Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices

The moving least-square (MLS) method has been popular applied in surface construction and meshless methods. However, the moment matrix in MLS method may be singular for ill quality point sets and the computation of the inverse of the singular moment matrix is difficult. To overcome this problem, a r...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 325; pp. 120 - 145
Main Authors Wang, Qiao, Zhou, Wei, Cheng, Yonggang, Ma, Gang, Chang, Xiaolin, Miao, Yu, Chen, E
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.05.2018
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/j.amc.2017.12.017

Cover

Abstract The moving least-square (MLS) method has been popular applied in surface construction and meshless methods. However, the moment matrix in MLS method may be singular for ill quality point sets and the computation of the inverse of the singular moment matrix is difficult. To overcome this problem, a regularized moving least-square method with nonsingular moment matrix is proposed. The shape functions obtained from the regularized MLS method still do not have the delta function property and may result in difficulty for imposing boundary conditions in regularized MLS based meshless method. To overcome this problem, a regularized improved interpolating moving least-square (IIMLS) method based on the IIMLS method is also proposed. Compared with the regularized MLS method, the regularized IIMLS not only has nonsingular moment matrices, but also obtains shape functions with delta function property. Shape functions of the proposed methods are compared in 1D and 2D cases, and the methods have been applied in curve fitting, surface fitting and meshless method in numerical examples.
AbstractList The moving least-square (MLS) method has been popular applied in surface construction and meshless methods. However, the moment matrix in MLS method may be singular for ill quality point sets and the computation of the inverse of the singular moment matrix is difficult. To overcome this problem, a regularized moving least-square method with nonsingular moment matrix is proposed. The shape functions obtained from the regularized MLS method still do not have the delta function property and may result in difficulty for imposing boundary conditions in regularized MLS based meshless method. To overcome this problem, a regularized improved interpolating moving least-square (IIMLS) method based on the IIMLS method is also proposed. Compared with the regularized MLS method, the regularized IIMLS not only has nonsingular moment matrices, but also obtains shape functions with delta function property. Shape functions of the proposed methods are compared in 1D and 2D cases, and the methods have been applied in curve fitting, surface fitting and meshless method in numerical examples.
Author Cheng, Yonggang
Chang, Xiaolin
Miao, Yu
Wang, Qiao
Chen, E
Ma, Gang
Zhou, Wei
Author_xml – sequence: 1
  givenname: Qiao
  surname: Wang
  fullname: Wang, Qiao
  email: qiaowang@whu.edu.cn
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
– sequence: 2
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
  email: zw_mxx@whu.edu.cn
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
– sequence: 3
  givenname: Yonggang
  surname: Cheng
  fullname: Cheng, Yonggang
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
– sequence: 4
  givenname: Gang
  orcidid: 0000-0002-1865-5721
  surname: Ma
  fullname: Ma, Gang
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
– sequence: 5
  givenname: Xiaolin
  surname: Chang
  fullname: Chang, Xiaolin
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
– sequence: 6
  givenname: Yu
  surname: Miao
  fullname: Miao, Yu
  organization: School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 7
  givenname: E
  surname: Chen
  fullname: Chen, E
  organization: Department of Civil and Environment Engineering, The Hong Kong University of Science and Technology, Kowloon, Clear Water Bay, Hong Kong
BookMark eNp9kE1OwzAUhC1UJNrCAdjlAgm2E8eJWKGKP6kSEoK15dovravELrZbBDfg1jiCBWLR1bzFfKM3M0MT6ywgdElwQTCpr7aFHFRBMeEFoUWSEzQlDS9zVlftBE0xbuu8xLg8Q7MQthhjXpNqir6eYb3vpTefoLPBHYxdZz3IEPPwtpcesgHixulMWp35P1Yz7Lw7jIeN4Heul3FEjyS8m7jJ0tchGcaY5B3AxmyQ0RsF4RyddrIPcPGrc_R6d_uyeMiXT_ePi5tlrmjLY64VZUyvKqowU6RuW16SVceA65JDzagmVYWlhK6RVQdNLRkGoqADRhtWSl7OEfnJVd6F4KETO28G6T8EwWLcUmxF2lKMWwpCRZLE8H-MMjE1djZ6afqj5PUPCanSwYAXQRmwCrTxoKLQzhyhvwHrEpXq
CitedBy_id crossref_primary_10_1016_j_epsr_2022_108751
crossref_primary_10_1155_2020_9042615
crossref_primary_10_1007_s40819_024_01737_1
crossref_primary_10_1109_TIM_2020_2986106
crossref_primary_10_1142_S175882512250065X
crossref_primary_10_1016_j_enganabound_2018_12_011
crossref_primary_10_3390_s20226449
crossref_primary_10_1016_j_amc_2019_02_013
crossref_primary_10_1080_00207160_2020_1834089
crossref_primary_10_1108_EC_03_2022_0157
crossref_primary_10_1016_j_ijthermalsci_2021_106864
crossref_primary_10_1088_1361_6501_ab4ff6
crossref_primary_10_1007_s00366_019_00848_4
crossref_primary_10_1016_j_apm_2021_03_007
crossref_primary_10_1016_j_engfracmech_2020_107325
crossref_primary_10_1109_TIM_2021_3049254
crossref_primary_10_1016_j_energy_2021_120568
crossref_primary_10_1002_num_22742
Cites_doi 10.1007/s00466-001-0268-9
10.1016/j.ijheatmasstransfer.2013.04.028
10.1016/j.cam.2015.08.003
10.1142/S0219876213500436
10.1093/imanum/drr030
10.1016/j.apm.2014.10.071
10.1201/9781420082104
10.1016/j.cam.2013.02.005
10.1002/nme.1620370205
10.1090/S0025-5718-98-00974-0
10.1016/S0045-7825(96)01132-2
10.1016/j.cam.2015.01.007
10.1002/num.22031
10.1016/j.camwa.2016.06.047
10.1007/s00466-012-0766-y
10.1002/nme.4290
10.1016/j.enganabound.2015.01.012
10.1111/j.2517-6161.1996.tb02080.x
10.1002/(SICI)1097-0207(19970315)40:5<797::AID-NME89>3.0.CO;2-#
10.1016/j.enganabound.2008.05.009
10.1016/S0168-9274(00)00054-4
10.1016/S0045-7825(96)01078-X
10.1016/j.cam.2017.03.006
10.1109/TVCG.2003.1175093
10.1016/j.enganabound.2014.10.007
10.1016/j.apnum.2013.03.001
10.1016/S0168-9274(03)00091-6
10.1016/j.cam.2015.03.012
10.1090/S0025-5718-1981-0616367-1
10.1016/S0045-7825(03)00266-4
10.1016/j.apnum.2015.07.006
10.1111/j.1467-9868.2005.00503.x
10.1007/s10915-016-0337-z
10.1137/S0036142999361608
10.1002/nme.904
10.1002/(SICI)1097-0207(19970830)40:16<2953::AID-NME201>3.0.CO;2-S
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2017.12.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 145
ExternalDocumentID 10_1016_j_amc_2017_12_017
S0096300317308767
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
SSH
TAE
VH1
VOH
WUQ
ID FETCH-LOGICAL-c297t-dc255db42c05c1699731bf5e7d37e652d1440aaef8a4fe86a50e1cefe52853a73
IEDL.DBID AIKHN
ISSN 0096-3003
IngestDate Tue Jul 01 01:36:05 EDT 2025
Thu Apr 24 22:59:16 EDT 2025
Fri Feb 23 02:31:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Surface construction
Moving least-square
Improved interpolating moving least-square
Meshless methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-dc255db42c05c1699731bf5e7d37e652d1440aaef8a4fe86a50e1cefe52853a73
ORCID 0000-0002-1865-5721
PageCount 26
ParticipantIDs crossref_primary_10_1016_j_amc_2017_12_017
crossref_citationtrail_10_1016_j_amc_2017_12_017
elsevier_sciencedirect_doi_10_1016_j_amc_2017_12_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-15
PublicationDateYYYYMMDD 2018-05-15
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Joldes, Wittek, Miller (bib0041) 2015; 51
Armentano (bib0019) 2001; 39
Dehghan, Abbaszadeh, Mohebbi (bib0026) 2015; 286
Joldes, Chowdhury, Wittek, Doyle, Miller (bib0034) 2015; 266
Zuppa (bib0020) 2003; 47
Joldes, Wittek, Miller (bib0040) 2012; 91
Li, Li (bib0037) 2016; 72
Wang, Yang (bib0015) 2015; 54
Tibshirani (bib0032) 1996
Dehghan, Abbaszadeh (bib0025) 2017
Press, Teukolsky, Vetterling, Flannery (bib0031) 2007
Lancaster, Salkauskas (bib0001) 1981; 37
Liu, Gu (bib0036) 2003; 192
Belytschko, Lu, Gu (bib0038) 1994; 37
Liu, Li, Belytschko (bib0005) 1997; 143
Belytschko, Krongauz, Organ, Fleming, Krysl (bib0007) 1996; 139
Mukherjee, Mukherjee (bib0008) 1997; 40
Gu, Liu (bib0039) 2002; 28
Dehghan, Mohammadi (bib0023) 2017; 321
Chowdhury, Wittek, Miller, Joldes (bib0035) 2017; 71
Liu (bib0006) 2009; 712
Wang, Miao, Zhu (bib0012) 2013; 64
Mirzaei, Schaback, Dehghan (bib0002) 2012; 32
Zou, Hastie (bib0033) 2005; 67
Salehi, Dehghan (bib0014) 2013; 69
Mirzaei (bib0013) 2016; 32
Armentano, Durán (bib0017) 2001; 37
Zhang, Tanaka, Matsumoto (bib0009) 2004; 59
Ju-Feng, Feng-Xin, Yu-Min (bib0028) 2012; 21
Miao, Wang, Wang (bib0010) 2009; 33
Wang, Miao, Zhu (bib0011) 2013; 51
Alexa, Behr, Cohen-Or, Fleishman, Levin, Silva (bib0004) 2003; 9
Li (bib0016) 2016; 99
Salehi, Dehghan (bib0022) 2013; 249
Levin (bib0003) 1998; 67
Li (bib0030) 2015; 39
Wang, Wang, Sun, Cheng (bib0029) 2013; 10
Ren, Pei, Wang (bib0018) 2014; 238
Mirzaei (bib0024) 2015; 282
Mirzaei (bib0021) 2016; 294
Kaljević, Saigal (bib0027) 1997; 40
Levin (10.1016/j.amc.2017.12.017_bib0003) 1998; 67
Belytschko (10.1016/j.amc.2017.12.017_bib0007) 1996; 139
Ren (10.1016/j.amc.2017.12.017_bib0018) 2014; 238
Zhang (10.1016/j.amc.2017.12.017_bib0009) 2004; 59
Salehi (10.1016/j.amc.2017.12.017_bib0014) 2013; 69
Belytschko (10.1016/j.amc.2017.12.017_bib0038) 1994; 37
Press (10.1016/j.amc.2017.12.017_bib0031) 2007
Joldes (10.1016/j.amc.2017.12.017_bib0034) 2015; 266
Zou (10.1016/j.amc.2017.12.017_bib0033) 2005; 67
Chowdhury (10.1016/j.amc.2017.12.017_bib0035) 2017; 71
Zuppa (10.1016/j.amc.2017.12.017_bib0020) 2003; 47
Liu (10.1016/j.amc.2017.12.017_bib0005) 1997; 143
Li (10.1016/j.amc.2017.12.017_bib0016) 2016; 99
Gu (10.1016/j.amc.2017.12.017_bib0039) 2002; 28
Liu (10.1016/j.amc.2017.12.017_bib0006) 2009; 712
Joldes (10.1016/j.amc.2017.12.017_bib0041) 2015; 51
Li (10.1016/j.amc.2017.12.017_bib0037) 2016; 72
Mirzaei (10.1016/j.amc.2017.12.017_bib0002) 2012; 32
Mirzaei (10.1016/j.amc.2017.12.017_bib0024) 2015; 282
Liu (10.1016/j.amc.2017.12.017_bib0036) 2003; 192
Lancaster (10.1016/j.amc.2017.12.017_bib0001) 1981; 37
Wang (10.1016/j.amc.2017.12.017_bib0029) 2013; 10
Joldes (10.1016/j.amc.2017.12.017_bib0040) 2012; 91
Salehi (10.1016/j.amc.2017.12.017_bib0022) 2013; 249
Miao (10.1016/j.amc.2017.12.017_bib0010) 2009; 33
Mirzaei (10.1016/j.amc.2017.12.017_bib0021) 2016; 294
Tibshirani (10.1016/j.amc.2017.12.017_bib0032) 1996
Li (10.1016/j.amc.2017.12.017_bib0030) 2015; 39
Mukherjee (10.1016/j.amc.2017.12.017_bib0008) 1997; 40
Wang (10.1016/j.amc.2017.12.017_bib0015) 2015; 54
Mirzaei (10.1016/j.amc.2017.12.017_bib0013) 2016; 32
Wang (10.1016/j.amc.2017.12.017_bib0012) 2013; 64
Wang (10.1016/j.amc.2017.12.017_bib0011) 2013; 51
Ju-Feng (10.1016/j.amc.2017.12.017_bib0028) 2012; 21
Armentano (10.1016/j.amc.2017.12.017_bib0017) 2001; 37
Dehghan (10.1016/j.amc.2017.12.017_bib0023) 2017; 321
Kaljević (10.1016/j.amc.2017.12.017_bib0027) 1997; 40
Dehghan (10.1016/j.amc.2017.12.017_bib0025) 2017
Armentano (10.1016/j.amc.2017.12.017_bib0019) 2001; 39
Alexa (10.1016/j.amc.2017.12.017_bib0004) 2003; 9
Dehghan (10.1016/j.amc.2017.12.017_bib0026) 2015; 286
References_xml – volume: 59
  start-page: 1147
  year: 2004
  end-page: 1166
  ident: bib0009
  article-title: Meshless analysis of potential problems in three dimensions with the hybrid boundary node method
  publication-title: Int. J. Numer. Methods Eng.
– volume: 321
  start-page: 540
  year: 2017
  end-page: 554
  ident: bib0023
  article-title: Error analysis of method of lines (MOL) via generalized interpolating moving least squares (GIMLS) approximation
  publication-title: J. Comput. Appl. Math.
– volume: 40
  start-page: 2953
  year: 1997
  end-page: 2974
  ident: bib0027
  article-title: An improved element free Galerkin formulation
  publication-title: Int. J. Numer. Methods Eng.
– volume: 33
  start-page: 120
  year: 2009
  end-page: 127
  ident: bib0010
  article-title: A meshless hybrid boundary-node method for Helmholtz problems
  publication-title: Eng. Anal. Bound. Elem.
– volume: 238
  start-page: 527
  year: 2014
  end-page: 546
  ident: bib0018
  article-title: Error analysis for moving least squares approximation in 2D space
  publication-title: Appl. Math. Comput.
– volume: 40
  start-page: 797
  year: 1997
  end-page: 815
  ident: bib0008
  article-title: The boundary node method for potential problems
  publication-title: Int. J. Numer. Methods Eng.
– volume: 51
  start-page: 885
  year: 2013
  end-page: 897
  ident: bib0011
  article-title: A fast multipole hybrid boundary node method for composite materials
  publication-title: Comput. Mech.
– start-page: 267
  year: 1996
  end-page: 288
  ident: bib0032
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.),
– volume: 139
  start-page: 3
  year: 1996
  end-page: 47
  ident: bib0007
  article-title: Meshless methods: an overview and recent developments
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 47
  start-page: 575
  year: 2003
  end-page: 585
  ident: bib0020
  article-title: Good quality point sets and error estimates for moving least square approximations
  publication-title: Appl. Numer. Math.
– volume: 69
  start-page: 34
  year: 2013
  end-page: 58
  ident: bib0014
  article-title: A moving least square reproducing polynomial meshless method
  publication-title: Appl. Numer. Math.
– volume: 71
  start-page: 1197
  year: 2017
  end-page: 1211
  ident: bib0035
  article-title: An element free Galerkin method based on the modified moving least squares approximation
  publication-title: J. Sci. Comput.
– volume: 37
  start-page: 141
  year: 1981
  end-page: 158
  ident: bib0001
  article-title: Surfaces generated by moving least squares methods
  publication-title: Math. Comput.
– volume: 249
  start-page: 120
  year: 2013
  end-page: 132
  ident: bib0022
  article-title: A generalized moving least square reproducing kernel method
  publication-title: J. Comput. Appl. Math.
– volume: 21
  year: 2012
  ident: bib0028
  article-title: An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems
  publication-title: Chin. Phys. B
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bib0033
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
– volume: 72
  start-page: 1515
  year: 2016
  end-page: 1531
  ident: bib0037
  article-title: On the stability of the moving least squares approximation and the element-free Galerkin method
  publication-title: Comput. Math. Appl.
– volume: 286
  start-page: 211
  year: 2015
  end-page: 231
  ident: bib0026
  article-title: The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate
  publication-title: J. Comput. Appl. Math.
– volume: 32
  start-page: 847
  year: 2016
  end-page: 861
  ident: bib0013
  article-title: A greedy meshless local Petrov–Galerkin methodbased on radial basis functions
  publication-title: Numer. Methods Partial Differ. Eq.
– volume: 51
  start-page: 52
  year: 2015
  end-page: 63
  ident: bib0041
  article-title: Adaptive numerical integration in element-free Galerkin methods for elliptic boundary value problems
  publication-title: Eng. Anal. Bound. Elem.
– volume: 54
  start-page: 76
  year: 2015
  end-page: 85
  ident: bib0015
  article-title: A rigid-inclusion model for fiber-reinforced composites by fast multipole hybrid boundary node method
  publication-title: Eng. Anal. Bound. Elem.
– volume: 294
  start-page: 93
  year: 2016
  end-page: 101
  ident: bib0021
  article-title: Error bounds for GMLS derivatives approximations of Sobolev functions
  publication-title: J. Comput. Appl. Math.
– volume: 192
  start-page: 2269
  year: 2003
  end-page: 2295
  ident: bib0036
  article-title: A matrix triangularization algorithm for the polynomial point interpolation method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 32
  start-page: 983
  year: 2012
  end-page: 1000
  ident: bib0002
  article-title: On generalized moving least squares and diffuse derivatives
  publication-title: IMA J. Numer. Anal.
– volume: 37
  start-page: 397
  year: 2001
  end-page: 416
  ident: bib0017
  article-title: Error estimates for moving least square approximations
  publication-title: Appl. Numer. Math.
– volume: 282
  start-page: 237
  year: 2015
  end-page: 250
  ident: bib0024
  article-title: Analysis of moving least squares approximation revisited
  publication-title: J. Comput. Appl. Math.
– volume: 266
  start-page: 893
  year: 2015
  end-page: 902
  ident: bib0034
  article-title: Modified moving least squares with polynomial bases for scattered data approximation
  publication-title: Appl. Math. Comput.
– year: 2007
  ident: bib0031
  article-title: Numerical Recipes: the Art of Scientific Computing
– volume: 9
  start-page: 3
  year: 2003
  end-page: 15
  ident: bib0004
  article-title: Computing and rendering point set surfaces
  publication-title: IEEE Trans. Vis. Comput. Graph.
– volume: 712
  year: 2009
  ident: bib0006
  publication-title: Mesh Free Methods: Moving Beyond the Finite Element Method
– volume: 39
  start-page: 3116
  year: 2015
  end-page: 3134
  ident: bib0030
  article-title: An interpolating boundary element-free method for three-dimensional potential problems
  publication-title: Appl. Math. Model.
– volume: 143
  start-page: 113
  year: 1997
  end-page: 154
  ident: bib0005
  article-title: Moving least-square reproducing kernel methods (I) methodology and convergence
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 64
  start-page: 322
  year: 2013
  end-page: 330
  ident: bib0012
  article-title: A new formulation for thermal analysis of composites by hybrid boundary node method
  publication-title: Int. J. Heat. Mass Transf.
– volume: 39
  start-page: 38
  year: 2001
  end-page: 51
  ident: bib0019
  article-title: Error estimates in Sobolev spaces for moving least square approximations
  publication-title: SIAM J. Numer. Anal.
– volume: 67
  start-page: 1517
  year: 1998
  end-page: 1531
  ident: bib0003
  article-title: The approximation power of moving least-squares
  publication-title: Math. Comput. Am. Math. Soc.
– volume: 10
  year: 2013
  ident: bib0029
  article-title: An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems
  publication-title: Int. J. Comput. Methods
– volume: 28
  start-page: 47
  year: 2002
  end-page: 54
  ident: bib0039
  article-title: A boundary point interpolation method for stress analysis of solids
  publication-title: Comput. Mech.
– year: 2017
  ident: bib0025
  article-title: Interpolating stabilized moving least squares (MLS) approximation for 2D elliptic interface problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 37
  start-page: 229
  year: 1994
  end-page: 256
  ident: bib0038
  article-title: Element‐free Galerkin methods
  publication-title: Int. J. Numer. Methods Eng.
– volume: 99
  start-page: 77
  year: 2016
  end-page: 97
  ident: bib0016
  article-title: Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces
  publication-title: Appl. Numer. Math.
– volume: 91
  start-page: 450
  year: 2012
  end-page: 456
  ident: bib0040
  article-title: Stable time step estimates for mesh‐free particle methods
  publication-title: Int. J. Numer. Methods Eng.
– volume: 28
  start-page: 47
  issue: 1
  year: 2002
  ident: 10.1016/j.amc.2017.12.017_bib0039
  article-title: A boundary point interpolation method for stress analysis of solids
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-001-0268-9
– volume: 64
  start-page: 322
  year: 2013
  ident: 10.1016/j.amc.2017.12.017_bib0012
  article-title: A new formulation for thermal analysis of composites by hybrid boundary node method
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.04.028
– volume: 294
  start-page: 93
  year: 2016
  ident: 10.1016/j.amc.2017.12.017_bib0021
  article-title: Error bounds for GMLS derivatives approximations of Sobolev functions
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.08.003
– volume: 10
  issue: 06
  year: 2013
  ident: 10.1016/j.amc.2017.12.017_bib0029
  article-title: An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems
  publication-title: Int. J. Comput. Methods
  doi: 10.1142/S0219876213500436
– volume: 32
  start-page: 983
  issue: 3
  year: 2012
  ident: 10.1016/j.amc.2017.12.017_bib0002
  article-title: On generalized moving least squares and diffuse derivatives
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drr030
– volume: 39
  start-page: 3116
  issue: 10
  year: 2015
  ident: 10.1016/j.amc.2017.12.017_bib0030
  article-title: An interpolating boundary element-free method for three-dimensional potential problems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2014.10.071
– volume: 712
  year: 2009
  ident: 10.1016/j.amc.2017.12.017_bib0006
  publication-title: Mesh Free Methods: Moving Beyond the Finite Element Method
  doi: 10.1201/9781420082104
– volume: 249
  start-page: 120
  year: 2013
  ident: 10.1016/j.amc.2017.12.017_bib0022
  article-title: A generalized moving least square reproducing kernel method
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.02.005
– volume: 266
  start-page: 893
  year: 2015
  ident: 10.1016/j.amc.2017.12.017_bib0034
  article-title: Modified moving least squares with polynomial bases for scattered data approximation
  publication-title: Appl. Math. Comput.
– volume: 37
  start-page: 229
  issue: 2
  year: 1994
  ident: 10.1016/j.amc.2017.12.017_bib0038
  article-title: Element‐free Galerkin methods
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620370205
– volume: 67
  start-page: 1517
  issue: 224
  year: 1998
  ident: 10.1016/j.amc.2017.12.017_bib0003
  article-title: The approximation power of moving least-squares
  publication-title: Math. Comput. Am. Math. Soc.
  doi: 10.1090/S0025-5718-98-00974-0
– volume: 143
  start-page: 113
  issue: 1-2
  year: 1997
  ident: 10.1016/j.amc.2017.12.017_bib0005
  article-title: Moving least-square reproducing kernel methods (I) methodology and convergence
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(96)01132-2
– year: 2017
  ident: 10.1016/j.amc.2017.12.017_bib0025
  article-title: Interpolating stabilized moving least squares (MLS) approximation for 2D elliptic interface problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 282
  start-page: 237
  year: 2015
  ident: 10.1016/j.amc.2017.12.017_bib0024
  article-title: Analysis of moving least squares approximation revisited
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.01.007
– volume: 32
  start-page: 847
  issue: 3
  year: 2016
  ident: 10.1016/j.amc.2017.12.017_bib0013
  article-title: A greedy meshless local Petrov–Galerkin methodbased on radial basis functions
  publication-title: Numer. Methods Partial Differ. Eq.
  doi: 10.1002/num.22031
– year: 2007
  ident: 10.1016/j.amc.2017.12.017_bib0031
– volume: 72
  start-page: 1515
  issue: 6
  year: 2016
  ident: 10.1016/j.amc.2017.12.017_bib0037
  article-title: On the stability of the moving least squares approximation and the element-free Galerkin method
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.06.047
– volume: 51
  start-page: 885
  issue: 6
  year: 2013
  ident: 10.1016/j.amc.2017.12.017_bib0011
  article-title: A fast multipole hybrid boundary node method for composite materials
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-012-0766-y
– volume: 91
  start-page: 450
  issue: 4
  year: 2012
  ident: 10.1016/j.amc.2017.12.017_bib0040
  article-title: Stable time step estimates for mesh‐free particle methods
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4290
– volume: 54
  start-page: 76
  year: 2015
  ident: 10.1016/j.amc.2017.12.017_bib0015
  article-title: A rigid-inclusion model for fiber-reinforced composites by fast multipole hybrid boundary node method
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2015.01.012
– start-page: 267
  year: 1996
  ident: 10.1016/j.amc.2017.12.017_bib0032
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.),
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 40
  start-page: 797
  issue: 5
  year: 1997
  ident: 10.1016/j.amc.2017.12.017_bib0008
  article-title: The boundary node method for potential problems
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19970315)40:5<797::AID-NME89>3.0.CO;2-#
– volume: 33
  start-page: 120
  issue: 2
  year: 2009
  ident: 10.1016/j.amc.2017.12.017_bib0010
  article-title: A meshless hybrid boundary-node method for Helmholtz problems
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2008.05.009
– volume: 37
  start-page: 397
  issue: 3
  year: 2001
  ident: 10.1016/j.amc.2017.12.017_bib0017
  article-title: Error estimates for moving least square approximations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(00)00054-4
– volume: 139
  start-page: 3
  issue: 1
  year: 1996
  ident: 10.1016/j.amc.2017.12.017_bib0007
  article-title: Meshless methods: an overview and recent developments
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(96)01078-X
– volume: 321
  start-page: 540
  year: 2017
  ident: 10.1016/j.amc.2017.12.017_bib0023
  article-title: Error analysis of method of lines (MOL) via generalized interpolating moving least squares (GIMLS) approximation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.03.006
– volume: 9
  start-page: 3
  issue: 1
  year: 2003
  ident: 10.1016/j.amc.2017.12.017_bib0004
  article-title: Computing and rendering point set surfaces
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2003.1175093
– volume: 51
  start-page: 52
  year: 2015
  ident: 10.1016/j.amc.2017.12.017_bib0041
  article-title: Adaptive numerical integration in element-free Galerkin methods for elliptic boundary value problems
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2014.10.007
– volume: 69
  start-page: 34
  year: 2013
  ident: 10.1016/j.amc.2017.12.017_bib0014
  article-title: A moving least square reproducing polynomial meshless method
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2013.03.001
– volume: 47
  start-page: 575
  issue: 3-4
  year: 2003
  ident: 10.1016/j.amc.2017.12.017_bib0020
  article-title: Good quality point sets and error estimates for moving least square approximations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(03)00091-6
– volume: 286
  start-page: 211
  year: 2015
  ident: 10.1016/j.amc.2017.12.017_bib0026
  article-title: The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.03.012
– volume: 37
  start-page: 141
  issue: 155
  year: 1981
  ident: 10.1016/j.amc.2017.12.017_bib0001
  article-title: Surfaces generated by moving least squares methods
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1981-0616367-1
– volume: 192
  start-page: 2269
  issue: 19
  year: 2003
  ident: 10.1016/j.amc.2017.12.017_bib0036
  article-title: A matrix triangularization algorithm for the polynomial point interpolation method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(03)00266-4
– volume: 99
  start-page: 77
  year: 2016
  ident: 10.1016/j.amc.2017.12.017_bib0016
  article-title: Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2015.07.006
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 10.1016/j.amc.2017.12.017_bib0033
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 21
  issue: 9
  year: 2012
  ident: 10.1016/j.amc.2017.12.017_bib0028
  article-title: An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems
  publication-title: Chin. Phys. B
– volume: 71
  start-page: 1197
  year: 2017
  ident: 10.1016/j.amc.2017.12.017_bib0035
  article-title: An element free Galerkin method based on the modified moving least squares approximation
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-016-0337-z
– volume: 39
  start-page: 38
  issue: 1
  year: 2001
  ident: 10.1016/j.amc.2017.12.017_bib0019
  article-title: Error estimates in Sobolev spaces for moving least square approximations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142999361608
– volume: 59
  start-page: 1147
  issue: 9
  year: 2004
  ident: 10.1016/j.amc.2017.12.017_bib0009
  article-title: Meshless analysis of potential problems in three dimensions with the hybrid boundary node method
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.904
– volume: 238
  start-page: 527
  year: 2014
  ident: 10.1016/j.amc.2017.12.017_bib0018
  article-title: Error analysis for moving least squares approximation in 2D space
  publication-title: Appl. Math. Comput.
– volume: 40
  start-page: 2953
  issue: 16
  year: 1997
  ident: 10.1016/j.amc.2017.12.017_bib0027
  article-title: An improved element free Galerkin formulation
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19970830)40:16<2953::AID-NME201>3.0.CO;2-S
SSID ssj0007614
Score 2.395159
Snippet The moving least-square (MLS) method has been popular applied in surface construction and meshless methods. However, the moment matrix in MLS method may be...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120
SubjectTerms Improved interpolating moving least-square
Meshless methods
Moving least-square
Surface construction
Title Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices
URI https://dx.doi.org/10.1016/j.amc.2017.12.017
Volume 325
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoEB8RTlUXlgQgqN49hJxqqiKqB2QFTqFjm2IxW1VWnLwsDOv8bnJBVI0IEpD905kc-6s8_n7wO4FiaMVJYxjydh5iEiuBfnOvQEkzxWOhGZQ9sfDEV_FD6M-bgG3eosDJZVlr6_8OnOW5dv2mVvtheTCZ7xTRAvygZARLUT0Q40ApYIXodG5_6xP9w4ZLtSL8CYEyzz8lm1uenKvOQMgQxp5JKCjrbsl_D0LeT0DmC_nCuSTvE7h1Az8yPYG2yAVlfH8PnkuOSXk3ejycxlB8gU6Xi81as1viEFQzSRc02W30QnLpeANwXPFlbEWdUtLWDClsyxnHbumrGymFgkM4fxb1YnMOrdPXf7Xsmu4KkgidaeVnY1obMwUD5XVCTIYZXl3ESaRUbwQOO2r5Qmj2WYm1hI7huqTG54YEO8jNgp1O1XzRmQKKM68YXmWpqQSxXHzDDNciqkpFqqJvhVp6aqhB5HBoxpWtWYvaTWDinaIaVBai9NuNmoLArcjW3CYWWp9MfgSW1c-Fvt_H9qF7Brn2IsIaD8Eurr5Zu5sjOTddaCndsP2irH3xeZKucA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKDMCAeIo3HpiQQpP4lYwIURVoGVArdbMc25GCaARtWRjY-df4nISHBB2YEiU-J_JZPvv8-fsQOuWWCp1lJGApzQJgBA-S3NCAE8USbVKeebb9_h3vDunNiI1a6LI5CwOwynrsr8Z0P1rXT9p1a7afigLO-KbAF-UCILDacbGAligjAnB9529fOA-3Tq-omFMAeYWk2dr0IC81BhrDSPiUoBct-yU4fQs4nXW0Vs8U8UX1MxuoZctNtNr_pFmdbqH3e68kPylercFjnxvAjyDGE0yfnestrvShsSoNnnwrWvhMAtxUKluAh3Omc2qAdC0uAUxb-mpcWUgr4rFn-LfTbTTsXA0uu0GtrRDoOBWzwGi3ljAZjXXIdMRTULDKcmaFIcJyFhvY9FXK5omiuU24YqGNtM0ti12AV4LsoEX3VbuLsMgik4bcMKMsZUonCbHEkDziSkVG6T0UNo0qdU08DvoXj7JBmD1I5wcJfpBRLN1lD519mjxVrBvzCtPGU_JH15EuKvxttv8_sxO03B30e7J3fXd7gFbcmwTABBE7RIuzyYs9cnOUWXbs--AHkt3nyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularized+moving+least-square+method+and+regularized+improved+interpolating+moving+least-square+method+with+nonsingular+moment+matrices&rft.jtitle=Applied+mathematics+and+computation&rft.au=Wang%2C+Qiao&rft.au=Zhou%2C+Wei&rft.au=Cheng%2C+Yonggang&rft.au=Ma%2C+Gang&rft.date=2018-05-15&rft.issn=0096-3003&rft.volume=325&rft.spage=120&rft.epage=145&rft_id=info:doi/10.1016%2Fj.amc.2017.12.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2017_12_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon