Orbital-angular-momentum-resolved diagnostics for tracking internal phase evolution in multi-bound solitons
The generation of multi-bound solitons is a fascinating subject of investigation in many conservative and dissipative systems, such as photonics, fluid mechanics, Bose-Einstein condensates, and so on. In this study, we demonstrate the successful extraction of phase dynamics between solitons in bound...
Saved in:
Published in | Optics express Vol. 29; no. 11; p. 16686 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
24.05.2021
|
Online Access | Get full text |
ISSN | 1094-4087 1094-4087 |
DOI | 10.1364/OE.424602 |
Cover
Abstract | The generation of multi-bound solitons is a fascinating subject of investigation in many conservative and dissipative systems, such as photonics, fluid mechanics, Bose-Einstein condensates, and so on. In this study, we demonstrate the successful extraction of phase dynamics between solitons in bound multiple solitons with up to seven constituents in a mode-locked Er laser system. By mapping the internal phase motions of multi-bound solitons to the spatial phase movement of cylindrical vector beams using orbital angular momentum (OAM)-based diagnostics, different categories of internal pulsations are revealed. We show that bound state of four solitons exhibits linear drifting relative phase evolution dynamics; while for bound multiple solitons with constituents from five to seven pulses, stationary relative phase dynamics are observed. These findings highlight the possibility of the OAM-based method access to the internal motion of multi-soliton molecules with more freedom of degrees and fuel the analogy with research on chemistry molecule complex. |
---|---|
AbstractList | The generation of multi-bound solitons is a fascinating subject of investigation in many conservative and dissipative systems, such as photonics, fluid mechanics, Bose-Einstein condensates, and so on. In this study, we demonstrate the successful extraction of phase dynamics between solitons in bound multiple solitons with up to seven constituents in a mode-locked Er laser system. By mapping the internal phase motions of multi-bound solitons to the spatial phase movement of cylindrical vector beams using orbital angular momentum (OAM)-based diagnostics, different categories of internal pulsations are revealed. We show that bound state of four solitons exhibits linear drifting relative phase evolution dynamics; while for bound multiple solitons with constituents from five to seven pulses, stationary relative phase dynamics are observed. These findings highlight the possibility of the OAM-based method access to the internal motion of multi-soliton molecules with more freedom of degrees and fuel the analogy with research on chemistry molecule complex.The generation of multi-bound solitons is a fascinating subject of investigation in many conservative and dissipative systems, such as photonics, fluid mechanics, Bose-Einstein condensates, and so on. In this study, we demonstrate the successful extraction of phase dynamics between solitons in bound multiple solitons with up to seven constituents in a mode-locked Er laser system. By mapping the internal phase motions of multi-bound solitons to the spatial phase movement of cylindrical vector beams using orbital angular momentum (OAM)-based diagnostics, different categories of internal pulsations are revealed. We show that bound state of four solitons exhibits linear drifting relative phase evolution dynamics; while for bound multiple solitons with constituents from five to seven pulses, stationary relative phase dynamics are observed. These findings highlight the possibility of the OAM-based method access to the internal motion of multi-soliton molecules with more freedom of degrees and fuel the analogy with research on chemistry molecule complex. The generation of multi-bound solitons is a fascinating subject of investigation in many conservative and dissipative systems, such as photonics, fluid mechanics, Bose-Einstein condensates, and so on. In this study, we demonstrate the successful extraction of phase dynamics between solitons in bound multiple solitons with up to seven constituents in a mode-locked Er laser system. By mapping the internal phase motions of multi-bound solitons to the spatial phase movement of cylindrical vector beams using orbital angular momentum (OAM)-based diagnostics, different categories of internal pulsations are revealed. We show that bound state of four solitons exhibits linear drifting relative phase evolution dynamics; while for bound multiple solitons with constituents from five to seven pulses, stationary relative phase dynamics are observed. These findings highlight the possibility of the OAM-based method access to the internal motion of multi-soliton molecules with more freedom of degrees and fuel the analogy with research on chemistry molecule complex. |
Author | Song, Youjian Zhao, Yuwei Fan, Jintao Hu, Minglie |
Author_xml | – sequence: 1 givenname: Yuwei surname: Zhao fullname: Zhao, Yuwei – sequence: 2 givenname: Jintao surname: Fan fullname: Fan, Jintao – sequence: 3 givenname: Youjian orcidid: 0000-0002-5182-8620 surname: Song fullname: Song, Youjian – sequence: 4 givenname: Minglie orcidid: 0000-0003-4454-925X surname: Hu fullname: Hu, Minglie |
BookMark | eNptkD1PwzAQhi1UJNrCwD_wCINbO3GcZERV-ZAqdYE5uthOMXXsYjuV-PekKgNCTHfSPe8r3TNDE-edRuiW0QXLBV9u1wuecUGzCzRltOaE06qc_Nqv0CzGD0oZL-tyivbb0JoEloDbDRYC6X2vXRp6EnT09qgVVgZ2zsdkZMSdDzgFkHvjdti4pIMDiw_vEDXWR2-HZLwbD7gfbDKk9YNTeOwxybt4jS47sFHf_Mw5entcv66eyWb79LJ62BCZ1WUiStKuqoG2hSxFXdKu6JgEzkHITOfAKkWVUEUrW0GZyoUuVZsXleKQ5VkOdT5Hd-feQ_Cfg46p6U2U2lpw2g-xyQrOmSiqio_o_RmVwccYdNccgukhfDWMNiehzXbdnIWO7PIPK0dzp4dHI8b-k_gGhg58oQ |
CitedBy_id | crossref_primary_10_1016_j_optlastec_2023_110444 |
Cites_doi | 10.1088/2040-8986/aaabde 10.1103/PhysRevA.44.6954 10.1103/PhysRevA.84.053828 10.1103/PhysRevA.72.043816 10.1364/OL.12.000355 10.1364/OE.24.021256 10.1103/PhysRevLett.118.243901 10.1038/s41467-019-08755-4 10.1038/s41566-018-0106-7 10.3390/app8020201 10.1038/s41598-019-54563-7 10.1126/science.aal5326 10.1364/OE.17.011776 10.1038/nphoton.2016.102 10.1364/OL.29.001461 10.1364/PRJ.387438 10.1103/PhysRevA.45.R8321 10.1364/OL.34.002120 10.1038/nphoton.2011.345 10.1103/PhysRevA.64.033814 10.1088/1464-4266/6/5/015 10.1016/j.optlastec.2020.106422 10.1103/PhysRevLett.121.023905 10.1364/PRJ.398316 10.1364/OE.24.001814 10.1007/s00340-004-1685-1 10.1364/OPTICA.3.000189 10.1002/lpor.201800009 10.1038/s42005-019-0134-8 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1364/OE.424602 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 10_1364_OE_424602 |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB 7X8 |
ID | FETCH-LOGICAL-c297t-dc0f89a0b5c76970f5f1ca44a6c2e3a18d0d6d5bcb601d36e7db358d4a2323a93 |
ISSN | 1094-4087 |
IngestDate | Fri Jul 11 15:58:22 EDT 2025 Thu Apr 24 22:53:04 EDT 2025 Tue Jul 01 01:41:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c297t-dc0f89a0b5c76970f5f1ca44a6c2e3a18d0d6d5bcb601d36e7db358d4a2323a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4454-925X 0000-0002-5182-8620 |
OpenAccessLink | https://doi.org/10.1364/oe.424602 |
PQID | 2544165884 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2544165884 crossref_primary_10_1364_OE_424602 crossref_citationtrail_10_1364_OE_424602 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-24 20210524 |
PublicationDateYYYYMMDD | 2021-05-24 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | Optics express |
PublicationYear | 2021 |
References | Krupa (oe-29-11-16686-R17) 2017; 118 Liu (oe-29-11-16686-R19) 2018; 20 Weill (oe-29-11-16686-R7) 2016; 3 Amrani (oe-29-11-16686-R15) 2009; 34 Gui (oe-29-11-16686-R1) 2018; 8 Mitschke (oe-29-11-16686-R6) 1987; 12 Tang (oe-29-11-16686-R26) 2005; 80 Grelu (oe-29-11-16686-R2) 2012; 6 Luo (oe-29-11-16686-R30) 2020; 8 Malomed (oe-29-11-16686-R3) 1991; 44 Herink (oe-29-11-16686-R16) 2017; 356 Grelu (oe-29-11-16686-R9) 2004; 6 Wang (oe-29-11-16686-R24) 2019; 10 Malomed (oe-29-11-16686-R4) 1992; 45 Olivier (oe-29-11-16686-R14) 2004; 29 Tang (oe-29-11-16686-R27) 2001; 64 Liu (oe-29-11-16686-R23) 2011; 84 Pang (oe-29-11-16686-R5) 2016; 10 Peng (oe-29-11-16686-R12) 2019; 2 Peng (oe-29-11-16686-R21) 2018; 12 Zhao (oe-29-11-16686-R29) 2020; 8 Chouli (oe-29-11-16686-R10) 2009; 17 Ryczkowski (oe-29-11-16686-R18) 2018; 12 Liu (oe-29-11-16686-R20) 2018; 121 Song (oe-29-11-16686-R28) 2016; 24 Peng (oe-29-11-16686-R13) 2016; 24 Kokhanovskiy (oe-29-11-16686-R25) 2020; 131 Tang (oe-29-11-16686-R22) 2005; 72 Voropaev (oe-29-11-16686-R8) 2019; 9 |
References_xml | – volume: 20 start-page: 034010 year: 2018 ident: oe-29-11-16686-R19 publication-title: J. Opt. doi: 10.1088/2040-8986/aaabde – volume: 44 start-page: 6954 year: 1991 ident: oe-29-11-16686-R3 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.44.6954 – volume: 84 start-page: 053828 year: 2011 ident: oe-29-11-16686-R23 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.053828 – volume: 72 start-page: 043816 year: 2005 ident: oe-29-11-16686-R22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.043816 – volume: 12 start-page: 355 year: 1987 ident: oe-29-11-16686-R6 publication-title: Opt. Lett. doi: 10.1364/OL.12.000355 – volume: 24 start-page: 21256 year: 2016 ident: oe-29-11-16686-R13 publication-title: Opt. Express doi: 10.1364/OE.24.021256 – volume: 118 start-page: 243901 year: 2017 ident: oe-29-11-16686-R17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.243901 – volume: 10 start-page: 830 year: 2019 ident: oe-29-11-16686-R24 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08755-4 – volume: 12 start-page: 221 year: 2018 ident: oe-29-11-16686-R18 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0106-7 – volume: 8 start-page: 201 year: 2018 ident: oe-29-11-16686-R1 publication-title: Appl. Sci. doi: 10.3390/app8020201 – volume: 9 start-page: 18369 year: 2019 ident: oe-29-11-16686-R8 publication-title: Sci. Rep. doi: 10.1038/s41598-019-54563-7 – volume: 356 start-page: 50 year: 2017 ident: oe-29-11-16686-R16 publication-title: Science doi: 10.1126/science.aal5326 – volume: 17 start-page: 11776 year: 2009 ident: oe-29-11-16686-R10 publication-title: Opt. Express doi: 10.1364/OE.17.011776 – volume: 10 start-page: 454 year: 2016 ident: oe-29-11-16686-R5 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.102 – volume: 29 start-page: 1461 year: 2004 ident: oe-29-11-16686-R14 publication-title: Opt. Lett. doi: 10.1364/OL.29.001461 – volume: 8 start-page: 884 year: 2020 ident: oe-29-11-16686-R30 publication-title: Photonics Res. doi: 10.1364/PRJ.387438 – volume: 45 start-page: R8321 year: 1992 ident: oe-29-11-16686-R4 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.45.R8321 – volume: 34 start-page: 2120 year: 2009 ident: oe-29-11-16686-R15 publication-title: Opt. Lett. doi: 10.1364/OL.34.002120 – volume: 6 start-page: 84 year: 2012 ident: oe-29-11-16686-R2 publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.345 – volume: 64 start-page: 033814 year: 2001 ident: oe-29-11-16686-R27 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.033814 – volume: 6 start-page: S271 year: 2004 ident: oe-29-11-16686-R9 publication-title: J. Opt. B Quantum Semiclass. Opt. doi: 10.1088/1464-4266/6/5/015 – volume: 131 start-page: 106422 year: 2020 ident: oe-29-11-16686-R25 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2020.106422 – volume: 121 start-page: 023905 year: 2018 ident: oe-29-11-16686-R20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.023905 – volume: 8 start-page: 1580 year: 2020 ident: oe-29-11-16686-R29 publication-title: Photonics Res. doi: 10.1364/PRJ.398316 – volume: 24 start-page: 1814 year: 2016 ident: oe-29-11-16686-R28 publication-title: Opt. Express doi: 10.1364/OE.24.001814 – volume: 80 start-page: 239 year: 2005 ident: oe-29-11-16686-R26 publication-title: Appl. Phys. B doi: 10.1007/s00340-004-1685-1 – volume: 3 start-page: 189 year: 2016 ident: oe-29-11-16686-R7 publication-title: Optica doi: 10.1364/OPTICA.3.000189 – volume: 12 start-page: 1800009 year: 2018 ident: oe-29-11-16686-R21 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201800009 – volume: 2 start-page: 34 year: 2019 ident: oe-29-11-16686-R12 publication-title: Commun. Phys. doi: 10.1038/s42005-019-0134-8 |
SSID | ssj0014797 |
Score | 2.362297 |
Snippet | The generation of multi-bound solitons is a fascinating subject of investigation in many conservative and dissipative systems, such as photonics, fluid... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 16686 |
Title | Orbital-angular-momentum-resolved diagnostics for tracking internal phase evolution in multi-bound solitons |
URI | https://www.proquest.com/docview/2544165884 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3La9RAGB-0IniR-sJWW0bxICxTk8xkZnIsZWUp1L20UE8h8whq291lN6niwb_dbx7JpnbB6iUsk2QS8v32ez8QelfUKcg1YwjNjCassIYoYSiRRlpT1MLk1hUnn3zikzN2fJ6fr1OHfHVJow70z411Jf9DVVgDuroq2X-gbL8pLMBvoC8cgcJwvBONp0vlZn4Q53MEC5VcuXYKTXtFwIaeX16DLmlCJp3vxewTCpeVvghlLKH782jxBeTYyF7HF3X-D59kSJQbuDRaufy4zqUXldjpwu9nfyz6_I3gevZu18_td_u1h0Xwrx7D46p5782JacDAab4N0DlpQx6_Kyy2Q29ElrpAeiiCjgwUzEWwSaMQtRvWIteNfo6IrnTAQ1POQ3fsW9ydcgYkmY4PWMZ4kq1FWBe2_0Oy9fmGPmzHWTkdl-HW--hBJoSP65_8GvdhJybCNJ7uhWMrKrj1Q__UmwrMTfntlZLTbfQ4WhP4MEDjCbpnZ0_RQ5_Vq1fP0MVfAYIHAMEAENwBBHcAwR4guAcInMADgOAOIM_R2cfx6dGExOkaRGeFaIjRSS2LKlG5FrwQSZ3Xqa4Yq7jOLK1SaRLDTa60ApvdUG6FURT-1qwCJZxWBX2BtmbzmX2JcC2VkjRhVmrNcgp8QUiVuxJKnnJl5A56332yUsfW824CymV5izA76G1_6SL0W9l00Zvuu5fADV2Iq5rZebsqXcM9x3wk273LRq_QozWIX6OtZtnaPVAyG7XvnTP7Hh6_AXWGhCY |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orbital-angular-momentum-resolved+diagnostics+for+tracking+internal+phase+evolution+in+multi-bound+solitons&rft.jtitle=Optics+express&rft.au=Zhao%2C+Yuwei&rft.au=Fan%2C+Jintao&rft.au=Song%2C+Youjian&rft.au=Hu%2C+Minglie&rft.date=2021-05-24&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=29&rft.issue=11&rft.spage=16686&rft_id=info:doi/10.1364%2FOE.424602&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_424602 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |