Activation/deactivation of acetylcholinesterase by H2O2: more evidence for oxidative stress in vitiligo
Previously it has been demonstrated that the human epidermis synthesises and degrades acetylcholine and expresses both muscarinic and nicotinic receptors. These cholinergic systems have been implicated in the development of the epidermal calcium gradient and differentiation in normal healthy skin. I...
Saved in:
Published in | Biochemical and biophysical research communications Vol. 315; no. 2; pp. 502 - 508 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
05.03.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previously it has been demonstrated that the human epidermis synthesises and degrades acetylcholine and expresses both muscarinic and nicotinic receptors. These cholinergic systems have been implicated in the development of the epidermal calcium gradient and differentiation in normal healthy skin. In vitiligo severe oxidative stress occurs in the epidermis of these patients with accumulation of H2O2 in the 10(-3)M range together with a decrease in catalase expression/activity due to deactivation of the enzyme active site. It was also shown that the entire recycling of the essential cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin via pterin-4a-carbinolamine dehydratase (PCD) and dihydropteridine reductase (DHPR) is affected by H2O2 oxidation of Trp/Met residues in the enzyme structure leading to deactivation of these proteins. Using fluorescence immunohistochemistry we now show that epidermal H2O2 in vitiligo patients yields also almost absent epidermal acetylcholinesterase (AchE). A kinetic analysis using pure recombinant human AchE revealed that low concentrations of H2O2 (10(-6)M) activate this enzyme by increasing the Vmax>2-fold, meanwhile high concentrations of H2O2 (10(-3)M) inhibit the enzyme with a significant decrease in Vmax. This result was confirmed by fluorescence excitation spectroscopy following the Trp fluorescence at lambdamax 280nm. Molecular modelling based on the established 3D structure of human AchE supported that H2O2-mediated oxidation of Trp(432), Trp(435), and Met(436) moves and disorients the active site His(440) of the enzyme, leading to deactivation of the protein. To our knowledge these results identified for the first time H2O2 regulation of AchE. Moreover, it was shown that H2O2-mediated oxidation of AchE contributes significantly to the well-established oxidative stress in vitiligo. |
---|---|
AbstractList | Previously it has been demonstrated that the human epidermis synthesises and degrades acetylcholine and expresses both muscarinic and nicotinic receptors. These cholinergic systems have been implicated in the development of the epidermal calcium gradient and differentiation in normal healthy skin. In vitiligo severe oxidative stress occurs in the epidermis of these patients with accumulation of H2O2 in the 10(-3)M range together with a decrease in catalase expression/activity due to deactivation of the enzyme active site. It was also shown that the entire recycling of the essential cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin via pterin-4a-carbinolamine dehydratase (PCD) and dihydropteridine reductase (DHPR) is affected by H2O2 oxidation of Trp/Met residues in the enzyme structure leading to deactivation of these proteins. Using fluorescence immunohistochemistry we now show that epidermal H2O2 in vitiligo patients yields also almost absent epidermal acetylcholinesterase (AchE). A kinetic analysis using pure recombinant human AchE revealed that low concentrations of H2O2 (10(-6)M) activate this enzyme by increasing the Vmax>2-fold, meanwhile high concentrations of H2O2 (10(-3)M) inhibit the enzyme with a significant decrease in Vmax. This result was confirmed by fluorescence excitation spectroscopy following the Trp fluorescence at lambdamax 280nm. Molecular modelling based on the established 3D structure of human AchE supported that H2O2-mediated oxidation of Trp(432), Trp(435), and Met(436) moves and disorients the active site His(440) of the enzyme, leading to deactivation of the protein. To our knowledge these results identified for the first time H2O2 regulation of AchE. Moreover, it was shown that H2O2-mediated oxidation of AchE contributes significantly to the well-established oxidative stress in vitiligo. Previously it has been demonstrated that the human epidermis synthesises and degrades acetylcholine and expresses both muscarinic and nicotinic receptors. These cholinergic systems have been implicated in the development of the epidermal calcium gradient and differentiation in normal healthy skin. In vitiligo severe oxidative stress occurs in the epidermis of these patients with accumulation of H2O2 in the 10(-3)M range together with a decrease in catalase expression/activity due to deactivation of the enzyme active site. It was also shown that the entire recycling of the essential cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin via pterin-4a-carbinolamine dehydratase (PCD) and dihydropteridine reductase (DHPR) is affected by H2O2 oxidation of Trp/Met residues in the enzyme structure leading to deactivation of these proteins. Using fluorescence immunohistochemistry we now show that epidermal H2O2 in vitiligo patients yields also almost absent epidermal acetylcholinesterase (AchE). A kinetic analysis using pure recombinant human AchE revealed that low concentrations of H2O2 (10(-6)M) activate this enzyme by increasing the Vmax>2-fold, meanwhile high concentrations of H2O2 (10(-3)M) inhibit the enzyme with a significant decrease in Vmax. This result was confirmed by fluorescence excitation spectroscopy following the Trp fluorescence at lambdamax 280nm. Molecular modelling based on the established 3D structure of human AchE supported that H2O2-mediated oxidation of Trp(432), Trp(435), and Met(436) moves and disorients the active site His(440) of the enzyme, leading to deactivation of the protein. To our knowledge these results identified for the first time H2O2 regulation of AchE. Moreover, it was shown that H2O2-mediated oxidation of AchE contributes significantly to the well-established oxidative stress in vitiligo. |
Author | Elwary, Souna M A Gibbons, Nicholas C J Wood, John M Schallreuter, Karin U Rokos, Hartmut |
Author_xml | – sequence: 1 givenname: Karin U surname: Schallreuter fullname: Schallreuter, Karin U email: K.Schallreuter@bradford.ac.uk organization: Department of Biomedical Sciences, Clinical and Experimental Dermatology, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK. K.Schallreuter@bradford.ac.uk – sequence: 2 givenname: Souna M A surname: Elwary fullname: Elwary, Souna M A – sequence: 3 givenname: Nicholas C J surname: Gibbons fullname: Gibbons, Nicholas C J – sequence: 4 givenname: Hartmut surname: Rokos fullname: Rokos, Hartmut – sequence: 5 givenname: John M surname: Wood fullname: Wood, John M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14766237$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkE1Lw0AQhvdQsR_6BzzInrw1nf3Il7dS1AqFXhS8LZvNpG5JsnU3Dfbfm2JRGBgG3udleKZk1LoWCbljEDFgyWIfFYU3EQeQEbAIMj4iEwBI5jxnH2MyDWEPwJhM8msyZjJNEi7SCdktTWd73VnXLkrUfwd1FdUGu1NtPl1tWwwdeh2QFie65lv-SBvnkWJvS2wN0sp56r5tOcA90tB5DIHalva2s7XduRtyVek64O1lz8j789Pbaj3fbF9eV8vN3PA87eZlkcUiTbLMCKFLw5IsYTFCDBK0liXEzIhUx1LqtCoEQ-BZzkwqpDSVrHgpZuTht_fg3ddx-Fo1Nhisa92iOwaVAZNymCHIf4PGuxA8VurgbaP9STFQZ6Vqr85K1VmpAqYGpQN0f2k_Fg2W_8jFp_gBYNl4DA |
CitedBy_id | crossref_primary_10_1038_nrdp_2015_11 crossref_primary_10_1016_j_lfs_2007_01_028 crossref_primary_10_1016_j_neuroscience_2017_02_008 crossref_primary_10_1002_jrs_1968 crossref_primary_10_1038_sj_jid_5700116 crossref_primary_10_1038_jid_2010_192 crossref_primary_10_1039_B913095K crossref_primary_10_1016_j_marpolbul_2021_112556 crossref_primary_10_1111_exd_13277 crossref_primary_10_1155_2017_9718615 crossref_primary_10_1111_exd_12103 crossref_primary_10_3390_biology9090298 crossref_primary_10_1016_j_chemosphere_2018_01_141 crossref_primary_10_1111_j_1600_0625_2004_00258_x crossref_primary_10_1016_j_ijbiomac_2014_01_006 crossref_primary_10_1590_1519_6984_247035 crossref_primary_10_34883_PI_2021_7_1_010 crossref_primary_10_1016_j_jpba_2011_01_003 crossref_primary_10_1016_j_tiv_2007_05_013 crossref_primary_10_1007_s11356_020_08044_4 crossref_primary_10_1111_j_1600_0625_2007_00666_2_x crossref_primary_10_1371_journal_pone_0241445 crossref_primary_10_1016_j_jchromb_2010_08_036 crossref_primary_10_3389_fendo_2018_00197 crossref_primary_10_1097_CMR_0b013e3283312466 crossref_primary_10_1111_jcmm_12812 crossref_primary_10_1134_S1819712421030077 crossref_primary_10_1097_01_EWX_0000450307_76457_a3 crossref_primary_10_1111_j_1346_8138_2010_00995_x crossref_primary_10_1111_bjd_13286 crossref_primary_10_1042_CS20090603 crossref_primary_10_1007_s11011_012_9301_2 crossref_primary_10_1111_j_1600_0625_2008_00754_x crossref_primary_10_1074_jbc_RA118_003729 crossref_primary_10_1177_120347541201600404 crossref_primary_10_1038_sj_jid_5701100 crossref_primary_10_1016_j_jdermsci_2016_09_001 crossref_primary_10_1016_j_molcatb_2013_04_014 crossref_primary_10_1134_S0006350918040103 crossref_primary_10_1038_sj_jid_5700257 crossref_primary_10_1111_j_1365_2230_2005_01813_x crossref_primary_10_1038_sj_jid_5700538 crossref_primary_10_1016_j_cbpc_2015_04_003 crossref_primary_10_1017_S0043933916000246 crossref_primary_10_1080_02757540_2024_2366375 crossref_primary_10_3390_molecules28062460 crossref_primary_10_1016_j_cyto_2016_05_013 crossref_primary_10_1016_j_jtemb_2019_09_002 crossref_primary_10_1111_phpp_12653 crossref_primary_10_1111_j_1600_0625_2012_01506_x crossref_primary_10_1007_s11356_023_29186_1 crossref_primary_10_1016_j_bbrc_2006_01_124 crossref_primary_10_1016_j_aquatox_2019_01_003 crossref_primary_10_1016_j_etap_2020_103538 crossref_primary_10_1111_j_1365_4632_2005_02653_x crossref_primary_10_2903_j_efsa_2023_6857 crossref_primary_10_1007_s00128_023_03788_4 crossref_primary_10_1039_c0ay00760a crossref_primary_10_1080_03601234_2013_730011 crossref_primary_10_1038_cdd_2015_117 crossref_primary_10_4161_psb_19007 crossref_primary_10_1038_sj_jid_5700021 crossref_primary_10_1016_j_jphotochem_2009_11_003 crossref_primary_10_3109_14756366_2012_705835 crossref_primary_10_1016_j_etp_2007_11_007 crossref_primary_10_1210_en_2007_1317 crossref_primary_10_1089_ars_2009_2779 crossref_primary_10_1007_s00403_007_0748_7 crossref_primary_10_1016_j_envpol_2018_10_033 crossref_primary_10_7868_S0233475517030057 crossref_primary_10_1111_j_1474_8673_2006_00359_x crossref_primary_10_1080_02757540_2022_2163238 crossref_primary_10_1111_exd_12810 crossref_primary_10_1016_j_fct_2017_10_028 crossref_primary_10_3892_mmr_2015_3242 crossref_primary_10_1016_j_etap_2014_04_008 crossref_primary_10_1096_fj_09_132621 crossref_primary_10_1016_j_cbi_2005_10_075 crossref_primary_10_1007_s10545_008_0971_1 crossref_primary_10_1038_sj_jid_5700151 crossref_primary_10_1016_j_bbrc_2006_08_138 crossref_primary_10_1186_s12864_017_3510_3 crossref_primary_10_1016_j_jhazmat_2021_127753 crossref_primary_10_1016_j_freeradbiomed_2013_08_189 crossref_primary_10_1016_j_bbrc_2007_02_078 crossref_primary_10_1016_j_ijbiomac_2013_02_011 crossref_primary_10_1111_j_1365_4632_2008_03660_x crossref_primary_10_1016_j_pestbp_2005_11_009 crossref_primary_10_4028_www_scientific_net_AMR_1004_1005_827 crossref_primary_10_1007_s11064_014_1400_5 crossref_primary_10_1016_j_freeradbiomed_2016_07_012 crossref_primary_10_1134_S1990747817040055 crossref_primary_10_1080_09553000902781071 crossref_primary_10_4103_1673_5374_285000 crossref_primary_10_1038_sj_jid_5700612 crossref_primary_10_2310_7750_2012_12005 crossref_primary_10_1111_ijd_13407 crossref_primary_10_1111_j_0022_202X_2005_23944_x crossref_primary_10_2174_1389450123666220406125645 crossref_primary_10_1080_07391102_2024_2335299 crossref_primary_10_12998_wjcc_v3_i3_221 crossref_primary_10_3164_jcbn_38_195 crossref_primary_10_1016_j_cbpc_2023_109659 crossref_primary_10_1016_j_freeradbiomed_2004_11_009 crossref_primary_10_1016_j_foodchem_2007_12_011 crossref_primary_10_1016_j_legalmed_2018_11_003 crossref_primary_10_1111_pcmr_12081 crossref_primary_10_1016_j_jddst_2024_105666 crossref_primary_10_1016_j_talanta_2011_07_077 crossref_primary_10_1111_j_1600_0749_2007_00396_x crossref_primary_10_2177_jsci_29_349 crossref_primary_10_3390_ijms22158071 crossref_primary_10_1016_j_scitotenv_2021_146075 crossref_primary_10_1016_j_envpol_2017_09_038 crossref_primary_10_7846_JKOSMEE_2023_26_4_367 crossref_primary_10_1016_j_marpolbul_2023_114641 crossref_primary_10_1111_j_1600_0625_2008_00697_x crossref_primary_10_1007_s10337_014_2752_3 crossref_primary_10_1016_j_jdermsci_2011_12_007 crossref_primary_10_1016_j_exger_2019_01_012 crossref_primary_10_1016_j_scitotenv_2021_146514 crossref_primary_10_1016_j_redox_2017_04_004 crossref_primary_10_1016_j_envpol_2021_117054 crossref_primary_10_1371_journal_pone_0211304 crossref_primary_10_1016_j_biocel_2012_11_008 crossref_primary_10_1186_s12906_017_1842_9 crossref_primary_10_1590_abd1806_4841_20142573 crossref_primary_10_1038_gene_2015_48 |
Cites_doi | 10.1126/science.150.3692.72 10.1002/jrs.1114 10.1002/1096-9896(2000)9999:9999<::AID-PATH659>3.0.CO;2-D 10.1002/jrs.887 10.1111/j.1365-2133.1997.tb03704.x 10.1073/pnas.89.21.10109 10.1016/0925-4439(94)90027-2 10.1111/1523-1747.ep12335801 10.1159/000146813 10.1046/j.1365-4362.2002.01463.x 10.1126/science.1678899 10.1006/bbrc.1995.1068 10.1046/j.1523-1747.2001.00220.x 10.1007/s00403-003-0427-2 10.1016/S0021-9258(20)64277-6 10.1042/bj3470001 10.1001/archderm.1988.01670060015008 10.1046/j.1365-2133.1999.02980.x 10.1006/bbrc.2002.6727 10.1111/1523-1747.ep12371699 10.1111/1523-1747.ep12492612 10.1046/j.0022-202x.2001.01459.x 10.1038/jidsymp.1997.10 10.1126/science.8128228 10.1038/sj.jidsp.5640189 10.1046/j.0022-202X.2004.22230.x |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1016/j.bbrc.2004.01.082 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EndPage | 508 |
ExternalDocumentID | 10_1016_j_bbrc_2004_01_082 14766237 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9M8 AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADIYS ADMUD ADUVX AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CGR CS3 CUY CVF D0L DM4 EBS ECM EFBJH EIF EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q HZ~ IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A NPM O-L O9- OAUVE OHT OZT P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K TWZ UQL WH7 X7M XPP Y6R ZMT ~02 ~G- .HR 1CY AAQXK AAYJJ AAYXX ABEFU ACKIV ADFGL AEBSH AFJKZ ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 G8K GBLVA HLW HVGLF MVM P-8 R2- SBG SEW WUQ XSW ZGI ZKB ~KM 7X8 |
ID | FETCH-LOGICAL-c297t-db8537688c33adc168615e05040aa4d051c37a544a7fb31e02891c7344cf4f2d3 |
ISSN | 0006-291X |
IngestDate | Sat Oct 26 01:03:19 EDT 2024 Thu Sep 26 16:38:29 EDT 2024 Sat Sep 28 07:39:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c297t-db8537688c33adc168615e05040aa4d051c37a544a7fb31e02891c7344cf4f2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 14766237 |
PQID | 80144144 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_80144144 crossref_primary_10_1016_j_bbrc_2004_01_082 pubmed_primary_14766237 |
PublicationCentury | 2000 |
PublicationDate | 2004-03-05 |
PublicationDateYYYYMMDD | 2004-03-05 |
PublicationDate_xml | – month: 03 year: 2004 text: 2004-03-05 day: 05 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemical and biophysical research communications |
PublicationTitleAlternate | Biochem Biophys Res Commun |
PublicationYear | 2004 |
References | Davis (10.1016/j.bbrc.2004.01.082_BIB22) 1992; 89 Schallreuter (10.1016/j.bbrc.2004.01.082_BIB1) 1999; 4 Maresca (10.1016/j.bbrc.2004.01.082_BIB5) 1997; 109 Grando (10.1016/j.bbrc.2004.01.082_BIB17) 1993; 101 Sussman (10.1016/j.bbrc.2004.01.082_BIB16) 1991; 283 Taylor (10.1016/j.bbrc.2004.01.082_BIB15) 1991; 266 Beazley (10.1016/j.bbrc.2004.01.082_BIB19) 1999; 141 Schallreuter (10.1016/j.bbrc.2004.01.082_BIB26) 2003; 295 Schallreuter (10.1016/j.bbrc.2004.01.082_BIB2) 2001; 116 Tobin (10.1016/j.bbrc.2004.01.082_BIB4) 2000; 191 Wood (10.1016/j.bbrc.2004.01.082_BIB25) 1995; 206 Schallreuter (10.1016/j.bbrc.2004.01.082_BIB6) 1991; 97 Schallreuter (10.1016/j.bbrc.2004.01.082_BIB7) 2002; 41 10.1016/j.bbrc.2004.01.082_BIB11 10.1016/j.bbrc.2004.01.082_BIB9 Schallreuter (10.1016/j.bbrc.2004.01.082_BIB24) 1994; 1226 Grando (10.1016/j.bbrc.2004.01.082_BIB18) 1997; 2 Thöny (10.1016/j.bbrc.2004.01.082_BIB10) 2000; 347 Rokos (10.1016/j.bbrc.2004.01.082_BIB21) 2002; 292 Iyengar (10.1016/j.bbrc.2004.01.082_BIB12) 1989; 36 Dell’Anna (10.1016/j.bbrc.2004.01.082_BIB20) 2001; 117 Schallreuter (10.1016/j.bbrc.2004.01.082_BIB23) 1994; 263 Elwary (10.1016/j.bbrc.2004.01.082_BIB13) 1997; 137 Moore (10.1016/j.bbrc.2004.01.082_BIB3) 2002; 33 Aronoff (10.1016/j.bbrc.2004.01.082_BIB8) 1965; 150 Fitzpatrick (10.1016/j.bbrc.2004.01.082_BIB14) 1988; 124 |
References_xml | – volume: 150 start-page: 72 year: 1965 ident: 10.1016/j.bbrc.2004.01.082_BIB8 article-title: Catalase: kinetics of photo-oxidation publication-title: Science doi: 10.1126/science.150.3692.72 contributor: fullname: Aronoff – ident: 10.1016/j.bbrc.2004.01.082_BIB11 doi: 10.1002/jrs.1114 – volume: 191 start-page: 407 year: 2000 ident: 10.1016/j.bbrc.2004.01.082_BIB4 article-title: Melanocytes are not absent in lesional skin of long duration vitiligo publication-title: J. Pathol. doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH659>3.0.CO;2-D contributor: fullname: Tobin – volume: 33 start-page: 610 year: 2002 ident: 10.1016/j.bbrc.2004.01.082_BIB3 article-title: H2O2-mediated oxidation of tetrahydrobiopterin: Fourier transform Raman investigations provide mechanistic implications for the enzymatic utilization and recycling of this essential co-factor publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.887 contributor: fullname: Moore – volume: 137 start-page: 81 year: 1997 ident: 10.1016/j.bbrc.2004.01.082_BIB13 article-title: Calcium homeostasis influences epidermal sweating in patients with vitiligo publication-title: Br. J. Dermatol. doi: 10.1111/j.1365-2133.1997.tb03704.x contributor: fullname: Elwary – volume: 89 start-page: 10109 year: 1992 ident: 10.1016/j.bbrc.2004.01.082_BIB22 article-title: ‘7-tetrahydrobiopterin,’ a naturally occurring analogue of tetrahydrobiopterin, is a cofactor for and a potential inhibitor of the aromatic amino acid hydroxylases publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.89.21.10109 contributor: fullname: Davis – volume: 1226 start-page: 181 year: 1994 ident: 10.1016/j.bbrc.2004.01.082_BIB24 article-title: Defective tetrahydrobiopterin and catecholamine biosynthesis in the depigmentation disorder vitiligo publication-title: Biochim. Biophys. Acta doi: 10.1016/0925-4439(94)90027-2 contributor: fullname: Schallreuter – volume: 109 start-page: 310 year: 1997 ident: 10.1016/j.bbrc.2004.01.082_BIB5 article-title: Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo publication-title: J. Invest. Dermatol. doi: 10.1111/1523-1747.ep12335801 contributor: fullname: Maresca – volume: 36 start-page: 139 year: 1989 ident: 10.1016/j.bbrc.2004.01.082_BIB12 article-title: Modulation of melanocyte activity by acetylcholine publication-title: Acta. Anat. (Basel) doi: 10.1159/000146813 contributor: fullname: Iyengar – volume: 41 start-page: 482 year: 2002 ident: 10.1016/j.bbrc.2004.01.082_BIB7 article-title: Rapid initiation of repigmentation in vitiligo with Dead Sea climatotherapy in combination with pseudocatalase (PC-KUS) publication-title: Int. J. Dermatol. doi: 10.1046/j.1365-4362.2002.01463.x contributor: fullname: Schallreuter – volume: 283 start-page: 872 year: 1991 ident: 10.1016/j.bbrc.2004.01.082_BIB16 article-title: Atomic structure of acetylcholinesterase: a prototype acetylcholine-binding protein publication-title: Science doi: 10.1126/science.1678899 contributor: fullname: Sussman – volume: 206 start-page: 480 year: 1995 ident: 10.1016/j.bbrc.2004.01.082_BIB25 article-title: A specific tetrahydrobiopterin binding domain on tyrosinase controls melanogenesis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1995.1068 contributor: fullname: Wood – volume: 116 start-page: 167 year: 2001 ident: 10.1016/j.bbrc.2004.01.082_BIB2 article-title: Epidermal H2O2 accumulation alters tetrahydrobiopterin (6BH4) recycling in vitiligo: identification of a general mechanism in regulation of all 6BH4-dependent processes? publication-title: J. Invest. Dermatol. doi: 10.1046/j.1523-1747.2001.00220.x contributor: fullname: Schallreuter – volume: 295 start-page: 223 year: 2003 ident: 10.1016/j.bbrc.2004.01.082_BIB26 article-title: Molecular evidence that halo in Sutton’s naevus is not vitiligo publication-title: Arch. Dermatol. Res. doi: 10.1007/s00403-003-0427-2 contributor: fullname: Schallreuter – volume: 266 start-page: 4025 year: 1991 ident: 10.1016/j.bbrc.2004.01.082_BIB15 article-title: The cholinesterases publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(20)64277-6 contributor: fullname: Taylor – volume: 347 start-page: 1 year: 2000 ident: 10.1016/j.bbrc.2004.01.082_BIB10 article-title: Tetrahydrobiopterin biosynthesis, regeneration and functions publication-title: Biochem. J. doi: 10.1042/bj3470001 contributor: fullname: Thöny – volume: 124 start-page: 869 year: 1988 ident: 10.1016/j.bbrc.2004.01.082_BIB14 article-title: The validity and practicality of sun-reactive skin types I through VI publication-title: Arch. Dermatol. doi: 10.1001/archderm.1988.01670060015008 contributor: fullname: Fitzpatrick – volume: 141 start-page: 301 year: 1999 ident: 10.1016/j.bbrc.2004.01.082_BIB19 article-title: Serum selenium levels and blood glutathione peroxidase activities in vitiligo publication-title: Br. J. Dermatol. doi: 10.1046/j.1365-2133.1999.02980.x contributor: fullname: Beazley – volume: 292 start-page: 805 year: 2002 ident: 10.1016/j.bbrc.2004.01.082_BIB21 article-title: Oxidative stress in vitiligo: photo-oxidation of pterins produces H2O2 and pterin-6-carboxylic acid publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2002.6727 contributor: fullname: Rokos – volume: 101 start-page: 804 year: 1993 ident: 10.1016/j.bbrc.2004.01.082_BIB17 article-title: Agarose gel keratinocyte outgrowth system as a model of skin re-epithelialization: requirement of endogenous acetylcholine for outgrowth initiation publication-title: J. Invest. Dermatol. doi: 10.1111/1523-1747.ep12371699 contributor: fullname: Grando – volume: 97 start-page: 1081 year: 1991 ident: 10.1016/j.bbrc.2004.01.082_BIB6 article-title: Low catalase levels in the epidermis of patients with vitiligo publication-title: J. Invest. Dermatol. doi: 10.1111/1523-1747.ep12492612 contributor: fullname: Schallreuter – volume: 117 start-page: 908 year: 2001 ident: 10.1016/j.bbrc.2004.01.082_BIB20 article-title: Mitochondrial impairment in peripheral blood mononuclear cells during the active phase of vitiligo publication-title: J. Invest. Dermatol. doi: 10.1046/j.0022-202x.2001.01459.x contributor: fullname: Dell’Anna – volume: 2 start-page: 41 year: 1997 ident: 10.1016/j.bbrc.2004.01.082_BIB18 article-title: Biological functions of keratinocyte cholinergic receptors publication-title: J. Invest. Dermatol. doi: 10.1038/jidsymp.1997.10 contributor: fullname: Grando – volume: 263 start-page: 1444 year: 1994 ident: 10.1016/j.bbrc.2004.01.082_BIB23 article-title: Regulation of melanin biosynthesis in the human epidermis by tetrahydrobiopterin publication-title: Science doi: 10.1126/science.8128228 contributor: fullname: Schallreuter – volume: 4 start-page: 91 year: 1999 ident: 10.1016/j.bbrc.2004.01.082_BIB1 article-title: In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase publication-title: J. Invest. Dermatol. Symp. Proc. doi: 10.1038/sj.jidsp.5640189 contributor: fullname: Schallreuter – ident: 10.1016/j.bbrc.2004.01.082_BIB9 doi: 10.1046/j.0022-202X.2004.22230.x |
SSID | ssj0011469 |
Score | 2.2158275 |
Snippet | Previously it has been demonstrated that the human epidermis synthesises and degrades acetylcholine and expresses both muscarinic and nicotinic receptors.... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 502 |
SubjectTerms | Acetylcholinesterase - chemistry Acetylcholinesterase - metabolism Binding Sites Biopsy Catalase - biosynthesis Dihydropteridine Reductase - metabolism Dose-Response Relationship, Drug Epidermis - enzymology Epidermis - metabolism Humans Hydro-Lyases - metabolism Hydrogen Peroxide - chemistry Hydrogen Peroxide - pharmacology Immunohistochemistry Kinetics Microscopy, Fluorescence Models, Molecular Oxidative Stress Oxygen - metabolism Skin - metabolism Spectrometry, Fluorescence Tryptophan - chemistry Up-Regulation Vitiligo - metabolism Vitiligo - pathology |
Title | Activation/deactivation of acetylcholinesterase by H2O2: more evidence for oxidative stress in vitiligo |
URI | https://www.ncbi.nlm.nih.gov/pubmed/14766237 https://search.proquest.com/docview/80144144 |
Volume | 315 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIgQXBLs8ytMHxCVKaRLnUW5lBVRIgMRupb1FduKssmyTqk2AcuC38FOZseM8YFcCLlWaVE7l79N47PlmhpBnbhikjAsPtiXB1GZZlNpRNANHzhfRlGMyulAC2Q_BYsnenfgno9HPnmqprsQk-X5hXsn_oAr3AFfMkv0HZNtB4QZcA77wCQjD519hPE9MczIYI5W8_aqi-4msdudo3VDZjonGW4nO5sL96OI5ACpsLdk0FVVqw_Jbnuo64E0GSV5YX_IqP89Py0HwN8c2W12dAZGXawN3UzwI5ey9zJPWcT9KsHnLRtaVEXNs4CXLTkHyleu4_hFYIW69745a3-ZClNrpB_bijnxr9YJan8rPWjC4gHla1dXgNIMpOZc_sNCB7c5UG53WQnuO36Oi27O3vkrX_nMd0EcSZxMhNqpOJVO1WaPBj2Gq1yvFDIeFAbiBYbcmtkpF8-gKuepiKUGwmJMfrYgIU7qbDZb-101allYQ_v5yLFDbDDf0gi7Z2igX5_gWudnsTehcE-02GclinxzMC16Vqx19TpVaWIVh9sm1V-bq-qHpGXhATjtGvujzkZYZvYiPVOwo8vElRTZSw0YKbKQtG6lmI80Lath4hyzfvD4-XNhNKw87cWdhZaciwrpBUZR4Hk8TJ4jAk5ZTH5YQzlkKK0PihdxnjIeZ8ByJ8W8nCT3GkoxlburdJXtFWcj7hLIgE4EXylSiN5p5MwxEB2HKMacb1pMxsczUxmtdsSU2UsazGDHB1qssnjoxYDImT83sxzBXGC3jhSzrbRypswbGxuSeBqUbrQHxwaVPHpIbHbkfkb1qU8vH4LxW4onizy_F05pN |
link.rule.ids | 315,783,787,27937,27938 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation%2Fdeactivation+of+acetylcholinesterase+by+H2O2%3A+more+evidence+for+oxidative+stress+in+vitiligo&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Schallreuter%2C+Karin+U&rft.au=Elwary%2C+Souna+M+A&rft.au=Gibbons%2C+Nicholas+C+J&rft.au=Rokos%2C+Hartmut&rft.date=2004-03-05&rft.issn=0006-291X&rft.volume=315&rft.issue=2&rft.spage=502&rft_id=info:doi/10.1016%2Fj.bbrc.2004.01.082&rft_id=info%3Apmid%2F14766237&rft.externalDocID=14766237 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon |