Performance improvement of a distributed temperature sensor with kilometer length and centimeter spatial resolution based on polarization-sensitive OFDR

A method to improve the performance of distributed temperature sensors with kilometer sensing distance and centimeter spatial resolution is proposed based on polarization-sensitive optical frequency domain reflectometry (OFDR). This approach records the temperature change along polarization maintain...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 373; p. 115430
Main Authors Li, Xinnuo, Zhu, Yao, Lin, Cuofu, Zou, Chen, Zhu, Yunlong, Dang, Fanyang, Lin, Yicheng, Yuan, Yonggui, Yang, Jun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A method to improve the performance of distributed temperature sensors with kilometer sensing distance and centimeter spatial resolution is proposed based on polarization-sensitive optical frequency domain reflectometry (OFDR). This approach records the temperature change along polarization maintaining fiber (PMF) from the Rayleigh backscattering (RBS) spectral difference between two orthogonal polarization axes using the distributed autocorrelation algorithm, where PMF is used as the sensing fiber. In addition, a technique to calibrate population birefringence and local birefringence, and a method to calibrate the initial birefringence inhomogeneity of PMF are proposed to enhance the performance of the sensor. The birefringence of PMF is used for temperature sensing, which is distinct from the traditional cross-correlation method of single-mode optical fiber temperature sensing, providing us with an innovative scheme to solve real-world engineering problems. The final sensing performance is achieved, with a sensing distance of 1.5 km, a spatial resolution of 5 cm, and a temperature measurement uncertainty of ±0.2 °C, subject to environmental noise and system random noise. [Display omitted] •A polarization-sensitive OFDR-based temperature sensor is proposed.•This sensing method has a longer sensing distance with a high spatial resolution.•The autocorrelation demodulation method ensures high-accuracy temperature sensing over long distances.•Experimental results demonstrate the effectiveness and stability of the method.
AbstractList A method to improve the performance of distributed temperature sensors with kilometer sensing distance and centimeter spatial resolution is proposed based on polarization-sensitive optical frequency domain reflectometry (OFDR). This approach records the temperature change along polarization maintaining fiber (PMF) from the Rayleigh backscattering (RBS) spectral difference between two orthogonal polarization axes using the distributed autocorrelation algorithm, where PMF is used as the sensing fiber. In addition, a technique to calibrate population birefringence and local birefringence, and a method to calibrate the initial birefringence inhomogeneity of PMF are proposed to enhance the performance of the sensor. The birefringence of PMF is used for temperature sensing, which is distinct from the traditional cross-correlation method of single-mode optical fiber temperature sensing, providing us with an innovative scheme to solve real-world engineering problems. The final sensing performance is achieved, with a sensing distance of 1.5 km, a spatial resolution of 5 cm, and a temperature measurement uncertainty of ±0.2 °C, subject to environmental noise and system random noise. [Display omitted] •A polarization-sensitive OFDR-based temperature sensor is proposed.•This sensing method has a longer sensing distance with a high spatial resolution.•The autocorrelation demodulation method ensures high-accuracy temperature sensing over long distances.•Experimental results demonstrate the effectiveness and stability of the method.
ArticleNumber 115430
Author Zou, Chen
Yuan, Yonggui
Dang, Fanyang
Lin, Cuofu
Yang, Jun
Zhu, Yao
Lin, Yicheng
Zhu, Yunlong
Li, Xinnuo
Author_xml – sequence: 1
  givenname: Xinnuo
  surname: Li
  fullname: Li, Xinnuo
  organization: Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 2
  givenname: Yao
  orcidid: 0000-0002-7024-8314
  surname: Zhu
  fullname: Zhu, Yao
  email: zhu_yao@hrbeu.edu.cn
  organization: Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 3
  givenname: Cuofu
  surname: Lin
  fullname: Lin, Cuofu
  organization: Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 4
  givenname: Chen
  surname: Zou
  fullname: Zou, Chen
  organization: Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 5
  givenname: Yunlong
  surname: Zhu
  fullname: Zhu, Yunlong
  organization: Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 6
  givenname: Fanyang
  surname: Dang
  fullname: Dang, Fanyang
  organization: Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 7
  givenname: Yicheng
  surname: Lin
  fullname: Lin, Yicheng
  organization: The Guangdong Provincial Key Laboratory of Information Photonics Technology, College of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 8
  givenname: Yonggui
  surname: Yuan
  fullname: Yuan, Yonggui
  organization: Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 9
  givenname: Jun
  surname: Yang
  fullname: Yang, Jun
  organization: The Guangdong Provincial Key Laboratory of Information Photonics Technology, College of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
BookMark eNp9kEFuFDEQRS2USEwCB2DnC_Rgd7vtabFCgSRIkRIhsrZq7Gqoodtu2Z5BcBKOGw_DKousqvSl96X_LthZiAEZeyfFWgqp3-_WOcC6Fa1aS9mrTrxiK7kxXdMJPZyxlRha1ahWmdfsIuedEKLrjFmxvw-YxphmCA45zUuKB5wxFB5HDtxTLom2-4KeF5wXTFD2CXnGkGPiv6j84D9pijMWTHzC8L0GEDx3tYJOaV6gEEw8YY7TvlAMfAu5FtZniRMk-gPHtDmWUqED8vvrT1_fsPMRpoxv_99L9nj9-dvVbXN3f_Pl6uNd49rBlMbrjRq2ymm1Mb0BobVzVYIB2YP3xul21NpvDfT9AOOmw1H4rhUKB9Hqcei7SyZPvS7FnBOOdkk0Q_ptpbBHtXZnq1p7VGtPaitjnjGOyr8RJQFNL5IfTiTWSQfCZLMjrO49JXTF-kgv0E9E4po3
CitedBy_id crossref_primary_10_3390_s24165432
crossref_primary_10_1109_JLT_2024_3457812
crossref_primary_10_1109_JSEN_2024_3428494
Cites_doi 10.1364/AO.37.001735
10.1364/OL.474017
10.1364/OL.31.002526
10.1038/lsa.2016.74
10.1016/j.optcom.2013.08.022
10.1364/OE.25.016059
10.1109/JLT.2018.2883386
10.1109/JLT.2006.883607
10.1109/JLT.2021.3052036
10.1109/61.368412
10.1364/OL.34.001381
10.1109/JPHOT.2014.2320742
10.3390/s16060829
10.1109/LPT.2014.2317702
10.1364/OE.17.001248
10.1364/OE.23.033241
10.1364/OE.14.004256
10.1109/JLT.2007.893904
10.1364/CLEO_AT.2016.JTu5A.139
10.1109/JLT.2002.1007936
10.1109/ACCESS.2019.2901799
10.1109/JLT.2017.2760343
10.1364/OE.23.024923
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sna.2024.115430
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID 10_1016_j_sna_2024_115430
S0924424724004242
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
LY7
M36
M41
R2-
SCB
SCH
SET
SSH
WUQ
ID FETCH-LOGICAL-c297t-d6849b4c648757a066cc0247a15add7c62f66db7a559af83ef0d3204e9026f953
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Thu Apr 24 23:11:53 EDT 2025
Tue Jul 01 02:24:58 EDT 2025
Sat May 25 15:41:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Kilometer sensing distance
The birefringence of PMF
Centimeter spatial resolution
Polarization maintaining fiber (PMF)
Distributed temperature sensors (DTS)
Optical frequency domain reflectometry (OFDR)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-d6849b4c648757a066cc0247a15add7c62f66db7a559af83ef0d3204e9026f953
ORCID 0000-0002-7024-8314
ParticipantIDs crossref_primary_10_1016_j_sna_2024_115430
crossref_citationtrail_10_1016_j_sna_2024_115430
elsevier_sciencedirect_doi_10_1016_j_sna_2024_115430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Chen, Bao (b16) 2014; 311
Chen, Liu, He (b18) 2017; 35
Song, He, Hotate (b5) 2006; 31
Song, Zou, He, Hotate (b19) 2009; 34
Zou, He, Hotate, Ieee (b20) 2008
J. Chen, Q. Liu, X. Fan, Z. He, Ieee, Simultaneous Measurement of Strain and Temperature Using
Sun, Tang, Yang, Li, Sigrist, Dong (b3) 2016; 16
Wegmuller, Legré, Gisin (b4) 2002; 20
Kawai, Takinami, Chino, Amano, Watanabe, Nakamura, Shiseki (b1) 1995; 10
Denisov, Soto, Thevenaz (b10) 2016; 5
Kim, Lee, Song (b8) 2015; 23
Li, Liu, Chen, He (b17) 2021; 39
Lu, Soto, Thevenaz (b15) 2017; 25
Froggatt, Gifford, Kreger, Wolfe, Soller (b23) 2006; 24
Soto, Lu, Martins, Gonzalez-Herraez, Thevenaz (b24) 2015; 23
Song, He, Hotate (b6) 2006; 14
Froggatt, Moore (b12) 1998; 37
Song, Li, Lu, Xu, Chen, Bao (b13) 2014; 6
Du, Liu, Ding, Han, Liu, Jiang, Chen, Feng (b14) 2014; 26
Phase-shifted Fiber Bragg Grating on Polarization Maintaining Fiber, in: 21st OptoElectronics and Communications Conference (OECC) / International Conference on Photonics in Switching, PS, 2016.
Wang, Fan, Fu, He (b11) 2019; 37
Song, He, Hotate (b7) 2007; 25
Nikles, Vogel, Briffod, Grosswig, Sauser, Luebbecke, Bals, Pfeiffer (b2) 2004; Vol. 5384
Zou, Lin, Mou, Yu, Zhu, Zhu, Dang, Yuan, Yang, Wang, Qin (b25) 2022; 47
Wang, Fan, Fu, He (b9) 2019; 7
Zou, He, Hotate (b21) 2009; 17
Song (10.1016/j.sna.2024.115430_b6) 2006; 14
Song (10.1016/j.sna.2024.115430_b13) 2014; 6
Wang (10.1016/j.sna.2024.115430_b11) 2019; 37
Lu (10.1016/j.sna.2024.115430_b15) 2017; 25
Froggatt (10.1016/j.sna.2024.115430_b23) 2006; 24
Sun (10.1016/j.sna.2024.115430_b3) 2016; 16
Wegmuller (10.1016/j.sna.2024.115430_b4) 2002; 20
Chen (10.1016/j.sna.2024.115430_b18) 2017; 35
Zou (10.1016/j.sna.2024.115430_b25) 2022; 47
Du (10.1016/j.sna.2024.115430_b14) 2014; 26
10.1016/j.sna.2024.115430_b22
Froggatt (10.1016/j.sna.2024.115430_b12) 1998; 37
Zou (10.1016/j.sna.2024.115430_b20) 2008
Li (10.1016/j.sna.2024.115430_b16) 2014; 311
Song (10.1016/j.sna.2024.115430_b5) 2006; 31
Kim (10.1016/j.sna.2024.115430_b8) 2015; 23
Li (10.1016/j.sna.2024.115430_b17) 2021; 39
Nikles (10.1016/j.sna.2024.115430_b2) 2004; Vol. 5384
Soto (10.1016/j.sna.2024.115430_b24) 2015; 23
Kawai (10.1016/j.sna.2024.115430_b1) 1995; 10
Song (10.1016/j.sna.2024.115430_b7) 2007; 25
Song (10.1016/j.sna.2024.115430_b19) 2009; 34
Zou (10.1016/j.sna.2024.115430_b21) 2009; 17
Wang (10.1016/j.sna.2024.115430_b9) 2019; 7
Denisov (10.1016/j.sna.2024.115430_b10) 2016; 5
References_xml – volume: 35
  start-page: 4838
  year: 2017
  end-page: 4844
  ident: b18
  article-title: High-resolution simultaneous measurement of strain and temperature using
  publication-title: J. Lightwave Technol.
– volume: 37
  start-page: 2557
  year: 2019
  end-page: 2567
  ident: b11
  article-title: Dynamic strain measurements based on high-speed single-end-access Brillouin optical correlation domain analysis
  publication-title: J. Lightwave Technol.
– volume: 20
  start-page: 800
  year: 2002
  end-page: 807
  ident: b4
  article-title: Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry
  publication-title: J. Lightwave Technol.
– volume: Vol. 5384
  start-page: 18
  year: 2004
  end-page: 25
  ident: b2
  article-title: Leakage detection using fiber optics distributed temperature monitoring
  publication-title: Smart Structures and Materials 2004 Conference
– volume: 17
  start-page: 1248
  year: 2009
  end-page: 1255
  ident: b21
  article-title: Complete discrimination of strain and temperature using brillouin frequency shift and birefringence in a polarization-maintaining fiber
  publication-title: Opt. Express
– volume: 23
  start-page: 33241
  year: 2015
  end-page: 33248
  ident: b8
  article-title: Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement
  publication-title: Opt. Express
– volume: 37
  start-page: 1735
  year: 1998
  end-page: 1740
  ident: b12
  article-title: High-spatial-resolution distributed strain measurement in optical fiber with rayleigh scatter
  publication-title: Appl. Opt.
– volume: 31
  start-page: 2526
  year: 2006
  end-page: 2528
  ident: b5
  article-title: Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis
  publication-title: Opt. Lett.
– start-page: 889
  year: 2008
  end-page: 890
  ident: b20
  article-title: High-precision characterization of dynamic acoustic grating induced by stimulated brillouin scattering in a high-birefringence optical fiber
  publication-title: Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2008)
– volume: 6
  year: 2014
  ident: b13
  article-title: Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry
  publication-title: Ieee Photon. J.
– reference: J. Chen, Q. Liu, X. Fan, Z. He, Ieee, Simultaneous Measurement of Strain and Temperature Using
– volume: 5
  year: 2016
  ident: b10
  article-title: Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration
  publication-title: Light-Sci. Appl.
– volume: 23
  start-page: 24923
  year: 2015
  end-page: 24936
  ident: b24
  article-title: Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers
  publication-title: Opt. Express
– volume: 26
  start-page: 1150
  year: 2014
  end-page: 1153
  ident: b14
  article-title: Cryogenic temperature measurement using Rayleigh backscattering spectra shift by OFDR
  publication-title: Ieee Photon. Technol. Lett.
– volume: 47
  start-page: 5373
  year: 2022
  end-page: 5376
  ident: b25
  article-title: Beyond a 107 range-resolution-1 product in an OFDR based on a periodic phase noise estimation method
  publication-title: Opt. Lett.
– volume: 34
  start-page: 1381
  year: 2009
  end-page: 1383
  ident: b19
  article-title: Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber
  publication-title: Opt. Lett.
– volume: 25
  start-page: 1238
  year: 2007
  end-page: 1246
  ident: b7
  article-title: Effects of intensity modulation of light source on Brillouin optical correlation domain analysis
  publication-title: J. Lightwave Technol.
– volume: 311
  start-page: 26
  year: 2014
  end-page: 32
  ident: b16
  article-title: Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry
  publication-title: Opt. Commun.
– volume: 25
  start-page: 16059
  year: 2017
  end-page: 16071
  ident: b15
  article-title: Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry
  publication-title: Opt. Express
– volume: 16
  year: 2016
  ident: b3
  article-title: Fire source localization based on distributed temperature sensing by a dual-line optical fiber system
  publication-title: Sensors
– reference: -Phase-shifted Fiber Bragg Grating on Polarization Maintaining Fiber, in: 21st OptoElectronics and Communications Conference (OECC) / International Conference on Photonics in Switching, PS, 2016.
– volume: 7
  start-page: 32128
  year: 2019
  end-page: 32136
  ident: b9
  article-title: Enhancement of strain/temperature measurement range and spatial resolution in brillouin optical correlation domain analysis based on convexity extraction algorithm
  publication-title: Ieee Access
– volume: 10
  start-page: 85
  year: 1995
  end-page: 91
  ident: b1
  article-title: A new approach to cable fault location using fiber optic technology. I
  publication-title: IEEE Trans. Power Deliv.
– volume: 14
  start-page: 4256
  year: 2006
  end-page: 4263
  ident: b6
  article-title: Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme
  publication-title: Opt. Express
– volume: 39
  start-page: 2594
  year: 2021
  end-page: 2602
  ident: b17
  article-title: Centimeter spatial resolution distributed temperature sensor based on polarization-sensitive optical frequency domain reflectometry
  publication-title: J. Lightwave Technol.
– volume: 24
  start-page: 4149
  year: 2006
  end-page: 4154
  ident: b23
  article-title: Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry
  publication-title: J. Lightwave Technol.
– volume: 37
  start-page: 1735
  issue: 10
  year: 1998
  ident: 10.1016/j.sna.2024.115430_b12
  article-title: High-spatial-resolution distributed strain measurement in optical fiber with rayleigh scatter
  publication-title: Appl. Opt.
  doi: 10.1364/AO.37.001735
– volume: 47
  start-page: 5373
  issue: 20
  year: 2022
  ident: 10.1016/j.sna.2024.115430_b25
  article-title: Beyond a 107 range-resolution-1 product in an OFDR based on a periodic phase noise estimation method
  publication-title: Opt. Lett.
  doi: 10.1364/OL.474017
– volume: 31
  start-page: 2526
  issue: 17
  year: 2006
  ident: 10.1016/j.sna.2024.115430_b5
  article-title: Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis
  publication-title: Opt. Lett.
  doi: 10.1364/OL.31.002526
– volume: 5
  year: 2016
  ident: 10.1016/j.sna.2024.115430_b10
  article-title: Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration
  publication-title: Light-Sci. Appl.
  doi: 10.1038/lsa.2016.74
– volume: 311
  start-page: 26
  year: 2014
  ident: 10.1016/j.sna.2024.115430_b16
  article-title: Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2013.08.022
– volume: 25
  start-page: 16059
  issue: 14
  year: 2017
  ident: 10.1016/j.sna.2024.115430_b15
  article-title: Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry
  publication-title: Opt. Express
  doi: 10.1364/OE.25.016059
– volume: Vol. 5384
  start-page: 18
  year: 2004
  ident: 10.1016/j.sna.2024.115430_b2
  article-title: Leakage detection using fiber optics distributed temperature monitoring
– volume: 37
  start-page: 2557
  issue: 11
  year: 2019
  ident: 10.1016/j.sna.2024.115430_b11
  article-title: Dynamic strain measurements based on high-speed single-end-access Brillouin optical correlation domain analysis
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2883386
– volume: 24
  start-page: 4149
  issue: 11
  year: 2006
  ident: 10.1016/j.sna.2024.115430_b23
  article-title: Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2006.883607
– volume: 39
  start-page: 2594
  issue: 8
  year: 2021
  ident: 10.1016/j.sna.2024.115430_b17
  article-title: Centimeter spatial resolution distributed temperature sensor based on polarization-sensitive optical frequency domain reflectometry
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2021.3052036
– volume: 10
  start-page: 85
  issue: 1
  year: 1995
  ident: 10.1016/j.sna.2024.115430_b1
  article-title: A new approach to cable fault location using fiber optic technology. I
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.368412
– volume: 34
  start-page: 1381
  issue: 9
  year: 2009
  ident: 10.1016/j.sna.2024.115430_b19
  article-title: Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.001381
– volume: 6
  issue: 3
  year: 2014
  ident: 10.1016/j.sna.2024.115430_b13
  article-title: Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry
  publication-title: Ieee Photon. J.
  doi: 10.1109/JPHOT.2014.2320742
– volume: 16
  issue: 6
  year: 2016
  ident: 10.1016/j.sna.2024.115430_b3
  article-title: Fire source localization based on distributed temperature sensing by a dual-line optical fiber system
  publication-title: Sensors
  doi: 10.3390/s16060829
– volume: 26
  start-page: 1150
  issue: 11
  year: 2014
  ident: 10.1016/j.sna.2024.115430_b14
  article-title: Cryogenic temperature measurement using Rayleigh backscattering spectra shift by OFDR
  publication-title: Ieee Photon. Technol. Lett.
  doi: 10.1109/LPT.2014.2317702
– volume: 17
  start-page: 1248
  issue: 3
  year: 2009
  ident: 10.1016/j.sna.2024.115430_b21
  article-title: Complete discrimination of strain and temperature using brillouin frequency shift and birefringence in a polarization-maintaining fiber
  publication-title: Opt. Express
  doi: 10.1364/OE.17.001248
– volume: 23
  start-page: 33241
  issue: 26
  year: 2015
  ident: 10.1016/j.sna.2024.115430_b8
  article-title: Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement
  publication-title: Opt. Express
  doi: 10.1364/OE.23.033241
– volume: 14
  start-page: 4256
  issue: 10
  year: 2006
  ident: 10.1016/j.sna.2024.115430_b6
  article-title: Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme
  publication-title: Opt. Express
  doi: 10.1364/OE.14.004256
– start-page: 889
  year: 2008
  ident: 10.1016/j.sna.2024.115430_b20
  article-title: High-precision characterization of dynamic acoustic grating induced by stimulated brillouin scattering in a high-birefringence optical fiber
– volume: 25
  start-page: 1238
  issue: 5
  year: 2007
  ident: 10.1016/j.sna.2024.115430_b7
  article-title: Effects of intensity modulation of light source on Brillouin optical correlation domain analysis
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2007.893904
– ident: 10.1016/j.sna.2024.115430_b22
  doi: 10.1364/CLEO_AT.2016.JTu5A.139
– volume: 20
  start-page: 800
  issue: 5
  year: 2002
  ident: 10.1016/j.sna.2024.115430_b4
  article-title: Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2002.1007936
– volume: 7
  start-page: 32128
  year: 2019
  ident: 10.1016/j.sna.2024.115430_b9
  article-title: Enhancement of strain/temperature measurement range and spatial resolution in brillouin optical correlation domain analysis based on convexity extraction algorithm
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2901799
– volume: 35
  start-page: 4838
  issue: 22
  year: 2017
  ident: 10.1016/j.sna.2024.115430_b18
  article-title: High-resolution simultaneous measurement of strain and temperature using π-phase-shifted FBG in polarization maintaining fiber
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2760343
– volume: 23
  start-page: 24923
  issue: 19
  year: 2015
  ident: 10.1016/j.sna.2024.115430_b24
  article-title: Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers
  publication-title: Opt. Express
  doi: 10.1364/OE.23.024923
SSID ssj0003377
Score 2.4581037
Snippet A method to improve the performance of distributed temperature sensors with kilometer sensing distance and centimeter spatial resolution is proposed based on...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115430
SubjectTerms Centimeter spatial resolution
Distributed temperature sensors (DTS)
Kilometer sensing distance
Optical frequency domain reflectometry (OFDR)
Polarization maintaining fiber (PMF)
The birefringence of PMF
Title Performance improvement of a distributed temperature sensor with kilometer length and centimeter spatial resolution based on polarization-sensitive OFDR
URI https://dx.doi.org/10.1016/j.sna.2024.115430
Volume 373
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3yTgychu22TJtvjoi6r4io-wFtJmwSqa3fZXa_-Dn-uM23qA9SDp7YhKSEzzORLv35DyKGNQ-syLpkUScCE4oZlLuiwjuM5N0K6uGK7Xw5k_16cP8QPc-S4-RcGaZU-9tcxvYrWvqXtV7M9Lor2bQDQQURCIQsSrhiHhVDo5a3XT5oH51X1RezMsHfzZbPieE1LlB6KRAtFaZAI_VNu-pJveitk2W8UabeeyyqZs-UaWfoiH7hO3q4_Wf-0qE4HqsM-OnJUU4OSuFjNyhqKAlRePZlOAbiOJhQPYOlTMRw9IyGGYkEVaNClocjXLOrWKfKtYRaAyb2LUkx7hsLNGEGx_4uT4UsrFhK96p3cbJD73undcZ_5SgssjxI1Y0Z2RJKJXCJ8URq2IXkOy6J0GEP8U7mMnJQmUxrwh3Ydbl1geBQImwCEc0nMN8l8OSrtFqFhaGHXppU2GQThTCeZBPBurApDI2Mdb5OgWeM09zLkWA1jmDZ8s8cUzJKiWdLaLNvk6GPIuNbg-KuzaAyXfnOkFHLE78N2_jdslyziU80I3CPzs8mL3Yddyiw7qNzwgCx0zy76g3fmhOn-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgECZGD-rB-IxvOXgywW0Lhe3RqJtVd9X4SLw1tEBSH92Nu179Hf5cZ1rqI1EPntpQaAhDZ_joxzeE7No4tC7jkkmRBEwobljmgjZrO55zI6SLK7Z7_1x2b8XpXXw3QQ6bszBIq_S-v_bplbf2JS0_mq1hUbSuA4AOIhIKWZBwBT88JeDzxTQG-6-fPA_Oq_SLWJth9ebXZkXyGpWoPRSJfVSlQSb0T8HpS8DpzJM5v1KkB3VnFsiELRfJ7Bf9wCXydvlJ-6dFtT1Q7fbRgaOaGtTExXRW1lBUoPLyyXQEyHXwTHEHlj4Uj4MnZMRQzKgCBbo0FAmbRV06QsI19AJAuZ-jFOOeoXAzRFTsj3EyfGlFQ6IXnaOrZXLbOb457DKfaoHlUaLGzMi2SDKRS8QvSsM6JM9hWJQOY3CAKpeRk9JkSgMA0a7NrQsMjwJhE8BwLon5CpksB6VdJTQMLSzbtNImAy-c6SSTgN6NVWFoZKzjNRI0Y5zmXocc02E8pg3h7D4Fs6RolrQ2yxrZ-2gyrEU4_qosGsOl32ZSCkHi92br_2u2Q6a7N_1e2js5P9sgM_ikpgduksnx84vdgiXLONuupuQ7SgPrjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+improvement+of+a+distributed+temperature+sensor+with+kilometer+length+and+centimeter+spatial+resolution+based+on+polarization-sensitive+OFDR&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Li%2C+Xinnuo&rft.au=Zhu%2C+Yao&rft.au=Lin%2C+Cuofu&rft.au=Zou%2C+Chen&rft.date=2024-08-01&rft.pub=Elsevier+B.V&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=373&rft_id=info:doi/10.1016%2Fj.sna.2024.115430&rft.externalDocID=S0924424724004242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon