Unravelling interactions between active site residues and DMAP in the initial steps of prenylated flavin mononucleotide biosynthesis catalyzed by PaUbiX

Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1866; no. 12; p. 130247
Main Authors Żaczek, Szymon, Dybala-Defratyka, Agnieszka
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2022
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2022.130247

Cover

Loading…
Abstract Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or diphosphate. prFMN biosynthesis is currently reported to be initiated by protonation of the substrate by Glu140. Computational chemistry methods are applied herein - Constant pH MD, classical MD simulations, and QM cluster optimizations. Glu140 competes for a single proton with Lys129 prior to prFMN biosynthesis, but it is the latter that adopted a protonated state. Once the prenyl-FMN adduct is formed, Glu140 occurs in a protonated state far more often, while the occupancy of protonated Lys129 does not change. Lys129, Glu140, and Arg122 seem to play a key role in either stabilizing or protonating DMAP phosphate group within the PaUbiX active site throughout initial steps of prFMN biosynthesis. The role of Lys129 in the functioning of PaUbiX is reported for the first time. Glu140 is unlikely to act as a proton donor in prFMN biosynthesis. Instead, Lys129 and Arg122 fulfil this role. Glu140 still plays a role in contributing to hydrogen-bond network. This behavior is most likely conserved throughout the UbiX family due to the structural similarity of the active sites of those proteins. Mechanistic insights into a crucial biochemical process, the biosynthesis of prFMN, are provided. This study, although purely computational, extends and perfectly complements the knowledge obtained in classical laboratory experiments. [Display omitted] •At the enzyme – substrate complex, Lys129 shares a single proton with Glu140.•Glu140 is unlikely to act as a proton donor for DMAP in prFMN biosynthesis.•Transfer of protons to DMAP does not initiate the whole prFMN biosynthesis on its own.•Based on the QM calculations, protonation of the phosphate group takes place during the formation of the FMN-prenyl adduct.•The observed behavior is likely to be conserved within the whole UbiX enzyme family.
AbstractList Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or diphosphate. prFMN biosynthesis is currently reported to be initiated by protonation of the substrate by Glu140.BACKGROUNDPrenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or diphosphate. prFMN biosynthesis is currently reported to be initiated by protonation of the substrate by Glu140.Computational chemistry methods are applied herein - Constant pH MD, classical MD simulations, and QM cluster optimizations.METHODSComputational chemistry methods are applied herein - Constant pH MD, classical MD simulations, and QM cluster optimizations.Glu140 competes for a single proton with Lys129 prior to prFMN biosynthesis, but it is the latter that adopted a protonated state. Once the prenyl-FMN adduct is formed, Glu140 occurs in a protonated state far more often, while the occupancy of protonated Lys129 does not change. Lys129, Glu140, and Arg122 seem to play a key role in either stabilizing or protonating DMAP phosphate group within the PaUbiX active site throughout initial steps of prFMN biosynthesis.RESULTSGlu140 competes for a single proton with Lys129 prior to prFMN biosynthesis, but it is the latter that adopted a protonated state. Once the prenyl-FMN adduct is formed, Glu140 occurs in a protonated state far more often, while the occupancy of protonated Lys129 does not change. Lys129, Glu140, and Arg122 seem to play a key role in either stabilizing or protonating DMAP phosphate group within the PaUbiX active site throughout initial steps of prFMN biosynthesis.The role of Lys129 in the functioning of PaUbiX is reported for the first time. Glu140 is unlikely to act as a proton donor in prFMN biosynthesis. Instead, Lys129 and Arg122 fulfil this role. Glu140 still plays a role in contributing to hydrogen-bond network. This behavior is most likely conserved throughout the UbiX family due to the structural similarity of the active sites of those proteins.CONCLUSIONSThe role of Lys129 in the functioning of PaUbiX is reported for the first time. Glu140 is unlikely to act as a proton donor in prFMN biosynthesis. Instead, Lys129 and Arg122 fulfil this role. Glu140 still plays a role in contributing to hydrogen-bond network. This behavior is most likely conserved throughout the UbiX family due to the structural similarity of the active sites of those proteins.Mechanistic insights into a crucial biochemical process, the biosynthesis of prFMN, are provided. This study, although purely computational, extends and perfectly complements the knowledge obtained in classical laboratory experiments.SIGNIFICANCEMechanistic insights into a crucial biochemical process, the biosynthesis of prFMN, are provided. This study, although purely computational, extends and perfectly complements the knowledge obtained in classical laboratory experiments.
Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or diphosphate. prFMN biosynthesis is currently reported to be initiated by protonation of the substrate by Glu140. Computational chemistry methods are applied herein - Constant pH MD, classical MD simulations, and QM cluster optimizations. Glu140 competes for a single proton with Lys129 prior to prFMN biosynthesis, but it is the latter that adopted a protonated state. Once the prenyl-FMN adduct is formed, Glu140 occurs in a protonated state far more often, while the occupancy of protonated Lys129 does not change. Lys129, Glu140, and Arg122 seem to play a key role in either stabilizing or protonating DMAP phosphate group within the PaUbiX active site throughout initial steps of prFMN biosynthesis. The role of Lys129 in the functioning of PaUbiX is reported for the first time. Glu140 is unlikely to act as a proton donor in prFMN biosynthesis. Instead, Lys129 and Arg122 fulfil this role. Glu140 still plays a role in contributing to hydrogen-bond network. This behavior is most likely conserved throughout the UbiX family due to the structural similarity of the active sites of those proteins. Mechanistic insights into a crucial biochemical process, the biosynthesis of prFMN, are provided. This study, although purely computational, extends and perfectly complements the knowledge obtained in classical laboratory experiments.
Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or diphosphate. prFMN biosynthesis is currently reported to be initiated by protonation of the substrate by Glu140. Computational chemistry methods are applied herein - Constant pH MD, classical MD simulations, and QM cluster optimizations. Glu140 competes for a single proton with Lys129 prior to prFMN biosynthesis, but it is the latter that adopted a protonated state. Once the prenyl-FMN adduct is formed, Glu140 occurs in a protonated state far more often, while the occupancy of protonated Lys129 does not change. Lys129, Glu140, and Arg122 seem to play a key role in either stabilizing or protonating DMAP phosphate group within the PaUbiX active site throughout initial steps of prFMN biosynthesis. The role of Lys129 in the functioning of PaUbiX is reported for the first time. Glu140 is unlikely to act as a proton donor in prFMN biosynthesis. Instead, Lys129 and Arg122 fulfil this role. Glu140 still plays a role in contributing to hydrogen-bond network. This behavior is most likely conserved throughout the UbiX family due to the structural similarity of the active sites of those proteins. Mechanistic insights into a crucial biochemical process, the biosynthesis of prFMN, are provided. This study, although purely computational, extends and perfectly complements the knowledge obtained in classical laboratory experiments. [Display omitted] •At the enzyme – substrate complex, Lys129 shares a single proton with Glu140.•Glu140 is unlikely to act as a proton donor for DMAP in prFMN biosynthesis.•Transfer of protons to DMAP does not initiate the whole prFMN biosynthesis on its own.•Based on the QM calculations, protonation of the phosphate group takes place during the formation of the FMN-prenyl adduct.•The observed behavior is likely to be conserved within the whole UbiX enzyme family.
ArticleNumber 130247
Author Dybala-Defratyka, Agnieszka
Żaczek, Szymon
Author_xml – sequence: 1
  givenname: Szymon
  surname: Żaczek
  fullname: Żaczek, Szymon
– sequence: 2
  givenname: Agnieszka
  surname: Dybala-Defratyka
  fullname: Dybala-Defratyka, Agnieszka
  email: agnieszka.dybala-defratyka@p.lodz.pl
BookMark eNqNkc9q3DAQxkVIIZu0b5CDjrl4qz-2JF8CIW3SQkpz6EJvQpLHiRavtJW0W9wn6eNWi3suncsw8PuGme-7ROchBkDompI1JVS8366tNS8Q1owwtqacsFaeoRVVkjWKEHGOVoSTtmmp6C7QZc5bUqvruxX6vQnJHGGafHjBPhRIxhUfQ8YWyk-AgE_zEXD2BXCC7IcDZGzCgD98uXuuElxeoTZfvJlwLrDPOI54nyDMkykw4HEyx4rtYr364CaIxQ-ArY95DlWbfcbOFDPNvypsZ_xsNtZ_f4vejGbK8O5vv0Kbh4_f7j81T18fP9_fPTWO9bI0Q9-JllBJXNeBASBt33FuhRSjUlJRbq1gEmyrCIV-AFZ9EBycFLw6IAy_QjfL3n2KP-prRe98dtUQEyAesmaSccqUUPI_UKoEl5zyirYL6lLMOcGo98nvTJo1JfqUmd7qJTN9ykwvmVXZ7SKD-vHRQ9LZeQgOBp_AFT1E_-8FfwD2aqUF
Cites_doi 10.1002/wcms.1493
10.1021/acs.jctc.8b01176
10.1021/jp100961s
10.1021/acs.jpclett.8b00238
10.1063/1.448118
10.1063/1.1332996
10.1016/j.chembiol.2018.02.007
10.1021/acs.jpca.7b10842
10.1016/j.abb.2017.07.014
10.1007/3-540-11846-2_3
10.1128/JB.00763-17
10.1002/anie.201708091
10.1038/nature14560
10.1093/nar/gkh381
10.1021/cs502087f
10.1021/ct100684s
10.1021/ct401002w
10.1016/0021-9991(77)90098-5
10.1021/ct100578z
10.1002/jcc.10128
10.1021/acs.jctc.2c00294
10.1093/database/baz024
10.1002/cbic.201800389
10.1021/ct400314y
10.1021/bi00316a007
10.1021/ct401042b
10.1021/acschembio.8b00673
10.1016/j.cpc.2012.09.022
10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
10.1039/b800496j
10.1002/jcc.20035
10.1016/j.tibs.2017.02.005
10.1021/acscatal.8b04862
10.1021/acs.jctc.5b00255
10.1002/jcc.20857
10.1016/j.jmgm.2005.12.005
10.1021/ct200133y
10.1038/nature14559
10.1021/acs.biochem.7b01131
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2022.130247
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 10_1016_j_bbagen_2022_130247
S0304416522001659
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c297t-d95640170c55eaee049533b676f887813bb627eb4801e9de230463ec7630056a3
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Tue Aug 05 10:36:34 EDT 2025
Fri Jul 11 07:25:28 EDT 2025
Tue Jul 01 00:22:17 EDT 2025
Fri Feb 23 02:38:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Prenylated flavin mononucleotide
Protonation states
UbiX
Phosphate
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-d95640170c55eaee049533b676f887813bb627eb4801e9de230463ec7630056a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0304416522001659
PQID 2718637313
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2723128687
proquest_miscellaneous_2718637313
crossref_primary_10_1016_j_bbagen_2022_130247
elsevier_sciencedirect_doi_10_1016_j_bbagen_2022_130247
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Webb, Sali (bb0120) 2016; 2016
Stephen, Marshall, Payne, Fisher, White, Cheallaigh, Balaikaite, Rigby (bb0070) 2019; 10
Payer, Marshall, Bärland, Sheng, Reiter, Dordic, Steinkellner, Wuensch, Kaltwasser, Fisher, Rigby, Macheroux, Vonck, Gruber, Faber, Himo, Leys, Pavkov-Keller, Glueck (bb0030) 2017; 56
Jakalian, Bush, Jack, Bayly (bb0150) 2000; 21
Schrödinger (bb0115) 2017
Huang, Yue, Tsai, Henderson, Shen (bb0085) 2018; 9
Silva, Schulz, Jahn, Jahn, Ramos (bb0100) 2010; 114
Walker, Crowley, Case (bb0215) 2008; 29
Olsson, Søndergaard, Rostkowski, Jensen (bb0130) 2011; 7
Seabra, Walker, Elstner, Case, Roitberg (bb0220) 2007
Bannwarth, Caldeweyher, Ehlert, Hansen, Pracht, Seibert, Spicher, Grimme (bb0205) 2021; 11
Fagan, Palfey (bb0005) 2010
White, Payne, Fisher, Marshall, Parker, Rattray, Trivedi, Goodacre, Rigby, Scrutton, Hay, Leys (bb0045) 2015; 522
Gaus, Lu, Elstner, Cui (bb0230) 2014; 10
Salomon-Ferrer, Götz, Poole, Le Grand, Walker (bb0170) 2013; 9
Swails, York, Roitberg (bb0210) 2014; 10
Le Grand, Götz, Walker (bb0175) 2013; 184
Wang, Khusnutdinova, Luo, Xiao, Nemr, Flick, Brown, Mahadevan, Edwards, Yakunin (bb0060) 2018; 25
Moonen, Vervoort, Mueller (bb0015) 1984; 23
Lopata, Jambrina, Sharma, Brooks, Toth, Vertessy, Rosta (bb0090) 2015; 5
Gaus, Cui, Elstner (bb0225) 2011; 7
Payne, White, Fisher, Khara, Bailey, Parker, Rattray, Trivedi, Goodacre, Beveridge, Barran, Rigby, Scrutton, Hay, Leys (bb0025) 2015; 522
Marshall, Payne, Leys (bb0055) 2017; 632
Żaczek, Kowalska, Dybala-Defratyka (bb0075) 2018; 19
Case, Ben-Shalom, Brozell, Cerutti, Cheatham, Cruzeiro, Darden, Duke, Ghoreishi, Gilson, Gohlke, Goetz, Greene, Harris, Homeyer, Izadi, Kovalenko, Kurtzman, Lee, LeGrand, Y. D.M, Kollman (bb0125) 2018
Ramos-Guzmán, Velázquez-Libera, Ruiz-Pernía, Tuñón (bb0110) 2022; 18
Lu (bb0200) 2022
Piano, Palfey, Mattevi (bb0020) 2017; 42
Pahari, Sun, Alexov (bb0080) 2019; 2019
Søndergaard, Olsson, Rostkowski, Jensen (bb0135) 2011; 7
Wang, Wang, Kollman, Case (bb0160) 2006; 25
Jakalian, Jack, Bayly (bb0155) 2002; 23
Wang, Wolf, Caldwell, Kollman, Case (bb0145) 2004; 25
Ryckaert, Ciccotti, Berendsen (bb0190) 1977; 23
Annaval, Han, Rudolf, Xie, Yang, Chang, Ma, Crnovcic, Miller, Soman, Xu, Phillips, Shen (bb0040) 2018; 13
Zinovjev, Tuñón (bb0235) 2017; 121
Costa, Moskatel, Meirelles, Newman (bb0050) 2018; 200
Bannwarth, Ehlert, Grimme (bb0105) 2019; 15
Müller (bb0010) 1983; 108
Lzaguirre, Catarello, Wozniak, Skeel (bb0180) 2001; 114
Maier, Martinez, Kasavajhala, Wickstrom, Hauser, Simmerling (bb0165) 2015; 11
Dolinsky, Nielsen, McCammon, Baker (bb0140) 2004; 32
Arunrattanamook, Marsh (bb0065) 2018; 57
Payne, Marshall, Fisher, Cliff, Cannas, Yan, Heyes, Parker, Larrosa, Leys (bb0035) 2019; 9
Berendsen, Postma, van Gunsteren, DiNola, Haak (bb0185) 1984; 81
Frisch, Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Mennucci, Petersson, Nakatsuji, Caricato, Li, Hratchian, Izmaylov, Bloino, Zheng, Sonnenberg (bb0195) 2016
Van Der Kamp, Perruccio, Mulholland (bb0095) 2008; 0
Case (10.1016/j.bbagen.2022.130247_bb0125) 2018
Pahari (10.1016/j.bbagen.2022.130247_bb0080) 2019; 2019
Walker (10.1016/j.bbagen.2022.130247_bb0215) 2008; 29
Piano (10.1016/j.bbagen.2022.130247_bb0020) 2017; 42
Frisch (10.1016/j.bbagen.2022.130247_bb0195) 2016
Żaczek (10.1016/j.bbagen.2022.130247_bb0075) 2018; 19
Dolinsky (10.1016/j.bbagen.2022.130247_bb0140) 2004; 32
Bannwarth (10.1016/j.bbagen.2022.130247_bb0205) 2021; 11
Fagan (10.1016/j.bbagen.2022.130247_bb0005) 2010
Stephen (10.1016/j.bbagen.2022.130247_bb0070) 2019; 10
Olsson (10.1016/j.bbagen.2022.130247_bb0130) 2011; 7
Schrödinger (10.1016/j.bbagen.2022.130247_bb0115) 2017
Arunrattanamook (10.1016/j.bbagen.2022.130247_bb0065) 2018; 57
Le Grand (10.1016/j.bbagen.2022.130247_bb0175) 2013; 184
Swails (10.1016/j.bbagen.2022.130247_bb0210) 2014; 10
Costa (10.1016/j.bbagen.2022.130247_bb0050) 2018; 200
Lzaguirre (10.1016/j.bbagen.2022.130247_bb0180) 2001; 114
Gaus (10.1016/j.bbagen.2022.130247_bb0225) 2011; 7
Payne (10.1016/j.bbagen.2022.130247_bb0035) 2019; 9
White (10.1016/j.bbagen.2022.130247_bb0045) 2015; 522
Ramos-Guzmán (10.1016/j.bbagen.2022.130247_bb0110) 2022; 18
Webb (10.1016/j.bbagen.2022.130247_bb0120) 2016; 2016
Berendsen (10.1016/j.bbagen.2022.130247_bb0185) 1984; 81
Ryckaert (10.1016/j.bbagen.2022.130247_bb0190) 1977; 23
Marshall (10.1016/j.bbagen.2022.130247_bb0055) 2017; 632
Jakalian (10.1016/j.bbagen.2022.130247_bb0150) 2000; 21
Lopata (10.1016/j.bbagen.2022.130247_bb0090) 2015; 5
Bannwarth (10.1016/j.bbagen.2022.130247_bb0105) 2019; 15
Maier (10.1016/j.bbagen.2022.130247_bb0165) 2015; 11
Salomon-Ferrer (10.1016/j.bbagen.2022.130247_bb0170) 2013; 9
Søndergaard (10.1016/j.bbagen.2022.130247_bb0135) 2011; 7
Wang (10.1016/j.bbagen.2022.130247_bb0160) 2006; 25
Gaus (10.1016/j.bbagen.2022.130247_bb0230) 2014; 10
Müller (10.1016/j.bbagen.2022.130247_bb0010) 1983; 108
Annaval (10.1016/j.bbagen.2022.130247_bb0040) 2018; 13
Payer (10.1016/j.bbagen.2022.130247_bb0030) 2017; 56
Van Der Kamp (10.1016/j.bbagen.2022.130247_bb0095) 2008; 0
Silva (10.1016/j.bbagen.2022.130247_bb0100) 2010; 114
Seabra (10.1016/j.bbagen.2022.130247_bb0220) 2007
Huang (10.1016/j.bbagen.2022.130247_bb0085) 2018; 9
Jakalian (10.1016/j.bbagen.2022.130247_bb0155) 2002; 23
Lu (10.1016/j.bbagen.2022.130247_bb0200)
Wang (10.1016/j.bbagen.2022.130247_bb0145) 2004; 25
Payne (10.1016/j.bbagen.2022.130247_bb0025) 2015; 522
Moonen (10.1016/j.bbagen.2022.130247_bb0015) 1984; 23
Wang (10.1016/j.bbagen.2022.130247_bb0060) 2018; 25
Zinovjev (10.1016/j.bbagen.2022.130247_bb0235) 2017; 121
References_xml – volume: 10
  start-page: 6
  year: 2019
  end-page: 8
  ident: bb0070
  article-title: The UbiX flavin prenyltransferase reaction mechanism resembles Class I terpene cyclase chemistry
  publication-title: Nat. Commun.
– volume: 114
  start-page: 8994
  year: 2010
  end-page: 9001
  ident: bb0100
  article-title: A tale of two acids: when arginine is a more appropriate acid than H 3O+
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 3225
  year: 2015
  end-page: 3237
  ident: bb0090
  article-title: Mutations decouple proton transfer from phosphate cleavage in the dUTPase catalytic reaction
  publication-title: ACS Catal.
– volume: 32
  start-page: W665
  year: 2004
  end-page: W667
  ident: bb0140
  article-title: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
  publication-title: Nucleic Acids Res.
– volume: 18
  start-page: 4005
  year: 2022
  end-page: 4013
  ident: bb0110
  article-title: Testing affordable strategies for the computational study of reactivity in cysteine proteases: the Case of SARS-CoV-2 3CL protease inhibition
  publication-title: J. Chem. Theory Comput.
– volume: 25
  start-page: 1157
  year: 2004
  end-page: 1174
  ident: bb0145
  article-title: Development and testing of a general Amber force field
  publication-title: J. Comput. Chem.
– volume: 184
  start-page: 374
  year: 2013
  end-page: 380
  ident: bb0175
  article-title: SPFP: speed without compromise - a mixed precision model for GPU accelerated molecular dynamics simulations
  publication-title: Comput. Phys. Commun.
– start-page: 5655
  year: 2007
  end-page: 5664
  ident: bb0220
  article-title: Implementation of the SCC-DFTB method for hybrid QM/MM simulations within the Amber molecular dynamics package, in
  publication-title: J. Phys. Chem. A Am. Chem. Soc.
– volume: 23
  start-page: 327
  year: 1977
  end-page: 341
  ident: bb0190
  article-title: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes
  publication-title: J. Comput. Phys.
– volume: 23
  start-page: 1623
  year: 2002
  end-page: 1641
  ident: bb0155
  article-title: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation
  publication-title: J. Comput. Chem.
– volume: 114
  start-page: 2090
  year: 2001
  end-page: 2098
  ident: bb0180
  article-title: Langevin stabilization of molecular dynamics
  publication-title: J. Chem. Phys.
– volume: 42
  start-page: 457
  year: 2017
  end-page: 469
  ident: bb0020
  article-title: Flavins as covalent catalysts: new mechanisms emerge
  publication-title: Trends Biochem. Sci.
– volume: 25
  start-page: 247
  year: 2006
  end-page: 260
  ident: bb0160
  article-title: Automatic atom type and bond type perception in molecular mechanical calculations
  publication-title: J. Mol. Graph. Model.
– volume: 7
  start-page: 525
  year: 2011
  end-page: 537
  ident: bb0130
  article-title: PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions
  publication-title: J. Chem. Theory Comput.
– volume: 522
  start-page: 502
  year: 2015
  end-page: 506
  ident: bb0045
  article-title: UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis
  publication-title: Nature.
– volume: 15
  start-page: 1652
  year: 2019
  end-page: 1671
  ident: bb0105
  article-title: GFN2-xTB - an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions
  publication-title: J. Chem. Theory Comput.
– volume: 108
  start-page: 71
  year: 1983
  end-page: 107
  ident: bb0010
  article-title: The flavin redox-system and its biological function
  publication-title: Top. Curr. Chem.
– volume: 13
  start-page: 2728
  year: 2018
  end-page: 2738
  ident: bb0040
  article-title: Biochemical and structural characterization of TtnD, a Prenylated FMN-dependent decarboxylase from the Tautomycetin biosynthetic pathway
  publication-title: ACS Chem. Biol.
– volume: 9
  start-page: 2854
  year: 2019
  end-page: 2865
  ident: bb0035
  article-title: Enzymatic carboxylation of 2-Furoic acid yields 2,5-Furandicarboxylic acid (FDCA)
  publication-title: ACS Catal.
– volume: 0
  start-page: 1874
  year: 2008
  end-page: 1876
  ident: bb0095
  article-title: High-level QM/MM modelling predicts an arginine as the acid in the condensation reaction catalysed by citrate synthase
  publication-title: Chem. Commun.
– volume: 11
  year: 2021
  ident: bb0205
  article-title: Extended tight-binding quantum chemistry methods
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 10
  start-page: 1518
  year: 2014
  end-page: 1537
  ident: bb0230
  article-title: Parameterization of DFTB3/3OB for sulfur and phosphorus for chemical and biological applications
  publication-title: J. Chem. Theory Comput.
– start-page: 37
  year: 2010
  end-page: 113
  ident: bb0005
  article-title: Flavin-dependent enzymes
  publication-title: Compr. Nat. Prod. II Chem. Biol.
– volume: 7
  start-page: 931
  year: 2011
  end-page: 948
  ident: bb0225
  article-title: DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB)
  publication-title: J. Chem. Theory Comput.
– volume: 81
  start-page: 3684
  year: 1984
  end-page: 3690
  ident: bb0185
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
– volume: 200
  year: 2018
  ident: bb0050
  article-title: PhdA catalyzes the first step of phenazine-1-carboxylic acid degradation in
  publication-title: J. Bacteriol.
– volume: 7
  start-page: 2284
  year: 2011
  end-page: 2295
  ident: bb0135
  article-title: Improved treatment of ligands and coupling effects in empirical calculation and rationalization of p K a values
  publication-title: J. Chem. Theory Comput.
– volume: 9
  start-page: 3878
  year: 2013
  end-page: 3888
  ident: bb0170
  article-title: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald
  publication-title: J. Chem. Theory Comput.
– volume: 2016
  start-page: 5.6.1
  year: 2016
  end-page: 5.6.37
  ident: bb0120
  article-title: Comparative protein structure modeling using modeller
  publication-title: Curr. Protoc. Bioinformatics
– year: 2016
  ident: bb0195
  article-title: Gaussian 16, Rev. C.01, Inc. Wallingford, CT
– year: 2022
  ident: bb0200
  article-title: gau_xtb: A Gaussian interface for xtb code
– volume: 21
  start-page: 132
  year: 2000
  end-page: 146
  ident: bb0150
  article-title: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method
  publication-title: J. Comput. Chem.
– volume: 56
  start-page: 13893
  year: 2017
  end-page: 13897
  ident: bb0030
  article-title: Regioselective para-carboxylation of catechols with a prenylated flavin dependent decarboxylase
  publication-title: Angew. Chem. Int. Ed.
– volume: 25
  start-page: 560
  year: 2018
  end-page: 570.e6
  ident: bb0060
  article-title: Biosynthesis and activity of Prenylated FMN cofactors
  publication-title: Cell Chem. Biol.
– volume: 11
  start-page: 3696
  year: 2015
  end-page: 3713
  ident: bb0165
  article-title: ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB
  publication-title: J. Chem. Theory Comput.
– volume: 29
  start-page: 1019
  year: 2008
  end-page: 1031
  ident: bb0215
  article-title: The implementation of a fast and accurate QM/MM potential method in Amber
  publication-title: J. Comput. Chem.
– volume: 522
  start-page: 497
  year: 2015
  end-page: 501
  ident: bb0025
  article-title: New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition
  publication-title: Nature.
– year: 2017
  ident: bb0115
  article-title: PyMOL, The PyMOL Molecular Graphics System
– volume: 57
  start-page: 696
  year: 2018
  end-page: 700
  ident: bb0065
  article-title: Kinetic characterization of Prenyl-Flavin synthase from
  publication-title: Biochemistry.
– volume: 10
  start-page: 1341
  year: 2014
  end-page: 1352
  ident: bb0210
  article-title: Constant pH replica exchange molecular dynamics in explicit solvent using discrete protonation states: implementation, testing, and validation
  publication-title: J. Chem. Theory Comput.
– year: 2018
  ident: bb0125
  article-title: Amber 18
– volume: 121
  start-page: 9764
  year: 2017
  end-page: 9772
  ident: bb0235
  article-title: Adaptive finite temperature string method in collective variables
  publication-title: J. Phys. Chem. A
– volume: 19
  start-page: 2403
  year: 2018
  end-page: 2409
  ident: bb0075
  article-title: Ligand-driven conformational dynamics influences selectivity of UbiX
  publication-title: ChemBioChem.
– volume: 9
  start-page: 1179
  year: 2018
  end-page: 1184
  ident: bb0085
  article-title: Predicting catalytic proton donors and nucleophiles in enzymes: how adding dynamics helps elucidate the structure–function relationships
  publication-title: J. Phys. Chem. Lett.
– volume: 23
  start-page: 4859
  year: 1984
  end-page: 4867
  ident: bb0015
  article-title: Reinvestigation of the structure of oxidized and reduced flavin: carbon-13 and nitrogen-15 nuclear magnetic resonance study
  publication-title: Biochemistry.
– volume: 632
  start-page: 209
  year: 2017
  end-page: 221
  ident: bb0055
  article-title: The UbiX-UbiD system: the biosynthesis and use of prenylated flavin (prFMN)
  publication-title: Arch. Biochem. Biophys.
– volume: 2019
  year: 2019
  ident: bb0080
  article-title: PKAD: a database of experimentally measured pKa values of ionizable groups in proteins
  publication-title: Database.
– volume: 11
  year: 2021
  ident: 10.1016/j.bbagen.2022.130247_bb0205
  article-title: Extended tight-binding quantum chemistry methods
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1493
– volume: 15
  start-page: 1652
  year: 2019
  ident: 10.1016/j.bbagen.2022.130247_bb0105
  article-title: GFN2-xTB - an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b01176
– volume: 114
  start-page: 8994
  year: 2010
  ident: 10.1016/j.bbagen.2022.130247_bb0100
  article-title: A tale of two acids: when arginine is a more appropriate acid than H 3O+
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp100961s
– volume: 9
  start-page: 1179
  year: 2018
  ident: 10.1016/j.bbagen.2022.130247_bb0085
  article-title: Predicting catalytic proton donors and nucleophiles in enzymes: how adding dynamics helps elucidate the structure–function relationships
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00238
– volume: 81
  start-page: 3684
  year: 1984
  ident: 10.1016/j.bbagen.2022.130247_bb0185
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 114
  start-page: 2090
  year: 2001
  ident: 10.1016/j.bbagen.2022.130247_bb0180
  article-title: Langevin stabilization of molecular dynamics
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1332996
– start-page: 5655
  year: 2007
  ident: 10.1016/j.bbagen.2022.130247_bb0220
  article-title: Implementation of the SCC-DFTB method for hybrid QM/MM simulations within the Amber molecular dynamics package, in
  publication-title: J. Phys. Chem. A Am. Chem. Soc.
– volume: 25
  start-page: 560
  year: 2018
  ident: 10.1016/j.bbagen.2022.130247_bb0060
  article-title: Biosynthesis and activity of Prenylated FMN cofactors
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2018.02.007
– volume: 121
  start-page: 9764
  year: 2017
  ident: 10.1016/j.bbagen.2022.130247_bb0235
  article-title: Adaptive finite temperature string method in collective variables
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.7b10842
– volume: 632
  start-page: 209
  year: 2017
  ident: 10.1016/j.bbagen.2022.130247_bb0055
  article-title: The UbiX-UbiD system: the biosynthesis and use of prenylated flavin (prFMN)
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2017.07.014
– volume: 108
  start-page: 71
  year: 1983
  ident: 10.1016/j.bbagen.2022.130247_bb0010
  article-title: The flavin redox-system and its biological function
  publication-title: Top. Curr. Chem.
  doi: 10.1007/3-540-11846-2_3
– volume: 200
  year: 2018
  ident: 10.1016/j.bbagen.2022.130247_bb0050
  article-title: PhdA catalyzes the first step of phenazine-1-carboxylic acid degradation in Mycobacterium fortuitum
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00763-17
– year: 2017
  ident: 10.1016/j.bbagen.2022.130247_bb0115
– volume: 56
  start-page: 13893
  year: 2017
  ident: 10.1016/j.bbagen.2022.130247_bb0030
  article-title: Regioselective para-carboxylation of catechols with a prenylated flavin dependent decarboxylase
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708091
– volume: 522
  start-page: 497
  year: 2015
  ident: 10.1016/j.bbagen.2022.130247_bb0025
  article-title: New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition
  publication-title: Nature.
  doi: 10.1038/nature14560
– volume: 32
  start-page: W665
  year: 2004
  ident: 10.1016/j.bbagen.2022.130247_bb0140
  article-title: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh381
– volume: 5
  start-page: 3225
  year: 2015
  ident: 10.1016/j.bbagen.2022.130247_bb0090
  article-title: Mutations decouple proton transfer from phosphate cleavage in the dUTPase catalytic reaction
  publication-title: ACS Catal.
  doi: 10.1021/cs502087f
– volume: 7
  start-page: 931
  year: 2011
  ident: 10.1016/j.bbagen.2022.130247_bb0225
  article-title: DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB)
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100684s
– volume: 10
  start-page: 1518
  year: 2014
  ident: 10.1016/j.bbagen.2022.130247_bb0230
  article-title: Parameterization of DFTB3/3OB for sulfur and phosphorus for chemical and biological applications
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct401002w
– ident: 10.1016/j.bbagen.2022.130247_bb0200
– volume: 23
  start-page: 327
  year: 1977
  ident: 10.1016/j.bbagen.2022.130247_bb0190
  article-title: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90098-5
– volume: 7
  start-page: 525
  year: 2011
  ident: 10.1016/j.bbagen.2022.130247_bb0130
  article-title: PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100578z
– volume: 23
  start-page: 1623
  year: 2002
  ident: 10.1016/j.bbagen.2022.130247_bb0155
  article-title: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10128
– volume: 18
  start-page: 4005
  year: 2022
  ident: 10.1016/j.bbagen.2022.130247_bb0110
  article-title: Testing affordable strategies for the computational study of reactivity in cysteine proteases: the Case of SARS-CoV-2 3CL protease inhibition
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00294
– start-page: 37
  year: 2010
  ident: 10.1016/j.bbagen.2022.130247_bb0005
  article-title: Flavin-dependent enzymes
– volume: 2019
  year: 2019
  ident: 10.1016/j.bbagen.2022.130247_bb0080
  article-title: PKAD: a database of experimentally measured pKa values of ionizable groups in proteins
  publication-title: Database.
  doi: 10.1093/database/baz024
– volume: 19
  start-page: 2403
  year: 2018
  ident: 10.1016/j.bbagen.2022.130247_bb0075
  article-title: Ligand-driven conformational dynamics influences selectivity of UbiX
  publication-title: ChemBioChem.
  doi: 10.1002/cbic.201800389
– volume: 9
  start-page: 3878
  year: 2013
  ident: 10.1016/j.bbagen.2022.130247_bb0170
  article-title: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400314y
– volume: 23
  start-page: 4859
  year: 1984
  ident: 10.1016/j.bbagen.2022.130247_bb0015
  article-title: Reinvestigation of the structure of oxidized and reduced flavin: carbon-13 and nitrogen-15 nuclear magnetic resonance study
  publication-title: Biochemistry.
  doi: 10.1021/bi00316a007
– volume: 10
  start-page: 1341
  year: 2014
  ident: 10.1016/j.bbagen.2022.130247_bb0210
  article-title: Constant pH replica exchange molecular dynamics in explicit solvent using discrete protonation states: implementation, testing, and validation
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct401042b
– year: 2018
  ident: 10.1016/j.bbagen.2022.130247_bb0125
– volume: 13
  start-page: 2728
  year: 2018
  ident: 10.1016/j.bbagen.2022.130247_bb0040
  article-title: Biochemical and structural characterization of TtnD, a Prenylated FMN-dependent decarboxylase from the Tautomycetin biosynthetic pathway
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.8b00673
– year: 2016
  ident: 10.1016/j.bbagen.2022.130247_bb0195
– volume: 184
  start-page: 374
  year: 2013
  ident: 10.1016/j.bbagen.2022.130247_bb0175
  article-title: SPFP: speed without compromise - a mixed precision model for GPU accelerated molecular dynamics simulations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.09.022
– volume: 21
  start-page: 132
  year: 2000
  ident: 10.1016/j.bbagen.2022.130247_bb0150
  article-title: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
– volume: 10
  start-page: 6
  year: 2019
  ident: 10.1016/j.bbagen.2022.130247_bb0070
  article-title: The UbiX flavin prenyltransferase reaction mechanism resembles Class I terpene cyclase chemistry
  publication-title: Nat. Commun.
– volume: 0
  start-page: 1874
  year: 2008
  ident: 10.1016/j.bbagen.2022.130247_bb0095
  article-title: High-level QM/MM modelling predicts an arginine as the acid in the condensation reaction catalysed by citrate synthase
  publication-title: Chem. Commun.
  doi: 10.1039/b800496j
– volume: 25
  start-page: 1157
  year: 2004
  ident: 10.1016/j.bbagen.2022.130247_bb0145
  article-title: Development and testing of a general Amber force field
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
– volume: 42
  start-page: 457
  year: 2017
  ident: 10.1016/j.bbagen.2022.130247_bb0020
  article-title: Flavins as covalent catalysts: new mechanisms emerge
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2017.02.005
– volume: 9
  start-page: 2854
  year: 2019
  ident: 10.1016/j.bbagen.2022.130247_bb0035
  article-title: Enzymatic carboxylation of 2-Furoic acid yields 2,5-Furandicarboxylic acid (FDCA)
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04862
– volume: 11
  start-page: 3696
  year: 2015
  ident: 10.1016/j.bbagen.2022.130247_bb0165
  article-title: ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00255
– volume: 29
  start-page: 1019
  year: 2008
  ident: 10.1016/j.bbagen.2022.130247_bb0215
  article-title: The implementation of a fast and accurate QM/MM potential method in Amber
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20857
– volume: 25
  start-page: 247
  year: 2006
  ident: 10.1016/j.bbagen.2022.130247_bb0160
  article-title: Automatic atom type and bond type perception in molecular mechanical calculations
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/j.jmgm.2005.12.005
– volume: 2016
  start-page: 5.6.1
  year: 2016
  ident: 10.1016/j.bbagen.2022.130247_bb0120
  article-title: Comparative protein structure modeling using modeller
  publication-title: Curr. Protoc. Bioinformatics
– volume: 7
  start-page: 2284
  year: 2011
  ident: 10.1016/j.bbagen.2022.130247_bb0135
  article-title: Improved treatment of ligands and coupling effects in empirical calculation and rationalization of p K a values
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200133y
– volume: 522
  start-page: 502
  year: 2015
  ident: 10.1016/j.bbagen.2022.130247_bb0045
  article-title: UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis
  publication-title: Nature.
  doi: 10.1038/nature14559
– volume: 57
  start-page: 696
  year: 2018
  ident: 10.1016/j.bbagen.2022.130247_bb0065
  article-title: Kinetic characterization of Prenyl-Flavin synthase from Saccharomyces cerevisiae
  publication-title: Biochemistry.
  doi: 10.1021/acs.biochem.7b01131
SSID ssj0000595
Score 2.387438
Snippet Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 130247
SubjectTerms active sites
biochemical pathways
biosynthesis
cycloaddition reactions
family
hydrogen bonding
Phosphate
phosphates
Prenylated flavin mononucleotide
protonation
Protonation states
UbiX
Title Unravelling interactions between active site residues and DMAP in the initial steps of prenylated flavin mononucleotide biosynthesis catalyzed by PaUbiX
URI https://dx.doi.org/10.1016/j.bbagen.2022.130247
https://www.proquest.com/docview/2718637313
https://www.proquest.com/docview/2723128687
Volume 1866
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBahY6wvZWtX2m4rN9irm0a2pOQxZCvZRkqhC-RNSJYMLsEOdVpwH_Y79nN3J9mUjbFCn4yNZAvd6e6TdfcdY5_QwBXoN0VSnHuZZLniibEcN665c8JJw32oRbC4lPNl9m0lVgM263NhKKyys_3Rpgdr3T0ZdrM53JTl8JoO9RBOIIAg3CIoiS_LFPHnn_18DPNA-CDiSUKWUOs-fS7EeFmLi5ZYUDmnssiciqz82z39ZaiD97l4zfY62AjTOLI3bOCrffYyFpJs99mrWV-37YD9WlZUUihwbQOxQdzG3IUGupgsMMHGAZ0bA-62S4dfBFM5-LyYXmEXQFCIlxIX_xpQCzYN1AUQ-WW7RmjqoFibe2yGGlxXxIdcb0vnwZZ101bYtykbCL-F2gdsbFu4Mktbrt6y5cWXH7N50tVfSHI-UdvE4d4pI36dXAhvvD8PsahWKlmgaRqPUmslV94SA42fOM8D_ZjPFdF4CWnSQ7aD4_BHDCZ5OlYmN9IqhBCisKkb8WJkjcR32tQfs6Sfdr2JNBu6jz-70VFMmsSko5iOmeplo_9QF42e4ImeH3tRahQMHY-Yytd3jebopmWq0lH6vzaIh_lYjtXJs0fwju3SXYyJec92trd3_gMim609Dap7yl5Mv36fX_4GgX753g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6ltG9jK3bWPfR3WCvJo0cScljyFbSj4TCGsibkCwZPIId6nTg_SX7c3cn24yNsUKfDPbJFrrT3U_W6XcAn8jB5RQ3ZZKfBpWMMi0S6wQtXDPvpVdWhFiLYLFU89XoYi3XezDrz8JwWmXn-1ufHr11d2fQjeZgWxSDr7ypR3CCAATjFjl5BAfMTkXGfjA9v5wvfztkGYuvsHzCDfoTdDHNyzmat0yEKgRXRhZcZ-XfEeovXx0D0NkzeNohR5y2nXsOe6E8gsdtLcnmCA5nfem2F_BzVXJVoUi3jUwIcdseX6ixS8tCG90c8tYx0oK78PRFtKXHz4vpNTVBwoV0KWj-b5AMYVtjlSPzXzYbQqce8439TmJkxFXJlMjVrvABXVHVTUlt66LG-Geo-UHCrsFru3LF-iWszr7czOZJV4IhycRE7xJPy6cRU-xkUgYbwmlMR3VKq5y803iYOqeEDo5JaMLEBxEZyEKmmclLKpu-gn3qR3gNOMnSsbaZVU4TipC5S_1Q5ENnFb3TpeEYkn7YzbZl2jB9Cto306rJsJpMq6Zj0L1uzB8WYygY3NPyY69KQ4rhHRJbhuquNoIitUp1Okz_J0OQWIzVWL95cA8-wOH8ZnFlrs6Xl2_hCT9pU2Tewf7u9i68J6CzcyedIf8CCyb8jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unravelling+interactions+between+active+site+residues+and+DMAP+in+the+initial+steps+of+prenylated+flavin+mononucleotide+biosynthesis+catalyzed+by+PaUbiX&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=%C5%BBaczek%2C+Szymon&rft.au=Dybala-Defratyka%2C+Agnieszka&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1866&rft.issue=12&rft_id=info:doi/10.1016%2Fj.bbagen.2022.130247&rft.externalDocID=S0304416522001659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon