Orbital-angular-momentum-resolved diagnostics for tracking internal phase evolution in multi-bound solitons

The generation of multi-bound solitons is a fascinating subject of investigation in many conservative and dissipative systems, such as photonics, fluid mechanics, Bose-Einstein condensates, and so on. In this study, we demonstrate the successful extraction of phase dynamics between solitons in bound...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 29; no. 11; p. 16686
Main Authors Zhao, Yuwei, Fan, Jintao, Song, Youjian, Hu, Minglie
Format Journal Article
LanguageEnglish
Published 24.05.2021
Online AccessGet full text
ISSN1094-4087
1094-4087
DOI10.1364/OE.424602

Cover

Abstract The generation of multi-bound solitons is a fascinating subject of investigation in many conservative and dissipative systems, such as photonics, fluid mechanics, Bose-Einstein condensates, and so on. In this study, we demonstrate the successful extraction of phase dynamics between solitons in bound multiple solitons with up to seven constituents in a mode-locked Er laser system. By mapping the internal phase motions of multi-bound solitons to the spatial phase movement of cylindrical vector beams using orbital angular momentum (OAM)-based diagnostics, different categories of internal pulsations are revealed. We show that bound state of four solitons exhibits linear drifting relative phase evolution dynamics; while for bound multiple solitons with constituents from five to seven pulses, stationary relative phase dynamics are observed. These findings highlight the possibility of the OAM-based method access to the internal motion of multi-soliton molecules with more freedom of degrees and fuel the analogy with research on chemistry molecule complex.
AbstractList The generation of multi-bound solitons is a fascinating subject of investigation in many conservative and dissipative systems, such as photonics, fluid mechanics, Bose-Einstein condensates, and so on. In this study, we demonstrate the successful extraction of phase dynamics between solitons in bound multiple solitons with up to seven constituents in a mode-locked Er laser system. By mapping the internal phase motions of multi-bound solitons to the spatial phase movement of cylindrical vector beams using orbital angular momentum (OAM)-based diagnostics, different categories of internal pulsations are revealed. We show that bound state of four solitons exhibits linear drifting relative phase evolution dynamics; while for bound multiple solitons with constituents from five to seven pulses, stationary relative phase dynamics are observed. These findings highlight the possibility of the OAM-based method access to the internal motion of multi-soliton molecules with more freedom of degrees and fuel the analogy with research on chemistry molecule complex.The generation of multi-bound solitons is a fascinating subject of investigation in many conservative and dissipative systems, such as photonics, fluid mechanics, Bose-Einstein condensates, and so on. In this study, we demonstrate the successful extraction of phase dynamics between solitons in bound multiple solitons with up to seven constituents in a mode-locked Er laser system. By mapping the internal phase motions of multi-bound solitons to the spatial phase movement of cylindrical vector beams using orbital angular momentum (OAM)-based diagnostics, different categories of internal pulsations are revealed. We show that bound state of four solitons exhibits linear drifting relative phase evolution dynamics; while for bound multiple solitons with constituents from five to seven pulses, stationary relative phase dynamics are observed. These findings highlight the possibility of the OAM-based method access to the internal motion of multi-soliton molecules with more freedom of degrees and fuel the analogy with research on chemistry molecule complex.
The generation of multi-bound solitons is a fascinating subject of investigation in many conservative and dissipative systems, such as photonics, fluid mechanics, Bose-Einstein condensates, and so on. In this study, we demonstrate the successful extraction of phase dynamics between solitons in bound multiple solitons with up to seven constituents in a mode-locked Er laser system. By mapping the internal phase motions of multi-bound solitons to the spatial phase movement of cylindrical vector beams using orbital angular momentum (OAM)-based diagnostics, different categories of internal pulsations are revealed. We show that bound state of four solitons exhibits linear drifting relative phase evolution dynamics; while for bound multiple solitons with constituents from five to seven pulses, stationary relative phase dynamics are observed. These findings highlight the possibility of the OAM-based method access to the internal motion of multi-soliton molecules with more freedom of degrees and fuel the analogy with research on chemistry molecule complex.
Author Song, Youjian
Zhao, Yuwei
Fan, Jintao
Hu, Minglie
Author_xml – sequence: 1
  givenname: Yuwei
  surname: Zhao
  fullname: Zhao, Yuwei
– sequence: 2
  givenname: Jintao
  surname: Fan
  fullname: Fan, Jintao
– sequence: 3
  givenname: Youjian
  orcidid: 0000-0002-5182-8620
  surname: Song
  fullname: Song, Youjian
– sequence: 4
  givenname: Minglie
  orcidid: 0000-0003-4454-925X
  surname: Hu
  fullname: Hu, Minglie
BookMark eNptkD1PwzAQhi1UJNrCwD_wCINbO3GcZERV-ZAqdYE5uthOMXXsYjuV-PekKgNCTHfSPe8r3TNDE-edRuiW0QXLBV9u1wuecUGzCzRltOaE06qc_Nqv0CzGD0oZL-tyivbb0JoEloDbDRYC6X2vXRp6EnT09qgVVgZ2zsdkZMSdDzgFkHvjdti4pIMDiw_vEDXWR2-HZLwbD7gfbDKk9YNTeOwxybt4jS47sFHf_Mw5entcv66eyWb79LJ62BCZ1WUiStKuqoG2hSxFXdKu6JgEzkHITOfAKkWVUEUrW0GZyoUuVZsXleKQ5VkOdT5Hd-feQ_Cfg46p6U2U2lpw2g-xyQrOmSiqio_o_RmVwccYdNccgukhfDWMNiehzXbdnIWO7PIPK0dzp4dHI8b-k_gGhg58oQ
CitedBy_id crossref_primary_10_1016_j_optlastec_2023_110444
Cites_doi 10.1088/2040-8986/aaabde
10.1103/PhysRevA.44.6954
10.1103/PhysRevA.84.053828
10.1103/PhysRevA.72.043816
10.1364/OL.12.000355
10.1364/OE.24.021256
10.1103/PhysRevLett.118.243901
10.1038/s41467-019-08755-4
10.1038/s41566-018-0106-7
10.3390/app8020201
10.1038/s41598-019-54563-7
10.1126/science.aal5326
10.1364/OE.17.011776
10.1038/nphoton.2016.102
10.1364/OL.29.001461
10.1364/PRJ.387438
10.1103/PhysRevA.45.R8321
10.1364/OL.34.002120
10.1038/nphoton.2011.345
10.1103/PhysRevA.64.033814
10.1088/1464-4266/6/5/015
10.1016/j.optlastec.2020.106422
10.1103/PhysRevLett.121.023905
10.1364/PRJ.398316
10.1364/OE.24.001814
10.1007/s00340-004-1685-1
10.1364/OPTICA.3.000189
10.1002/lpor.201800009
10.1038/s42005-019-0134-8
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1364/OE.424602
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 10_1364_OE_424602
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
7X8
ID FETCH-LOGICAL-c297t-dc0f89a0b5c76970f5f1ca44a6c2e3a18d0d6d5bcb601d36e7db358d4a2323a93
ISSN 1094-4087
IngestDate Fri Jul 11 15:58:22 EDT 2025
Thu Apr 24 22:53:04 EDT 2025
Tue Jul 01 01:41:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-dc0f89a0b5c76970f5f1ca44a6c2e3a18d0d6d5bcb601d36e7db358d4a2323a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4454-925X
0000-0002-5182-8620
OpenAccessLink https://doi.org/10.1364/oe.424602
PQID 2544165884
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2544165884
crossref_primary_10_1364_OE_424602
crossref_citationtrail_10_1364_OE_424602
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-24
20210524
PublicationDateYYYYMMDD 2021-05-24
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-24
  day: 24
PublicationDecade 2020
PublicationTitle Optics express
PublicationYear 2021
References Krupa (oe-29-11-16686-R17) 2017; 118
Liu (oe-29-11-16686-R19) 2018; 20
Weill (oe-29-11-16686-R7) 2016; 3
Amrani (oe-29-11-16686-R15) 2009; 34
Gui (oe-29-11-16686-R1) 2018; 8
Mitschke (oe-29-11-16686-R6) 1987; 12
Tang (oe-29-11-16686-R26) 2005; 80
Grelu (oe-29-11-16686-R2) 2012; 6
Luo (oe-29-11-16686-R30) 2020; 8
Malomed (oe-29-11-16686-R3) 1991; 44
Herink (oe-29-11-16686-R16) 2017; 356
Grelu (oe-29-11-16686-R9) 2004; 6
Wang (oe-29-11-16686-R24) 2019; 10
Malomed (oe-29-11-16686-R4) 1992; 45
Olivier (oe-29-11-16686-R14) 2004; 29
Tang (oe-29-11-16686-R27) 2001; 64
Liu (oe-29-11-16686-R23) 2011; 84
Pang (oe-29-11-16686-R5) 2016; 10
Peng (oe-29-11-16686-R12) 2019; 2
Peng (oe-29-11-16686-R21) 2018; 12
Zhao (oe-29-11-16686-R29) 2020; 8
Chouli (oe-29-11-16686-R10) 2009; 17
Ryczkowski (oe-29-11-16686-R18) 2018; 12
Liu (oe-29-11-16686-R20) 2018; 121
Song (oe-29-11-16686-R28) 2016; 24
Peng (oe-29-11-16686-R13) 2016; 24
Kokhanovskiy (oe-29-11-16686-R25) 2020; 131
Tang (oe-29-11-16686-R22) 2005; 72
Voropaev (oe-29-11-16686-R8) 2019; 9
References_xml – volume: 20
  start-page: 034010
  year: 2018
  ident: oe-29-11-16686-R19
  publication-title: J. Opt.
  doi: 10.1088/2040-8986/aaabde
– volume: 44
  start-page: 6954
  year: 1991
  ident: oe-29-11-16686-R3
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.44.6954
– volume: 84
  start-page: 053828
  year: 2011
  ident: oe-29-11-16686-R23
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.053828
– volume: 72
  start-page: 043816
  year: 2005
  ident: oe-29-11-16686-R22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.72.043816
– volume: 12
  start-page: 355
  year: 1987
  ident: oe-29-11-16686-R6
  publication-title: Opt. Lett.
  doi: 10.1364/OL.12.000355
– volume: 24
  start-page: 21256
  year: 2016
  ident: oe-29-11-16686-R13
  publication-title: Opt. Express
  doi: 10.1364/OE.24.021256
– volume: 118
  start-page: 243901
  year: 2017
  ident: oe-29-11-16686-R17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.243901
– volume: 10
  start-page: 830
  year: 2019
  ident: oe-29-11-16686-R24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08755-4
– volume: 12
  start-page: 221
  year: 2018
  ident: oe-29-11-16686-R18
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0106-7
– volume: 8
  start-page: 201
  year: 2018
  ident: oe-29-11-16686-R1
  publication-title: Appl. Sci.
  doi: 10.3390/app8020201
– volume: 9
  start-page: 18369
  year: 2019
  ident: oe-29-11-16686-R8
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54563-7
– volume: 356
  start-page: 50
  year: 2017
  ident: oe-29-11-16686-R16
  publication-title: Science
  doi: 10.1126/science.aal5326
– volume: 17
  start-page: 11776
  year: 2009
  ident: oe-29-11-16686-R10
  publication-title: Opt. Express
  doi: 10.1364/OE.17.011776
– volume: 10
  start-page: 454
  year: 2016
  ident: oe-29-11-16686-R5
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.102
– volume: 29
  start-page: 1461
  year: 2004
  ident: oe-29-11-16686-R14
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.001461
– volume: 8
  start-page: 884
  year: 2020
  ident: oe-29-11-16686-R30
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.387438
– volume: 45
  start-page: R8321
  year: 1992
  ident: oe-29-11-16686-R4
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.R8321
– volume: 34
  start-page: 2120
  year: 2009
  ident: oe-29-11-16686-R15
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.002120
– volume: 6
  start-page: 84
  year: 2012
  ident: oe-29-11-16686-R2
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.345
– volume: 64
  start-page: 033814
  year: 2001
  ident: oe-29-11-16686-R27
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.033814
– volume: 6
  start-page: S271
  year: 2004
  ident: oe-29-11-16686-R9
  publication-title: J. Opt. B Quantum Semiclass. Opt.
  doi: 10.1088/1464-4266/6/5/015
– volume: 131
  start-page: 106422
  year: 2020
  ident: oe-29-11-16686-R25
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2020.106422
– volume: 121
  start-page: 023905
  year: 2018
  ident: oe-29-11-16686-R20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.023905
– volume: 8
  start-page: 1580
  year: 2020
  ident: oe-29-11-16686-R29
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.398316
– volume: 24
  start-page: 1814
  year: 2016
  ident: oe-29-11-16686-R28
  publication-title: Opt. Express
  doi: 10.1364/OE.24.001814
– volume: 80
  start-page: 239
  year: 2005
  ident: oe-29-11-16686-R26
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-004-1685-1
– volume: 3
  start-page: 189
  year: 2016
  ident: oe-29-11-16686-R7
  publication-title: Optica
  doi: 10.1364/OPTICA.3.000189
– volume: 12
  start-page: 1800009
  year: 2018
  ident: oe-29-11-16686-R21
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201800009
– volume: 2
  start-page: 34
  year: 2019
  ident: oe-29-11-16686-R12
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-019-0134-8
SSID ssj0014797
Score 2.362297
Snippet The generation of multi-bound solitons is a fascinating subject of investigation in many conservative and dissipative systems, such as photonics, fluid...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 16686
Title Orbital-angular-momentum-resolved diagnostics for tracking internal phase evolution in multi-bound solitons
URI https://www.proquest.com/docview/2544165884
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3La9RAGB-0IniR-sJWW0bxICxTk8xkZnIsZWUp1L20UE8h8whq291lN6niwb_dbx7JpnbB6iUsk2QS8v32ez8QelfUKcg1YwjNjCassIYoYSiRRlpT1MLk1hUnn3zikzN2fJ6fr1OHfHVJow70z411Jf9DVVgDuroq2X-gbL8pLMBvoC8cgcJwvBONp0vlZn4Q53MEC5VcuXYKTXtFwIaeX16DLmlCJp3vxewTCpeVvghlLKH782jxBeTYyF7HF3X-D59kSJQbuDRaufy4zqUXldjpwu9nfyz6_I3gevZu18_td_u1h0Xwrx7D46p5782JacDAab4N0DlpQx6_Kyy2Q29ElrpAeiiCjgwUzEWwSaMQtRvWIteNfo6IrnTAQ1POQ3fsW9ydcgYkmY4PWMZ4kq1FWBe2_0Oy9fmGPmzHWTkdl-HW--hBJoSP65_8GvdhJybCNJ7uhWMrKrj1Q__UmwrMTfntlZLTbfQ4WhP4MEDjCbpnZ0_RQ5_Vq1fP0MVfAYIHAMEAENwBBHcAwR4guAcInMADgOAOIM_R2cfx6dGExOkaRGeFaIjRSS2LKlG5FrwQSZ3Xqa4Yq7jOLK1SaRLDTa60ApvdUG6FURT-1qwCJZxWBX2BtmbzmX2JcC2VkjRhVmrNcgp8QUiVuxJKnnJl5A56332yUsfW824CymV5izA76G1_6SL0W9l00Zvuu5fADV2Iq5rZebsqXcM9x3wk273LRq_QozWIX6OtZtnaPVAyG7XvnTP7Hh6_AXWGhCY
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orbital-angular-momentum-resolved+diagnostics+for+tracking+internal+phase+evolution+in+multi-bound+solitons&rft.jtitle=Optics+express&rft.au=Zhao%2C+Yuwei&rft.au=Fan%2C+Jintao&rft.au=Song%2C+Youjian&rft.au=Hu%2C+Minglie&rft.date=2021-05-24&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=29&rft.issue=11&rft.spage=16686&rft_id=info:doi/10.1364%2FOE.424602&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_424602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon