Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices
The moving least-square (MLS) method has been popular applied in surface construction and meshless methods. However, the moment matrix in MLS method may be singular for ill quality point sets and the computation of the inverse of the singular moment matrix is difficult. To overcome this problem, a r...
Saved in:
Published in | Applied mathematics and computation Vol. 325; pp. 120 - 145 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0096-3003 1873-5649 |
DOI | 10.1016/j.amc.2017.12.017 |
Cover
Abstract | The moving least-square (MLS) method has been popular applied in surface construction and meshless methods. However, the moment matrix in MLS method may be singular for ill quality point sets and the computation of the inverse of the singular moment matrix is difficult. To overcome this problem, a regularized moving least-square method with nonsingular moment matrix is proposed. The shape functions obtained from the regularized MLS method still do not have the delta function property and may result in difficulty for imposing boundary conditions in regularized MLS based meshless method. To overcome this problem, a regularized improved interpolating moving least-square (IIMLS) method based on the IIMLS method is also proposed. Compared with the regularized MLS method, the regularized IIMLS not only has nonsingular moment matrices, but also obtains shape functions with delta function property. Shape functions of the proposed methods are compared in 1D and 2D cases, and the methods have been applied in curve fitting, surface fitting and meshless method in numerical examples. |
---|---|
AbstractList | The moving least-square (MLS) method has been popular applied in surface construction and meshless methods. However, the moment matrix in MLS method may be singular for ill quality point sets and the computation of the inverse of the singular moment matrix is difficult. To overcome this problem, a regularized moving least-square method with nonsingular moment matrix is proposed. The shape functions obtained from the regularized MLS method still do not have the delta function property and may result in difficulty for imposing boundary conditions in regularized MLS based meshless method. To overcome this problem, a regularized improved interpolating moving least-square (IIMLS) method based on the IIMLS method is also proposed. Compared with the regularized MLS method, the regularized IIMLS not only has nonsingular moment matrices, but also obtains shape functions with delta function property. Shape functions of the proposed methods are compared in 1D and 2D cases, and the methods have been applied in curve fitting, surface fitting and meshless method in numerical examples. |
Author | Cheng, Yonggang Chang, Xiaolin Miao, Yu Wang, Qiao Chen, E Ma, Gang Zhou, Wei |
Author_xml | – sequence: 1 givenname: Qiao surname: Wang fullname: Wang, Qiao email: qiaowang@whu.edu.cn organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China – sequence: 2 givenname: Wei surname: Zhou fullname: Zhou, Wei email: zw_mxx@whu.edu.cn organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China – sequence: 3 givenname: Yonggang surname: Cheng fullname: Cheng, Yonggang organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China – sequence: 4 givenname: Gang orcidid: 0000-0002-1865-5721 surname: Ma fullname: Ma, Gang organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China – sequence: 5 givenname: Xiaolin surname: Chang fullname: Chang, Xiaolin organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China – sequence: 6 givenname: Yu surname: Miao fullname: Miao, Yu organization: School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 7 givenname: E surname: Chen fullname: Chen, E organization: Department of Civil and Environment Engineering, The Hong Kong University of Science and Technology, Kowloon, Clear Water Bay, Hong Kong |
BookMark | eNp9kE1OwzAUhC1UJNrCAdjlAgm2E8eJWKGKP6kSEoK15dovravELrZbBDfg1jiCBWLR1bzFfKM3M0MT6ywgdElwQTCpr7aFHFRBMeEFoUWSEzQlDS9zVlftBE0xbuu8xLg8Q7MQthhjXpNqir6eYb3vpTefoLPBHYxdZz3IEPPwtpcesgHixulMWp35P1Yz7Lw7jIeN4Heul3FEjyS8m7jJ0tchGcaY5B3AxmyQ0RsF4RyddrIPcPGrc_R6d_uyeMiXT_ePi5tlrmjLY64VZUyvKqowU6RuW16SVceA65JDzagmVYWlhK6RVQdNLRkGoqADRhtWSl7OEfnJVd6F4KETO28G6T8EwWLcUmxF2lKMWwpCRZLE8H-MMjE1djZ6afqj5PUPCanSwYAXQRmwCrTxoKLQzhyhvwHrEpXq |
CitedBy_id | crossref_primary_10_1016_j_epsr_2022_108751 crossref_primary_10_1155_2020_9042615 crossref_primary_10_1007_s40819_024_01737_1 crossref_primary_10_1109_TIM_2020_2986106 crossref_primary_10_1142_S175882512250065X crossref_primary_10_1016_j_enganabound_2018_12_011 crossref_primary_10_3390_s20226449 crossref_primary_10_1016_j_amc_2019_02_013 crossref_primary_10_1080_00207160_2020_1834089 crossref_primary_10_1108_EC_03_2022_0157 crossref_primary_10_1016_j_ijthermalsci_2021_106864 crossref_primary_10_1088_1361_6501_ab4ff6 crossref_primary_10_1007_s00366_019_00848_4 crossref_primary_10_1016_j_apm_2021_03_007 crossref_primary_10_1016_j_engfracmech_2020_107325 crossref_primary_10_1109_TIM_2021_3049254 crossref_primary_10_1016_j_energy_2021_120568 crossref_primary_10_1002_num_22742 |
Cites_doi | 10.1007/s00466-001-0268-9 10.1016/j.ijheatmasstransfer.2013.04.028 10.1016/j.cam.2015.08.003 10.1142/S0219876213500436 10.1093/imanum/drr030 10.1016/j.apm.2014.10.071 10.1201/9781420082104 10.1016/j.cam.2013.02.005 10.1002/nme.1620370205 10.1090/S0025-5718-98-00974-0 10.1016/S0045-7825(96)01132-2 10.1016/j.cam.2015.01.007 10.1002/num.22031 10.1016/j.camwa.2016.06.047 10.1007/s00466-012-0766-y 10.1002/nme.4290 10.1016/j.enganabound.2015.01.012 10.1111/j.2517-6161.1996.tb02080.x 10.1002/(SICI)1097-0207(19970315)40:5<797::AID-NME89>3.0.CO;2-# 10.1016/j.enganabound.2008.05.009 10.1016/S0168-9274(00)00054-4 10.1016/S0045-7825(96)01078-X 10.1016/j.cam.2017.03.006 10.1109/TVCG.2003.1175093 10.1016/j.enganabound.2014.10.007 10.1016/j.apnum.2013.03.001 10.1016/S0168-9274(03)00091-6 10.1016/j.cam.2015.03.012 10.1090/S0025-5718-1981-0616367-1 10.1016/S0045-7825(03)00266-4 10.1016/j.apnum.2015.07.006 10.1111/j.1467-9868.2005.00503.x 10.1007/s10915-016-0337-z 10.1137/S0036142999361608 10.1002/nme.904 10.1002/(SICI)1097-0207(19970830)40:16<2953::AID-NME201>3.0.CO;2-S |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. |
Copyright_xml | – notice: 2017 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.amc.2017.12.017 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-5649 |
EndPage | 145 |
ExternalDocumentID | 10_1016_j_amc_2017_12_017 S0096300317308767 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- SEW SSH TAE VH1 VOH WUQ |
ID | FETCH-LOGICAL-c297t-dc255db42c05c1699731bf5e7d37e652d1440aaef8a4fe86a50e1cefe52853a73 |
IEDL.DBID | AIKHN |
ISSN | 0096-3003 |
IngestDate | Tue Jul 01 01:36:05 EDT 2025 Thu Apr 24 22:59:16 EDT 2025 Fri Feb 23 02:31:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surface construction Moving least-square Improved interpolating moving least-square Meshless methods |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-dc255db42c05c1699731bf5e7d37e652d1440aaef8a4fe86a50e1cefe52853a73 |
ORCID | 0000-0002-1865-5721 |
PageCount | 26 |
ParticipantIDs | crossref_primary_10_1016_j_amc_2017_12_017 crossref_citationtrail_10_1016_j_amc_2017_12_017 elsevier_sciencedirect_doi_10_1016_j_amc_2017_12_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-15 |
PublicationDateYYYYMMDD | 2018-05-15 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Applied mathematics and computation |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Joldes, Wittek, Miller (bib0041) 2015; 51 Armentano (bib0019) 2001; 39 Dehghan, Abbaszadeh, Mohebbi (bib0026) 2015; 286 Joldes, Chowdhury, Wittek, Doyle, Miller (bib0034) 2015; 266 Zuppa (bib0020) 2003; 47 Joldes, Wittek, Miller (bib0040) 2012; 91 Li, Li (bib0037) 2016; 72 Wang, Yang (bib0015) 2015; 54 Tibshirani (bib0032) 1996 Dehghan, Abbaszadeh (bib0025) 2017 Press, Teukolsky, Vetterling, Flannery (bib0031) 2007 Lancaster, Salkauskas (bib0001) 1981; 37 Liu, Gu (bib0036) 2003; 192 Belytschko, Lu, Gu (bib0038) 1994; 37 Liu, Li, Belytschko (bib0005) 1997; 143 Belytschko, Krongauz, Organ, Fleming, Krysl (bib0007) 1996; 139 Mukherjee, Mukherjee (bib0008) 1997; 40 Gu, Liu (bib0039) 2002; 28 Dehghan, Mohammadi (bib0023) 2017; 321 Chowdhury, Wittek, Miller, Joldes (bib0035) 2017; 71 Liu (bib0006) 2009; 712 Wang, Miao, Zhu (bib0012) 2013; 64 Mirzaei, Schaback, Dehghan (bib0002) 2012; 32 Zou, Hastie (bib0033) 2005; 67 Salehi, Dehghan (bib0014) 2013; 69 Mirzaei (bib0013) 2016; 32 Armentano, Durán (bib0017) 2001; 37 Zhang, Tanaka, Matsumoto (bib0009) 2004; 59 Ju-Feng, Feng-Xin, Yu-Min (bib0028) 2012; 21 Miao, Wang, Wang (bib0010) 2009; 33 Wang, Miao, Zhu (bib0011) 2013; 51 Alexa, Behr, Cohen-Or, Fleishman, Levin, Silva (bib0004) 2003; 9 Li (bib0016) 2016; 99 Salehi, Dehghan (bib0022) 2013; 249 Levin (bib0003) 1998; 67 Li (bib0030) 2015; 39 Wang, Wang, Sun, Cheng (bib0029) 2013; 10 Ren, Pei, Wang (bib0018) 2014; 238 Mirzaei (bib0024) 2015; 282 Mirzaei (bib0021) 2016; 294 Kaljević, Saigal (bib0027) 1997; 40 Levin (10.1016/j.amc.2017.12.017_bib0003) 1998; 67 Belytschko (10.1016/j.amc.2017.12.017_bib0007) 1996; 139 Ren (10.1016/j.amc.2017.12.017_bib0018) 2014; 238 Zhang (10.1016/j.amc.2017.12.017_bib0009) 2004; 59 Salehi (10.1016/j.amc.2017.12.017_bib0014) 2013; 69 Belytschko (10.1016/j.amc.2017.12.017_bib0038) 1994; 37 Press (10.1016/j.amc.2017.12.017_bib0031) 2007 Joldes (10.1016/j.amc.2017.12.017_bib0034) 2015; 266 Zou (10.1016/j.amc.2017.12.017_bib0033) 2005; 67 Chowdhury (10.1016/j.amc.2017.12.017_bib0035) 2017; 71 Zuppa (10.1016/j.amc.2017.12.017_bib0020) 2003; 47 Liu (10.1016/j.amc.2017.12.017_bib0005) 1997; 143 Li (10.1016/j.amc.2017.12.017_bib0016) 2016; 99 Gu (10.1016/j.amc.2017.12.017_bib0039) 2002; 28 Liu (10.1016/j.amc.2017.12.017_bib0006) 2009; 712 Joldes (10.1016/j.amc.2017.12.017_bib0041) 2015; 51 Li (10.1016/j.amc.2017.12.017_bib0037) 2016; 72 Mirzaei (10.1016/j.amc.2017.12.017_bib0002) 2012; 32 Mirzaei (10.1016/j.amc.2017.12.017_bib0024) 2015; 282 Liu (10.1016/j.amc.2017.12.017_bib0036) 2003; 192 Lancaster (10.1016/j.amc.2017.12.017_bib0001) 1981; 37 Wang (10.1016/j.amc.2017.12.017_bib0029) 2013; 10 Joldes (10.1016/j.amc.2017.12.017_bib0040) 2012; 91 Salehi (10.1016/j.amc.2017.12.017_bib0022) 2013; 249 Miao (10.1016/j.amc.2017.12.017_bib0010) 2009; 33 Mirzaei (10.1016/j.amc.2017.12.017_bib0021) 2016; 294 Tibshirani (10.1016/j.amc.2017.12.017_bib0032) 1996 Li (10.1016/j.amc.2017.12.017_bib0030) 2015; 39 Mukherjee (10.1016/j.amc.2017.12.017_bib0008) 1997; 40 Wang (10.1016/j.amc.2017.12.017_bib0015) 2015; 54 Mirzaei (10.1016/j.amc.2017.12.017_bib0013) 2016; 32 Wang (10.1016/j.amc.2017.12.017_bib0012) 2013; 64 Wang (10.1016/j.amc.2017.12.017_bib0011) 2013; 51 Ju-Feng (10.1016/j.amc.2017.12.017_bib0028) 2012; 21 Armentano (10.1016/j.amc.2017.12.017_bib0017) 2001; 37 Dehghan (10.1016/j.amc.2017.12.017_bib0023) 2017; 321 Kaljević (10.1016/j.amc.2017.12.017_bib0027) 1997; 40 Dehghan (10.1016/j.amc.2017.12.017_bib0025) 2017 Armentano (10.1016/j.amc.2017.12.017_bib0019) 2001; 39 Alexa (10.1016/j.amc.2017.12.017_bib0004) 2003; 9 Dehghan (10.1016/j.amc.2017.12.017_bib0026) 2015; 286 |
References_xml | – volume: 59 start-page: 1147 year: 2004 end-page: 1166 ident: bib0009 article-title: Meshless analysis of potential problems in three dimensions with the hybrid boundary node method publication-title: Int. J. Numer. Methods Eng. – volume: 321 start-page: 540 year: 2017 end-page: 554 ident: bib0023 article-title: Error analysis of method of lines (MOL) via generalized interpolating moving least squares (GIMLS) approximation publication-title: J. Comput. Appl. Math. – volume: 40 start-page: 2953 year: 1997 end-page: 2974 ident: bib0027 article-title: An improved element free Galerkin formulation publication-title: Int. J. Numer. Methods Eng. – volume: 33 start-page: 120 year: 2009 end-page: 127 ident: bib0010 article-title: A meshless hybrid boundary-node method for Helmholtz problems publication-title: Eng. Anal. Bound. Elem. – volume: 238 start-page: 527 year: 2014 end-page: 546 ident: bib0018 article-title: Error analysis for moving least squares approximation in 2D space publication-title: Appl. Math. Comput. – volume: 40 start-page: 797 year: 1997 end-page: 815 ident: bib0008 article-title: The boundary node method for potential problems publication-title: Int. J. Numer. Methods Eng. – volume: 51 start-page: 885 year: 2013 end-page: 897 ident: bib0011 article-title: A fast multipole hybrid boundary node method for composite materials publication-title: Comput. Mech. – start-page: 267 year: 1996 end-page: 288 ident: bib0032 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B (Methodol.), – volume: 139 start-page: 3 year: 1996 end-page: 47 ident: bib0007 article-title: Meshless methods: an overview and recent developments publication-title: Comput. Methods Appl. Mech. Eng. – volume: 47 start-page: 575 year: 2003 end-page: 585 ident: bib0020 article-title: Good quality point sets and error estimates for moving least square approximations publication-title: Appl. Numer. Math. – volume: 69 start-page: 34 year: 2013 end-page: 58 ident: bib0014 article-title: A moving least square reproducing polynomial meshless method publication-title: Appl. Numer. Math. – volume: 71 start-page: 1197 year: 2017 end-page: 1211 ident: bib0035 article-title: An element free Galerkin method based on the modified moving least squares approximation publication-title: J. Sci. Comput. – volume: 37 start-page: 141 year: 1981 end-page: 158 ident: bib0001 article-title: Surfaces generated by moving least squares methods publication-title: Math. Comput. – volume: 249 start-page: 120 year: 2013 end-page: 132 ident: bib0022 article-title: A generalized moving least square reproducing kernel method publication-title: J. Comput. Appl. Math. – volume: 21 year: 2012 ident: bib0028 article-title: An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems publication-title: Chin. Phys. B – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bib0033 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) – volume: 72 start-page: 1515 year: 2016 end-page: 1531 ident: bib0037 article-title: On the stability of the moving least squares approximation and the element-free Galerkin method publication-title: Comput. Math. Appl. – volume: 286 start-page: 211 year: 2015 end-page: 231 ident: bib0026 article-title: The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate publication-title: J. Comput. Appl. Math. – volume: 32 start-page: 847 year: 2016 end-page: 861 ident: bib0013 article-title: A greedy meshless local Petrov–Galerkin methodbased on radial basis functions publication-title: Numer. Methods Partial Differ. Eq. – volume: 51 start-page: 52 year: 2015 end-page: 63 ident: bib0041 article-title: Adaptive numerical integration in element-free Galerkin methods for elliptic boundary value problems publication-title: Eng. Anal. Bound. Elem. – volume: 54 start-page: 76 year: 2015 end-page: 85 ident: bib0015 article-title: A rigid-inclusion model for fiber-reinforced composites by fast multipole hybrid boundary node method publication-title: Eng. Anal. Bound. Elem. – volume: 294 start-page: 93 year: 2016 end-page: 101 ident: bib0021 article-title: Error bounds for GMLS derivatives approximations of Sobolev functions publication-title: J. Comput. Appl. Math. – volume: 192 start-page: 2269 year: 2003 end-page: 2295 ident: bib0036 article-title: A matrix triangularization algorithm for the polynomial point interpolation method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 32 start-page: 983 year: 2012 end-page: 1000 ident: bib0002 article-title: On generalized moving least squares and diffuse derivatives publication-title: IMA J. Numer. Anal. – volume: 37 start-page: 397 year: 2001 end-page: 416 ident: bib0017 article-title: Error estimates for moving least square approximations publication-title: Appl. Numer. Math. – volume: 282 start-page: 237 year: 2015 end-page: 250 ident: bib0024 article-title: Analysis of moving least squares approximation revisited publication-title: J. Comput. Appl. Math. – volume: 266 start-page: 893 year: 2015 end-page: 902 ident: bib0034 article-title: Modified moving least squares with polynomial bases for scattered data approximation publication-title: Appl. Math. Comput. – year: 2007 ident: bib0031 article-title: Numerical Recipes: the Art of Scientific Computing – volume: 9 start-page: 3 year: 2003 end-page: 15 ident: bib0004 article-title: Computing and rendering point set surfaces publication-title: IEEE Trans. Vis. Comput. Graph. – volume: 712 year: 2009 ident: bib0006 publication-title: Mesh Free Methods: Moving Beyond the Finite Element Method – volume: 39 start-page: 3116 year: 2015 end-page: 3134 ident: bib0030 article-title: An interpolating boundary element-free method for three-dimensional potential problems publication-title: Appl. Math. Model. – volume: 143 start-page: 113 year: 1997 end-page: 154 ident: bib0005 article-title: Moving least-square reproducing kernel methods (I) methodology and convergence publication-title: Comput. Methods Appl. Mech. Eng. – volume: 64 start-page: 322 year: 2013 end-page: 330 ident: bib0012 article-title: A new formulation for thermal analysis of composites by hybrid boundary node method publication-title: Int. J. Heat. Mass Transf. – volume: 39 start-page: 38 year: 2001 end-page: 51 ident: bib0019 article-title: Error estimates in Sobolev spaces for moving least square approximations publication-title: SIAM J. Numer. Anal. – volume: 67 start-page: 1517 year: 1998 end-page: 1531 ident: bib0003 article-title: The approximation power of moving least-squares publication-title: Math. Comput. Am. Math. Soc. – volume: 10 year: 2013 ident: bib0029 article-title: An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems publication-title: Int. J. Comput. Methods – volume: 28 start-page: 47 year: 2002 end-page: 54 ident: bib0039 article-title: A boundary point interpolation method for stress analysis of solids publication-title: Comput. Mech. – year: 2017 ident: bib0025 article-title: Interpolating stabilized moving least squares (MLS) approximation for 2D elliptic interface problems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 37 start-page: 229 year: 1994 end-page: 256 ident: bib0038 article-title: Element‐free Galerkin methods publication-title: Int. J. Numer. Methods Eng. – volume: 99 start-page: 77 year: 2016 end-page: 97 ident: bib0016 article-title: Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces publication-title: Appl. Numer. Math. – volume: 91 start-page: 450 year: 2012 end-page: 456 ident: bib0040 article-title: Stable time step estimates for mesh‐free particle methods publication-title: Int. J. Numer. Methods Eng. – volume: 28 start-page: 47 issue: 1 year: 2002 ident: 10.1016/j.amc.2017.12.017_bib0039 article-title: A boundary point interpolation method for stress analysis of solids publication-title: Comput. Mech. doi: 10.1007/s00466-001-0268-9 – volume: 64 start-page: 322 year: 2013 ident: 10.1016/j.amc.2017.12.017_bib0012 article-title: A new formulation for thermal analysis of composites by hybrid boundary node method publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.04.028 – volume: 294 start-page: 93 year: 2016 ident: 10.1016/j.amc.2017.12.017_bib0021 article-title: Error bounds for GMLS derivatives approximations of Sobolev functions publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.08.003 – volume: 10 issue: 06 year: 2013 ident: 10.1016/j.amc.2017.12.017_bib0029 article-title: An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems publication-title: Int. J. Comput. Methods doi: 10.1142/S0219876213500436 – volume: 32 start-page: 983 issue: 3 year: 2012 ident: 10.1016/j.amc.2017.12.017_bib0002 article-title: On generalized moving least squares and diffuse derivatives publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drr030 – volume: 39 start-page: 3116 issue: 10 year: 2015 ident: 10.1016/j.amc.2017.12.017_bib0030 article-title: An interpolating boundary element-free method for three-dimensional potential problems publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.10.071 – volume: 712 year: 2009 ident: 10.1016/j.amc.2017.12.017_bib0006 publication-title: Mesh Free Methods: Moving Beyond the Finite Element Method doi: 10.1201/9781420082104 – volume: 249 start-page: 120 year: 2013 ident: 10.1016/j.amc.2017.12.017_bib0022 article-title: A generalized moving least square reproducing kernel method publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.02.005 – volume: 266 start-page: 893 year: 2015 ident: 10.1016/j.amc.2017.12.017_bib0034 article-title: Modified moving least squares with polynomial bases for scattered data approximation publication-title: Appl. Math. Comput. – volume: 37 start-page: 229 issue: 2 year: 1994 ident: 10.1016/j.amc.2017.12.017_bib0038 article-title: Element‐free Galerkin methods publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620370205 – volume: 67 start-page: 1517 issue: 224 year: 1998 ident: 10.1016/j.amc.2017.12.017_bib0003 article-title: The approximation power of moving least-squares publication-title: Math. Comput. Am. Math. Soc. doi: 10.1090/S0025-5718-98-00974-0 – volume: 143 start-page: 113 issue: 1-2 year: 1997 ident: 10.1016/j.amc.2017.12.017_bib0005 article-title: Moving least-square reproducing kernel methods (I) methodology and convergence publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(96)01132-2 – year: 2017 ident: 10.1016/j.amc.2017.12.017_bib0025 article-title: Interpolating stabilized moving least squares (MLS) approximation for 2D elliptic interface problems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 282 start-page: 237 year: 2015 ident: 10.1016/j.amc.2017.12.017_bib0024 article-title: Analysis of moving least squares approximation revisited publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.01.007 – volume: 32 start-page: 847 issue: 3 year: 2016 ident: 10.1016/j.amc.2017.12.017_bib0013 article-title: A greedy meshless local Petrov–Galerkin methodbased on radial basis functions publication-title: Numer. Methods Partial Differ. Eq. doi: 10.1002/num.22031 – year: 2007 ident: 10.1016/j.amc.2017.12.017_bib0031 – volume: 72 start-page: 1515 issue: 6 year: 2016 ident: 10.1016/j.amc.2017.12.017_bib0037 article-title: On the stability of the moving least squares approximation and the element-free Galerkin method publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.06.047 – volume: 51 start-page: 885 issue: 6 year: 2013 ident: 10.1016/j.amc.2017.12.017_bib0011 article-title: A fast multipole hybrid boundary node method for composite materials publication-title: Comput. Mech. doi: 10.1007/s00466-012-0766-y – volume: 91 start-page: 450 issue: 4 year: 2012 ident: 10.1016/j.amc.2017.12.017_bib0040 article-title: Stable time step estimates for mesh‐free particle methods publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4290 – volume: 54 start-page: 76 year: 2015 ident: 10.1016/j.amc.2017.12.017_bib0015 article-title: A rigid-inclusion model for fiber-reinforced composites by fast multipole hybrid boundary node method publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2015.01.012 – start-page: 267 year: 1996 ident: 10.1016/j.amc.2017.12.017_bib0032 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B (Methodol.), doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 40 start-page: 797 issue: 5 year: 1997 ident: 10.1016/j.amc.2017.12.017_bib0008 article-title: The boundary node method for potential problems publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/(SICI)1097-0207(19970315)40:5<797::AID-NME89>3.0.CO;2-# – volume: 33 start-page: 120 issue: 2 year: 2009 ident: 10.1016/j.amc.2017.12.017_bib0010 article-title: A meshless hybrid boundary-node method for Helmholtz problems publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2008.05.009 – volume: 37 start-page: 397 issue: 3 year: 2001 ident: 10.1016/j.amc.2017.12.017_bib0017 article-title: Error estimates for moving least square approximations publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(00)00054-4 – volume: 139 start-page: 3 issue: 1 year: 1996 ident: 10.1016/j.amc.2017.12.017_bib0007 article-title: Meshless methods: an overview and recent developments publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(96)01078-X – volume: 321 start-page: 540 year: 2017 ident: 10.1016/j.amc.2017.12.017_bib0023 article-title: Error analysis of method of lines (MOL) via generalized interpolating moving least squares (GIMLS) approximation publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2017.03.006 – volume: 9 start-page: 3 issue: 1 year: 2003 ident: 10.1016/j.amc.2017.12.017_bib0004 article-title: Computing and rendering point set surfaces publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2003.1175093 – volume: 51 start-page: 52 year: 2015 ident: 10.1016/j.amc.2017.12.017_bib0041 article-title: Adaptive numerical integration in element-free Galerkin methods for elliptic boundary value problems publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2014.10.007 – volume: 69 start-page: 34 year: 2013 ident: 10.1016/j.amc.2017.12.017_bib0014 article-title: A moving least square reproducing polynomial meshless method publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2013.03.001 – volume: 47 start-page: 575 issue: 3-4 year: 2003 ident: 10.1016/j.amc.2017.12.017_bib0020 article-title: Good quality point sets and error estimates for moving least square approximations publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(03)00091-6 – volume: 286 start-page: 211 year: 2015 ident: 10.1016/j.amc.2017.12.017_bib0026 article-title: The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.03.012 – volume: 37 start-page: 141 issue: 155 year: 1981 ident: 10.1016/j.amc.2017.12.017_bib0001 article-title: Surfaces generated by moving least squares methods publication-title: Math. Comput. doi: 10.1090/S0025-5718-1981-0616367-1 – volume: 192 start-page: 2269 issue: 19 year: 2003 ident: 10.1016/j.amc.2017.12.017_bib0036 article-title: A matrix triangularization algorithm for the polynomial point interpolation method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(03)00266-4 – volume: 99 start-page: 77 year: 2016 ident: 10.1016/j.amc.2017.12.017_bib0016 article-title: Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2015.07.006 – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 10.1016/j.amc.2017.12.017_bib0033 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) doi: 10.1111/j.1467-9868.2005.00503.x – volume: 21 issue: 9 year: 2012 ident: 10.1016/j.amc.2017.12.017_bib0028 article-title: An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems publication-title: Chin. Phys. B – volume: 71 start-page: 1197 year: 2017 ident: 10.1016/j.amc.2017.12.017_bib0035 article-title: An element free Galerkin method based on the modified moving least squares approximation publication-title: J. Sci. Comput. doi: 10.1007/s10915-016-0337-z – volume: 39 start-page: 38 issue: 1 year: 2001 ident: 10.1016/j.amc.2017.12.017_bib0019 article-title: Error estimates in Sobolev spaces for moving least square approximations publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142999361608 – volume: 59 start-page: 1147 issue: 9 year: 2004 ident: 10.1016/j.amc.2017.12.017_bib0009 article-title: Meshless analysis of potential problems in three dimensions with the hybrid boundary node method publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.904 – volume: 238 start-page: 527 year: 2014 ident: 10.1016/j.amc.2017.12.017_bib0018 article-title: Error analysis for moving least squares approximation in 2D space publication-title: Appl. Math. Comput. – volume: 40 start-page: 2953 issue: 16 year: 1997 ident: 10.1016/j.amc.2017.12.017_bib0027 article-title: An improved element free Galerkin formulation publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/(SICI)1097-0207(19970830)40:16<2953::AID-NME201>3.0.CO;2-S |
SSID | ssj0007614 |
Score | 2.395159 |
Snippet | The moving least-square (MLS) method has been popular applied in surface construction and meshless methods. However, the moment matrix in MLS method may be... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 120 |
SubjectTerms | Improved interpolating moving least-square Meshless methods Moving least-square Surface construction |
Title | Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices |
URI | https://dx.doi.org/10.1016/j.amc.2017.12.017 |
Volume | 325 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoEB8RTlUXlgQgqN49hJxqqiKqB2QFTqFjm2IxW1VWnLwsDOv8bnJBVI0IEpD905kc-6s8_n7wO4FiaMVJYxjydh5iEiuBfnOvQEkzxWOhGZQ9sfDEV_FD6M-bgG3eosDJZVlr6_8OnOW5dv2mVvtheTCZ7xTRAvygZARLUT0Q40ApYIXodG5_6xP9w4ZLtSL8CYEyzz8lm1uenKvOQMgQxp5JKCjrbsl_D0LeT0DmC_nCuSTvE7h1Az8yPYG2yAVlfH8PnkuOSXk3ejycxlB8gU6Xi81as1viEFQzSRc02W30QnLpeANwXPFlbEWdUtLWDClsyxnHbumrGymFgkM4fxb1YnMOrdPXf7Xsmu4KkgidaeVnY1obMwUD5XVCTIYZXl3ESaRUbwQOO2r5Qmj2WYm1hI7huqTG54YEO8jNgp1O1XzRmQKKM68YXmWpqQSxXHzDDNciqkpFqqJvhVp6aqhB5HBoxpWtWYvaTWDinaIaVBai9NuNmoLArcjW3CYWWp9MfgSW1c-Fvt_H9qF7Brn2IsIaD8Eurr5Zu5sjOTddaCndsP2irH3xeZKucA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKDMCAeIo3HpiQQpP4lYwIURVoGVArdbMc25GCaARtWRjY-df4nISHBB2YEiU-J_JZPvv8-fsQOuWWCp1lJGApzQJgBA-S3NCAE8USbVKeebb9_h3vDunNiI1a6LI5CwOwynrsr8Z0P1rXT9p1a7afigLO-KbAF-UCILDacbGAligjAnB9529fOA-3Tq-omFMAeYWk2dr0IC81BhrDSPiUoBct-yU4fQs4nXW0Vs8U8UX1MxuoZctNtNr_pFmdbqH3e68kPylercFjnxvAjyDGE0yfnestrvShsSoNnnwrWvhMAtxUKluAh3Omc2qAdC0uAUxb-mpcWUgr4rFn-LfTbTTsXA0uu0GtrRDoOBWzwGi3ljAZjXXIdMRTULDKcmaFIcJyFhvY9FXK5omiuU24YqGNtM0ti12AV4LsoEX3VbuLsMgik4bcMKMsZUonCbHEkDziSkVG6T0UNo0qdU08DvoXj7JBmD1I5wcJfpBRLN1lD519mjxVrBvzCtPGU_JH15EuKvxttv8_sxO03B30e7J3fXd7gFbcmwTABBE7RIuzyYs9cnOUWXbs--AHkt3nyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularized+moving+least-square+method+and+regularized+improved+interpolating+moving+least-square+method+with+nonsingular+moment+matrices&rft.jtitle=Applied+mathematics+and+computation&rft.au=Wang%2C+Qiao&rft.au=Zhou%2C+Wei&rft.au=Cheng%2C+Yonggang&rft.au=Ma%2C+Gang&rft.date=2018-05-15&rft.issn=0096-3003&rft.volume=325&rft.spage=120&rft.epage=145&rft_id=info:doi/10.1016%2Fj.amc.2017.12.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2017_12_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |