An optimized model using LSTM network for demand forecasting

•A demand forecasting method based on multi-layer LSTM networks is proposed.•The proposed method improves the forecasting accuracy.•It has strong ability to capture nonlinear patterns in time series data.•The empirical results show that the method outperforms other standard techniques. In a business...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 143; p. 106435
Main Authors Abbasimehr, Hossein, Shabani, Mostafa, Yousefi, Mohsen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A demand forecasting method based on multi-layer LSTM networks is proposed.•The proposed method improves the forecasting accuracy.•It has strong ability to capture nonlinear patterns in time series data.•The empirical results show that the method outperforms other standard techniques. In a business environment with strict competition among firms, accurate demand forecasting is not straightforward. In this paper, a forecasting method is proposed, which has a strong capability of predicting highly fluctuating demand data. Therefore, in this paper we propose a demand forecasting method based on multi-layer LSTM networks. The proposed method automatically selects the best forecasting model by considering different combinations of LSTM hyperparameters for a given time series using the grid search method. It has the ability to capture nonlinear patterns in time series data, while considering the inherent characteristics of non-stationary time series data. The proposed method is compared with some well-known time series forecasting techniques from both statistical and computational intelligence methods using demand data of a furniture company. These methods include autoregressive integrated moving average (ARIMA), exponential smoothing (ETS), artificial neural network (ANN), K-nearest neighbors (KNN), recurrent neural network (RNN), support vector machines (SVM) and single layer LSTM. The experimental results indicate that the proposed method is superior among the tested methods in terms of performance measures.
AbstractList •A demand forecasting method based on multi-layer LSTM networks is proposed.•The proposed method improves the forecasting accuracy.•It has strong ability to capture nonlinear patterns in time series data.•The empirical results show that the method outperforms other standard techniques. In a business environment with strict competition among firms, accurate demand forecasting is not straightforward. In this paper, a forecasting method is proposed, which has a strong capability of predicting highly fluctuating demand data. Therefore, in this paper we propose a demand forecasting method based on multi-layer LSTM networks. The proposed method automatically selects the best forecasting model by considering different combinations of LSTM hyperparameters for a given time series using the grid search method. It has the ability to capture nonlinear patterns in time series data, while considering the inherent characteristics of non-stationary time series data. The proposed method is compared with some well-known time series forecasting techniques from both statistical and computational intelligence methods using demand data of a furniture company. These methods include autoregressive integrated moving average (ARIMA), exponential smoothing (ETS), artificial neural network (ANN), K-nearest neighbors (KNN), recurrent neural network (RNN), support vector machines (SVM) and single layer LSTM. The experimental results indicate that the proposed method is superior among the tested methods in terms of performance measures.
ArticleNumber 106435
Author Yousefi, Mohsen
Abbasimehr, Hossein
Shabani, Mostafa
Author_xml – sequence: 1
  givenname: Hossein
  orcidid: 0000-0001-8615-5553
  surname: Abbasimehr
  fullname: Abbasimehr, Hossein
  email: abbasimehr@azaruniv.ac.ir
  organization: Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
– sequence: 2
  givenname: Mostafa
  orcidid: 0000-0001-7552-3525
  surname: Shabani
  fullname: Shabani, Mostafa
  email: mshabani@mail.kntu.ac.ir
  organization: IT Group, Department of Industrial Engineering, KN Toosi University of Technology, Tehran, Iran
– sequence: 3
  givenname: Mohsen
  surname: Yousefi
  fullname: Yousefi, Mohsen
  email: m.yousefi@nilper.ir
  organization: Demand Planning and Logistic Department, NILPER FURNITURE, Tehran, Iran
BookMark eNp9kM1OwzAQhC1UJNrCA3DLC6TYSezEgktV8ScVcaCcLSe7Ri6NXdkGBE9PonLi0NPujuZbaWZGJs47JOSS0QWjTFxtF53FRUGL8RZVyU_IlDW1zCnndEKmtBQ0b0penJFZjFtKacUlm5Kbpcv8Ptne_iBkvQfcZR_Rurds_bJ5yhymLx_eM-NDBthrB-OKnY5p8JyTU6N3ES_-5py83t1uVg_5-vn-cbVc510h65SD1MDbChpD26IB2Va1BmmA1ZqXooIKWmzrruCsbARQiYYbKRojmBHYSl7OSX342wUfY0CjOpt0st6loO1OMarGEtR20FGNJahDCQPJ_pH7YHsdvo8y1wcGh0ifFoOKg8V1CHZInhR4e4T-Bcalds0
CitedBy_id crossref_primary_10_1016_j_jenvman_2023_119455
crossref_primary_10_1088_1742_6596_2675_1_012008
crossref_primary_10_1155_2024_5587728
crossref_primary_10_1016_j_aei_2023_101949
crossref_primary_10_1016_j_cie_2024_109964
crossref_primary_10_1109_TSM_2022_3187100
crossref_primary_10_1364_BOE_521059
crossref_primary_10_1002_for_3189
crossref_primary_10_1016_j_tust_2021_104245
crossref_primary_10_1007_s11356_022_20450_4
crossref_primary_10_1016_j_ymssp_2021_108488
crossref_primary_10_2166_wcc_2024_242
crossref_primary_10_1007_s10845_024_02442_y
crossref_primary_10_1016_j_adhoc_2024_103643
crossref_primary_10_3390_info12020050
crossref_primary_10_3390_pr9071157
crossref_primary_10_3390_en17092041
crossref_primary_10_1109_JSEN_2024_3451349
crossref_primary_10_3390_pr9020247
crossref_primary_10_1007_s41870_024_02157_6
crossref_primary_10_1016_j_strusafe_2021_102098
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126042
crossref_primary_10_1002_adts_202200502
crossref_primary_10_3390_su14042382
crossref_primary_10_1016_j_heliyon_2024_e25034
crossref_primary_10_1051_e3sconf_202126801006
crossref_primary_10_1016_j_asoc_2022_108875
crossref_primary_10_1109_ACCESS_2022_3171843
crossref_primary_10_1016_j_procs_2023_01_317
crossref_primary_10_32417_1997_4868_2024_24_08_1093_1105
crossref_primary_10_1007_s00202_025_03034_6
crossref_primary_10_1016_j_resourpol_2021_102520
crossref_primary_10_1007_s00170_024_14916_7
crossref_primary_10_1016_j_jhydrol_2024_130942
crossref_primary_10_1016_j_cor_2024_106877
crossref_primary_10_1007_s12273_023_1091_4
crossref_primary_10_5937_jouproman2203093D
crossref_primary_10_1007_s00521_021_06522_5
crossref_primary_10_1016_j_apenergy_2021_117880
crossref_primary_10_1016_j_eswa_2023_122461
crossref_primary_10_15575_join_v7i2_858
crossref_primary_10_1016_j_cie_2021_107598
crossref_primary_10_1109_ACCESS_2022_3193643
crossref_primary_10_1109_JSYST_2023_3310548
crossref_primary_10_1016_j_rineng_2024_103048
crossref_primary_10_3390_atmos14050899
crossref_primary_10_3389_fnins_2024_1379495
crossref_primary_10_1111_aab_12927
crossref_primary_10_1016_j_energy_2022_124752
crossref_primary_10_1007_s10489_021_02879_1
crossref_primary_10_1016_j_asoc_2024_111698
crossref_primary_10_3390_app14177658
crossref_primary_10_1016_j_apenergy_2021_117193
crossref_primary_10_1016_j_asoc_2022_109181
crossref_primary_10_7717_peerj_cs_1482
crossref_primary_10_1016_j_ijhydene_2024_08_205
crossref_primary_10_3390_app14166989
crossref_primary_10_1007_s12667_023_00579_y
crossref_primary_10_1007_s42452_025_06478_4
crossref_primary_10_1155_2020_2143921
crossref_primary_10_1155_2022_1011595
crossref_primary_10_3390_jmse12081339
crossref_primary_10_1021_acsomega_3c06263
crossref_primary_10_1016_j_isatra_2020_12_024
crossref_primary_10_1016_j_energy_2021_120682
crossref_primary_10_1109_ACCESS_2023_3297143
crossref_primary_10_1080_23311932_2024_2340155
crossref_primary_10_1021_acsomega_4c09634
crossref_primary_10_1007_s11276_024_03650_3
crossref_primary_10_1080_08874417_2023_2240753
crossref_primary_10_1016_j_cam_2021_113760
crossref_primary_10_1007_s11831_022_09879_5
crossref_primary_10_3390_app14135556
crossref_primary_10_1007_s00521_022_07889_9
crossref_primary_10_1109_TIM_2022_3141154
crossref_primary_10_2478_picbe_2023_0154
crossref_primary_10_3390_app13158581
crossref_primary_10_1002_for_3034
crossref_primary_10_1016_j_egyr_2025_01_067
crossref_primary_10_1016_j_ress_2024_110291
crossref_primary_10_1109_ACCESS_2022_3179001
crossref_primary_10_1155_2021_9951607
crossref_primary_10_3390_app12157464
crossref_primary_10_3390_math12172652
crossref_primary_10_1007_s10614_024_10641_1
crossref_primary_10_1080_00207543_2021_1893853
crossref_primary_10_1002_ese3_799
crossref_primary_10_1016_j_ejdp_2021_100001
crossref_primary_10_1007_s10479_024_06446_y
crossref_primary_10_1007_s13042_024_02157_9
crossref_primary_10_1007_s10479_021_04429_x
crossref_primary_10_1016_j_enbuild_2022_111951
crossref_primary_10_1016_j_engappai_2023_106301
crossref_primary_10_3390_pr12112612
crossref_primary_10_1016_j_cie_2023_109667
crossref_primary_10_3390_pr11103011
crossref_primary_10_3390_s23146539
crossref_primary_10_1016_j_aei_2023_101966
crossref_primary_10_1016_j_eswa_2024_124409
crossref_primary_10_1016_j_iref_2024_01_070
crossref_primary_10_3389_fpubh_2022_894266
crossref_primary_10_31590_ejosat_1096898
crossref_primary_10_3390_su151813592
crossref_primary_10_1016_j_ijpe_2023_109029
crossref_primary_10_3390_app11156722
crossref_primary_10_1016_j_energy_2023_127459
crossref_primary_10_1016_j_ijhydene_2024_09_229
crossref_primary_10_1016_j_rser_2020_110450
crossref_primary_10_3390_s22166121
crossref_primary_10_1145_3715149
crossref_primary_10_3390_app11146367
crossref_primary_10_1016_j_jclepro_2023_139345
crossref_primary_10_1016_j_eswa_2020_114209
crossref_primary_10_1007_s11227_024_06493_z
crossref_primary_10_1016_j_cie_2022_107970
crossref_primary_10_1016_j_ifacol_2022_09_499
crossref_primary_10_1016_j_eswa_2022_119483
crossref_primary_10_1061__ASCE_ME_1943_5479_0000995
crossref_primary_10_1086_728699
crossref_primary_10_3390_electronics13050993
crossref_primary_10_47836_mjms_18_2_11
crossref_primary_10_1002_cpe_6908
crossref_primary_10_3390_smartcities7010022
crossref_primary_10_1007_s10845_021_01737_8
crossref_primary_10_1007_s11042_024_18298_6
crossref_primary_10_1016_j_renene_2024_121955
crossref_primary_10_1016_j_chaos_2020_110511
crossref_primary_10_1007_s12525_021_00503_1
crossref_primary_10_1115_1_4053141
crossref_primary_10_3390_en17081947
crossref_primary_10_1007_s11277_023_10742_4
crossref_primary_10_1007_s12145_024_01414_3
crossref_primary_10_1021_acsestwater_2c00517
crossref_primary_10_1109_TNNLS_2023_3291371
crossref_primary_10_1016_j_cie_2023_109602
crossref_primary_10_1016_j_ijbiomac_2024_134701
crossref_primary_10_1016_j_foodchem_2024_139558
crossref_primary_10_3390_math12040573
crossref_primary_10_1016_j_renene_2024_121174
crossref_primary_10_1007_s11356_022_20718_9
crossref_primary_10_1016_j_enpol_2022_113097
crossref_primary_10_1007_s00521_021_06548_9
crossref_primary_10_1111_deci_12648
crossref_primary_10_3390_a14030083
crossref_primary_10_1016_j_cie_2022_108364
crossref_primary_10_1080_10407790_2023_2280745
crossref_primary_10_1016_j_cie_2021_107531
crossref_primary_10_1007_s11356_022_23084_8
crossref_primary_10_3390_s22207774
crossref_primary_10_2166_h2oj_2022_134
crossref_primary_10_1115_1_4052838
crossref_primary_10_1587_transinf_2021EDP7138
crossref_primary_10_1007_s10614_025_10899_z
crossref_primary_10_1016_j_compeleceng_2023_108830
crossref_primary_10_1002_asmb_2907
crossref_primary_10_14801_jkiit_2020_18_9_9
crossref_primary_10_4018_JGIM_361589
crossref_primary_10_1016_j_laa_2024_06_002
crossref_primary_10_12677_CSA_2022_122029
crossref_primary_10_1016_j_cie_2023_109862
crossref_primary_10_1002_itl2_579
crossref_primary_10_1016_j_ress_2024_110188
crossref_primary_10_3390_met14050529
crossref_primary_10_59294_HIUJS_VOL_5_2023_552
crossref_primary_10_1016_j_jclepro_2021_126832
crossref_primary_10_1016_j_sca_2023_100026
crossref_primary_10_3390_su16219608
crossref_primary_10_3390_math10132158
crossref_primary_10_1016_j_engfailanal_2021_105446
crossref_primary_10_1016_j_renene_2022_09_058
crossref_primary_10_1016_j_apenergy_2024_124027
crossref_primary_10_1080_15567036_2022_2157520
crossref_primary_10_17341_gazimmfd_1089173
crossref_primary_10_1007_s11708_023_0891_7
crossref_primary_10_4018_IRMJ_291692
crossref_primary_10_1103_PRXEnergy_4_013003
crossref_primary_10_1016_j_ipm_2023_103466
crossref_primary_10_1049_tje2_12356
crossref_primary_10_1109_ACCESS_2024_3396695
crossref_primary_10_3390_jmse12111943
crossref_primary_10_1016_j_rinp_2022_105374
crossref_primary_10_3390_make6040128
crossref_primary_10_1016_j_future_2023_11_036
crossref_primary_10_1016_j_ijforecast_2023_12_006
crossref_primary_10_3233_IDT_240680
crossref_primary_10_1088_1742_6596_2526_1_012071
crossref_primary_10_3390_su132313050
crossref_primary_10_1016_j_bspc_2024_106841
crossref_primary_10_3390_electronics11040652
crossref_primary_10_1002_asmb_2685
crossref_primary_10_1016_j_buildenv_2021_108525
crossref_primary_10_1016_j_techfore_2023_123093
crossref_primary_10_1016_j_cie_2022_108231
crossref_primary_10_1016_j_jenvman_2024_123173
crossref_primary_10_1016_j_egyr_2022_06_007
crossref_primary_10_1007_s13157_022_01615_w
crossref_primary_10_3390_s24082652
crossref_primary_10_1109_ACCESS_2021_3080294
crossref_primary_10_7250_itms_2020_0004
crossref_primary_10_1016_j_rineng_2022_100365
crossref_primary_10_1016_j_cie_2021_107625
crossref_primary_10_24136_eq_2022_024
crossref_primary_10_3390_e26030215
crossref_primary_10_1080_19427867_2024_2404358
crossref_primary_10_1016_j_jenvman_2024_120131
crossref_primary_10_1016_j_egyr_2025_02_015
crossref_primary_10_1021_acsomega_0c06317
crossref_primary_10_1016_j_cie_2022_108440
crossref_primary_10_1007_s00180_024_01595_x
crossref_primary_10_1007_s00704_021_03819_2
crossref_primary_10_1016_j_eswa_2025_126812
crossref_primary_10_1088_2632_2153_ac9a9d
crossref_primary_10_1007_s11227_023_05562_z
crossref_primary_10_53941_jadc_2024_100005
crossref_primary_10_1016_j_heliyon_2023_e16827
crossref_primary_10_1016_j_chaos_2020_110017
crossref_primary_10_1177_01445987241269496
crossref_primary_10_1109_ACCESS_2022_3182499
crossref_primary_10_1016_j_knosys_2022_109608
crossref_primary_10_3390_atmos16010023
crossref_primary_10_1016_j_ipm_2023_103569
crossref_primary_10_1016_j_jrmge_2023_06_010
crossref_primary_10_3390_logistics7040086
crossref_primary_10_1029_2023GL106042
crossref_primary_10_1016_j_eswa_2024_126302
crossref_primary_10_1016_j_procs_2022_01_298
crossref_primary_10_1016_j_cie_2022_108777
crossref_primary_10_1016_j_mlwa_2025_100623
crossref_primary_10_1007_s00521_024_10672_7
crossref_primary_10_1016_j_resourpol_2021_102417
crossref_primary_10_1016_j_cie_2024_110770
crossref_primary_10_1155_2024_7800284
crossref_primary_10_3390_app14188110
crossref_primary_10_1002_for_3201
crossref_primary_10_1007_s10489_020_02031_5
crossref_primary_10_3390_app13095475
crossref_primary_10_1002_mma_7500
crossref_primary_10_2166_wpt_2024_166
crossref_primary_10_56554_jtom_1036107
crossref_primary_10_1007_s11269_022_03381_0
crossref_primary_10_1038_s41598_022_21463_2
crossref_primary_10_30783_nevsosbilen_987093
crossref_primary_10_1016_j_epsr_2021_107761
crossref_primary_10_3390_su141711086
crossref_primary_10_3233_JIFS_201953
crossref_primary_10_3390_s23167182
crossref_primary_10_1016_j_fss_2023_108657
crossref_primary_10_2174_0126671212356139241101070347
crossref_primary_10_1007_s11227_022_04817_5
crossref_primary_10_1080_0952813X_2022_2093407
crossref_primary_10_1142_S0218488523500228
crossref_primary_10_1155_2023_3717035
crossref_primary_10_1007_s42979_023_01977_w
crossref_primary_10_1007_s10586_024_04909_2
crossref_primary_10_1016_j_eswa_2022_117584
crossref_primary_10_1007_s12652_020_02761_x
crossref_primary_10_3390_pr9071166
crossref_primary_10_1109_ACCESS_2020_3018116
Cites_doi 10.1016/j.ijforecast.2010.09.005
10.1016/j.neucom.2017.05.063
10.1016/j.apm.2014.10.065
10.1016/j.apm.2010.03.036
10.1007/s12351-015-0197-6
10.1162/neco.1997.9.8.1735
10.1007/s00521-004-0413-4
10.1007/s00521-016-2475-5
10.1016/j.jfranklin.2014.12.015
10.1162/08997660260293319
10.1016/j.jhydrol.2011.10.026
10.21236/ADA164453
10.1016/j.procs.2015.04.167
10.1016/j.asoc.2016.07.053
10.1016/j.asoc.2010.10.015
10.1016/j.apenergy.2012.04.001
10.1016/j.apenergy.2017.08.192
10.1016/j.cie.2018.04.042
10.1016/j.neucom.2018.09.082
10.1016/j.asoc.2016.02.029
10.1016/j.cie.2017.05.002
10.1109/IJCNN.2011.6033535
10.1114/B:ABME.0000042223.87320.de
10.1108/IJICC-11-2018-0152
10.1016/j.asoc.2014.05.028
10.1016/j.indmarman.2019.05.003
10.1016/j.jclepro.2019.01.108
10.1016/j.eswa.2018.03.005
10.1287/mnsc.1070.0786
10.1016/j.annals.2019.01.014
10.1016/0304-4076(87)90085-6
10.1016/j.rcim.2014.12.015
10.1109/72.279181
10.1504/IJDMMM.2019.098969
10.1016/j.eswa.2012.01.039
10.1016/j.engappai.2017.07.007
10.1109/TNNLS.2016.2582924
10.1016/0167-2789(93)90009-P
10.1016/j.neucom.2009.09.020
10.1007/s11071-009-9535-7
10.1016/j.ins.2019.01.076
10.1016/j.ijpe.2010.07.003
10.1016/j.neucom.2019.05.099
10.1016/j.neucom.2015.07.113
10.1016/j.cie.2018.02.007
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2020.106435
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2020_106435
S0360835220301698
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-d9ad5b4d8f0b28d9b47ad9fd17a5364d4dbeb7c251386d09ef5f968f61f6eb953
IEDL.DBID .~1
ISSN 0360-8352
IngestDate Thu Apr 24 22:54:53 EDT 2025
Tue Jul 01 02:59:48 EDT 2025
Fri Feb 23 02:50:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time series forecasting
Statistical methods
LSTM
RNN
Demand prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-d9ad5b4d8f0b28d9b47ad9fd17a5364d4dbeb7c251386d09ef5f968f61f6eb953
ORCID 0000-0001-7552-3525
0000-0001-8615-5553
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2020_106435
crossref_primary_10_1016_j_cie_2020_106435
elsevier_sciencedirect_doi_10_1016_j_cie_2020_106435
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Murray, Agard, Barajas (b0200) 2018; 118
Demšar (b0060) 2006; 7
Ramos, Santos, Rebelo (b0220) 2015; 34
Haberleitner, Meyr, Taudes (b0090) 2010; 128
Raza, Nadarajah, Ekanayake (b0225) 2017; 208
Chen, Yang, Liu, Li, Li (b0045) 2015; 39
Chollet, F. (2015). Keras.
Khashei, Bijari (b0135) 2011; 11
Bengio, Simard, Frasconi (b0030) 1994; 5
Lemke, Gabrys (b0165) 2010; 73
Martínez, Frías, Pérez-Godoy, Rivera (b0185) 2018; 103
Parmezan, Souza, Batista (b0210) 2019; 484
Lin, Hu, Tsai (b0170) 2011; 42
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0275) 2014; 15
Law, Li, Fong, Han (b0160) 2019; 75
Khandelwal, Adhikari, Verma (b0130) 2015; 48
Ghorbani, Kisi, Aalinezhad (b0075) 2010; 34
Maqsood, Khan, Abraham (b0180) 2004; 13
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., . . . Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995.
Yang, Chen, Wang, Li, Li (b0320) 2016; 49
Yang, Chen, Jiang (b0315) 2015; 352
Laszuk (b0155) 2017
Utgoff, Stracuzzi (b0290) 2002; 14
Salisbury, Sun (b0255) 2004; 32
Han, Kamber, Pei (b0095) 2011
McCue, Troesch (b0195) 2011
Hyndman, Koehler, Ord, Snyder (b0115) 2008
Khatibi, Sivakumar, Ghorbani, Kisi, Koçak, Farsadi Zadeh (b0140) 2012; 414–415
Box, Jenkins, Reinsel, Ljung (b0035) 2015
Adhikari, R., & Agrawal, R. K. (2013). An introductory study on time series modeling and forecasting. arXiv preprint arXiv:1302.6613.
Andrawis, Atiya, El-Shishiny (b0010) 2011; 27
Greff, Srivastava, Koutník, Steunebrink, Schmidhuber (b0080) 2017; 28
Atsalakis, Protopapadakis, Valavanis (b0020) 2016; 16
Rosenstein, Collins, De Luca (b0240) 1993; 65
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Guo, Diao, Zhao, Wang, Sun (b0085) 2017; 110
Liu, Tian, Li (b0175) 2012; 98
Büyükşahin, Ertekin (b0040) 2019; 361
Engle, Yoo (b0070) 1987; 35
Martínez, Frías, Pérez, Rivera (b0190) 2017
Enders (b0065) 2008
Reimers, N., & Gurevych, I. (2017). Optimal hyperparameters for deep lstm-networks for sequence labeling tasks. arXiv preprint arXiv:1707.06799.
Xin, Ji, Chao (b0305) 2018; 44
Sarıca, Eğrioğlu, Aşıkgil (b0260) 2018; 29
Protopapadakis, Niklis, Doumpos, Doulamis, Zopounidis (b0215) 2019; 11
Sheskin (b0265) 2003
Johannesen, Kolhe, Goodwin (b0125) 2019; 218
Panigrahi, Behera (b0205) 2017; 66
Hyndman, R. J., & Akram, M. (2010). Time series data library. Available from Internet: http://robjhyndman. com/TSDL.
Taylor (b0285) 2008; 54
Yang, Wu (b0310) 2010; 59
Sagheer, Kotb (b0250) 2019; 323
Hermans, M., & Schrauwen, B. (2013). Training and analysing deep recurrent neural networks. Paper presented at the Advances in neural information processing systems.
Ribeiro, G. H. T., Neto, P. S. G. d. M., Cavalcanti, G. D. C., & Tsang, I. R. (2011, 31 July-5 Aug. 2011). Lag selection for time series forecasting using Particle Swarm Optimization. Paper presented at the The 2011 International Joint Conference on Neural Networks.
Villegas, Pedregal, Trapero (b0295) 2018; 121
Atsalakis (b0015) 2016; 43
Taieb, Bontempi, Atiya, Sorjamaa (b0280) 2012; 39
Wu, Yuan, Dong, Lin, Liu (b0300) 2018; 275
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation: California Univ San Diego La Jolla Inst for Cognitive Science.
Kumar, Shankar, Alijohani (b0150) 2019
de Oliveira, Ludermir (b0055) 2016; 180
Shi, Hu, Zhang (b0270) 2019; 12
Hochreiter, Schmidhuber (b0105) 1997; 9
Babu, Reddy (b0025) 2014; 23
Andrawis (10.1016/j.cie.2020.106435_b0010) 2011; 27
10.1016/j.cie.2020.106435_b0120
Ramos (10.1016/j.cie.2020.106435_b0220) 2015; 34
Yang (10.1016/j.cie.2020.106435_b0310) 2010; 59
Haberleitner (10.1016/j.cie.2020.106435_b0090) 2010; 128
10.1016/j.cie.2020.106435_b0245
Maqsood (10.1016/j.cie.2020.106435_b0180) 2004; 13
10.1016/j.cie.2020.106435_b0005
Martínez (10.1016/j.cie.2020.106435_b0185) 2018; 103
Han (10.1016/j.cie.2020.106435_b0095) 2011
Law (10.1016/j.cie.2020.106435_b0160) 2019; 75
Büyükşahin (10.1016/j.cie.2020.106435_b0040) 2019; 361
Murray (10.1016/j.cie.2020.106435_b0200) 2018; 118
Johannesen (10.1016/j.cie.2020.106435_b0125) 2019; 218
Hochreiter (10.1016/j.cie.2020.106435_b0105) 1997; 9
Shi (10.1016/j.cie.2020.106435_b0270) 2019; 12
10.1016/j.cie.2020.106435_b0050
Khatibi (10.1016/j.cie.2020.106435_b0140) 2012; 414–415
Bengio (10.1016/j.cie.2020.106435_b0030) 1994; 5
Engle (10.1016/j.cie.2020.106435_b0070) 1987; 35
Taieb (10.1016/j.cie.2020.106435_b0280) 2012; 39
Salisbury (10.1016/j.cie.2020.106435_b0255) 2004; 32
Chen (10.1016/j.cie.2020.106435_b0045) 2015; 39
Taylor (10.1016/j.cie.2020.106435_b0285) 2008; 54
Panigrahi (10.1016/j.cie.2020.106435_b0205) 2017; 66
Ghorbani (10.1016/j.cie.2020.106435_b0075) 2010; 34
Utgoff (10.1016/j.cie.2020.106435_b0290) 2002; 14
Kumar (10.1016/j.cie.2020.106435_b0150) 2019
Martínez (10.1016/j.cie.2020.106435_b0190) 2017
Protopapadakis (10.1016/j.cie.2020.106435_b0215) 2019; 11
Khashei (10.1016/j.cie.2020.106435_b0135) 2011; 11
Parmezan (10.1016/j.cie.2020.106435_b0210) 2019; 484
Greff (10.1016/j.cie.2020.106435_b0080) 2017; 28
Lin (10.1016/j.cie.2020.106435_b0170) 2011; 42
Wu (10.1016/j.cie.2020.106435_b0300) 2018; 275
Sagheer (10.1016/j.cie.2020.106435_b0250) 2019; 323
Yang (10.1016/j.cie.2020.106435_b0320) 2016; 49
Liu (10.1016/j.cie.2020.106435_b0175) 2012; 98
10.1016/j.cie.2020.106435_b0100
Sheskin (10.1016/j.cie.2020.106435_b0265) 2003
10.1016/j.cie.2020.106435_b0145
Atsalakis (10.1016/j.cie.2020.106435_b0020) 2016; 16
Atsalakis (10.1016/j.cie.2020.106435_b0015) 2016; 43
Babu (10.1016/j.cie.2020.106435_b0025) 2014; 23
Demšar (10.1016/j.cie.2020.106435_b0060) 2006; 7
Srivastava (10.1016/j.cie.2020.106435_b0275) 2014; 15
Enders (10.1016/j.cie.2020.106435_b0065) 2008
Hyndman (10.1016/j.cie.2020.106435_b0115) 2008
Villegas (10.1016/j.cie.2020.106435_b0295) 2018; 121
10.1016/j.cie.2020.106435_b0230
10.1016/j.cie.2020.106435_b0110
Guo (10.1016/j.cie.2020.106435_b0085) 2017; 110
10.1016/j.cie.2020.106435_b0235
Lemke (10.1016/j.cie.2020.106435_b0165) 2010; 73
Khandelwal (10.1016/j.cie.2020.106435_b0130) 2015; 48
Sarıca (10.1016/j.cie.2020.106435_b0260) 2018; 29
McCue (10.1016/j.cie.2020.106435_b0195) 2011
Box (10.1016/j.cie.2020.106435_b0035) 2015
Yang (10.1016/j.cie.2020.106435_b0315) 2015; 352
Rosenstein (10.1016/j.cie.2020.106435_b0240) 1993; 65
Xin (10.1016/j.cie.2020.106435_b0305) 2018; 44
Raza (10.1016/j.cie.2020.106435_b0225) 2017; 208
Laszuk (10.1016/j.cie.2020.106435_b0155)
de Oliveira (10.1016/j.cie.2020.106435_b0055) 2016; 180
References_xml – volume: 361
  start-page: 151
  year: 2019
  end-page: 163
  ident: b0040
  article-title: Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition
  publication-title: Neurocomputing
– start-page: 1
  year: 2017
  end-page: 19
  ident: b0190
  article-title: A methodology for applying k-nearest neighbor to time series forecasting
  publication-title: Artificial Intelligence Review
– year: 2008
  ident: b0065
  article-title: Applied econometric time series
– volume: 49
  start-page: 663
  year: 2016
  end-page: 675
  ident: b0320
  article-title: Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting
  publication-title: Applied Soft Computing
– volume: 35
  start-page: 143
  year: 1987
  end-page: 159
  ident: b0070
  article-title: Forecasting and testing in co-integrated systems
  publication-title: Journal of econometrics
– volume: 75
  start-page: 410
  year: 2019
  end-page: 423
  ident: b0160
  article-title: Tourism demand forecasting: A deep learning approach
  publication-title: Annals of Tourism Research
– volume: 275
  start-page: 167
  year: 2018
  end-page: 179
  ident: b0300
  article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
  publication-title: Neurocomputing
– volume: 484
  start-page: 302
  year: 2019
  end-page: 337
  ident: b0210
  article-title: Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model
  publication-title: Information Sciences
– volume: 12
  start-page: 274
  year: 2019
  end-page: 291
  ident: b0270
  article-title: LSTM based prediction algorithm and abnormal change detection for temperature in aerospace gyroscope shell
  publication-title: International Journal of Intelligent Computing and Cybernetics
– volume: 110
  start-page: 92
  year: 2017
  end-page: 108
  ident: b0085
  article-title: A double-level combination approach for demand forecasting of repairable airplane spare parts based on turnover data
  publication-title: Computers & Industrial Engineering
– volume: 11
  start-page: 2664
  year: 2011
  end-page: 2675
  ident: b0135
  article-title: A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
  publication-title: Applied Soft Computing
– year: 2015
  ident: b0035
  article-title: Time series analysis: Forecasting and control
– volume: 34
  start-page: 151
  year: 2015
  end-page: 163
  ident: b0220
  article-title: Performance of state space and ARIMA models for consumer retail sales forecasting
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0105
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 103
  start-page: 38
  year: 2018
  end-page: 48
  ident: b0185
  article-title: Dealing with seasonality by narrowing the training set in time series forecasting with kNN
  publication-title: Expert Systems with Applications
– reference: Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., . . . Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b0275
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– reference: Reimers, N., & Gurevych, I. (2017). Optimal hyperparameters for deep lstm-networks for sequence labeling tasks. arXiv preprint arXiv:1707.06799.
– volume: 14
  start-page: 2497
  year: 2002
  end-page: 2529
  ident: b0290
  article-title: Many-layered learning
  publication-title: Neural Computation
– volume: 39
  start-page: 2617
  year: 2015
  end-page: 2632
  ident: b0045
  article-title: A hybrid application algorithm based on the support vector machine and artificial intelligence: An example of electric load forecasting
  publication-title: Applied Mathematical Modelling
– volume: 48
  start-page: 173
  year: 2015
  end-page: 179
  ident: b0130
  article-title: Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition
  publication-title: Procedia Computer Science
– volume: 121
  start-page: 1
  year: 2018
  end-page: 7
  ident: b0295
  article-title: A support vector machine for model selection in demand forecasting applications
  publication-title: Computers & Industrial Engineering
– volume: 44
  start-page: 772
  year: 2018
  end-page: 784
  ident: b0305
  article-title: Exploring LSTM based recurrent neural network for failures time series prediction
  publication-title: Journal of Beijing Unversity of Aeronautics and Astronautics
– reference: Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
– reference: Chollet, F. (2015). Keras.
– volume: 42
  start-page: 421
  year: 2011
  end-page: 436
  ident: b0170
  article-title: Machine learning in financial crisis prediction: A survey
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
– reference: Hyndman, R. J., & Akram, M. (2010). Time series data library. Available from Internet: http://robjhyndman. com/TSDL.
– volume: 180
  start-page: 27
  year: 2016
  end-page: 34
  ident: b0055
  article-title: A hybrid evolutionary decomposition system for time series forecasting
  publication-title: Neurocomputing
– volume: 11
  start-page: 103
  year: 2019
  end-page: 128
  ident: b0215
  article-title: Sample selection algorithms for credit risk modelling through data mining techniques
  publication-title: International Journal of Data Mining, Modelling and Management
– volume: 128
  start-page: 518
  year: 2010
  end-page: 526
  ident: b0090
  article-title: Implementation of a demand planning system using advance order information
  publication-title: International Journal of Production Economics
– volume: 29
  start-page: 749
  year: 2018
  end-page: 760
  ident: b0260
  article-title: A new hybrid method for time series forecasting: AR–ANFIS
  publication-title: Neural Computing and Applications
– volume: 414–415
  start-page: 108
  year: 2012
  end-page: 117
  ident: b0140
  article-title: Investigating chaos in river stage and discharge time series
  publication-title: Journal of Hydrology
– volume: 352
  start-page: 3378
  year: 2015
  end-page: 3393
  ident: b0315
  article-title: Nonlinear response prediction of cracked rotor based on EMD
  publication-title: Journal of the Franklin Institute
– year: 2003
  ident: b0265
  article-title: Handbook of parametric and nonparametric statistical procedures
– reference: Hermans, M., & Schrauwen, B. (2013). Training and analysing deep recurrent neural networks. Paper presented at the Advances in neural information processing systems.
– reference: Ribeiro, G. H. T., Neto, P. S. G. d. M., Cavalcanti, G. D. C., & Tsang, I. R. (2011, 31 July-5 Aug. 2011). Lag selection for time series forecasting using Particle Swarm Optimization. Paper presented at the The 2011 International Joint Conference on Neural Networks.
– volume: 73
  start-page: 2006
  year: 2010
  end-page: 2016
  ident: b0165
  article-title: Meta-learning for time series forecasting and forecast combination
  publication-title: Neurocomputing
– volume: 13
  start-page: 112
  year: 2004
  end-page: 122
  ident: b0180
  article-title: An ensemble of neural networks for weather forecasting
  publication-title: Neural Computing & Applications
– volume: 39
  start-page: 7067
  year: 2012
  end-page: 7083
  ident: b0280
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Systems with Applications
– year: 2017
  ident: b0155
  article-title: Python implementation of Empirical Mode Decomposition algorithm
– volume: 16
  start-page: 245
  year: 2016
  end-page: 269
  ident: b0020
  article-title: Stock trend forecasting in turbulent market periods using neuro-fuzzy systems
  publication-title: Operational Research
– volume: 118
  start-page: 33
  year: 2018
  end-page: 43
  ident: b0200
  article-title: Forecast of individual customer’s demand from a large and noisy dataset
  publication-title: Computers & Industrial Engineering
– year: 2011
  ident: b0095
  article-title: Data Mining: Concepts and Techniques: Concepts and Techniques
– volume: 43
  start-page: 107
  year: 2016
  end-page: 116
  ident: b0015
  article-title: Using computational intelligence to forecast carbon prices
  publication-title: Applied Soft Computing
– volume: 23
  start-page: 27
  year: 2014
  end-page: 38
  ident: b0025
  article-title: A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data
  publication-title: Applied Soft Computing
– year: 2008
  ident: b0115
  article-title: Forecasting with exponential smoothing: The state space approach
– volume: 66
  start-page: 49
  year: 2017
  end-page: 59
  ident: b0205
  article-title: A hybrid ETS–ANN model for time series forecasting
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Adhikari, R., & Agrawal, R. K. (2013). An introductory study on time series modeling and forecasting. arXiv preprint arXiv:1302.6613.
– volume: 28
  start-page: 2222
  year: 2017
  end-page: 2232
  ident: b0080
  article-title: LSTM: A Search Space Odyssey
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 98
  start-page: 415
  year: 2012
  end-page: 424
  ident: b0175
  article-title: Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
  publication-title: Applied Energy
– start-page: 415
  year: 2011
  end-page: 432
  ident: b0195
  article-title: Use of Lyapunov exponents to predict chaotic vessel motions
– volume: 323
  start-page: 203
  year: 2019
  end-page: 213
  ident: b0250
  article-title: Time series forecasting of petroleum production using deep LSTM recurrent networks
  publication-title: Neurocomputing
– volume: 34
  start-page: 4050
  year: 2010
  end-page: 4057
  ident: b0075
  article-title: A probe into the chaotic nature of daily streamflow time series by correlation dimension and largest Lyapunov methods
  publication-title: Applied Mathematical Modelling
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: b0030
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Transactions on Neural Networks
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b0060
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 208
  start-page: 1626
  year: 2017
  end-page: 1638
  ident: b0225
  article-title: Demand forecast of PV integrated bioclimatic buildings using ensemble framework
  publication-title: Applied Energy
– volume: 32
  start-page: 1348
  year: 2004
  end-page: 1354
  ident: b0255
  article-title: Assessment of chaotic parameters in nonstationary electrocardiograms by use of empirical mode decomposition
  publication-title: Annals of Biomedical Engineering
– volume: 54
  start-page: 253
  year: 2008
  end-page: 265
  ident: b0285
  article-title: A comparison of univariate time series methods for forecasting intraday arrivals at a call center
  publication-title: Management Science
– volume: 218
  start-page: 555
  year: 2019
  end-page: 564
  ident: b0125
  article-title: Relative evaluation of regression tools for urban area electrical energy demand forecasting
  publication-title: Journal of Cleaner Production
– volume: 27
  start-page: 672
  year: 2011
  end-page: 688
  ident: b0010
  article-title: Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition
  publication-title: International Journal of Forecasting
– reference: Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation: California Univ San Diego La Jolla Inst for Cognitive Science.
– year: 2019
  ident: b0150
  article-title: A big data driven framework for demand-driven forecasting with effects of marketing-mix variables
  publication-title: Industrial Marketing Management
– volume: 59
  start-page: 239
  year: 2010
  ident: b0310
  article-title: On stability analysis via Lyapunov exponents calculated from a time series using nonlinear mapping—a case study
  publication-title: Nonlinear Dynamics
– volume: 65
  start-page: 117
  year: 1993
  end-page: 134
  ident: b0240
  article-title: A practical method for calculating largest Lyapunov exponents from small data sets
  publication-title: Physica D: Nonlinear Phenomena
– volume: 27
  start-page: 672
  issue: 3
  year: 2011
  ident: 10.1016/j.cie.2020.106435_b0010
  article-title: Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2010.09.005
– volume: 275
  start-page: 167
  year: 2018
  ident: 10.1016/j.cie.2020.106435_b0300
  article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.063
– volume: 39
  start-page: 2617
  issue: 9
  year: 2015
  ident: 10.1016/j.cie.2020.106435_b0045
  article-title: A hybrid application algorithm based on the support vector machine and artificial intelligence: An example of electric load forecasting
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2014.10.065
– year: 2015
  ident: 10.1016/j.cie.2020.106435_b0035
– volume: 34
  start-page: 4050
  issue: 12
  year: 2010
  ident: 10.1016/j.cie.2020.106435_b0075
  article-title: A probe into the chaotic nature of daily streamflow time series by correlation dimension and largest Lyapunov methods
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2010.03.036
– volume: 16
  start-page: 245
  issue: 2
  year: 2016
  ident: 10.1016/j.cie.2020.106435_b0020
  article-title: Stock trend forecasting in turbulent market periods using neuro-fuzzy systems
  publication-title: Operational Research
  doi: 10.1007/s12351-015-0197-6
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.cie.2020.106435_b0060
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– start-page: 415
  year: 2011
  ident: 10.1016/j.cie.2020.106435_b0195
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.cie.2020.106435_b0105
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 44
  start-page: 772
  issue: 4
  year: 2018
  ident: 10.1016/j.cie.2020.106435_b0305
  article-title: Exploring LSTM based recurrent neural network for failures time series prediction
  publication-title: Journal of Beijing Unversity of Aeronautics and Astronautics
– volume: 13
  start-page: 112
  issue: 2
  year: 2004
  ident: 10.1016/j.cie.2020.106435_b0180
  article-title: An ensemble of neural networks for weather forecasting
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-004-0413-4
– volume: 29
  start-page: 749
  issue: 3
  year: 2018
  ident: 10.1016/j.cie.2020.106435_b0260
  article-title: A new hybrid method for time series forecasting: AR–ANFIS
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2475-5
– ident: 10.1016/j.cie.2020.106435_b0230
– volume: 352
  start-page: 3378
  issue: 8
  year: 2015
  ident: 10.1016/j.cie.2020.106435_b0315
  article-title: Nonlinear response prediction of cracked rotor based on EMD
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2014.12.015
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.cie.2020.106435_b0275
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– volume: 14
  start-page: 2497
  issue: 10
  year: 2002
  ident: 10.1016/j.cie.2020.106435_b0290
  article-title: Many-layered learning
  publication-title: Neural Computation
  doi: 10.1162/08997660260293319
– volume: 414–415
  start-page: 108
  year: 2012
  ident: 10.1016/j.cie.2020.106435_b0140
  article-title: Investigating chaos in river stage and discharge time series
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2011.10.026
– ident: 10.1016/j.cie.2020.106435_b0245
  doi: 10.21236/ADA164453
– volume: 48
  start-page: 173
  year: 2015
  ident: 10.1016/j.cie.2020.106435_b0130
  article-title: Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.04.167
– volume: 49
  start-page: 663
  year: 2016
  ident: 10.1016/j.cie.2020.106435_b0320
  article-title: Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.07.053
– volume: 11
  start-page: 2664
  issue: 2
  year: 2011
  ident: 10.1016/j.cie.2020.106435_b0135
  article-title: A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.10.015
– start-page: 1
  year: 2017
  ident: 10.1016/j.cie.2020.106435_b0190
  article-title: A methodology for applying k-nearest neighbor to time series forecasting
  publication-title: Artificial Intelligence Review
– volume: 98
  start-page: 415
  year: 2012
  ident: 10.1016/j.cie.2020.106435_b0175
  article-title: Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2012.04.001
– volume: 208
  start-page: 1626
  year: 2017
  ident: 10.1016/j.cie.2020.106435_b0225
  article-title: Demand forecast of PV integrated bioclimatic buildings using ensemble framework
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.08.192
– ident: 10.1016/j.cie.2020.106435_b0145
– volume: 121
  start-page: 1
  year: 2018
  ident: 10.1016/j.cie.2020.106435_b0295
  article-title: A support vector machine for model selection in demand forecasting applications
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.04.042
– volume: 323
  start-page: 203
  year: 2019
  ident: 10.1016/j.cie.2020.106435_b0250
  article-title: Time series forecasting of petroleum production using deep LSTM recurrent networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.082
– volume: 43
  start-page: 107
  year: 2016
  ident: 10.1016/j.cie.2020.106435_b0015
  article-title: Using computational intelligence to forecast carbon prices
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.02.029
– volume: 110
  start-page: 92
  year: 2017
  ident: 10.1016/j.cie.2020.106435_b0085
  article-title: A double-level combination approach for demand forecasting of repairable airplane spare parts based on turnover data
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.05.002
– volume: 42
  start-page: 421
  issue: 4
  year: 2011
  ident: 10.1016/j.cie.2020.106435_b0170
  article-title: Machine learning in financial crisis prediction: A survey
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
– ident: 10.1016/j.cie.2020.106435_b0235
  doi: 10.1109/IJCNN.2011.6033535
– ident: 10.1016/j.cie.2020.106435_b0120
– volume: 32
  start-page: 1348
  issue: 10
  year: 2004
  ident: 10.1016/j.cie.2020.106435_b0255
  article-title: Assessment of chaotic parameters in nonstationary electrocardiograms by use of empirical mode decomposition
  publication-title: Annals of Biomedical Engineering
  doi: 10.1114/B:ABME.0000042223.87320.de
– volume: 12
  start-page: 274
  issue: 2
  year: 2019
  ident: 10.1016/j.cie.2020.106435_b0270
  article-title: LSTM based prediction algorithm and abnormal change detection for temperature in aerospace gyroscope shell
  publication-title: International Journal of Intelligent Computing and Cybernetics
  doi: 10.1108/IJICC-11-2018-0152
– volume: 23
  start-page: 27
  year: 2014
  ident: 10.1016/j.cie.2020.106435_b0025
  article-title: A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.05.028
– ident: 10.1016/j.cie.2020.106435_b0110
– ident: 10.1016/j.cie.2020.106435_b0100
– year: 2019
  ident: 10.1016/j.cie.2020.106435_b0150
  article-title: A big data driven framework for demand-driven forecasting with effects of marketing-mix variables
  publication-title: Industrial Marketing Management
  doi: 10.1016/j.indmarman.2019.05.003
– year: 2008
  ident: 10.1016/j.cie.2020.106435_b0115
– volume: 218
  start-page: 555
  year: 2019
  ident: 10.1016/j.cie.2020.106435_b0125
  article-title: Relative evaluation of regression tools for urban area electrical energy demand forecasting
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.01.108
– volume: 103
  start-page: 38
  year: 2018
  ident: 10.1016/j.cie.2020.106435_b0185
  article-title: Dealing with seasonality by narrowing the training set in time series forecasting with kNN
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.03.005
– volume: 54
  start-page: 253
  issue: 2
  year: 2008
  ident: 10.1016/j.cie.2020.106435_b0285
  article-title: A comparison of univariate time series methods for forecasting intraday arrivals at a call center
  publication-title: Management Science
  doi: 10.1287/mnsc.1070.0786
– volume: 75
  start-page: 410
  year: 2019
  ident: 10.1016/j.cie.2020.106435_b0160
  article-title: Tourism demand forecasting: A deep learning approach
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2019.01.014
– volume: 35
  start-page: 143
  issue: 1
  year: 1987
  ident: 10.1016/j.cie.2020.106435_b0070
  article-title: Forecasting and testing in co-integrated systems
  publication-title: Journal of econometrics
  doi: 10.1016/0304-4076(87)90085-6
– volume: 34
  start-page: 151
  year: 2015
  ident: 10.1016/j.cie.2020.106435_b0220
  article-title: Performance of state space and ARIMA models for consumer retail sales forecasting
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2014.12.015
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 10.1016/j.cie.2020.106435_b0030
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.279181
– year: 2003
  ident: 10.1016/j.cie.2020.106435_b0265
– volume: 11
  start-page: 103
  issue: 2
  year: 2019
  ident: 10.1016/j.cie.2020.106435_b0215
  article-title: Sample selection algorithms for credit risk modelling through data mining techniques
  publication-title: International Journal of Data Mining, Modelling and Management
  doi: 10.1504/IJDMMM.2019.098969
– volume: 39
  start-page: 7067
  issue: 8
  year: 2012
  ident: 10.1016/j.cie.2020.106435_b0280
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.01.039
– ident: 10.1016/j.cie.2020.106435_b0005
– volume: 66
  start-page: 49
  year: 2017
  ident: 10.1016/j.cie.2020.106435_b0205
  article-title: A hybrid ETS–ANN model for time series forecasting
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2017.07.007
– volume: 28
  start-page: 2222
  issue: 10
  year: 2017
  ident: 10.1016/j.cie.2020.106435_b0080
  article-title: LSTM: A Search Space Odyssey
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2582924
– ident: 10.1016/j.cie.2020.106435_b0155
– volume: 65
  start-page: 117
  issue: 1–2
  year: 1993
  ident: 10.1016/j.cie.2020.106435_b0240
  article-title: A practical method for calculating largest Lyapunov exponents from small data sets
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(93)90009-P
– ident: 10.1016/j.cie.2020.106435_b0050
– volume: 73
  start-page: 2006
  issue: 10–12
  year: 2010
  ident: 10.1016/j.cie.2020.106435_b0165
  article-title: Meta-learning for time series forecasting and forecast combination
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.09.020
– volume: 59
  start-page: 239
  issue: 1–2
  year: 2010
  ident: 10.1016/j.cie.2020.106435_b0310
  article-title: On stability analysis via Lyapunov exponents calculated from a time series using nonlinear mapping—a case study
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-009-9535-7
– volume: 484
  start-page: 302
  year: 2019
  ident: 10.1016/j.cie.2020.106435_b0210
  article-title: Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.01.076
– volume: 128
  start-page: 518
  issue: 2
  year: 2010
  ident: 10.1016/j.cie.2020.106435_b0090
  article-title: Implementation of a demand planning system using advance order information
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2010.07.003
– volume: 361
  start-page: 151
  year: 2019
  ident: 10.1016/j.cie.2020.106435_b0040
  article-title: Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.099
– volume: 180
  start-page: 27
  year: 2016
  ident: 10.1016/j.cie.2020.106435_b0055
  article-title: A hybrid evolutionary decomposition system for time series forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.113
– year: 2008
  ident: 10.1016/j.cie.2020.106435_b0065
– year: 2011
  ident: 10.1016/j.cie.2020.106435_b0095
– volume: 118
  start-page: 33
  year: 2018
  ident: 10.1016/j.cie.2020.106435_b0200
  article-title: Forecast of individual customer’s demand from a large and noisy dataset
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.02.007
SSID ssj0004591
Score 2.6679752
Snippet •A demand forecasting method based on multi-layer LSTM networks is proposed.•The proposed method improves the forecasting accuracy.•It has strong ability to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106435
SubjectTerms Demand prediction
LSTM
RNN
Statistical methods
Time series forecasting
Title An optimized model using LSTM network for demand forecasting
URI https://dx.doi.org/10.1016/j.cie.2020.106435
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4Aoj8oDE1JoHo4dSyxVRVUe7dJW6hbFsY2KaFrRsjDw2znHDioSMLDF1l0UXXx3n-XPdwhd2govKvKSBLyJRDLwhM99T9FQ5JpJxspyDIMh7U_I_TSe1lC3ugtjaJUu9tuYXkZrN9N21mwvZ7P2CGKvxQ8G1VNuLvwSwswqv_4INiqG2655IOwZ6epks-R4wWthixiaMWTm-OfctJFvevto1wFF3LHfcoBqqmigPQcasXPJVQPtbFQUPEQ3nQIvIArMZ-8gVba5wYba_oQfR-MBLizpGwNSxVLNs0KaR5VnK8N-PkKT3u242_dcgwQvDzlbe5JnMhZEJtoXYSK5ICyTXMuAZXFEiSRSKMFygDBRQqXPlY41p4mmgaZK8Dg6RvViUagThGEXE3FF4oAxTWgkwBsVSPkKNrBxkIVN5FemSXNXPdw0sXhJK5rYM8yr1FgztdZsoqsvlaUtnfGXMKnsnX77_ymE9t_VTv-ndoa2zcgSF89Rff36pi4AXKxFq1w9LbTVuXvoDz8Bw7fLDg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADb8QbD0xIUfPwI5ZYKgQq9LFQJLYojh1URNMKysKv51w7qEjAwJY4d1F08p0_y1--Azh3Ci8mCdIUs4kmOgpUKMPA8FgVpdBCzOUY-gPeeaB3j-yxAVf1vzCWVulrv6vp82rtR1o-mq3paNS6x9rr8INF9VymS7Bs1alYE5bbt93OYEE03DXOQ_vAOtSHm3OaF74Zd4mxvcfFmf28PC0sOTebsO6xImm7z9mChqm2YcPjRuKz8m0b1hZEBXfgsl2RCRaC8egDreadbohltz-R3v2wTyrH-yYIVok247zS9tIU-ZslQO_Cw8318KoT-B4JQRFLMQu0zDVTVKdlqOJUS0VFrmWpI5GzhFNNtTJKFIhikpTrUJqSlZKnJY9KbpRkyR40q0ll9oHgRiaRhrJIiJLyRGFCGrQKDe5hWZTHBxDWockKLyBu-1i8ZDVT7BnHTWajmbloHsDFl8vUqWf8ZUzreGffpkCG1f13t8P_uZ3BSmfY72W920H3CFbtE8djPIbm7PXdnCDWmKlTP5c-AdJRzb8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+model+using+LSTM+network+for+demand+forecasting&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Abbasimehr%2C+Hossein&rft.au=Shabani%2C+Mostafa&rft.au=Yousefi%2C+Mohsen&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=143&rft_id=info:doi/10.1016%2Fj.cie.2020.106435&rft.externalDocID=S0360835220301698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon