Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery

Predictive maintenance of lithium-ion batteries has been one of the popular research subjects in recent years. Lithium-ion batteries can be used as the energy supply for industrial equipment, such as automated guided vehicles and battery electric vehicles. Predictive maintenance plays an important r...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering informatics Vol. 50; p. 101405
Main Authors Chen, James C., Chen, Tzu-Li, Liu, Wei-Jun, Cheng, C.C., Li, Meng-Gung
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predictive maintenance of lithium-ion batteries has been one of the popular research subjects in recent years. Lithium-ion batteries can be used as the energy supply for industrial equipment, such as automated guided vehicles and battery electric vehicles. Predictive maintenance plays an important role in the application of smart manufacturing. This mechanism can provide different levels of pre-diagnosis for machines or components. Remaining useful life (RUL) prediction is crucial for the implementation of predictive maintenance strategies. RUL refers to the estimated useful life remaining before the machine cannot operate after a certain period of operation. This study develops a hybrid data science model based on empirical mode decomposition (EMD), grey relational analysis (GRA), and deep recurrent neural networks (RNN) for the RUL prediction of lithium-ion batteries. The EMD and GRA methods are first adopted to extract the characteristics of time series data. Then, various deep RNNs, including vanilla RNN, gated recurrent unit, long short-term memory network (LSTM), and bidirectional LSTM, are established to forecast state of health (SOH) and the RUL of lithium-ion batteries. Bayesian optimization is also used to find the best hyperparameters of deep RNNs. Experimental results with the lithium-ion batteries data of NASA Ames Prognostics Data Repository show that the proposed hybrid data science model can accurately predict the SOH and RUL of lithium-ion batteries. The LSTM network has the optimal results. The proposed hybrid data science model with multiple artificial intelligence-based technologies also demonstrates critical digital-technology enablers for digital transformation of smart manufacturing and transportation.
AbstractList Predictive maintenance of lithium-ion batteries has been one of the popular research subjects in recent years. Lithium-ion batteries can be used as the energy supply for industrial equipment, such as automated guided vehicles and battery electric vehicles. Predictive maintenance plays an important role in the application of smart manufacturing. This mechanism can provide different levels of pre-diagnosis for machines or components. Remaining useful life (RUL) prediction is crucial for the implementation of predictive maintenance strategies. RUL refers to the estimated useful life remaining before the machine cannot operate after a certain period of operation. This study develops a hybrid data science model based on empirical mode decomposition (EMD), grey relational analysis (GRA), and deep recurrent neural networks (RNN) for the RUL prediction of lithium-ion batteries. The EMD and GRA methods are first adopted to extract the characteristics of time series data. Then, various deep RNNs, including vanilla RNN, gated recurrent unit, long short-term memory network (LSTM), and bidirectional LSTM, are established to forecast state of health (SOH) and the RUL of lithium-ion batteries. Bayesian optimization is also used to find the best hyperparameters of deep RNNs. Experimental results with the lithium-ion batteries data of NASA Ames Prognostics Data Repository show that the proposed hybrid data science model can accurately predict the SOH and RUL of lithium-ion batteries. The LSTM network has the optimal results. The proposed hybrid data science model with multiple artificial intelligence-based technologies also demonstrates critical digital-technology enablers for digital transformation of smart manufacturing and transportation.
ArticleNumber 101405
Author Cheng, C.C.
Chen, Tzu-Li
Li, Meng-Gung
Liu, Wei-Jun
Chen, James C.
Author_xml – sequence: 1
  givenname: James C.
  surname: Chen
  fullname: Chen, James C.
  organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
– sequence: 2
  givenname: Tzu-Li
  surname: Chen
  fullname: Chen, Tzu-Li
  email: chentzuli@gmail.com
  organization: Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
– sequence: 3
  givenname: Wei-Jun
  surname: Liu
  fullname: Liu, Wei-Jun
  organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
– sequence: 4
  givenname: C.C.
  surname: Cheng
  fullname: Cheng, C.C.
  organization: Cal-Comp Automation and Industrial 4.0 Service, Samut Sakhon, Thailand
– sequence: 5
  givenname: Meng-Gung
  surname: Li
  fullname: Li, Meng-Gung
  organization: Cal-Comp Automation and Industrial 4.0 Service, Samut Sakhon, Thailand
BookMark eNp9kMtKAzEUQINUsK1-gLv8wNRkXpnBlRRfILjRdcgkd_TWTjIkaaX482aoKxdd3ee5cM-CzKyzQMg1ZyvOeH2zWSnAVc5yPtUlq87InDeiyKoiZ7OUl6LMWFHWF2QRwoYlpmnFnPys3dChRftBYRjRo1ZbOjgD1IB2w-gCRnSWKmtSB0bqQe-8BxuphZ1Pyxbit_NfgfbO09GDQR1xD3RQaCNYZTVQ19Mtxk_cDdl0rFMxgj9ckvNebQNc_cUleX-4f1s_ZS-vj8_ru5dM562ImemF0W1egTFV34k6Z13fdFA2heYcSm6YaNsa8rpUkIa84JXRjW47KGplOlEsCT_e1d6F4KGXo8dB-YPkTE725EYme3KyJ4_2EiP-MRqjmlREr3B7krw9kpBe2iN4GTRCsmAwuYvSODxB_wK7OY9u
CitedBy_id crossref_primary_10_1016_j_aei_2024_103053
crossref_primary_10_1016_j_jechem_2024_06_017
crossref_primary_10_1016_j_aei_2024_102916
crossref_primary_10_1016_j_aei_2022_101547
crossref_primary_10_1016_j_est_2024_111626
crossref_primary_10_1149_1945_7111_ad0ea2
crossref_primary_10_1016_j_est_2023_109069
crossref_primary_10_1177_01423312241257305
crossref_primary_10_3390_su142114536
crossref_primary_10_1016_j_ijepes_2023_109764
crossref_primary_10_1016_j_ress_2023_109123
crossref_primary_10_1016_j_isci_2024_110979
crossref_primary_10_1016_j_ymssp_2024_111376
crossref_primary_10_1016_j_tranpol_2023_05_012
crossref_primary_10_1115_1_4063430
crossref_primary_10_1016_j_aei_2024_103083
crossref_primary_10_1109_ACCESS_2024_3455255
crossref_primary_10_1016_j_rser_2024_115045
crossref_primary_10_3390_en16165952
crossref_primary_10_1007_s00170_023_10981_6
crossref_primary_10_1016_j_aei_2024_102408
crossref_primary_10_1016_j_aei_2024_102804
crossref_primary_10_1088_1742_6596_2741_1_012073
crossref_primary_10_1149_1945_7111_ad24c1
crossref_primary_10_1016_j_measurement_2023_112615
crossref_primary_10_1007_s11227_023_05859_z
crossref_primary_10_1016_j_ijfatigue_2023_107722
crossref_primary_10_1007_s10489_021_03004_y
crossref_primary_10_1109_TAES_2024_3402199
crossref_primary_10_1016_j_aei_2023_102066
crossref_primary_10_20964_2022_08_30
crossref_primary_10_1016_j_est_2023_109014
crossref_primary_10_3390_app14020898
crossref_primary_10_1016_j_est_2023_108763
crossref_primary_10_1016_j_jechem_2024_03_013
crossref_primary_10_1039_D2GC04574E
crossref_primary_10_1016_j_jpowsour_2025_236607
crossref_primary_10_1016_j_est_2023_107868
crossref_primary_10_1016_j_cscee_2024_100902
crossref_primary_10_1007_s00170_024_14916_7
crossref_primary_10_1016_j_aei_2022_101806
crossref_primary_10_3390_en17071695
crossref_primary_10_1016_j_aei_2023_102219
crossref_primary_10_1016_j_eswa_2025_126905
crossref_primary_10_3390_batteries8020018
crossref_primary_10_1016_j_isatra_2022_04_042
crossref_primary_10_1016_j_rser_2023_114224
crossref_primary_10_1016_j_aei_2021_101447
crossref_primary_10_1016_j_est_2024_110874
crossref_primary_10_1002_ente_202100767
crossref_primary_10_1016_j_electacta_2022_141404
crossref_primary_10_1016_j_est_2023_109285
crossref_primary_10_1007_s11581_024_05868_9
crossref_primary_10_1109_TIE_2023_3274874
crossref_primary_10_1002_cta_3624
crossref_primary_10_1016_j_jpowsour_2024_234674
crossref_primary_10_1016_j_aei_2024_102373
crossref_primary_10_1016_j_energy_2022_125278
crossref_primary_10_1016_j_jechem_2023_03_026
crossref_primary_10_1016_j_neucom_2023_126380
crossref_primary_10_1088_1361_6501_ad34f0
crossref_primary_10_1016_j_est_2023_109884
crossref_primary_10_1016_j_est_2023_107862
crossref_primary_10_1016_j_inffus_2024_102462
crossref_primary_10_3390_pr11030678
crossref_primary_10_1016_j_cie_2022_108265
crossref_primary_10_3390_su16114755
crossref_primary_10_1016_j_engappai_2023_105860
crossref_primary_10_3390_machines10090796
crossref_primary_10_1016_j_aei_2023_101954
crossref_primary_10_1088_1361_6501_ac656a
crossref_primary_10_1016_j_aei_2023_102125
crossref_primary_10_1016_j_ress_2022_108920
crossref_primary_10_1007_s00170_023_12648_8
crossref_primary_10_1016_j_aei_2022_101772
crossref_primary_10_1016_j_engappai_2024_108285
crossref_primary_10_1016_j_est_2023_109198
crossref_primary_10_1002_tcr_202200131
crossref_primary_10_1016_j_ress_2023_109352
crossref_primary_10_1016_j_etran_2023_100294
Cites_doi 10.1016/j.aei.2020.101043
10.1109/TIE.2020.2973876
10.1016/j.neucom.2017.05.063
10.1016/j.ress.2014.09.014
10.3390/en12050801
10.3390/en13020375
10.1016/j.ymssp.2017.11.016
10.1109/ACCESS.2020.2981261
10.1016/j.ress.2019.03.018
10.1109/TVT.2018.2805189
10.1016/j.jpowsour.2016.04.119
10.1016/j.dss.2019.113100
10.1016/j.ress.2019.106682
10.3390/en11030526
10.3390/en14061596
10.1016/j.jclepro.2018.09.065
10.1016/j.aei.2020.101054
10.1109/AUS.2016.7748035
10.1109/TVT.2019.2932605
10.1109/ACCESS.2018.2858856
10.1016/j.ress.2018.02.022
10.1016/j.ymssp.2018.05.050
10.1109/ACCESS.2019.2925468
10.1016/j.isatra.2019.07.004
10.1109/ICEMI.2011.6037773
10.1109/ICPHM.2017.7998311
10.1016/j.aei.2016.11.007
10.1016/j.neucom.2020.03.041
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.aei.2021.101405
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-5320
ExternalDocumentID 10_1016_j_aei_2021_101405
S1474034621001579
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
UHS
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-df7dc925edd5fb7620bf8be483c11e41d07996e264ae6201315dc8c9be36adb73
IEDL.DBID .~1
ISSN 1474-0346
IngestDate Thu Apr 24 22:54:50 EDT 2025
Tue Jul 01 02:02:38 EDT 2025
Fri Feb 23 02:44:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Empirical mode decomposition
Lithium-Ion battery
Deep recurrent neural network
Remaining useful life
Bayesian optimization
Predictive maintenance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-df7dc925edd5fb7620bf8be483c11e41d07996e264ae6201315dc8c9be36adb73
ParticipantIDs crossref_primary_10_1016_j_aei_2021_101405
crossref_citationtrail_10_1016_j_aei_2021_101405
elsevier_sciencedirect_doi_10_1016_j_aei_2021_101405
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Advanced engineering informatics
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Liu, Wang, Sun, Di Cairano-Gilfedder, Titmus, Syntetos (b0020) 2020; 44
B. Saha, K. Goebel, Battery Data Set, NASA Ames Prognostics Data Repository (http://ti.arc.nasa.gov/project/prognostic-data-repository), NASA Ames Research Center, Moffett Field, CA, 2007.
S. Zheng, K. Ristovski, A. Farahat, C. Gupta, Long short-term memory network for remaining useful life estimation, In: 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). IEEE, 2017, pp. 88-95.
Li, Zhang, Wang, Dong (b0090) 2019; 21
Qu, Liu, Ma, Fan (b0115) 2019; 7
Kordestani, Saif, Orchard, Razavi-Far, Khorasani (b0055) 2019
Kraus, Feuerriegel (b0060) 2019; 125
Wu, Hu, Cheng, Zhu, Shao, Wang (b0170) 2020; 97
Da Costa, Akçay, Zhang, Kaymak (b0025) 2020; 195
Jin, Zheng, Kong, Wang, Bai, Su, Lin (b0050) 2021; 14
Zhang, Xiong, He, Pecht (b0230) 2018; 67
Yu (b0190) 2018; 174
Li, Zhang, Xiong, Ding, Hou, Luo, Rong, Li (b0085) 2020; 459
Lipu, Hannan, Hussain, Hoque, Ker, Saad, Ayob (b0080) 2018; 205
Wang, Ni, Lu, Wang, Zhang (b0165) 2019; 68
Liu, Shang, Ouyang, Widanage (b0100) 2020; 68
Zhang, Zhai, Guo, Wang, Peng, Zhang (b0210) 2019; 26
Lei, Li, Guo, Li, Yan, Lin (b0075) 2018; 104
Erick, Carlos, Hector, Gil, Henrik (b0035) 2018; 11
Wu, Yuan, Dong, Lin, Liu (b0175) 2018; 275
Yu, Hu, Si, Zheng, Zhang (b0195) 2020; 402
M. Yuan, Y. Wu, L. Lin, Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network, in: 2016 IEEE International Conference on Aircraft Utility Systems (AUS) (2016) 135-140. IEEE.
An, Kim, Choi (b0010) 2015; 133
Zhou, Huang, Chen, Tao (b0255) 2016; 321
Asmai, Hussin, Yusof (b0015) 2010
Ren, Zhao, Hong, Zhao, Wang, Zhang (b0125) 2018; 6
Tian, Qin, Li, Zhao (b0155) 2020; 120813
Jia, Liang, Shi, Wen, Pang, Zeng (b0045) 2020; 13
Lee, Huang, Liu, Lan (b0065) 2019; 12
Aheleroff, Xu, Lu, Aristizabal, Velásquez, Joa, Valencia (b0005) 2020; 43
Nguyen, Medjaher (b0105) 2019; 188
Zhou, Li, Zhu, Zhang, Hou (b0245) 2020; 8
Trappey, Trappey, Hareesh Govindarajan, Chuang, Sun (b0160) 2017; 33
C. Xiongzi, Y. Jinsong, T. Diyin, W. Yingxun, Remaining useful life prognostic estimation for aircraft subsystems or components: a review. In: IEEE 2011 10th International Conference on Electronic Measurement & Instruments 2 (2011) 94-98. IEEE.
Zhao, Yan, Chen, Mao, Wang, Gao (b0235) 2019; 115
Chen (10.1016/j.aei.2021.101405_b0020) 2020; 44
An (10.1016/j.aei.2021.101405_b0010) 2015; 133
Yu (10.1016/j.aei.2021.101405_b0190) 2018; 174
Li (10.1016/j.aei.2021.101405_b0085) 2020; 459
10.1016/j.aei.2021.101405_b0185
10.1016/j.aei.2021.101405_b0240
Ren (10.1016/j.aei.2021.101405_b0125) 2018; 6
Jin (10.1016/j.aei.2021.101405_b0050) 2021; 14
Liu (10.1016/j.aei.2021.101405_b0100) 2020; 68
Wu (10.1016/j.aei.2021.101405_b0170) 2020; 97
Asmai (10.1016/j.aei.2021.101405_b0015) 2010
Zhou (10.1016/j.aei.2021.101405_b0245) 2020; 8
Qu (10.1016/j.aei.2021.101405_b0115) 2019; 7
Lipu (10.1016/j.aei.2021.101405_b0080) 2018; 205
Aheleroff (10.1016/j.aei.2021.101405_b0005) 2020; 43
10.1016/j.aei.2021.101405_b0180
Lee (10.1016/j.aei.2021.101405_b0065) 2019; 12
Li (10.1016/j.aei.2021.101405_b0090) 2019; 21
Da Costa (10.1016/j.aei.2021.101405_b0025) 2020; 195
Zhou (10.1016/j.aei.2021.101405_b0255) 2016; 321
Wu (10.1016/j.aei.2021.101405_b0175) 2018; 275
10.1016/j.aei.2021.101405_b0135
Yu (10.1016/j.aei.2021.101405_b0195) 2020; 402
Nguyen (10.1016/j.aei.2021.101405_b0105) 2019; 188
Zhang (10.1016/j.aei.2021.101405_b0230) 2018; 67
Tian (10.1016/j.aei.2021.101405_b0155) 2020; 120813
Kordestani (10.1016/j.aei.2021.101405_b0055) 2019
Zhao (10.1016/j.aei.2021.101405_b0235) 2019; 115
Kraus (10.1016/j.aei.2021.101405_b0060) 2019; 125
Trappey (10.1016/j.aei.2021.101405_b0160) 2017; 33
Jia (10.1016/j.aei.2021.101405_b0045) 2020; 13
Lei (10.1016/j.aei.2021.101405_b0075) 2018; 104
Erick (10.1016/j.aei.2021.101405_b0035) 2018; 11
Wang (10.1016/j.aei.2021.101405_b0165) 2019; 68
Zhang (10.1016/j.aei.2021.101405_b0210) 2019; 26
References_xml – start-page: 241
  year: 2010
  end-page: 245
  ident: b0015
  publication-title: A framework of an intelligent maintenance prognosis tool
– volume: 6
  start-page: 50587
  year: 2018
  end-page: 50598
  ident: b0125
  article-title: Remaining useful life prediction for lithium-ion battery: a deep learning approach
  publication-title: IEEE Access
– reference: M. Yuan, Y. Wu, L. Lin, Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network, in: 2016 IEEE International Conference on Aircraft Utility Systems (AUS) (2016) 135-140. IEEE.
– volume: 174
  start-page: 82
  year: 2018
  end-page: 95
  ident: b0190
  article-title: State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 44
  year: 2020
  ident: b0020
  article-title: Predictive maintenance using cox proportional hazard deep learning
  publication-title: Adv. Eng. Inf.
– volume: 205
  start-page: 115
  year: 2018
  end-page: 133
  ident: b0080
  article-title: A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: challenges and recommendations
  publication-title: J. Cleaner Prod.
– volume: 275
  start-page: 167
  year: 2018
  end-page: 179
  ident: b0175
  article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
  publication-title: Neurocomputing
– volume: 43
  year: 2020
  ident: b0005
  article-title: IoT-enabled smart appliances under industry 4.0: a case study
  publication-title: Adv. Eng. Inf.
– volume: 402
  start-page: 134
  year: 2020
  end-page: 147
  ident: b0195
  article-title: Averaged Bi-LSTM networks for RUL prognostics with non-life-cycle labeled dataset
  publication-title: Neurocomputing
– reference: B. Saha, K. Goebel, Battery Data Set, NASA Ames Prognostics Data Repository (http://ti.arc.nasa.gov/project/prognostic-data-repository), NASA Ames Research Center, Moffett Field, CA, 2007.
– volume: 68
  start-page: 9543
  year: 2019
  end-page: 9553
  ident: b0165
  article-title: Remaining useful life prediction of lithium-ion batteries using support vector regression optimized by artificial bee colony
  publication-title: IEEE Trans. Veh. Technol.
– reference: C. Xiongzi, Y. Jinsong, T. Diyin, W. Yingxun, Remaining useful life prognostic estimation for aircraft subsystems or components: a review. In: IEEE 2011 10th International Conference on Electronic Measurement & Instruments 2 (2011) 94-98. IEEE.
– volume: 133
  start-page: 223
  year: 2015
  end-page: 236
  ident: b0010
  article-title: Practical options for selecting data-driven or physics-based prognostics algorithms with reviews
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 188
  start-page: 251
  year: 2019
  end-page: 262
  ident: b0105
  article-title: A new dynamic predictive maintenance framework using deep learning for failure prognostics
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 26
  year: 2019
  ident: b0210
  article-title: Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks
  publication-title: J. Storage Mater.
– volume: 21
  start-page: 510
  year: 2019
  end-page: 518
  ident: b0090
  article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks
  publication-title: J. Storage Mater.
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: b0235
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Sig. Process.
– volume: 321
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0255
  article-title: A novel health indicator for on-line lithium-ion batteries remaining useful life prediction
  publication-title: J. Power Sources
– volume: 67
  start-page: 5695
  year: 2018
  end-page: 5705
  ident: b0230
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
– volume: 13
  start-page: 375
  year: 2020
  ident: b0045
  article-title: SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators
  publication-title: Energies
– volume: 12
  start-page: 801
  year: 2019
  ident: b0065
  article-title: Data science for vibration heteroscedasticity and predictive maintenance of rotary bearings
  publication-title: Energies
– volume: 11
  start-page: 526
  year: 2018
  ident: b0035
  article-title: Wind power forecasting based on echo state networks and long short-term memory
  publication-title: Energies
– volume: 104
  start-page: 799
  year: 2018
  end-page: 834
  ident: b0075
  article-title: Machinery health prognostics: a systematic review from data acquisition to RUL prediction
  publication-title: Mech. Syst. Sig. Process.
– volume: 459
  year: 2020
  ident: b0085
  article-title: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network
  publication-title: J. Power Source
– year: 2019
  ident: b0055
  article-title: Failure prognosis and applications—a survey of recent literature
  publication-title: IEEE Trans. Reliab.
– volume: 33
  start-page: 208
  year: 2017
  end-page: 229
  ident: b0160
  article-title: A review of essential standards and patent landscapes for the Internet of Things: a key enabler for Industry 4.0
  publication-title: Adv. Eng. Inf.
– volume: 68
  start-page: 3170
  year: 2020
  end-page: 3180
  ident: b0100
  article-title: A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery
  publication-title: IEEE Trans. Ind. Electron.
– volume: 14
  start-page: 1596
  year: 2021
  ident: b0050
  article-title: Deep-learning forecasting method for electric power load via attention-based encoder-decoder with Bayesian optimization
  publication-title: Energies
– volume: 8
  start-page: 53307
  year: 2020
  end-page: 53320
  ident: b0245
  article-title: State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network
  publication-title: IEEE Access
– volume: 195
  year: 2020
  ident: b0025
  article-title: Remaining useful lifetime prediction via deep domain adaptation
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 120813
  year: 2020
  ident: b0155
  article-title: A review of the state of health for lithium-ion batteries: research status and suggestions
  publication-title: J. Cleaner Prod.
– volume: 7
  start-page: 87178
  year: 2019
  end-page: 87191
  ident: b0115
  article-title: A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery
  publication-title: IEEE Access
– volume: 125
  year: 2019
  ident: b0060
  article-title: Forecasting remaining useful life: interpretable deep learning approach via variational Bayesian inferences
  publication-title: Decis. Support Syst.
– reference: S. Zheng, K. Ristovski, A. Farahat, C. Gupta, Long short-term memory network for remaining useful life estimation, In: 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). IEEE, 2017, pp. 88-95.
– volume: 97
  start-page: 241
  year: 2020
  end-page: 250
  ident: b0170
  article-title: Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network
  publication-title: ISA Trans.
– volume: 43
  year: 2020
  ident: 10.1016/j.aei.2021.101405_b0005
  article-title: IoT-enabled smart appliances under industry 4.0: a case study
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2020.101043
– volume: 68
  start-page: 3170
  year: 2020
  ident: 10.1016/j.aei.2021.101405_b0100
  article-title: A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2973876
– volume: 275
  start-page: 167
  year: 2018
  ident: 10.1016/j.aei.2021.101405_b0175
  article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.063
– volume: 133
  start-page: 223
  year: 2015
  ident: 10.1016/j.aei.2021.101405_b0010
  article-title: Practical options for selecting data-driven or physics-based prognostics algorithms with reviews
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2014.09.014
– ident: 10.1016/j.aei.2021.101405_b0135
– volume: 26
  year: 2019
  ident: 10.1016/j.aei.2021.101405_b0210
  article-title: Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks
  publication-title: J. Storage Mater.
– volume: 12
  start-page: 801
  issue: 5
  year: 2019
  ident: 10.1016/j.aei.2021.101405_b0065
  article-title: Data science for vibration heteroscedasticity and predictive maintenance of rotary bearings
  publication-title: Energies
  doi: 10.3390/en12050801
– volume: 13
  start-page: 375
  issue: 2
  year: 2020
  ident: 10.1016/j.aei.2021.101405_b0045
  article-title: SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators
  publication-title: Energies
  doi: 10.3390/en13020375
– volume: 104
  start-page: 799
  year: 2018
  ident: 10.1016/j.aei.2021.101405_b0075
  article-title: Machinery health prognostics: a systematic review from data acquisition to RUL prediction
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.11.016
– volume: 8
  start-page: 53307
  year: 2020
  ident: 10.1016/j.aei.2021.101405_b0245
  article-title: State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981261
– volume: 459
  issue: 31
  year: 2020
  ident: 10.1016/j.aei.2021.101405_b0085
  article-title: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network
  publication-title: J. Power Source
– volume: 188
  start-page: 251
  year: 2019
  ident: 10.1016/j.aei.2021.101405_b0105
  article-title: A new dynamic predictive maintenance framework using deep learning for failure prognostics
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2019.03.018
– volume: 67
  start-page: 5695
  issue: 7
  year: 2018
  ident: 10.1016/j.aei.2021.101405_b0230
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2805189
– volume: 321
  start-page: 1
  issue: 30
  year: 2016
  ident: 10.1016/j.aei.2021.101405_b0255
  article-title: A novel health indicator for on-line lithium-ion batteries remaining useful life prediction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.119
– volume: 125
  year: 2019
  ident: 10.1016/j.aei.2021.101405_b0060
  article-title: Forecasting remaining useful life: interpretable deep learning approach via variational Bayesian inferences
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2019.113100
– volume: 195
  year: 2020
  ident: 10.1016/j.aei.2021.101405_b0025
  article-title: Remaining useful lifetime prediction via deep domain adaptation
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2019.106682
– volume: 11
  start-page: 526
  issue: 3
  year: 2018
  ident: 10.1016/j.aei.2021.101405_b0035
  article-title: Wind power forecasting based on echo state networks and long short-term memory
  publication-title: Energies
  doi: 10.3390/en11030526
– volume: 120813
  year: 2020
  ident: 10.1016/j.aei.2021.101405_b0155
  article-title: A review of the state of health for lithium-ion batteries: research status and suggestions
  publication-title: J. Cleaner Prod.
– volume: 14
  start-page: 1596
  issue: 6
  year: 2021
  ident: 10.1016/j.aei.2021.101405_b0050
  article-title: Deep-learning forecasting method for electric power load via attention-based encoder-decoder with Bayesian optimization
  publication-title: Energies
  doi: 10.3390/en14061596
– volume: 205
  start-page: 115
  year: 2018
  ident: 10.1016/j.aei.2021.101405_b0080
  article-title: A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: challenges and recommendations
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.09.065
– volume: 44
  year: 2020
  ident: 10.1016/j.aei.2021.101405_b0020
  article-title: Predictive maintenance using cox proportional hazard deep learning
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2020.101054
– year: 2019
  ident: 10.1016/j.aei.2021.101405_b0055
  article-title: Failure prognosis and applications—a survey of recent literature
  publication-title: IEEE Trans. Reliab.
– start-page: 241
  year: 2010
  ident: 10.1016/j.aei.2021.101405_b0015
– ident: 10.1016/j.aei.2021.101405_b0185
  doi: 10.1109/AUS.2016.7748035
– volume: 68
  start-page: 9543
  issue: 10
  year: 2019
  ident: 10.1016/j.aei.2021.101405_b0165
  article-title: Remaining useful life prediction of lithium-ion batteries using support vector regression optimized by artificial bee colony
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2932605
– volume: 6
  start-page: 50587
  year: 2018
  ident: 10.1016/j.aei.2021.101405_b0125
  article-title: Remaining useful life prediction for lithium-ion battery: a deep learning approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2858856
– volume: 174
  start-page: 82
  year: 2018
  ident: 10.1016/j.aei.2021.101405_b0190
  article-title: State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.02.022
– volume: 115
  start-page: 213
  issue: 15
  year: 2019
  ident: 10.1016/j.aei.2021.101405_b0235
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 7
  start-page: 87178
  year: 2019
  ident: 10.1016/j.aei.2021.101405_b0115
  article-title: A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925468
– volume: 97
  start-page: 241
  year: 2020
  ident: 10.1016/j.aei.2021.101405_b0170
  article-title: Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.07.004
– ident: 10.1016/j.aei.2021.101405_b0180
  doi: 10.1109/ICEMI.2011.6037773
– ident: 10.1016/j.aei.2021.101405_b0240
  doi: 10.1109/ICPHM.2017.7998311
– volume: 33
  start-page: 208
  year: 2017
  ident: 10.1016/j.aei.2021.101405_b0160
  article-title: A review of essential standards and patent landscapes for the Internet of Things: a key enabler for Industry 4.0
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2016.11.007
– volume: 402
  start-page: 134
  year: 2020
  ident: 10.1016/j.aei.2021.101405_b0195
  article-title: Averaged Bi-LSTM networks for RUL prognostics with non-life-cycle labeled dataset
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.041
– volume: 21
  start-page: 510
  year: 2019
  ident: 10.1016/j.aei.2021.101405_b0090
  article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks
  publication-title: J. Storage Mater.
SSID ssj0016897
Score 2.5760863
Snippet Predictive maintenance of lithium-ion batteries has been one of the popular research subjects in recent years. Lithium-ion batteries can be used as the energy...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101405
SubjectTerms Bayesian optimization
Deep recurrent neural network
Empirical mode decomposition
Lithium-Ion battery
Predictive maintenance
Remaining useful life
Title Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery
URI https://dx.doi.org/10.1016/j.aei.2021.101405
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xTc5eBLiNm3apMdFlFXRiy7srSRNihW3W_ZxEMHf7kybioJ68Nh0Uso0mfnSfPmGkFMJIEEDTmWQm2MmCsWZskKwJNVBYSFmxk3Vkrv7ZDAUN6N4tEQuurMwSKv0sb-N6U209i09781eXZa9By6kCCKRhCgjFEs8xCeExFF-_v5J8-CJagusgDFD625ns-F4aVfCEjHkeC2wgt1PuelLvrnaIGseKNJ--y6bZMlVW2Tdg0bqp-Rsm7zBjDZNlQfqxnXZKH5QrG9DrUO-uCdlUV1ZaHE1neIfdtRkoqhlCcZVywSfUcCvtJ7izg3GQDrWqCWBghyOTgoKeP2pXIwZPsw0qpyvO2R4dfl4MWC-ogLLw1TOmS2kzdMwdtbGhYE4GJhCGSdUlHPuBLeBhPWPA5CkHdzkEY9trvLUuCjR1sholyxXk8rtEZrCWsYUVjiFAjaRUloA-BTSAoAzQWT3SdD5Msu93DhWvXjJOl7Zcwbuz9D9Wev-fXL22aVutTb-MhbdB8q-DZgMcsHv3Q7-1-2QrOJVy-I7Isvz6cIdAxqZm5NmuJ2Qlf717eD-AxCV3sE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VMsDCN-IbD0xIVpPGSZyxqkCFQheo1C2KY0cE0TRqy4D489wlDgIJGBhj-6LoYt89x5f3AC5CBAkJ4lSOudnnIpMul1oIHkSJk2mMmX6lWnI_CgZjcTvxJy3oN__CUFmljf11TK-itW3pWG92yjzvPLgiFI4ngi7RCPlhtAKrxE7lt2G1dzMcjD4PEwJZa6zgeE4GzeFmVeaVmBx3iV2XrgWJ2P2Unr6knOst2LBYkfXqx9mGlil2YNPiRmZX5WIX3nFRq0rogZlpmVekH4wkbpg2VDJu67JYUmhsMSWb00d2omViRGeJg4u6GHzBEMKyck6HNxQG2TQhOgni5DBsljGE7E_565TTzVRFzPm2B-Prq8f-gFtRBZ52o3DJdRbqNOr6Rms_UxgKHZVJZYT0Utc1wtVOiFsggzgpMdjpeq6vU5lGynhBolXo7UO7mBXmAFiE2xmVaWEkcdh4UiYC8acINWI45Xj6EJzGl3FqGcdJ-OIlbkrLnmN0f0zuj2v3H8Llp0lZ0238NVg0Lyj-NmdiTAe_mx39z-wc1gaP93fx3c1oeAzr1FMX9Z1Aezl_NacITpbqzE6-D7oj4XI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+empirical+mode+decomposition+and+deep+recurrent+neural+networks+for+predictive+maintenance+of+lithium-ion+battery&rft.jtitle=Advanced+engineering+informatics&rft.au=Chen%2C+James+C.&rft.au=Chen%2C+Tzu-Li&rft.au=Liu%2C+Wei-Jun&rft.au=Cheng%2C+C.C.&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=1474-0346&rft.eissn=1873-5320&rft.volume=50&rft_id=info:doi/10.1016%2Fj.aei.2021.101405&rft.externalDocID=S1474034621001579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon