Unravelling interactions between active site residues and DMAP in the initial steps of prenylated flavin mononucleotide biosynthesis catalyzed by PaUbiX
Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1866; no. 12; p. 130247 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2022.130247 |
Cover
Loading…
Abstract | Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or diphosphate. prFMN biosynthesis is currently reported to be initiated by protonation of the substrate by Glu140.
Computational chemistry methods are applied herein - Constant pH MD, classical MD simulations, and QM cluster optimizations.
Glu140 competes for a single proton with Lys129 prior to prFMN biosynthesis, but it is the latter that adopted a protonated state. Once the prenyl-FMN adduct is formed, Glu140 occurs in a protonated state far more often, while the occupancy of protonated Lys129 does not change. Lys129, Glu140, and Arg122 seem to play a key role in either stabilizing or protonating DMAP phosphate group within the PaUbiX active site throughout initial steps of prFMN biosynthesis.
The role of Lys129 in the functioning of PaUbiX is reported for the first time. Glu140 is unlikely to act as a proton donor in prFMN biosynthesis. Instead, Lys129 and Arg122 fulfil this role. Glu140 still plays a role in contributing to hydrogen-bond network. This behavior is most likely conserved throughout the UbiX family due to the structural similarity of the active sites of those proteins.
Mechanistic insights into a crucial biochemical process, the biosynthesis of prFMN, are provided. This study, although purely computational, extends and perfectly complements the knowledge obtained in classical laboratory experiments.
[Display omitted]
•At the enzyme – substrate complex, Lys129 shares a single proton with Glu140.•Glu140 is unlikely to act as a proton donor for DMAP in prFMN biosynthesis.•Transfer of protons to DMAP does not initiate the whole prFMN biosynthesis on its own.•Based on the QM calculations, protonation of the phosphate group takes place during the formation of the FMN-prenyl adduct.•The observed behavior is likely to be conserved within the whole UbiX enzyme family. |
---|---|
AbstractList | Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or diphosphate. prFMN biosynthesis is currently reported to be initiated by protonation of the substrate by Glu140.BACKGROUNDPrenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or diphosphate. prFMN biosynthesis is currently reported to be initiated by protonation of the substrate by Glu140.Computational chemistry methods are applied herein - Constant pH MD, classical MD simulations, and QM cluster optimizations.METHODSComputational chemistry methods are applied herein - Constant pH MD, classical MD simulations, and QM cluster optimizations.Glu140 competes for a single proton with Lys129 prior to prFMN biosynthesis, but it is the latter that adopted a protonated state. Once the prenyl-FMN adduct is formed, Glu140 occurs in a protonated state far more often, while the occupancy of protonated Lys129 does not change. Lys129, Glu140, and Arg122 seem to play a key role in either stabilizing or protonating DMAP phosphate group within the PaUbiX active site throughout initial steps of prFMN biosynthesis.RESULTSGlu140 competes for a single proton with Lys129 prior to prFMN biosynthesis, but it is the latter that adopted a protonated state. Once the prenyl-FMN adduct is formed, Glu140 occurs in a protonated state far more often, while the occupancy of protonated Lys129 does not change. Lys129, Glu140, and Arg122 seem to play a key role in either stabilizing or protonating DMAP phosphate group within the PaUbiX active site throughout initial steps of prFMN biosynthesis.The role of Lys129 in the functioning of PaUbiX is reported for the first time. Glu140 is unlikely to act as a proton donor in prFMN biosynthesis. Instead, Lys129 and Arg122 fulfil this role. Glu140 still plays a role in contributing to hydrogen-bond network. This behavior is most likely conserved throughout the UbiX family due to the structural similarity of the active sites of those proteins.CONCLUSIONSThe role of Lys129 in the functioning of PaUbiX is reported for the first time. Glu140 is unlikely to act as a proton donor in prFMN biosynthesis. Instead, Lys129 and Arg122 fulfil this role. Glu140 still plays a role in contributing to hydrogen-bond network. This behavior is most likely conserved throughout the UbiX family due to the structural similarity of the active sites of those proteins.Mechanistic insights into a crucial biochemical process, the biosynthesis of prFMN, are provided. This study, although purely computational, extends and perfectly complements the knowledge obtained in classical laboratory experiments.SIGNIFICANCEMechanistic insights into a crucial biochemical process, the biosynthesis of prFMN, are provided. This study, although purely computational, extends and perfectly complements the knowledge obtained in classical laboratory experiments. Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or diphosphate. prFMN biosynthesis is currently reported to be initiated by protonation of the substrate by Glu140. Computational chemistry methods are applied herein - Constant pH MD, classical MD simulations, and QM cluster optimizations. Glu140 competes for a single proton with Lys129 prior to prFMN biosynthesis, but it is the latter that adopted a protonated state. Once the prenyl-FMN adduct is formed, Glu140 occurs in a protonated state far more often, while the occupancy of protonated Lys129 does not change. Lys129, Glu140, and Arg122 seem to play a key role in either stabilizing or protonating DMAP phosphate group within the PaUbiX active site throughout initial steps of prFMN biosynthesis. The role of Lys129 in the functioning of PaUbiX is reported for the first time. Glu140 is unlikely to act as a proton donor in prFMN biosynthesis. Instead, Lys129 and Arg122 fulfil this role. Glu140 still plays a role in contributing to hydrogen-bond network. This behavior is most likely conserved throughout the UbiX family due to the structural similarity of the active sites of those proteins. Mechanistic insights into a crucial biochemical process, the biosynthesis of prFMN, are provided. This study, although purely computational, extends and perfectly complements the knowledge obtained in classical laboratory experiments. Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or diphosphate. prFMN biosynthesis is currently reported to be initiated by protonation of the substrate by Glu140. Computational chemistry methods are applied herein - Constant pH MD, classical MD simulations, and QM cluster optimizations. Glu140 competes for a single proton with Lys129 prior to prFMN biosynthesis, but it is the latter that adopted a protonated state. Once the prenyl-FMN adduct is formed, Glu140 occurs in a protonated state far more often, while the occupancy of protonated Lys129 does not change. Lys129, Glu140, and Arg122 seem to play a key role in either stabilizing or protonating DMAP phosphate group within the PaUbiX active site throughout initial steps of prFMN biosynthesis. The role of Lys129 in the functioning of PaUbiX is reported for the first time. Glu140 is unlikely to act as a proton donor in prFMN biosynthesis. Instead, Lys129 and Arg122 fulfil this role. Glu140 still plays a role in contributing to hydrogen-bond network. This behavior is most likely conserved throughout the UbiX family due to the structural similarity of the active sites of those proteins. Mechanistic insights into a crucial biochemical process, the biosynthesis of prFMN, are provided. This study, although purely computational, extends and perfectly complements the knowledge obtained in classical laboratory experiments. [Display omitted] •At the enzyme – substrate complex, Lys129 shares a single proton with Glu140.•Glu140 is unlikely to act as a proton donor for DMAP in prFMN biosynthesis.•Transfer of protons to DMAP does not initiate the whole prFMN biosynthesis on its own.•Based on the QM calculations, protonation of the phosphate group takes place during the formation of the FMN-prenyl adduct.•The observed behavior is likely to be conserved within the whole UbiX enzyme family. |
ArticleNumber | 130247 |
Author | Dybala-Defratyka, Agnieszka Żaczek, Szymon |
Author_xml | – sequence: 1 givenname: Szymon surname: Żaczek fullname: Żaczek, Szymon – sequence: 2 givenname: Agnieszka surname: Dybala-Defratyka fullname: Dybala-Defratyka, Agnieszka email: agnieszka.dybala-defratyka@p.lodz.pl |
BookMark | eNqNkc9q3DAQxkVIIZu0b5CDjrl4qz-2JF8CIW3SQkpz6EJvQpLHiRavtJW0W9wn6eNWi3suncsw8PuGme-7ROchBkDompI1JVS8366tNS8Q1owwtqacsFaeoRVVkjWKEHGOVoSTtmmp6C7QZc5bUqvruxX6vQnJHGGafHjBPhRIxhUfQ8YWyk-AgE_zEXD2BXCC7IcDZGzCgD98uXuuElxeoTZfvJlwLrDPOI54nyDMkykw4HEyx4rtYr364CaIxQ-ArY95DlWbfcbOFDPNvypsZ_xsNtZ_f4vejGbK8O5vv0Kbh4_f7j81T18fP9_fPTWO9bI0Q9-JllBJXNeBASBt33FuhRSjUlJRbq1gEmyrCIV-AFZ9EBycFLw6IAy_QjfL3n2KP-prRe98dtUQEyAesmaSccqUUPI_UKoEl5zyirYL6lLMOcGo98nvTJo1JfqUmd7qJTN9ykwvmVXZ7SKD-vHRQ9LZeQgOBp_AFT1E_-8FfwD2aqUF |
Cites_doi | 10.1002/wcms.1493 10.1021/acs.jctc.8b01176 10.1021/jp100961s 10.1021/acs.jpclett.8b00238 10.1063/1.448118 10.1063/1.1332996 10.1016/j.chembiol.2018.02.007 10.1021/acs.jpca.7b10842 10.1016/j.abb.2017.07.014 10.1007/3-540-11846-2_3 10.1128/JB.00763-17 10.1002/anie.201708091 10.1038/nature14560 10.1093/nar/gkh381 10.1021/cs502087f 10.1021/ct100684s 10.1021/ct401002w 10.1016/0021-9991(77)90098-5 10.1021/ct100578z 10.1002/jcc.10128 10.1021/acs.jctc.2c00294 10.1093/database/baz024 10.1002/cbic.201800389 10.1021/ct400314y 10.1021/bi00316a007 10.1021/ct401042b 10.1021/acschembio.8b00673 10.1016/j.cpc.2012.09.022 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P 10.1039/b800496j 10.1002/jcc.20035 10.1016/j.tibs.2017.02.005 10.1021/acscatal.8b04862 10.1021/acs.jctc.5b00255 10.1002/jcc.20857 10.1016/j.jmgm.2005.12.005 10.1021/ct200133y 10.1038/nature14559 10.1021/acs.biochem.7b01131 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2022.130247 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 10_1016_j_bbagen_2022_130247 S0304416522001659 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c297t-d95640170c55eaee049533b676f887813bb627eb4801e9de230463ec7630056a3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Tue Aug 05 10:36:34 EDT 2025 Fri Jul 11 07:25:28 EDT 2025 Tue Jul 01 00:22:17 EDT 2025 Fri Feb 23 02:38:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Prenylated flavin mononucleotide Protonation states UbiX Phosphate |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-d95640170c55eaee049533b676f887813bb627eb4801e9de230463ec7630056a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0304416522001659 |
PQID | 2718637313 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2723128687 proquest_miscellaneous_2718637313 crossref_primary_10_1016_j_bbagen_2022_130247 elsevier_sciencedirect_doi_10_1016_j_bbagen_2022_130247 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Webb, Sali (bb0120) 2016; 2016 Stephen, Marshall, Payne, Fisher, White, Cheallaigh, Balaikaite, Rigby (bb0070) 2019; 10 Payer, Marshall, Bärland, Sheng, Reiter, Dordic, Steinkellner, Wuensch, Kaltwasser, Fisher, Rigby, Macheroux, Vonck, Gruber, Faber, Himo, Leys, Pavkov-Keller, Glueck (bb0030) 2017; 56 Jakalian, Bush, Jack, Bayly (bb0150) 2000; 21 Schrödinger (bb0115) 2017 Huang, Yue, Tsai, Henderson, Shen (bb0085) 2018; 9 Silva, Schulz, Jahn, Jahn, Ramos (bb0100) 2010; 114 Walker, Crowley, Case (bb0215) 2008; 29 Olsson, Søndergaard, Rostkowski, Jensen (bb0130) 2011; 7 Seabra, Walker, Elstner, Case, Roitberg (bb0220) 2007 Bannwarth, Caldeweyher, Ehlert, Hansen, Pracht, Seibert, Spicher, Grimme (bb0205) 2021; 11 Fagan, Palfey (bb0005) 2010 White, Payne, Fisher, Marshall, Parker, Rattray, Trivedi, Goodacre, Rigby, Scrutton, Hay, Leys (bb0045) 2015; 522 Gaus, Lu, Elstner, Cui (bb0230) 2014; 10 Salomon-Ferrer, Götz, Poole, Le Grand, Walker (bb0170) 2013; 9 Swails, York, Roitberg (bb0210) 2014; 10 Le Grand, Götz, Walker (bb0175) 2013; 184 Wang, Khusnutdinova, Luo, Xiao, Nemr, Flick, Brown, Mahadevan, Edwards, Yakunin (bb0060) 2018; 25 Moonen, Vervoort, Mueller (bb0015) 1984; 23 Lopata, Jambrina, Sharma, Brooks, Toth, Vertessy, Rosta (bb0090) 2015; 5 Gaus, Cui, Elstner (bb0225) 2011; 7 Payne, White, Fisher, Khara, Bailey, Parker, Rattray, Trivedi, Goodacre, Beveridge, Barran, Rigby, Scrutton, Hay, Leys (bb0025) 2015; 522 Marshall, Payne, Leys (bb0055) 2017; 632 Żaczek, Kowalska, Dybala-Defratyka (bb0075) 2018; 19 Case, Ben-Shalom, Brozell, Cerutti, Cheatham, Cruzeiro, Darden, Duke, Ghoreishi, Gilson, Gohlke, Goetz, Greene, Harris, Homeyer, Izadi, Kovalenko, Kurtzman, Lee, LeGrand, Y. D.M, Kollman (bb0125) 2018 Ramos-Guzmán, Velázquez-Libera, Ruiz-Pernía, Tuñón (bb0110) 2022; 18 Lu (bb0200) 2022 Piano, Palfey, Mattevi (bb0020) 2017; 42 Pahari, Sun, Alexov (bb0080) 2019; 2019 Søndergaard, Olsson, Rostkowski, Jensen (bb0135) 2011; 7 Wang, Wang, Kollman, Case (bb0160) 2006; 25 Jakalian, Jack, Bayly (bb0155) 2002; 23 Wang, Wolf, Caldwell, Kollman, Case (bb0145) 2004; 25 Ryckaert, Ciccotti, Berendsen (bb0190) 1977; 23 Annaval, Han, Rudolf, Xie, Yang, Chang, Ma, Crnovcic, Miller, Soman, Xu, Phillips, Shen (bb0040) 2018; 13 Zinovjev, Tuñón (bb0235) 2017; 121 Costa, Moskatel, Meirelles, Newman (bb0050) 2018; 200 Bannwarth, Ehlert, Grimme (bb0105) 2019; 15 Müller (bb0010) 1983; 108 Lzaguirre, Catarello, Wozniak, Skeel (bb0180) 2001; 114 Maier, Martinez, Kasavajhala, Wickstrom, Hauser, Simmerling (bb0165) 2015; 11 Dolinsky, Nielsen, McCammon, Baker (bb0140) 2004; 32 Arunrattanamook, Marsh (bb0065) 2018; 57 Payne, Marshall, Fisher, Cliff, Cannas, Yan, Heyes, Parker, Larrosa, Leys (bb0035) 2019; 9 Berendsen, Postma, van Gunsteren, DiNola, Haak (bb0185) 1984; 81 Frisch, Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Mennucci, Petersson, Nakatsuji, Caricato, Li, Hratchian, Izmaylov, Bloino, Zheng, Sonnenberg (bb0195) 2016 Van Der Kamp, Perruccio, Mulholland (bb0095) 2008; 0 Case (10.1016/j.bbagen.2022.130247_bb0125) 2018 Pahari (10.1016/j.bbagen.2022.130247_bb0080) 2019; 2019 Walker (10.1016/j.bbagen.2022.130247_bb0215) 2008; 29 Piano (10.1016/j.bbagen.2022.130247_bb0020) 2017; 42 Frisch (10.1016/j.bbagen.2022.130247_bb0195) 2016 Żaczek (10.1016/j.bbagen.2022.130247_bb0075) 2018; 19 Dolinsky (10.1016/j.bbagen.2022.130247_bb0140) 2004; 32 Bannwarth (10.1016/j.bbagen.2022.130247_bb0205) 2021; 11 Fagan (10.1016/j.bbagen.2022.130247_bb0005) 2010 Stephen (10.1016/j.bbagen.2022.130247_bb0070) 2019; 10 Olsson (10.1016/j.bbagen.2022.130247_bb0130) 2011; 7 Schrödinger (10.1016/j.bbagen.2022.130247_bb0115) 2017 Arunrattanamook (10.1016/j.bbagen.2022.130247_bb0065) 2018; 57 Le Grand (10.1016/j.bbagen.2022.130247_bb0175) 2013; 184 Swails (10.1016/j.bbagen.2022.130247_bb0210) 2014; 10 Costa (10.1016/j.bbagen.2022.130247_bb0050) 2018; 200 Lzaguirre (10.1016/j.bbagen.2022.130247_bb0180) 2001; 114 Gaus (10.1016/j.bbagen.2022.130247_bb0225) 2011; 7 Payne (10.1016/j.bbagen.2022.130247_bb0035) 2019; 9 White (10.1016/j.bbagen.2022.130247_bb0045) 2015; 522 Ramos-Guzmán (10.1016/j.bbagen.2022.130247_bb0110) 2022; 18 Webb (10.1016/j.bbagen.2022.130247_bb0120) 2016; 2016 Berendsen (10.1016/j.bbagen.2022.130247_bb0185) 1984; 81 Ryckaert (10.1016/j.bbagen.2022.130247_bb0190) 1977; 23 Marshall (10.1016/j.bbagen.2022.130247_bb0055) 2017; 632 Jakalian (10.1016/j.bbagen.2022.130247_bb0150) 2000; 21 Lopata (10.1016/j.bbagen.2022.130247_bb0090) 2015; 5 Bannwarth (10.1016/j.bbagen.2022.130247_bb0105) 2019; 15 Maier (10.1016/j.bbagen.2022.130247_bb0165) 2015; 11 Salomon-Ferrer (10.1016/j.bbagen.2022.130247_bb0170) 2013; 9 Søndergaard (10.1016/j.bbagen.2022.130247_bb0135) 2011; 7 Wang (10.1016/j.bbagen.2022.130247_bb0160) 2006; 25 Gaus (10.1016/j.bbagen.2022.130247_bb0230) 2014; 10 Müller (10.1016/j.bbagen.2022.130247_bb0010) 1983; 108 Annaval (10.1016/j.bbagen.2022.130247_bb0040) 2018; 13 Payer (10.1016/j.bbagen.2022.130247_bb0030) 2017; 56 Van Der Kamp (10.1016/j.bbagen.2022.130247_bb0095) 2008; 0 Silva (10.1016/j.bbagen.2022.130247_bb0100) 2010; 114 Seabra (10.1016/j.bbagen.2022.130247_bb0220) 2007 Huang (10.1016/j.bbagen.2022.130247_bb0085) 2018; 9 Jakalian (10.1016/j.bbagen.2022.130247_bb0155) 2002; 23 Lu (10.1016/j.bbagen.2022.130247_bb0200) Wang (10.1016/j.bbagen.2022.130247_bb0145) 2004; 25 Payne (10.1016/j.bbagen.2022.130247_bb0025) 2015; 522 Moonen (10.1016/j.bbagen.2022.130247_bb0015) 1984; 23 Wang (10.1016/j.bbagen.2022.130247_bb0060) 2018; 25 Zinovjev (10.1016/j.bbagen.2022.130247_bb0235) 2017; 121 |
References_xml | – volume: 10 start-page: 6 year: 2019 end-page: 8 ident: bb0070 article-title: The UbiX flavin prenyltransferase reaction mechanism resembles Class I terpene cyclase chemistry publication-title: Nat. Commun. – volume: 114 start-page: 8994 year: 2010 end-page: 9001 ident: bb0100 article-title: A tale of two acids: when arginine is a more appropriate acid than H 3O+ publication-title: J. Phys. Chem. B – volume: 5 start-page: 3225 year: 2015 end-page: 3237 ident: bb0090 article-title: Mutations decouple proton transfer from phosphate cleavage in the dUTPase catalytic reaction publication-title: ACS Catal. – volume: 32 start-page: W665 year: 2004 end-page: W667 ident: bb0140 article-title: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations publication-title: Nucleic Acids Res. – volume: 18 start-page: 4005 year: 2022 end-page: 4013 ident: bb0110 article-title: Testing affordable strategies for the computational study of reactivity in cysteine proteases: the Case of SARS-CoV-2 3CL protease inhibition publication-title: J. Chem. Theory Comput. – volume: 25 start-page: 1157 year: 2004 end-page: 1174 ident: bb0145 article-title: Development and testing of a general Amber force field publication-title: J. Comput. Chem. – volume: 184 start-page: 374 year: 2013 end-page: 380 ident: bb0175 article-title: SPFP: speed without compromise - a mixed precision model for GPU accelerated molecular dynamics simulations publication-title: Comput. Phys. Commun. – start-page: 5655 year: 2007 end-page: 5664 ident: bb0220 article-title: Implementation of the SCC-DFTB method for hybrid QM/MM simulations within the Amber molecular dynamics package, in publication-title: J. Phys. Chem. A Am. Chem. Soc. – volume: 23 start-page: 327 year: 1977 end-page: 341 ident: bb0190 article-title: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes publication-title: J. Comput. Phys. – volume: 23 start-page: 1623 year: 2002 end-page: 1641 ident: bb0155 article-title: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation publication-title: J. Comput. Chem. – volume: 114 start-page: 2090 year: 2001 end-page: 2098 ident: bb0180 article-title: Langevin stabilization of molecular dynamics publication-title: J. Chem. Phys. – volume: 42 start-page: 457 year: 2017 end-page: 469 ident: bb0020 article-title: Flavins as covalent catalysts: new mechanisms emerge publication-title: Trends Biochem. Sci. – volume: 25 start-page: 247 year: 2006 end-page: 260 ident: bb0160 article-title: Automatic atom type and bond type perception in molecular mechanical calculations publication-title: J. Mol. Graph. Model. – volume: 7 start-page: 525 year: 2011 end-page: 537 ident: bb0130 article-title: PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions publication-title: J. Chem. Theory Comput. – volume: 522 start-page: 502 year: 2015 end-page: 506 ident: bb0045 article-title: UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis publication-title: Nature. – volume: 15 start-page: 1652 year: 2019 end-page: 1671 ident: bb0105 article-title: GFN2-xTB - an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions publication-title: J. Chem. Theory Comput. – volume: 108 start-page: 71 year: 1983 end-page: 107 ident: bb0010 article-title: The flavin redox-system and its biological function publication-title: Top. Curr. Chem. – volume: 13 start-page: 2728 year: 2018 end-page: 2738 ident: bb0040 article-title: Biochemical and structural characterization of TtnD, a Prenylated FMN-dependent decarboxylase from the Tautomycetin biosynthetic pathway publication-title: ACS Chem. Biol. – volume: 9 start-page: 2854 year: 2019 end-page: 2865 ident: bb0035 article-title: Enzymatic carboxylation of 2-Furoic acid yields 2,5-Furandicarboxylic acid (FDCA) publication-title: ACS Catal. – volume: 0 start-page: 1874 year: 2008 end-page: 1876 ident: bb0095 article-title: High-level QM/MM modelling predicts an arginine as the acid in the condensation reaction catalysed by citrate synthase publication-title: Chem. Commun. – volume: 11 year: 2021 ident: bb0205 article-title: Extended tight-binding quantum chemistry methods publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. – volume: 10 start-page: 1518 year: 2014 end-page: 1537 ident: bb0230 article-title: Parameterization of DFTB3/3OB for sulfur and phosphorus for chemical and biological applications publication-title: J. Chem. Theory Comput. – start-page: 37 year: 2010 end-page: 113 ident: bb0005 article-title: Flavin-dependent enzymes publication-title: Compr. Nat. Prod. II Chem. Biol. – volume: 7 start-page: 931 year: 2011 end-page: 948 ident: bb0225 article-title: DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB) publication-title: J. Chem. Theory Comput. – volume: 81 start-page: 3684 year: 1984 end-page: 3690 ident: bb0185 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. – volume: 200 year: 2018 ident: bb0050 article-title: PhdA catalyzes the first step of phenazine-1-carboxylic acid degradation in publication-title: J. Bacteriol. – volume: 7 start-page: 2284 year: 2011 end-page: 2295 ident: bb0135 article-title: Improved treatment of ligands and coupling effects in empirical calculation and rationalization of p K a values publication-title: J. Chem. Theory Comput. – volume: 9 start-page: 3878 year: 2013 end-page: 3888 ident: bb0170 article-title: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald publication-title: J. Chem. Theory Comput. – volume: 2016 start-page: 5.6.1 year: 2016 end-page: 5.6.37 ident: bb0120 article-title: Comparative protein structure modeling using modeller publication-title: Curr. Protoc. Bioinformatics – year: 2016 ident: bb0195 article-title: Gaussian 16, Rev. C.01, Inc. Wallingford, CT – year: 2022 ident: bb0200 article-title: gau_xtb: A Gaussian interface for xtb code – volume: 21 start-page: 132 year: 2000 end-page: 146 ident: bb0150 article-title: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method publication-title: J. Comput. Chem. – volume: 56 start-page: 13893 year: 2017 end-page: 13897 ident: bb0030 article-title: Regioselective para-carboxylation of catechols with a prenylated flavin dependent decarboxylase publication-title: Angew. Chem. Int. Ed. – volume: 25 start-page: 560 year: 2018 end-page: 570.e6 ident: bb0060 article-title: Biosynthesis and activity of Prenylated FMN cofactors publication-title: Cell Chem. Biol. – volume: 11 start-page: 3696 year: 2015 end-page: 3713 ident: bb0165 article-title: ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB publication-title: J. Chem. Theory Comput. – volume: 29 start-page: 1019 year: 2008 end-page: 1031 ident: bb0215 article-title: The implementation of a fast and accurate QM/MM potential method in Amber publication-title: J. Comput. Chem. – volume: 522 start-page: 497 year: 2015 end-page: 501 ident: bb0025 article-title: New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition publication-title: Nature. – year: 2017 ident: bb0115 article-title: PyMOL, The PyMOL Molecular Graphics System – volume: 57 start-page: 696 year: 2018 end-page: 700 ident: bb0065 article-title: Kinetic characterization of Prenyl-Flavin synthase from publication-title: Biochemistry. – volume: 10 start-page: 1341 year: 2014 end-page: 1352 ident: bb0210 article-title: Constant pH replica exchange molecular dynamics in explicit solvent using discrete protonation states: implementation, testing, and validation publication-title: J. Chem. Theory Comput. – year: 2018 ident: bb0125 article-title: Amber 18 – volume: 121 start-page: 9764 year: 2017 end-page: 9772 ident: bb0235 article-title: Adaptive finite temperature string method in collective variables publication-title: J. Phys. Chem. A – volume: 19 start-page: 2403 year: 2018 end-page: 2409 ident: bb0075 article-title: Ligand-driven conformational dynamics influences selectivity of UbiX publication-title: ChemBioChem. – volume: 9 start-page: 1179 year: 2018 end-page: 1184 ident: bb0085 article-title: Predicting catalytic proton donors and nucleophiles in enzymes: how adding dynamics helps elucidate the structure–function relationships publication-title: J. Phys. Chem. Lett. – volume: 23 start-page: 4859 year: 1984 end-page: 4867 ident: bb0015 article-title: Reinvestigation of the structure of oxidized and reduced flavin: carbon-13 and nitrogen-15 nuclear magnetic resonance study publication-title: Biochemistry. – volume: 632 start-page: 209 year: 2017 end-page: 221 ident: bb0055 article-title: The UbiX-UbiD system: the biosynthesis and use of prenylated flavin (prFMN) publication-title: Arch. Biochem. Biophys. – volume: 2019 year: 2019 ident: bb0080 article-title: PKAD: a database of experimentally measured pKa values of ionizable groups in proteins publication-title: Database. – volume: 11 year: 2021 ident: 10.1016/j.bbagen.2022.130247_bb0205 article-title: Extended tight-binding quantum chemistry methods publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.1493 – volume: 15 start-page: 1652 year: 2019 ident: 10.1016/j.bbagen.2022.130247_bb0105 article-title: GFN2-xTB - an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b01176 – volume: 114 start-page: 8994 year: 2010 ident: 10.1016/j.bbagen.2022.130247_bb0100 article-title: A tale of two acids: when arginine is a more appropriate acid than H 3O+ publication-title: J. Phys. Chem. B doi: 10.1021/jp100961s – volume: 9 start-page: 1179 year: 2018 ident: 10.1016/j.bbagen.2022.130247_bb0085 article-title: Predicting catalytic proton donors and nucleophiles in enzymes: how adding dynamics helps elucidate the structure–function relationships publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00238 – volume: 81 start-page: 3684 year: 1984 ident: 10.1016/j.bbagen.2022.130247_bb0185 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 114 start-page: 2090 year: 2001 ident: 10.1016/j.bbagen.2022.130247_bb0180 article-title: Langevin stabilization of molecular dynamics publication-title: J. Chem. Phys. doi: 10.1063/1.1332996 – start-page: 5655 year: 2007 ident: 10.1016/j.bbagen.2022.130247_bb0220 article-title: Implementation of the SCC-DFTB method for hybrid QM/MM simulations within the Amber molecular dynamics package, in publication-title: J. Phys. Chem. A Am. Chem. Soc. – volume: 25 start-page: 560 year: 2018 ident: 10.1016/j.bbagen.2022.130247_bb0060 article-title: Biosynthesis and activity of Prenylated FMN cofactors publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2018.02.007 – volume: 121 start-page: 9764 year: 2017 ident: 10.1016/j.bbagen.2022.130247_bb0235 article-title: Adaptive finite temperature string method in collective variables publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.7b10842 – volume: 632 start-page: 209 year: 2017 ident: 10.1016/j.bbagen.2022.130247_bb0055 article-title: The UbiX-UbiD system: the biosynthesis and use of prenylated flavin (prFMN) publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2017.07.014 – volume: 108 start-page: 71 year: 1983 ident: 10.1016/j.bbagen.2022.130247_bb0010 article-title: The flavin redox-system and its biological function publication-title: Top. Curr. Chem. doi: 10.1007/3-540-11846-2_3 – volume: 200 year: 2018 ident: 10.1016/j.bbagen.2022.130247_bb0050 article-title: PhdA catalyzes the first step of phenazine-1-carboxylic acid degradation in Mycobacterium fortuitum publication-title: J. Bacteriol. doi: 10.1128/JB.00763-17 – year: 2017 ident: 10.1016/j.bbagen.2022.130247_bb0115 – volume: 56 start-page: 13893 year: 2017 ident: 10.1016/j.bbagen.2022.130247_bb0030 article-title: Regioselective para-carboxylation of catechols with a prenylated flavin dependent decarboxylase publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708091 – volume: 522 start-page: 497 year: 2015 ident: 10.1016/j.bbagen.2022.130247_bb0025 article-title: New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition publication-title: Nature. doi: 10.1038/nature14560 – volume: 32 start-page: W665 year: 2004 ident: 10.1016/j.bbagen.2022.130247_bb0140 article-title: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh381 – volume: 5 start-page: 3225 year: 2015 ident: 10.1016/j.bbagen.2022.130247_bb0090 article-title: Mutations decouple proton transfer from phosphate cleavage in the dUTPase catalytic reaction publication-title: ACS Catal. doi: 10.1021/cs502087f – volume: 7 start-page: 931 year: 2011 ident: 10.1016/j.bbagen.2022.130247_bb0225 article-title: DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB) publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100684s – volume: 10 start-page: 1518 year: 2014 ident: 10.1016/j.bbagen.2022.130247_bb0230 article-title: Parameterization of DFTB3/3OB for sulfur and phosphorus for chemical and biological applications publication-title: J. Chem. Theory Comput. doi: 10.1021/ct401002w – ident: 10.1016/j.bbagen.2022.130247_bb0200 – volume: 23 start-page: 327 year: 1977 ident: 10.1016/j.bbagen.2022.130247_bb0190 article-title: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90098-5 – volume: 7 start-page: 525 year: 2011 ident: 10.1016/j.bbagen.2022.130247_bb0130 article-title: PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100578z – volume: 23 start-page: 1623 year: 2002 ident: 10.1016/j.bbagen.2022.130247_bb0155 article-title: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation publication-title: J. Comput. Chem. doi: 10.1002/jcc.10128 – volume: 18 start-page: 4005 year: 2022 ident: 10.1016/j.bbagen.2022.130247_bb0110 article-title: Testing affordable strategies for the computational study of reactivity in cysteine proteases: the Case of SARS-CoV-2 3CL protease inhibition publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00294 – start-page: 37 year: 2010 ident: 10.1016/j.bbagen.2022.130247_bb0005 article-title: Flavin-dependent enzymes – volume: 2019 year: 2019 ident: 10.1016/j.bbagen.2022.130247_bb0080 article-title: PKAD: a database of experimentally measured pKa values of ionizable groups in proteins publication-title: Database. doi: 10.1093/database/baz024 – volume: 19 start-page: 2403 year: 2018 ident: 10.1016/j.bbagen.2022.130247_bb0075 article-title: Ligand-driven conformational dynamics influences selectivity of UbiX publication-title: ChemBioChem. doi: 10.1002/cbic.201800389 – volume: 9 start-page: 3878 year: 2013 ident: 10.1016/j.bbagen.2022.130247_bb0170 article-title: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400314y – volume: 23 start-page: 4859 year: 1984 ident: 10.1016/j.bbagen.2022.130247_bb0015 article-title: Reinvestigation of the structure of oxidized and reduced flavin: carbon-13 and nitrogen-15 nuclear magnetic resonance study publication-title: Biochemistry. doi: 10.1021/bi00316a007 – volume: 10 start-page: 1341 year: 2014 ident: 10.1016/j.bbagen.2022.130247_bb0210 article-title: Constant pH replica exchange molecular dynamics in explicit solvent using discrete protonation states: implementation, testing, and validation publication-title: J. Chem. Theory Comput. doi: 10.1021/ct401042b – year: 2018 ident: 10.1016/j.bbagen.2022.130247_bb0125 – volume: 13 start-page: 2728 year: 2018 ident: 10.1016/j.bbagen.2022.130247_bb0040 article-title: Biochemical and structural characterization of TtnD, a Prenylated FMN-dependent decarboxylase from the Tautomycetin biosynthetic pathway publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.8b00673 – year: 2016 ident: 10.1016/j.bbagen.2022.130247_bb0195 – volume: 184 start-page: 374 year: 2013 ident: 10.1016/j.bbagen.2022.130247_bb0175 article-title: SPFP: speed without compromise - a mixed precision model for GPU accelerated molecular dynamics simulations publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.09.022 – volume: 21 start-page: 132 year: 2000 ident: 10.1016/j.bbagen.2022.130247_bb0150 article-title: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P – volume: 10 start-page: 6 year: 2019 ident: 10.1016/j.bbagen.2022.130247_bb0070 article-title: The UbiX flavin prenyltransferase reaction mechanism resembles Class I terpene cyclase chemistry publication-title: Nat. Commun. – volume: 0 start-page: 1874 year: 2008 ident: 10.1016/j.bbagen.2022.130247_bb0095 article-title: High-level QM/MM modelling predicts an arginine as the acid in the condensation reaction catalysed by citrate synthase publication-title: Chem. Commun. doi: 10.1039/b800496j – volume: 25 start-page: 1157 year: 2004 ident: 10.1016/j.bbagen.2022.130247_bb0145 article-title: Development and testing of a general Amber force field publication-title: J. Comput. Chem. doi: 10.1002/jcc.20035 – volume: 42 start-page: 457 year: 2017 ident: 10.1016/j.bbagen.2022.130247_bb0020 article-title: Flavins as covalent catalysts: new mechanisms emerge publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2017.02.005 – volume: 9 start-page: 2854 year: 2019 ident: 10.1016/j.bbagen.2022.130247_bb0035 article-title: Enzymatic carboxylation of 2-Furoic acid yields 2,5-Furandicarboxylic acid (FDCA) publication-title: ACS Catal. doi: 10.1021/acscatal.8b04862 – volume: 11 start-page: 3696 year: 2015 ident: 10.1016/j.bbagen.2022.130247_bb0165 article-title: ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00255 – volume: 29 start-page: 1019 year: 2008 ident: 10.1016/j.bbagen.2022.130247_bb0215 article-title: The implementation of a fast and accurate QM/MM potential method in Amber publication-title: J. Comput. Chem. doi: 10.1002/jcc.20857 – volume: 25 start-page: 247 year: 2006 ident: 10.1016/j.bbagen.2022.130247_bb0160 article-title: Automatic atom type and bond type perception in molecular mechanical calculations publication-title: J. Mol. Graph. Model. doi: 10.1016/j.jmgm.2005.12.005 – volume: 2016 start-page: 5.6.1 year: 2016 ident: 10.1016/j.bbagen.2022.130247_bb0120 article-title: Comparative protein structure modeling using modeller publication-title: Curr. Protoc. Bioinformatics – volume: 7 start-page: 2284 year: 2011 ident: 10.1016/j.bbagen.2022.130247_bb0135 article-title: Improved treatment of ligands and coupling effects in empirical calculation and rationalization of p K a values publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200133y – volume: 522 start-page: 502 year: 2015 ident: 10.1016/j.bbagen.2022.130247_bb0045 article-title: UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis publication-title: Nature. doi: 10.1038/nature14559 – volume: 57 start-page: 696 year: 2018 ident: 10.1016/j.bbagen.2022.130247_bb0065 article-title: Kinetic characterization of Prenyl-Flavin synthase from Saccharomyces cerevisiae publication-title: Biochemistry. doi: 10.1021/acs.biochem.7b01131 |
SSID | ssj0000595 |
Score | 2.387438 |
Snippet | Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 130247 |
SubjectTerms | active sites biochemical pathways biosynthesis cycloaddition reactions family hydrogen bonding Phosphate phosphates Prenylated flavin mononucleotide protonation Protonation states UbiX |
Title | Unravelling interactions between active site residues and DMAP in the initial steps of prenylated flavin mononucleotide biosynthesis catalyzed by PaUbiX |
URI | https://dx.doi.org/10.1016/j.bbagen.2022.130247 https://www.proquest.com/docview/2718637313 https://www.proquest.com/docview/2723128687 |
Volume | 1866 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBahY6wvZWtX2m4rN9irm0a2pOQxZCvZRkqhC-RNSJYMLsEOdVpwH_Y79nN3J9mUjbFCn4yNZAvd6e6TdfcdY5_QwBXoN0VSnHuZZLniibEcN665c8JJw32oRbC4lPNl9m0lVgM263NhKKyys_3Rpgdr3T0ZdrM53JTl8JoO9RBOIIAg3CIoiS_LFPHnn_18DPNA-CDiSUKWUOs-fS7EeFmLi5ZYUDmnssiciqz82z39ZaiD97l4zfY62AjTOLI3bOCrffYyFpJs99mrWV-37YD9WlZUUihwbQOxQdzG3IUGupgsMMHGAZ0bA-62S4dfBFM5-LyYXmEXQFCIlxIX_xpQCzYN1AUQ-WW7RmjqoFibe2yGGlxXxIdcb0vnwZZ101bYtykbCL-F2gdsbFu4Mktbrt6y5cWXH7N50tVfSHI-UdvE4d4pI36dXAhvvD8PsahWKlmgaRqPUmslV94SA42fOM8D_ZjPFdF4CWnSQ7aD4_BHDCZ5OlYmN9IqhBCisKkb8WJkjcR32tQfs6Sfdr2JNBu6jz-70VFMmsSko5iOmeplo_9QF42e4ImeH3tRahQMHY-Yytd3jebopmWq0lH6vzaIh_lYjtXJs0fwju3SXYyJec92trd3_gMim609Dap7yl5Mv36fX_4GgX753g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6ltG9jK3bWPfR3WCvJo0cScljyFbSj4TCGsibkCwZPIId6nTg_SX7c3cn24yNsUKfDPbJFrrT3U_W6XcAn8jB5RQ3ZZKfBpWMMi0S6wQtXDPvpVdWhFiLYLFU89XoYi3XezDrz8JwWmXn-1ufHr11d2fQjeZgWxSDr7ypR3CCAATjFjl5BAfMTkXGfjA9v5wvfztkGYuvsHzCDfoTdDHNyzmat0yEKgRXRhZcZ-XfEeovXx0D0NkzeNohR5y2nXsOe6E8gsdtLcnmCA5nfem2F_BzVXJVoUi3jUwIcdseX6ixS8tCG90c8tYx0oK78PRFtKXHz4vpNTVBwoV0KWj-b5AMYVtjlSPzXzYbQqce8439TmJkxFXJlMjVrvABXVHVTUlt66LG-Geo-UHCrsFru3LF-iWszr7czOZJV4IhycRE7xJPy6cRU-xkUgYbwmlMR3VKq5y803iYOqeEDo5JaMLEBxEZyEKmmclLKpu-gn3qR3gNOMnSsbaZVU4TipC5S_1Q5ENnFb3TpeEYkn7YzbZl2jB9Cto306rJsJpMq6Zj0L1uzB8WYygY3NPyY69KQ4rhHRJbhuquNoIitUp1Okz_J0OQWIzVWL95cA8-wOH8ZnFlrs6Xl2_hCT9pU2Tewf7u9i68J6CzcyedIf8CCyb8jw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unravelling+interactions+between+active+site+residues+and+DMAP+in+the+initial+steps+of+prenylated+flavin+mononucleotide+biosynthesis+catalyzed+by+PaUbiX&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=%C5%BBaczek%2C+Szymon&rft.au=Dybala-Defratyka%2C+Agnieszka&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1866&rft.issue=12&rft_id=info:doi/10.1016%2Fj.bbagen.2022.130247&rft.externalDocID=S0304416522001659 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |