Y. Jinsong, T. Diyin, W. Yingxun, Remaining useful life prognostic estimation for aircraft subsystems or components: a review. In: IEEE 2011 10th International Conference on Electronic Measurement & Instruments 2 (2011) 94-98. IEEE. – volume: 133 start-page: 223 year: 2015 end-page: 236 ident: b0010 article-title: Practical options for selecting data-driven or physics-based prognostics algorithms with reviews publication-title: Reliab. Eng. Syst. Saf. – volume: 188 start-page: 251 year: 2019 end-page: 262 ident: b0105 article-title: A new dynamic predictive maintenance framework using deep learning for failure prognostics publication-title: Reliab. Eng. Syst. Saf. – volume: 26 year: 2019 ident: b0210 article-title: Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks publication-title: J. Storage Mater. – volume: 21 start-page: 510 year: 2019 end-page: 518 ident: b0090 article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks publication-title: J. Storage Mater. – volume: 115 start-page: 213 year: 2019 end-page: 237 ident: b0235 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech. Syst. Sig. Process. – volume: 321 start-page: 1 year: 2016 end-page: 10 ident: b0255 article-title: A novel health indicator for on-line lithium-ion batteries remaining useful life prediction publication-title: J. Power Sources – volume: 67 start-page: 5695 year: 2018 end-page: 5705 ident: b0230 article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. – volume: 13 start-page: 375 year: 2020 ident: b0045 article-title: SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators publication-title: Energies – volume: 12 start-page: 801 year: 2019 ident: b0065 article-title: Data science for vibration heteroscedasticity and predictive maintenance of rotary bearings publication-title: Energies – volume: 11 start-page: 526 year: 2018 ident: b0035 article-title: Wind power forecasting based on echo state networks and long short-term memory publication-title: Energies – volume: 104 start-page: 799 year: 2018 end-page: 834 ident: b0075 article-title: Machinery health prognostics: a systematic review from data acquisition to RUL prediction publication-title: Mech. Syst. Sig. Process. – volume: 459 year: 2020 ident: b0085 article-title: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network publication-title: J. Power Source – year: 2019 ident: b0055 article-title: Failure prognosis and applications—a survey of recent literature publication-title: IEEE Trans. Reliab. – volume: 33 start-page: 208 year: 2017 end-page: 229 ident: b0160 article-title: A review of essential standards and patent landscapes for the Internet of Things: a key enabler for Industry 4.0 publication-title: Adv. Eng. Inf. – volume: 68 start-page: 3170 year: 2020 end-page: 3180 ident: b0100 article-title: A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery publication-title: IEEE Trans. Ind. Electron. – volume: 14 start-page: 1596 year: 2021 ident: b0050 article-title: Deep-learning forecasting method for electric power load via attention-based encoder-decoder with Bayesian optimization publication-title: Energies – volume: 8 start-page: 53307 year: 2020 end-page: 53320 ident: b0245 article-title: State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network publication-title: IEEE Access – volume: 195 year: 2020 ident: b0025 article-title: Remaining useful lifetime prediction via deep domain adaptation publication-title: Reliab. Eng. Syst. Saf. – volume: 120813 year: 2020 ident: b0155 article-title: A review of the state of health for lithium-ion batteries: research status and suggestions publication-title: J. Cleaner Prod. – volume: 7 start-page: 87178 year: 2019 end-page: 87191 ident: b0115 article-title: A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery publication-title: IEEE Access – volume: 125 year: 2019 ident: b0060 article-title: Forecasting remaining useful life: interpretable deep learning approach via variational Bayesian inferences publication-title: Decis. Support Syst. – reference: S. Zheng, K. Ristovski, A. Farahat, C. Gupta, Long short-term memory network for remaining useful life estimation, In: 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). IEEE, 2017, pp. 88-95. – volume: 97 start-page: 241 year: 2020 end-page: 250 ident: b0170 article-title: Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network publication-title: ISA Trans. – volume: 43 year: 2020 ident: 10.1016/j.aei.2021.101405_b0005 article-title: IoT-enabled smart appliances under industry 4.0: a case study publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2020.101043 – volume: 68 start-page: 3170 year: 2020 ident: 10.1016/j.aei.2021.101405_b0100 article-title: A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2973876 – volume: 275 start-page: 167 year: 2018 ident: 10.1016/j.aei.2021.101405_b0175 article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.063 – volume: 133 start-page: 223 year: 2015 ident: 10.1016/j.aei.2021.101405_b0010 article-title: Practical options for selecting data-driven or physics-based prognostics algorithms with reviews publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2014.09.014 – ident: 10.1016/j.aei.2021.101405_b0135 – volume: 26 year: 2019 ident: 10.1016/j.aei.2021.101405_b0210 article-title: Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks publication-title: J. Storage Mater. – volume: 12 start-page: 801 issue: 5 year: 2019 ident: 10.1016/j.aei.2021.101405_b0065 article-title: Data science for vibration heteroscedasticity and predictive maintenance of rotary bearings publication-title: Energies doi: 10.3390/en12050801 – volume: 13 start-page: 375 issue: 2 year: 2020 ident: 10.1016/j.aei.2021.101405_b0045 article-title: SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators publication-title: Energies doi: 10.3390/en13020375 – volume: 104 start-page: 799 year: 2018 ident: 10.1016/j.aei.2021.101405_b0075 article-title: Machinery health prognostics: a systematic review from data acquisition to RUL prediction publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.11.016 – volume: 8 start-page: 53307 year: 2020 ident: 10.1016/j.aei.2021.101405_b0245 article-title: State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981261 – volume: 459 issue: 31 year: 2020 ident: 10.1016/j.aei.2021.101405_b0085 article-title: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network publication-title: J. Power Source – volume: 188 start-page: 251 year: 2019 ident: 10.1016/j.aei.2021.101405_b0105 article-title: A new dynamic predictive maintenance framework using deep learning for failure prognostics publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2019.03.018 – volume: 67 start-page: 5695 issue: 7 year: 2018 ident: 10.1016/j.aei.2021.101405_b0230 article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2805189 – volume: 321 start-page: 1 issue: 30 year: 2016 ident: 10.1016/j.aei.2021.101405_b0255 article-title: A novel health indicator for on-line lithium-ion batteries remaining useful life prediction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.04.119 – volume: 125 year: 2019 ident: 10.1016/j.aei.2021.101405_b0060 article-title: Forecasting remaining useful life: interpretable deep learning approach via variational Bayesian inferences publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2019.113100 – volume: 195 year: 2020 ident: 10.1016/j.aei.2021.101405_b0025 article-title: Remaining useful lifetime prediction via deep domain adaptation publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2019.106682 – volume: 11 start-page: 526 issue: 3 year: 2018 ident: 10.1016/j.aei.2021.101405_b0035 article-title: Wind power forecasting based on echo state networks and long short-term memory publication-title: Energies doi: 10.3390/en11030526 – volume: 120813 year: 2020 ident: 10.1016/j.aei.2021.101405_b0155 article-title: A review of the state of health for lithium-ion batteries: research status and suggestions publication-title: J. Cleaner Prod. – volume: 14 start-page: 1596 issue: 6 year: 2021 ident: 10.1016/j.aei.2021.101405_b0050 article-title: Deep-learning forecasting method for electric power load via attention-based encoder-decoder with Bayesian optimization publication-title: Energies doi: 10.3390/en14061596 – volume: 205 start-page: 115 year: 2018 ident: 10.1016/j.aei.2021.101405_b0080 article-title: A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: challenges and recommendations publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.09.065 – volume: 44 year: 2020 ident: 10.1016/j.aei.2021.101405_b0020 article-title: Predictive maintenance using cox proportional hazard deep learning publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2020.101054 – year: 2019 ident: 10.1016/j.aei.2021.101405_b0055 article-title: Failure prognosis and applications—a survey of recent literature publication-title: IEEE Trans. Reliab. – start-page: 241 year: 2010 ident: 10.1016/j.aei.2021.101405_b0015 – ident: 10.1016/j.aei.2021.101405_b0185 doi: 10.1109/AUS.2016.7748035 – volume: 68 start-page: 9543 issue: 10 year: 2019 ident: 10.1016/j.aei.2021.101405_b0165 article-title: Remaining useful life prediction of lithium-ion batteries using support vector regression optimized by artificial bee colony publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2932605 – volume: 6 start-page: 50587 year: 2018 ident: 10.1016/j.aei.2021.101405_b0125 article-title: Remaining useful life prediction for lithium-ion battery: a deep learning approach publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2858856 – volume: 174 start-page: 82 year: 2018 ident: 10.1016/j.aei.2021.101405_b0190 article-title: State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2018.02.022 – volume: 115 start-page: 213 issue: 15 year: 2019 ident: 10.1016/j.aei.2021.101405_b0235 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.05.050 – volume: 7 start-page: 87178 year: 2019 ident: 10.1016/j.aei.2021.101405_b0115 article-title: A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2925468 – volume: 97 start-page: 241 year: 2020 ident: 10.1016/j.aei.2021.101405_b0170 article-title: Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.07.004 – ident: 10.1016/j.aei.2021.101405_b0180 doi: 10.1109/ICEMI.2011.6037773 – ident: 10.1016/j.aei.2021.101405_b0240 doi: 10.1109/ICPHM.2017.7998311 – volume: 33 start-page: 208 year: 2017 ident: 10.1016/j.aei.2021.101405_b0160 article-title: A review of essential standards and patent landscapes for the Internet of Things: a key enabler for Industry 4.0 publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2016.11.007 – volume: 402 start-page: 134 year: 2020 ident: 10.1016/j.aei.2021.101405_b0195 article-title: Averaged Bi-LSTM networks for RUL prognostics with non-life-cycle labeled dataset publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.041 – volume: 21 start-page: 510 year: 2019 ident: 10.1016/j.aei.2021.101405_b0090 article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks publication-title: J. Storage Mater. |
SSID | ssj0016897 |
Score | 2.5760863 |
Snippet | Predictive maintenance of lithium-ion batteries has been one of the popular research subjects in recent years. Lithium-ion batteries can be used as the energy... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101405 |
SubjectTerms | Bayesian optimization Deep recurrent neural network Empirical mode decomposition Lithium-Ion battery Predictive maintenance Remaining useful life |
Title | Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery |
URI | https://dx.doi.org/10.1016/j.aei.2021.101405 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xTc5eBLiNm3apMdFlFXRiy7srSRNihW3W_ZxEMHf7kybioJ68Nh0Uso0mfnSfPmGkFMJIEEDTmWQm2MmCsWZskKwJNVBYSFmxk3Vkrv7ZDAUN6N4tEQuurMwSKv0sb-N6U209i09781eXZa9By6kCCKRhCgjFEs8xCeExFF-_v5J8-CJagusgDFD625ns-F4aVfCEjHkeC2wgt1PuelLvrnaIGseKNJ--y6bZMlVW2Tdg0bqp-Rsm7zBjDZNlQfqxnXZKH5QrG9DrUO-uCdlUV1ZaHE1neIfdtRkoqhlCcZVywSfUcCvtJ7izg3GQDrWqCWBghyOTgoKeP2pXIwZPsw0qpyvO2R4dfl4MWC-ogLLw1TOmS2kzdMwdtbGhYE4GJhCGSdUlHPuBLeBhPWPA5CkHdzkEY9trvLUuCjR1sholyxXk8rtEZrCWsYUVjiFAjaRUloA-BTSAoAzQWT3SdD5Msu93DhWvXjJOl7Zcwbuz9D9Wev-fXL22aVutTb-MhbdB8q-DZgMcsHv3Q7-1-2QrOJVy-I7Isvz6cIdAxqZm5NmuJ2Qlf717eD-AxCV3sE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VMsDCN-IbD0xIVpPGSZyxqkCFQheo1C2KY0cE0TRqy4D489wlDgIJGBhj-6LoYt89x5f3AC5CBAkJ4lSOudnnIpMul1oIHkSJk2mMmX6lWnI_CgZjcTvxJy3oN__CUFmljf11TK-itW3pWG92yjzvPLgiFI4ngi7RCPlhtAKrxE7lt2G1dzMcjD4PEwJZa6zgeE4GzeFmVeaVmBx3iV2XrgWJ2P2Unr6knOst2LBYkfXqx9mGlil2YNPiRmZX5WIX3nFRq0rogZlpmVekH4wkbpg2VDJu67JYUmhsMSWb00d2omViRGeJg4u6GHzBEMKyck6HNxQG2TQhOgni5DBsljGE7E_565TTzVRFzPm2B-Prq8f-gFtRBZ52o3DJdRbqNOr6Rms_UxgKHZVJZYT0Utc1wtVOiFsggzgpMdjpeq6vU5lGynhBolXo7UO7mBXmAFiE2xmVaWEkcdh4UiYC8acINWI45Xj6EJzGl3FqGcdJ-OIlbkrLnmN0f0zuj2v3H8Llp0lZ0238NVg0Lyj-NmdiTAe_mx39z-wc1gaP93fx3c1oeAzr1FMX9Z1Aezl_NacITpbqzE6-D7oj4XI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+empirical+mode+decomposition+and+deep+recurrent+neural+networks+for+predictive+maintenance+of+lithium-ion+battery&rft.jtitle=Advanced+engineering+informatics&rft.au=Chen%2C+James+C.&rft.au=Chen%2C+Tzu-Li&rft.au=Liu%2C+Wei-Jun&rft.au=Cheng%2C+C.C.&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=1474-0346&rft.eissn=1873-5320&rft.volume=50&rft_id=info:doi/10.1016%2Fj.aei.2021.101405&rft.externalDocID=S1474034621001579 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon |