An optimized model using LSTM network for demand forecasting
•A demand forecasting method based on multi-layer LSTM networks is proposed.•The proposed method improves the forecasting accuracy.•It has strong ability to capture nonlinear patterns in time series data.•The empirical results show that the method outperforms other standard techniques. In a business...
Saved in:
Published in | Computers & industrial engineering Vol. 143; p. 106435 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A demand forecasting method based on multi-layer LSTM networks is proposed.•The proposed method improves the forecasting accuracy.•It has strong ability to capture nonlinear patterns in time series data.•The empirical results show that the method outperforms other standard techniques.
In a business environment with strict competition among firms, accurate demand forecasting is not straightforward. In this paper, a forecasting method is proposed, which has a strong capability of predicting highly fluctuating demand data. Therefore, in this paper we propose a demand forecasting method based on multi-layer LSTM networks. The proposed method automatically selects the best forecasting model by considering different combinations of LSTM hyperparameters for a given time series using the grid search method. It has the ability to capture nonlinear patterns in time series data, while considering the inherent characteristics of non-stationary time series data. The proposed method is compared with some well-known time series forecasting techniques from both statistical and computational intelligence methods using demand data of a furniture company. These methods include autoregressive integrated moving average (ARIMA), exponential smoothing (ETS), artificial neural network (ANN), K-nearest neighbors (KNN), recurrent neural network (RNN), support vector machines (SVM) and single layer LSTM. The experimental results indicate that the proposed method is superior among the tested methods in terms of performance measures. |
---|---|
AbstractList | •A demand forecasting method based on multi-layer LSTM networks is proposed.•The proposed method improves the forecasting accuracy.•It has strong ability to capture nonlinear patterns in time series data.•The empirical results show that the method outperforms other standard techniques.
In a business environment with strict competition among firms, accurate demand forecasting is not straightforward. In this paper, a forecasting method is proposed, which has a strong capability of predicting highly fluctuating demand data. Therefore, in this paper we propose a demand forecasting method based on multi-layer LSTM networks. The proposed method automatically selects the best forecasting model by considering different combinations of LSTM hyperparameters for a given time series using the grid search method. It has the ability to capture nonlinear patterns in time series data, while considering the inherent characteristics of non-stationary time series data. The proposed method is compared with some well-known time series forecasting techniques from both statistical and computational intelligence methods using demand data of a furniture company. These methods include autoregressive integrated moving average (ARIMA), exponential smoothing (ETS), artificial neural network (ANN), K-nearest neighbors (KNN), recurrent neural network (RNN), support vector machines (SVM) and single layer LSTM. The experimental results indicate that the proposed method is superior among the tested methods in terms of performance measures. |
ArticleNumber | 106435 |
Author | Yousefi, Mohsen Abbasimehr, Hossein Shabani, Mostafa |
Author_xml | – sequence: 1 givenname: Hossein orcidid: 0000-0001-8615-5553 surname: Abbasimehr fullname: Abbasimehr, Hossein email: abbasimehr@azaruniv.ac.ir organization: Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran – sequence: 2 givenname: Mostafa orcidid: 0000-0001-7552-3525 surname: Shabani fullname: Shabani, Mostafa email: mshabani@mail.kntu.ac.ir organization: IT Group, Department of Industrial Engineering, KN Toosi University of Technology, Tehran, Iran – sequence: 3 givenname: Mohsen surname: Yousefi fullname: Yousefi, Mohsen email: m.yousefi@nilper.ir organization: Demand Planning and Logistic Department, NILPER FURNITURE, Tehran, Iran |
BookMark | eNp9kM1OwzAQhC1UJNrCA3DLC6TYSezEgktV8ScVcaCcLSe7Ri6NXdkGBE9PonLi0NPujuZbaWZGJs47JOSS0QWjTFxtF53FRUGL8RZVyU_IlDW1zCnndEKmtBQ0b0penJFZjFtKacUlm5Kbpcv8Ptne_iBkvQfcZR_Rurds_bJ5yhymLx_eM-NDBthrB-OKnY5p8JyTU6N3ES_-5py83t1uVg_5-vn-cbVc510h65SD1MDbChpD26IB2Va1BmmA1ZqXooIKWmzrruCsbARQiYYbKRojmBHYSl7OSX342wUfY0CjOpt0st6loO1OMarGEtR20FGNJahDCQPJ_pH7YHsdvo8y1wcGh0ifFoOKg8V1CHZInhR4e4T-Bcalds0 |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2023_119455 crossref_primary_10_1088_1742_6596_2675_1_012008 crossref_primary_10_1155_2024_5587728 crossref_primary_10_1016_j_aei_2023_101949 crossref_primary_10_1016_j_cie_2024_109964 crossref_primary_10_1109_TSM_2022_3187100 crossref_primary_10_1364_BOE_521059 crossref_primary_10_1002_for_3189 crossref_primary_10_1016_j_tust_2021_104245 crossref_primary_10_1007_s11356_022_20450_4 crossref_primary_10_1016_j_ymssp_2021_108488 crossref_primary_10_2166_wcc_2024_242 crossref_primary_10_1007_s10845_024_02442_y crossref_primary_10_1016_j_adhoc_2024_103643 crossref_primary_10_3390_info12020050 crossref_primary_10_3390_pr9071157 crossref_primary_10_3390_en17092041 crossref_primary_10_1109_JSEN_2024_3451349 crossref_primary_10_3390_pr9020247 crossref_primary_10_1007_s41870_024_02157_6 crossref_primary_10_1016_j_strusafe_2021_102098 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126042 crossref_primary_10_1002_adts_202200502 crossref_primary_10_3390_su14042382 crossref_primary_10_1016_j_heliyon_2024_e25034 crossref_primary_10_1051_e3sconf_202126801006 crossref_primary_10_1016_j_asoc_2022_108875 crossref_primary_10_1109_ACCESS_2022_3171843 crossref_primary_10_1016_j_procs_2023_01_317 crossref_primary_10_32417_1997_4868_2024_24_08_1093_1105 crossref_primary_10_1007_s00202_025_03034_6 crossref_primary_10_1016_j_resourpol_2021_102520 crossref_primary_10_1007_s00170_024_14916_7 crossref_primary_10_1016_j_jhydrol_2024_130942 crossref_primary_10_1016_j_cor_2024_106877 crossref_primary_10_1007_s12273_023_1091_4 crossref_primary_10_5937_jouproman2203093D crossref_primary_10_1007_s00521_021_06522_5 crossref_primary_10_1016_j_apenergy_2021_117880 crossref_primary_10_1016_j_eswa_2023_122461 crossref_primary_10_15575_join_v7i2_858 crossref_primary_10_1016_j_cie_2021_107598 crossref_primary_10_1109_ACCESS_2022_3193643 crossref_primary_10_1109_JSYST_2023_3310548 crossref_primary_10_1016_j_rineng_2024_103048 crossref_primary_10_3390_atmos14050899 crossref_primary_10_3389_fnins_2024_1379495 crossref_primary_10_1111_aab_12927 crossref_primary_10_1016_j_energy_2022_124752 crossref_primary_10_1007_s10489_021_02879_1 crossref_primary_10_1016_j_asoc_2024_111698 crossref_primary_10_3390_app14177658 crossref_primary_10_1016_j_apenergy_2021_117193 crossref_primary_10_1016_j_asoc_2022_109181 crossref_primary_10_7717_peerj_cs_1482 crossref_primary_10_1016_j_ijhydene_2024_08_205 crossref_primary_10_3390_app14166989 crossref_primary_10_1007_s12667_023_00579_y crossref_primary_10_1007_s42452_025_06478_4 crossref_primary_10_1155_2020_2143921 crossref_primary_10_1155_2022_1011595 crossref_primary_10_3390_jmse12081339 crossref_primary_10_1021_acsomega_3c06263 crossref_primary_10_1016_j_isatra_2020_12_024 crossref_primary_10_1016_j_energy_2021_120682 crossref_primary_10_1109_ACCESS_2023_3297143 crossref_primary_10_1080_23311932_2024_2340155 crossref_primary_10_1021_acsomega_4c09634 crossref_primary_10_1007_s11276_024_03650_3 crossref_primary_10_1080_08874417_2023_2240753 crossref_primary_10_1016_j_cam_2021_113760 crossref_primary_10_1007_s11831_022_09879_5 crossref_primary_10_3390_app14135556 crossref_primary_10_1007_s00521_022_07889_9 crossref_primary_10_1109_TIM_2022_3141154 crossref_primary_10_2478_picbe_2023_0154 crossref_primary_10_3390_app13158581 crossref_primary_10_1002_for_3034 crossref_primary_10_1016_j_egyr_2025_01_067 crossref_primary_10_1016_j_ress_2024_110291 crossref_primary_10_1109_ACCESS_2022_3179001 crossref_primary_10_1155_2021_9951607 crossref_primary_10_3390_app12157464 crossref_primary_10_3390_math12172652 crossref_primary_10_1007_s10614_024_10641_1 crossref_primary_10_1080_00207543_2021_1893853 crossref_primary_10_1002_ese3_799 crossref_primary_10_1016_j_ejdp_2021_100001 crossref_primary_10_1007_s10479_024_06446_y crossref_primary_10_1007_s13042_024_02157_9 crossref_primary_10_1007_s10479_021_04429_x crossref_primary_10_1016_j_enbuild_2022_111951 crossref_primary_10_1016_j_engappai_2023_106301 crossref_primary_10_3390_pr12112612 crossref_primary_10_1016_j_cie_2023_109667 crossref_primary_10_3390_pr11103011 crossref_primary_10_3390_s23146539 crossref_primary_10_1016_j_aei_2023_101966 crossref_primary_10_1016_j_eswa_2024_124409 crossref_primary_10_1016_j_iref_2024_01_070 crossref_primary_10_3389_fpubh_2022_894266 crossref_primary_10_31590_ejosat_1096898 crossref_primary_10_3390_su151813592 crossref_primary_10_1016_j_ijpe_2023_109029 crossref_primary_10_3390_app11156722 crossref_primary_10_1016_j_energy_2023_127459 crossref_primary_10_1016_j_ijhydene_2024_09_229 crossref_primary_10_1016_j_rser_2020_110450 crossref_primary_10_3390_s22166121 crossref_primary_10_1145_3715149 crossref_primary_10_3390_app11146367 crossref_primary_10_1016_j_jclepro_2023_139345 crossref_primary_10_1016_j_eswa_2020_114209 crossref_primary_10_1007_s11227_024_06493_z crossref_primary_10_1016_j_cie_2022_107970 crossref_primary_10_1016_j_ifacol_2022_09_499 crossref_primary_10_1016_j_eswa_2022_119483 crossref_primary_10_1061__ASCE_ME_1943_5479_0000995 crossref_primary_10_1086_728699 crossref_primary_10_3390_electronics13050993 crossref_primary_10_47836_mjms_18_2_11 crossref_primary_10_1002_cpe_6908 crossref_primary_10_3390_smartcities7010022 crossref_primary_10_1007_s10845_021_01737_8 crossref_primary_10_1007_s11042_024_18298_6 crossref_primary_10_1016_j_renene_2024_121955 crossref_primary_10_1016_j_chaos_2020_110511 crossref_primary_10_1007_s12525_021_00503_1 crossref_primary_10_1115_1_4053141 crossref_primary_10_3390_en17081947 crossref_primary_10_1007_s11277_023_10742_4 crossref_primary_10_1007_s12145_024_01414_3 crossref_primary_10_1021_acsestwater_2c00517 crossref_primary_10_1109_TNNLS_2023_3291371 crossref_primary_10_1016_j_cie_2023_109602 crossref_primary_10_1016_j_ijbiomac_2024_134701 crossref_primary_10_1016_j_foodchem_2024_139558 crossref_primary_10_3390_math12040573 crossref_primary_10_1016_j_renene_2024_121174 crossref_primary_10_1007_s11356_022_20718_9 crossref_primary_10_1016_j_enpol_2022_113097 crossref_primary_10_1007_s00521_021_06548_9 crossref_primary_10_1111_deci_12648 crossref_primary_10_3390_a14030083 crossref_primary_10_1016_j_cie_2022_108364 crossref_primary_10_1080_10407790_2023_2280745 crossref_primary_10_1016_j_cie_2021_107531 crossref_primary_10_1007_s11356_022_23084_8 crossref_primary_10_3390_s22207774 crossref_primary_10_2166_h2oj_2022_134 crossref_primary_10_1115_1_4052838 crossref_primary_10_1587_transinf_2021EDP7138 crossref_primary_10_1007_s10614_025_10899_z crossref_primary_10_1016_j_compeleceng_2023_108830 crossref_primary_10_1002_asmb_2907 crossref_primary_10_14801_jkiit_2020_18_9_9 crossref_primary_10_4018_JGIM_361589 crossref_primary_10_1016_j_laa_2024_06_002 crossref_primary_10_12677_CSA_2022_122029 crossref_primary_10_1016_j_cie_2023_109862 crossref_primary_10_1002_itl2_579 crossref_primary_10_1016_j_ress_2024_110188 crossref_primary_10_3390_met14050529 crossref_primary_10_59294_HIUJS_VOL_5_2023_552 crossref_primary_10_1016_j_jclepro_2021_126832 crossref_primary_10_1016_j_sca_2023_100026 crossref_primary_10_3390_su16219608 crossref_primary_10_3390_math10132158 crossref_primary_10_1016_j_engfailanal_2021_105446 crossref_primary_10_1016_j_renene_2022_09_058 crossref_primary_10_1016_j_apenergy_2024_124027 crossref_primary_10_1080_15567036_2022_2157520 crossref_primary_10_17341_gazimmfd_1089173 crossref_primary_10_1007_s11708_023_0891_7 crossref_primary_10_4018_IRMJ_291692 crossref_primary_10_1103_PRXEnergy_4_013003 crossref_primary_10_1016_j_ipm_2023_103466 crossref_primary_10_1049_tje2_12356 crossref_primary_10_1109_ACCESS_2024_3396695 crossref_primary_10_3390_jmse12111943 crossref_primary_10_1016_j_rinp_2022_105374 crossref_primary_10_3390_make6040128 crossref_primary_10_1016_j_future_2023_11_036 crossref_primary_10_1016_j_ijforecast_2023_12_006 crossref_primary_10_3233_IDT_240680 crossref_primary_10_1088_1742_6596_2526_1_012071 crossref_primary_10_3390_su132313050 crossref_primary_10_1016_j_bspc_2024_106841 crossref_primary_10_3390_electronics11040652 crossref_primary_10_1002_asmb_2685 crossref_primary_10_1016_j_buildenv_2021_108525 crossref_primary_10_1016_j_techfore_2023_123093 crossref_primary_10_1016_j_cie_2022_108231 crossref_primary_10_1016_j_jenvman_2024_123173 crossref_primary_10_1016_j_egyr_2022_06_007 crossref_primary_10_1007_s13157_022_01615_w crossref_primary_10_3390_s24082652 crossref_primary_10_1109_ACCESS_2021_3080294 crossref_primary_10_7250_itms_2020_0004 crossref_primary_10_1016_j_rineng_2022_100365 crossref_primary_10_1016_j_cie_2021_107625 crossref_primary_10_24136_eq_2022_024 crossref_primary_10_3390_e26030215 crossref_primary_10_1080_19427867_2024_2404358 crossref_primary_10_1016_j_jenvman_2024_120131 crossref_primary_10_1016_j_egyr_2025_02_015 crossref_primary_10_1021_acsomega_0c06317 crossref_primary_10_1016_j_cie_2022_108440 crossref_primary_10_1007_s00180_024_01595_x crossref_primary_10_1007_s00704_021_03819_2 crossref_primary_10_1016_j_eswa_2025_126812 crossref_primary_10_1088_2632_2153_ac9a9d crossref_primary_10_1007_s11227_023_05562_z crossref_primary_10_53941_jadc_2024_100005 crossref_primary_10_1016_j_heliyon_2023_e16827 crossref_primary_10_1016_j_chaos_2020_110017 crossref_primary_10_1177_01445987241269496 crossref_primary_10_1109_ACCESS_2022_3182499 crossref_primary_10_1016_j_knosys_2022_109608 crossref_primary_10_3390_atmos16010023 crossref_primary_10_1016_j_ipm_2023_103569 crossref_primary_10_1016_j_jrmge_2023_06_010 crossref_primary_10_3390_logistics7040086 crossref_primary_10_1029_2023GL106042 crossref_primary_10_1016_j_eswa_2024_126302 crossref_primary_10_1016_j_procs_2022_01_298 crossref_primary_10_1016_j_cie_2022_108777 crossref_primary_10_1016_j_mlwa_2025_100623 crossref_primary_10_1007_s00521_024_10672_7 crossref_primary_10_1016_j_resourpol_2021_102417 crossref_primary_10_1016_j_cie_2024_110770 crossref_primary_10_1155_2024_7800284 crossref_primary_10_3390_app14188110 crossref_primary_10_1002_for_3201 crossref_primary_10_1007_s10489_020_02031_5 crossref_primary_10_3390_app13095475 crossref_primary_10_1002_mma_7500 crossref_primary_10_2166_wpt_2024_166 crossref_primary_10_56554_jtom_1036107 crossref_primary_10_1007_s11269_022_03381_0 crossref_primary_10_1038_s41598_022_21463_2 crossref_primary_10_30783_nevsosbilen_987093 crossref_primary_10_1016_j_epsr_2021_107761 crossref_primary_10_3390_su141711086 crossref_primary_10_3233_JIFS_201953 crossref_primary_10_3390_s23167182 crossref_primary_10_1016_j_fss_2023_108657 crossref_primary_10_2174_0126671212356139241101070347 crossref_primary_10_1007_s11227_022_04817_5 crossref_primary_10_1080_0952813X_2022_2093407 crossref_primary_10_1142_S0218488523500228 crossref_primary_10_1155_2023_3717035 crossref_primary_10_1007_s42979_023_01977_w crossref_primary_10_1007_s10586_024_04909_2 crossref_primary_10_1016_j_eswa_2022_117584 crossref_primary_10_1007_s12652_020_02761_x crossref_primary_10_3390_pr9071166 crossref_primary_10_1109_ACCESS_2020_3018116 |
Cites_doi | 10.1016/j.ijforecast.2010.09.005 10.1016/j.neucom.2017.05.063 10.1016/j.apm.2014.10.065 10.1016/j.apm.2010.03.036 10.1007/s12351-015-0197-6 10.1162/neco.1997.9.8.1735 10.1007/s00521-004-0413-4 10.1007/s00521-016-2475-5 10.1016/j.jfranklin.2014.12.015 10.1162/08997660260293319 10.1016/j.jhydrol.2011.10.026 10.21236/ADA164453 10.1016/j.procs.2015.04.167 10.1016/j.asoc.2016.07.053 10.1016/j.asoc.2010.10.015 10.1016/j.apenergy.2012.04.001 10.1016/j.apenergy.2017.08.192 10.1016/j.cie.2018.04.042 10.1016/j.neucom.2018.09.082 10.1016/j.asoc.2016.02.029 10.1016/j.cie.2017.05.002 10.1109/IJCNN.2011.6033535 10.1114/B:ABME.0000042223.87320.de 10.1108/IJICC-11-2018-0152 10.1016/j.asoc.2014.05.028 10.1016/j.indmarman.2019.05.003 10.1016/j.jclepro.2019.01.108 10.1016/j.eswa.2018.03.005 10.1287/mnsc.1070.0786 10.1016/j.annals.2019.01.014 10.1016/0304-4076(87)90085-6 10.1016/j.rcim.2014.12.015 10.1109/72.279181 10.1504/IJDMMM.2019.098969 10.1016/j.eswa.2012.01.039 10.1016/j.engappai.2017.07.007 10.1109/TNNLS.2016.2582924 10.1016/0167-2789(93)90009-P 10.1016/j.neucom.2009.09.020 10.1007/s11071-009-9535-7 10.1016/j.ins.2019.01.076 10.1016/j.ijpe.2010.07.003 10.1016/j.neucom.2019.05.099 10.1016/j.neucom.2015.07.113 10.1016/j.cie.2018.02.007 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cie.2020.106435 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-0550 |
ExternalDocumentID | 10_1016_j_cie_2020_106435 S0360835220301698 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-d9ad5b4d8f0b28d9b47ad9fd17a5364d4dbeb7c251386d09ef5f968f61f6eb953 |
IEDL.DBID | .~1 |
ISSN | 0360-8352 |
IngestDate | Thu Apr 24 22:54:53 EDT 2025 Tue Jul 01 02:59:48 EDT 2025 Fri Feb 23 02:50:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Time series forecasting Statistical methods LSTM RNN Demand prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-d9ad5b4d8f0b28d9b47ad9fd17a5364d4dbeb7c251386d09ef5f968f61f6eb953 |
ORCID | 0000-0001-7552-3525 0000-0001-8615-5553 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cie_2020_106435 crossref_primary_10_1016_j_cie_2020_106435 elsevier_sciencedirect_doi_10_1016_j_cie_2020_106435 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationTitle | Computers & industrial engineering |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Murray, Agard, Barajas (b0200) 2018; 118 Demšar (b0060) 2006; 7 Ramos, Santos, Rebelo (b0220) 2015; 34 Haberleitner, Meyr, Taudes (b0090) 2010; 128 Raza, Nadarajah, Ekanayake (b0225) 2017; 208 Chen, Yang, Liu, Li, Li (b0045) 2015; 39 Chollet, F. (2015). Keras. Khashei, Bijari (b0135) 2011; 11 Bengio, Simard, Frasconi (b0030) 1994; 5 Lemke, Gabrys (b0165) 2010; 73 Martínez, Frías, Pérez-Godoy, Rivera (b0185) 2018; 103 Parmezan, Souza, Batista (b0210) 2019; 484 Lin, Hu, Tsai (b0170) 2011; 42 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0275) 2014; 15 Law, Li, Fong, Han (b0160) 2019; 75 Khandelwal, Adhikari, Verma (b0130) 2015; 48 Ghorbani, Kisi, Aalinezhad (b0075) 2010; 34 Maqsood, Khan, Abraham (b0180) 2004; 13 Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., . . . Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995. Yang, Chen, Wang, Li, Li (b0320) 2016; 49 Yang, Chen, Jiang (b0315) 2015; 352 Laszuk (b0155) 2017 Utgoff, Stracuzzi (b0290) 2002; 14 Salisbury, Sun (b0255) 2004; 32 Han, Kamber, Pei (b0095) 2011 McCue, Troesch (b0195) 2011 Hyndman, Koehler, Ord, Snyder (b0115) 2008 Khatibi, Sivakumar, Ghorbani, Kisi, Koçak, Farsadi Zadeh (b0140) 2012; 414–415 Box, Jenkins, Reinsel, Ljung (b0035) 2015 Adhikari, R., & Agrawal, R. K. (2013). An introductory study on time series modeling and forecasting. arXiv preprint arXiv:1302.6613. Andrawis, Atiya, El-Shishiny (b0010) 2011; 27 Greff, Srivastava, Koutník, Steunebrink, Schmidhuber (b0080) 2017; 28 Atsalakis, Protopapadakis, Valavanis (b0020) 2016; 16 Rosenstein, Collins, De Luca (b0240) 1993; 65 Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. Guo, Diao, Zhao, Wang, Sun (b0085) 2017; 110 Liu, Tian, Li (b0175) 2012; 98 Büyükşahin, Ertekin (b0040) 2019; 361 Engle, Yoo (b0070) 1987; 35 Martínez, Frías, Pérez, Rivera (b0190) 2017 Enders (b0065) 2008 Reimers, N., & Gurevych, I. (2017). Optimal hyperparameters for deep lstm-networks for sequence labeling tasks. arXiv preprint arXiv:1707.06799. Xin, Ji, Chao (b0305) 2018; 44 Sarıca, Eğrioğlu, Aşıkgil (b0260) 2018; 29 Protopapadakis, Niklis, Doumpos, Doulamis, Zopounidis (b0215) 2019; 11 Sheskin (b0265) 2003 Johannesen, Kolhe, Goodwin (b0125) 2019; 218 Panigrahi, Behera (b0205) 2017; 66 Hyndman, R. J., & Akram, M. (2010). Time series data library. Available from Internet: http://robjhyndman. com/TSDL. Taylor (b0285) 2008; 54 Yang, Wu (b0310) 2010; 59 Sagheer, Kotb (b0250) 2019; 323 Hermans, M., & Schrauwen, B. (2013). Training and analysing deep recurrent neural networks. Paper presented at the Advances in neural information processing systems. Ribeiro, G. H. T., Neto, P. S. G. d. M., Cavalcanti, G. D. C., & Tsang, I. R. (2011, 31 July-5 Aug. 2011). Lag selection for time series forecasting using Particle Swarm Optimization. Paper presented at the The 2011 International Joint Conference on Neural Networks. Villegas, Pedregal, Trapero (b0295) 2018; 121 Atsalakis (b0015) 2016; 43 Taieb, Bontempi, Atiya, Sorjamaa (b0280) 2012; 39 Wu, Yuan, Dong, Lin, Liu (b0300) 2018; 275 Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation: California Univ San Diego La Jolla Inst for Cognitive Science. Kumar, Shankar, Alijohani (b0150) 2019 de Oliveira, Ludermir (b0055) 2016; 180 Shi, Hu, Zhang (b0270) 2019; 12 Hochreiter, Schmidhuber (b0105) 1997; 9 Babu, Reddy (b0025) 2014; 23 Andrawis (10.1016/j.cie.2020.106435_b0010) 2011; 27 10.1016/j.cie.2020.106435_b0120 Ramos (10.1016/j.cie.2020.106435_b0220) 2015; 34 Yang (10.1016/j.cie.2020.106435_b0310) 2010; 59 Haberleitner (10.1016/j.cie.2020.106435_b0090) 2010; 128 10.1016/j.cie.2020.106435_b0245 Maqsood (10.1016/j.cie.2020.106435_b0180) 2004; 13 10.1016/j.cie.2020.106435_b0005 Martínez (10.1016/j.cie.2020.106435_b0185) 2018; 103 Han (10.1016/j.cie.2020.106435_b0095) 2011 Law (10.1016/j.cie.2020.106435_b0160) 2019; 75 Büyükşahin (10.1016/j.cie.2020.106435_b0040) 2019; 361 Murray (10.1016/j.cie.2020.106435_b0200) 2018; 118 Johannesen (10.1016/j.cie.2020.106435_b0125) 2019; 218 Hochreiter (10.1016/j.cie.2020.106435_b0105) 1997; 9 Shi (10.1016/j.cie.2020.106435_b0270) 2019; 12 10.1016/j.cie.2020.106435_b0050 Khatibi (10.1016/j.cie.2020.106435_b0140) 2012; 414–415 Bengio (10.1016/j.cie.2020.106435_b0030) 1994; 5 Engle (10.1016/j.cie.2020.106435_b0070) 1987; 35 Taieb (10.1016/j.cie.2020.106435_b0280) 2012; 39 Salisbury (10.1016/j.cie.2020.106435_b0255) 2004; 32 Chen (10.1016/j.cie.2020.106435_b0045) 2015; 39 Taylor (10.1016/j.cie.2020.106435_b0285) 2008; 54 Panigrahi (10.1016/j.cie.2020.106435_b0205) 2017; 66 Ghorbani (10.1016/j.cie.2020.106435_b0075) 2010; 34 Utgoff (10.1016/j.cie.2020.106435_b0290) 2002; 14 Kumar (10.1016/j.cie.2020.106435_b0150) 2019 Martínez (10.1016/j.cie.2020.106435_b0190) 2017 Protopapadakis (10.1016/j.cie.2020.106435_b0215) 2019; 11 Khashei (10.1016/j.cie.2020.106435_b0135) 2011; 11 Parmezan (10.1016/j.cie.2020.106435_b0210) 2019; 484 Greff (10.1016/j.cie.2020.106435_b0080) 2017; 28 Lin (10.1016/j.cie.2020.106435_b0170) 2011; 42 Wu (10.1016/j.cie.2020.106435_b0300) 2018; 275 Sagheer (10.1016/j.cie.2020.106435_b0250) 2019; 323 Yang (10.1016/j.cie.2020.106435_b0320) 2016; 49 Liu (10.1016/j.cie.2020.106435_b0175) 2012; 98 10.1016/j.cie.2020.106435_b0100 Sheskin (10.1016/j.cie.2020.106435_b0265) 2003 10.1016/j.cie.2020.106435_b0145 Atsalakis (10.1016/j.cie.2020.106435_b0020) 2016; 16 Atsalakis (10.1016/j.cie.2020.106435_b0015) 2016; 43 Babu (10.1016/j.cie.2020.106435_b0025) 2014; 23 Demšar (10.1016/j.cie.2020.106435_b0060) 2006; 7 Srivastava (10.1016/j.cie.2020.106435_b0275) 2014; 15 Enders (10.1016/j.cie.2020.106435_b0065) 2008 Hyndman (10.1016/j.cie.2020.106435_b0115) 2008 Villegas (10.1016/j.cie.2020.106435_b0295) 2018; 121 10.1016/j.cie.2020.106435_b0230 10.1016/j.cie.2020.106435_b0110 Guo (10.1016/j.cie.2020.106435_b0085) 2017; 110 10.1016/j.cie.2020.106435_b0235 Lemke (10.1016/j.cie.2020.106435_b0165) 2010; 73 Khandelwal (10.1016/j.cie.2020.106435_b0130) 2015; 48 Sarıca (10.1016/j.cie.2020.106435_b0260) 2018; 29 McCue (10.1016/j.cie.2020.106435_b0195) 2011 Box (10.1016/j.cie.2020.106435_b0035) 2015 Yang (10.1016/j.cie.2020.106435_b0315) 2015; 352 Rosenstein (10.1016/j.cie.2020.106435_b0240) 1993; 65 Xin (10.1016/j.cie.2020.106435_b0305) 2018; 44 Raza (10.1016/j.cie.2020.106435_b0225) 2017; 208 Laszuk (10.1016/j.cie.2020.106435_b0155) de Oliveira (10.1016/j.cie.2020.106435_b0055) 2016; 180 |
References_xml | – volume: 361 start-page: 151 year: 2019 end-page: 163 ident: b0040 article-title: Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition publication-title: Neurocomputing – start-page: 1 year: 2017 end-page: 19 ident: b0190 article-title: A methodology for applying k-nearest neighbor to time series forecasting publication-title: Artificial Intelligence Review – year: 2008 ident: b0065 article-title: Applied econometric time series – volume: 49 start-page: 663 year: 2016 end-page: 675 ident: b0320 article-title: Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting publication-title: Applied Soft Computing – volume: 35 start-page: 143 year: 1987 end-page: 159 ident: b0070 article-title: Forecasting and testing in co-integrated systems publication-title: Journal of econometrics – volume: 75 start-page: 410 year: 2019 end-page: 423 ident: b0160 article-title: Tourism demand forecasting: A deep learning approach publication-title: Annals of Tourism Research – volume: 275 start-page: 167 year: 2018 end-page: 179 ident: b0300 article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks publication-title: Neurocomputing – volume: 484 start-page: 302 year: 2019 end-page: 337 ident: b0210 article-title: Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model publication-title: Information Sciences – volume: 12 start-page: 274 year: 2019 end-page: 291 ident: b0270 article-title: LSTM based prediction algorithm and abnormal change detection for temperature in aerospace gyroscope shell publication-title: International Journal of Intelligent Computing and Cybernetics – volume: 110 start-page: 92 year: 2017 end-page: 108 ident: b0085 article-title: A double-level combination approach for demand forecasting of repairable airplane spare parts based on turnover data publication-title: Computers & Industrial Engineering – volume: 11 start-page: 2664 year: 2011 end-page: 2675 ident: b0135 article-title: A novel hybridization of artificial neural networks and ARIMA models for time series forecasting publication-title: Applied Soft Computing – year: 2015 ident: b0035 article-title: Time series analysis: Forecasting and control – volume: 34 start-page: 151 year: 2015 end-page: 163 ident: b0220 article-title: Performance of state space and ARIMA models for consumer retail sales forecasting publication-title: Robotics and Computer-Integrated Manufacturing – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0105 article-title: Long short-term memory publication-title: Neural Computation – volume: 103 start-page: 38 year: 2018 end-page: 48 ident: b0185 article-title: Dealing with seasonality by narrowing the training set in time series forecasting with kNN publication-title: Expert Systems with Applications – reference: Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., . . . Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b0275 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: The Journal of Machine Learning Research – reference: Reimers, N., & Gurevych, I. (2017). Optimal hyperparameters for deep lstm-networks for sequence labeling tasks. arXiv preprint arXiv:1707.06799. – volume: 14 start-page: 2497 year: 2002 end-page: 2529 ident: b0290 article-title: Many-layered learning publication-title: Neural Computation – volume: 39 start-page: 2617 year: 2015 end-page: 2632 ident: b0045 article-title: A hybrid application algorithm based on the support vector machine and artificial intelligence: An example of electric load forecasting publication-title: Applied Mathematical Modelling – volume: 48 start-page: 173 year: 2015 end-page: 179 ident: b0130 article-title: Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition publication-title: Procedia Computer Science – volume: 121 start-page: 1 year: 2018 end-page: 7 ident: b0295 article-title: A support vector machine for model selection in demand forecasting applications publication-title: Computers & Industrial Engineering – volume: 44 start-page: 772 year: 2018 end-page: 784 ident: b0305 article-title: Exploring LSTM based recurrent neural network for failures time series prediction publication-title: Journal of Beijing Unversity of Aeronautics and Astronautics – reference: Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. – reference: Chollet, F. (2015). Keras. – volume: 42 start-page: 421 year: 2011 end-page: 436 ident: b0170 article-title: Machine learning in financial crisis prediction: A survey publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) – reference: Hyndman, R. J., & Akram, M. (2010). Time series data library. Available from Internet: http://robjhyndman. com/TSDL. – volume: 180 start-page: 27 year: 2016 end-page: 34 ident: b0055 article-title: A hybrid evolutionary decomposition system for time series forecasting publication-title: Neurocomputing – volume: 11 start-page: 103 year: 2019 end-page: 128 ident: b0215 article-title: Sample selection algorithms for credit risk modelling through data mining techniques publication-title: International Journal of Data Mining, Modelling and Management – volume: 128 start-page: 518 year: 2010 end-page: 526 ident: b0090 article-title: Implementation of a demand planning system using advance order information publication-title: International Journal of Production Economics – volume: 29 start-page: 749 year: 2018 end-page: 760 ident: b0260 article-title: A new hybrid method for time series forecasting: AR–ANFIS publication-title: Neural Computing and Applications – volume: 414–415 start-page: 108 year: 2012 end-page: 117 ident: b0140 article-title: Investigating chaos in river stage and discharge time series publication-title: Journal of Hydrology – volume: 352 start-page: 3378 year: 2015 end-page: 3393 ident: b0315 article-title: Nonlinear response prediction of cracked rotor based on EMD publication-title: Journal of the Franklin Institute – year: 2003 ident: b0265 article-title: Handbook of parametric and nonparametric statistical procedures – reference: Hermans, M., & Schrauwen, B. (2013). Training and analysing deep recurrent neural networks. Paper presented at the Advances in neural information processing systems. – reference: Ribeiro, G. H. T., Neto, P. S. G. d. M., Cavalcanti, G. D. C., & Tsang, I. R. (2011, 31 July-5 Aug. 2011). Lag selection for time series forecasting using Particle Swarm Optimization. Paper presented at the The 2011 International Joint Conference on Neural Networks. – volume: 73 start-page: 2006 year: 2010 end-page: 2016 ident: b0165 article-title: Meta-learning for time series forecasting and forecast combination publication-title: Neurocomputing – volume: 13 start-page: 112 year: 2004 end-page: 122 ident: b0180 article-title: An ensemble of neural networks for weather forecasting publication-title: Neural Computing & Applications – volume: 39 start-page: 7067 year: 2012 end-page: 7083 ident: b0280 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Systems with Applications – year: 2017 ident: b0155 article-title: Python implementation of Empirical Mode Decomposition algorithm – volume: 16 start-page: 245 year: 2016 end-page: 269 ident: b0020 article-title: Stock trend forecasting in turbulent market periods using neuro-fuzzy systems publication-title: Operational Research – volume: 118 start-page: 33 year: 2018 end-page: 43 ident: b0200 article-title: Forecast of individual customer’s demand from a large and noisy dataset publication-title: Computers & Industrial Engineering – year: 2011 ident: b0095 article-title: Data Mining: Concepts and Techniques: Concepts and Techniques – volume: 43 start-page: 107 year: 2016 end-page: 116 ident: b0015 article-title: Using computational intelligence to forecast carbon prices publication-title: Applied Soft Computing – volume: 23 start-page: 27 year: 2014 end-page: 38 ident: b0025 article-title: A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data publication-title: Applied Soft Computing – year: 2008 ident: b0115 article-title: Forecasting with exponential smoothing: The state space approach – volume: 66 start-page: 49 year: 2017 end-page: 59 ident: b0205 article-title: A hybrid ETS–ANN model for time series forecasting publication-title: Engineering Applications of Artificial Intelligence – reference: Adhikari, R., & Agrawal, R. K. (2013). An introductory study on time series modeling and forecasting. arXiv preprint arXiv:1302.6613. – volume: 28 start-page: 2222 year: 2017 end-page: 2232 ident: b0080 article-title: LSTM: A Search Space Odyssey publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 98 start-page: 415 year: 2012 end-page: 424 ident: b0175 article-title: Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction publication-title: Applied Energy – start-page: 415 year: 2011 end-page: 432 ident: b0195 article-title: Use of Lyapunov exponents to predict chaotic vessel motions – volume: 323 start-page: 203 year: 2019 end-page: 213 ident: b0250 article-title: Time series forecasting of petroleum production using deep LSTM recurrent networks publication-title: Neurocomputing – volume: 34 start-page: 4050 year: 2010 end-page: 4057 ident: b0075 article-title: A probe into the chaotic nature of daily streamflow time series by correlation dimension and largest Lyapunov methods publication-title: Applied Mathematical Modelling – volume: 5 start-page: 157 year: 1994 end-page: 166 ident: b0030 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Transactions on Neural Networks – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b0060 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 208 start-page: 1626 year: 2017 end-page: 1638 ident: b0225 article-title: Demand forecast of PV integrated bioclimatic buildings using ensemble framework publication-title: Applied Energy – volume: 32 start-page: 1348 year: 2004 end-page: 1354 ident: b0255 article-title: Assessment of chaotic parameters in nonstationary electrocardiograms by use of empirical mode decomposition publication-title: Annals of Biomedical Engineering – volume: 54 start-page: 253 year: 2008 end-page: 265 ident: b0285 article-title: A comparison of univariate time series methods for forecasting intraday arrivals at a call center publication-title: Management Science – volume: 218 start-page: 555 year: 2019 end-page: 564 ident: b0125 article-title: Relative evaluation of regression tools for urban area electrical energy demand forecasting publication-title: Journal of Cleaner Production – volume: 27 start-page: 672 year: 2011 end-page: 688 ident: b0010 article-title: Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition publication-title: International Journal of Forecasting – reference: Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation: California Univ San Diego La Jolla Inst for Cognitive Science. – year: 2019 ident: b0150 article-title: A big data driven framework for demand-driven forecasting with effects of marketing-mix variables publication-title: Industrial Marketing Management – volume: 59 start-page: 239 year: 2010 ident: b0310 article-title: On stability analysis via Lyapunov exponents calculated from a time series using nonlinear mapping—a case study publication-title: Nonlinear Dynamics – volume: 65 start-page: 117 year: 1993 end-page: 134 ident: b0240 article-title: A practical method for calculating largest Lyapunov exponents from small data sets publication-title: Physica D: Nonlinear Phenomena – volume: 27 start-page: 672 issue: 3 year: 2011 ident: 10.1016/j.cie.2020.106435_b0010 article-title: Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2010.09.005 – volume: 275 start-page: 167 year: 2018 ident: 10.1016/j.cie.2020.106435_b0300 article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.063 – volume: 39 start-page: 2617 issue: 9 year: 2015 ident: 10.1016/j.cie.2020.106435_b0045 article-title: A hybrid application algorithm based on the support vector machine and artificial intelligence: An example of electric load forecasting publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2014.10.065 – year: 2015 ident: 10.1016/j.cie.2020.106435_b0035 – volume: 34 start-page: 4050 issue: 12 year: 2010 ident: 10.1016/j.cie.2020.106435_b0075 article-title: A probe into the chaotic nature of daily streamflow time series by correlation dimension and largest Lyapunov methods publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2010.03.036 – volume: 16 start-page: 245 issue: 2 year: 2016 ident: 10.1016/j.cie.2020.106435_b0020 article-title: Stock trend forecasting in turbulent market periods using neuro-fuzzy systems publication-title: Operational Research doi: 10.1007/s12351-015-0197-6 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.cie.2020.106435_b0060 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – start-page: 415 year: 2011 ident: 10.1016/j.cie.2020.106435_b0195 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.cie.2020.106435_b0105 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 44 start-page: 772 issue: 4 year: 2018 ident: 10.1016/j.cie.2020.106435_b0305 article-title: Exploring LSTM based recurrent neural network for failures time series prediction publication-title: Journal of Beijing Unversity of Aeronautics and Astronautics – volume: 13 start-page: 112 issue: 2 year: 2004 ident: 10.1016/j.cie.2020.106435_b0180 article-title: An ensemble of neural networks for weather forecasting publication-title: Neural Computing & Applications doi: 10.1007/s00521-004-0413-4 – volume: 29 start-page: 749 issue: 3 year: 2018 ident: 10.1016/j.cie.2020.106435_b0260 article-title: A new hybrid method for time series forecasting: AR–ANFIS publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2475-5 – ident: 10.1016/j.cie.2020.106435_b0230 – volume: 352 start-page: 3378 issue: 8 year: 2015 ident: 10.1016/j.cie.2020.106435_b0315 article-title: Nonlinear response prediction of cracked rotor based on EMD publication-title: Journal of the Franklin Institute doi: 10.1016/j.jfranklin.2014.12.015 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.cie.2020.106435_b0275 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: The Journal of Machine Learning Research – volume: 14 start-page: 2497 issue: 10 year: 2002 ident: 10.1016/j.cie.2020.106435_b0290 article-title: Many-layered learning publication-title: Neural Computation doi: 10.1162/08997660260293319 – volume: 414–415 start-page: 108 year: 2012 ident: 10.1016/j.cie.2020.106435_b0140 article-title: Investigating chaos in river stage and discharge time series publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2011.10.026 – ident: 10.1016/j.cie.2020.106435_b0245 doi: 10.21236/ADA164453 – volume: 48 start-page: 173 year: 2015 ident: 10.1016/j.cie.2020.106435_b0130 article-title: Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.04.167 – volume: 49 start-page: 663 year: 2016 ident: 10.1016/j.cie.2020.106435_b0320 article-title: Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.07.053 – volume: 11 start-page: 2664 issue: 2 year: 2011 ident: 10.1016/j.cie.2020.106435_b0135 article-title: A novel hybridization of artificial neural networks and ARIMA models for time series forecasting publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2010.10.015 – start-page: 1 year: 2017 ident: 10.1016/j.cie.2020.106435_b0190 article-title: A methodology for applying k-nearest neighbor to time series forecasting publication-title: Artificial Intelligence Review – volume: 98 start-page: 415 year: 2012 ident: 10.1016/j.cie.2020.106435_b0175 article-title: Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction publication-title: Applied Energy doi: 10.1016/j.apenergy.2012.04.001 – volume: 208 start-page: 1626 year: 2017 ident: 10.1016/j.cie.2020.106435_b0225 article-title: Demand forecast of PV integrated bioclimatic buildings using ensemble framework publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.08.192 – ident: 10.1016/j.cie.2020.106435_b0145 – volume: 121 start-page: 1 year: 2018 ident: 10.1016/j.cie.2020.106435_b0295 article-title: A support vector machine for model selection in demand forecasting applications publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.04.042 – volume: 323 start-page: 203 year: 2019 ident: 10.1016/j.cie.2020.106435_b0250 article-title: Time series forecasting of petroleum production using deep LSTM recurrent networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.082 – volume: 43 start-page: 107 year: 2016 ident: 10.1016/j.cie.2020.106435_b0015 article-title: Using computational intelligence to forecast carbon prices publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.02.029 – volume: 110 start-page: 92 year: 2017 ident: 10.1016/j.cie.2020.106435_b0085 article-title: A double-level combination approach for demand forecasting of repairable airplane spare parts based on turnover data publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2017.05.002 – volume: 42 start-page: 421 issue: 4 year: 2011 ident: 10.1016/j.cie.2020.106435_b0170 article-title: Machine learning in financial crisis prediction: A survey publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) – ident: 10.1016/j.cie.2020.106435_b0235 doi: 10.1109/IJCNN.2011.6033535 – ident: 10.1016/j.cie.2020.106435_b0120 – volume: 32 start-page: 1348 issue: 10 year: 2004 ident: 10.1016/j.cie.2020.106435_b0255 article-title: Assessment of chaotic parameters in nonstationary electrocardiograms by use of empirical mode decomposition publication-title: Annals of Biomedical Engineering doi: 10.1114/B:ABME.0000042223.87320.de – volume: 12 start-page: 274 issue: 2 year: 2019 ident: 10.1016/j.cie.2020.106435_b0270 article-title: LSTM based prediction algorithm and abnormal change detection for temperature in aerospace gyroscope shell publication-title: International Journal of Intelligent Computing and Cybernetics doi: 10.1108/IJICC-11-2018-0152 – volume: 23 start-page: 27 year: 2014 ident: 10.1016/j.cie.2020.106435_b0025 article-title: A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.05.028 – ident: 10.1016/j.cie.2020.106435_b0110 – ident: 10.1016/j.cie.2020.106435_b0100 – year: 2019 ident: 10.1016/j.cie.2020.106435_b0150 article-title: A big data driven framework for demand-driven forecasting with effects of marketing-mix variables publication-title: Industrial Marketing Management doi: 10.1016/j.indmarman.2019.05.003 – year: 2008 ident: 10.1016/j.cie.2020.106435_b0115 – volume: 218 start-page: 555 year: 2019 ident: 10.1016/j.cie.2020.106435_b0125 article-title: Relative evaluation of regression tools for urban area electrical energy demand forecasting publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2019.01.108 – volume: 103 start-page: 38 year: 2018 ident: 10.1016/j.cie.2020.106435_b0185 article-title: Dealing with seasonality by narrowing the training set in time series forecasting with kNN publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.03.005 – volume: 54 start-page: 253 issue: 2 year: 2008 ident: 10.1016/j.cie.2020.106435_b0285 article-title: A comparison of univariate time series methods for forecasting intraday arrivals at a call center publication-title: Management Science doi: 10.1287/mnsc.1070.0786 – volume: 75 start-page: 410 year: 2019 ident: 10.1016/j.cie.2020.106435_b0160 article-title: Tourism demand forecasting: A deep learning approach publication-title: Annals of Tourism Research doi: 10.1016/j.annals.2019.01.014 – volume: 35 start-page: 143 issue: 1 year: 1987 ident: 10.1016/j.cie.2020.106435_b0070 article-title: Forecasting and testing in co-integrated systems publication-title: Journal of econometrics doi: 10.1016/0304-4076(87)90085-6 – volume: 34 start-page: 151 year: 2015 ident: 10.1016/j.cie.2020.106435_b0220 article-title: Performance of state space and ARIMA models for consumer retail sales forecasting publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/j.rcim.2014.12.015 – volume: 5 start-page: 157 issue: 2 year: 1994 ident: 10.1016/j.cie.2020.106435_b0030 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.279181 – year: 2003 ident: 10.1016/j.cie.2020.106435_b0265 – volume: 11 start-page: 103 issue: 2 year: 2019 ident: 10.1016/j.cie.2020.106435_b0215 article-title: Sample selection algorithms for credit risk modelling through data mining techniques publication-title: International Journal of Data Mining, Modelling and Management doi: 10.1504/IJDMMM.2019.098969 – volume: 39 start-page: 7067 issue: 8 year: 2012 ident: 10.1016/j.cie.2020.106435_b0280 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.01.039 – ident: 10.1016/j.cie.2020.106435_b0005 – volume: 66 start-page: 49 year: 2017 ident: 10.1016/j.cie.2020.106435_b0205 article-title: A hybrid ETS–ANN model for time series forecasting publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2017.07.007 – volume: 28 start-page: 2222 issue: 10 year: 2017 ident: 10.1016/j.cie.2020.106435_b0080 article-title: LSTM: A Search Space Odyssey publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2582924 – ident: 10.1016/j.cie.2020.106435_b0155 – volume: 65 start-page: 117 issue: 1–2 year: 1993 ident: 10.1016/j.cie.2020.106435_b0240 article-title: A practical method for calculating largest Lyapunov exponents from small data sets publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/0167-2789(93)90009-P – ident: 10.1016/j.cie.2020.106435_b0050 – volume: 73 start-page: 2006 issue: 10–12 year: 2010 ident: 10.1016/j.cie.2020.106435_b0165 article-title: Meta-learning for time series forecasting and forecast combination publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.09.020 – volume: 59 start-page: 239 issue: 1–2 year: 2010 ident: 10.1016/j.cie.2020.106435_b0310 article-title: On stability analysis via Lyapunov exponents calculated from a time series using nonlinear mapping—a case study publication-title: Nonlinear Dynamics doi: 10.1007/s11071-009-9535-7 – volume: 484 start-page: 302 year: 2019 ident: 10.1016/j.cie.2020.106435_b0210 article-title: Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model publication-title: Information Sciences doi: 10.1016/j.ins.2019.01.076 – volume: 128 start-page: 518 issue: 2 year: 2010 ident: 10.1016/j.cie.2020.106435_b0090 article-title: Implementation of a demand planning system using advance order information publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2010.07.003 – volume: 361 start-page: 151 year: 2019 ident: 10.1016/j.cie.2020.106435_b0040 article-title: Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.05.099 – volume: 180 start-page: 27 year: 2016 ident: 10.1016/j.cie.2020.106435_b0055 article-title: A hybrid evolutionary decomposition system for time series forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.113 – year: 2008 ident: 10.1016/j.cie.2020.106435_b0065 – year: 2011 ident: 10.1016/j.cie.2020.106435_b0095 – volume: 118 start-page: 33 year: 2018 ident: 10.1016/j.cie.2020.106435_b0200 article-title: Forecast of individual customer’s demand from a large and noisy dataset publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.02.007 |
SSID | ssj0004591 |
Score | 2.6679752 |
Snippet | •A demand forecasting method based on multi-layer LSTM networks is proposed.•The proposed method improves the forecasting accuracy.•It has strong ability to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106435 |
SubjectTerms | Demand prediction LSTM RNN Statistical methods Time series forecasting |
Title | An optimized model using LSTM network for demand forecasting |
URI | https://dx.doi.org/10.1016/j.cie.2020.106435 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4Aoj8oDE1JoHo4dSyxVRVUe7dJW6hbFsY2KaFrRsjDw2znHDioSMLDF1l0UXXx3n-XPdwhd2govKvKSBLyJRDLwhM99T9FQ5JpJxspyDIMh7U_I_TSe1lC3ugtjaJUu9tuYXkZrN9N21mwvZ7P2CGKvxQ8G1VNuLvwSwswqv_4INiqG2655IOwZ6epks-R4wWthixiaMWTm-OfctJFvevto1wFF3LHfcoBqqmigPQcasXPJVQPtbFQUPEQ3nQIvIArMZ-8gVba5wYba_oQfR-MBLizpGwNSxVLNs0KaR5VnK8N-PkKT3u242_dcgwQvDzlbe5JnMhZEJtoXYSK5ICyTXMuAZXFEiSRSKMFygDBRQqXPlY41p4mmgaZK8Dg6RvViUagThGEXE3FF4oAxTWgkwBsVSPkKNrBxkIVN5FemSXNXPdw0sXhJK5rYM8yr1FgztdZsoqsvlaUtnfGXMKnsnX77_ymE9t_VTv-ndoa2zcgSF89Rff36pi4AXKxFq1w9LbTVuXvoDz8Bw7fLDg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADb8QbD0xIUfPwI5ZYKgQq9LFQJLYojh1URNMKysKv51w7qEjAwJY4d1F08p0_y1--Azh3Ci8mCdIUs4kmOgpUKMPA8FgVpdBCzOUY-gPeeaB3j-yxAVf1vzCWVulrv6vp82rtR1o-mq3paNS6x9rr8INF9VymS7Bs1alYE5bbt93OYEE03DXOQ_vAOtSHm3OaF74Zd4mxvcfFmf28PC0sOTebsO6xImm7z9mChqm2YcPjRuKz8m0b1hZEBXfgsl2RCRaC8egDreadbohltz-R3v2wTyrH-yYIVok247zS9tIU-ZslQO_Cw8318KoT-B4JQRFLMQu0zDVTVKdlqOJUS0VFrmWpI5GzhFNNtTJKFIhikpTrUJqSlZKnJY9KbpRkyR40q0ll9oHgRiaRhrJIiJLyRGFCGrQKDe5hWZTHBxDWockKLyBu-1i8ZDVT7BnHTWajmbloHsDFl8vUqWf8ZUzreGffpkCG1f13t8P_uZ3BSmfY72W920H3CFbtE8djPIbm7PXdnCDWmKlTP5c-AdJRzb8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+model+using+LSTM+network+for+demand+forecasting&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Abbasimehr%2C+Hossein&rft.au=Shabani%2C+Mostafa&rft.au=Yousefi%2C+Mohsen&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=143&rft_id=info:doi/10.1016%2Fj.cie.2020.106435&rft.externalDocID=S0360835220301698 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |