Performance improvement of a distributed temperature sensor with kilometer length and centimeter spatial resolution based on polarization-sensitive OFDR
A method to improve the performance of distributed temperature sensors with kilometer sensing distance and centimeter spatial resolution is proposed based on polarization-sensitive optical frequency domain reflectometry (OFDR). This approach records the temperature change along polarization maintain...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 373; p. 115430 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A method to improve the performance of distributed temperature sensors with kilometer sensing distance and centimeter spatial resolution is proposed based on polarization-sensitive optical frequency domain reflectometry (OFDR). This approach records the temperature change along polarization maintaining fiber (PMF) from the Rayleigh backscattering (RBS) spectral difference between two orthogonal polarization axes using the distributed autocorrelation algorithm, where PMF is used as the sensing fiber. In addition, a technique to calibrate population birefringence and local birefringence, and a method to calibrate the initial birefringence inhomogeneity of PMF are proposed to enhance the performance of the sensor. The birefringence of PMF is used for temperature sensing, which is distinct from the traditional cross-correlation method of single-mode optical fiber temperature sensing, providing us with an innovative scheme to solve real-world engineering problems. The final sensing performance is achieved, with a sensing distance of 1.5 km, a spatial resolution of 5 cm, and a temperature measurement uncertainty of ±0.2 °C, subject to environmental noise and system random noise.
[Display omitted]
•A polarization-sensitive OFDR-based temperature sensor is proposed.•This sensing method has a longer sensing distance with a high spatial resolution.•The autocorrelation demodulation method ensures high-accuracy temperature sensing over long distances.•Experimental results demonstrate the effectiveness and stability of the method. |
---|---|
AbstractList | A method to improve the performance of distributed temperature sensors with kilometer sensing distance and centimeter spatial resolution is proposed based on polarization-sensitive optical frequency domain reflectometry (OFDR). This approach records the temperature change along polarization maintaining fiber (PMF) from the Rayleigh backscattering (RBS) spectral difference between two orthogonal polarization axes using the distributed autocorrelation algorithm, where PMF is used as the sensing fiber. In addition, a technique to calibrate population birefringence and local birefringence, and a method to calibrate the initial birefringence inhomogeneity of PMF are proposed to enhance the performance of the sensor. The birefringence of PMF is used for temperature sensing, which is distinct from the traditional cross-correlation method of single-mode optical fiber temperature sensing, providing us with an innovative scheme to solve real-world engineering problems. The final sensing performance is achieved, with a sensing distance of 1.5 km, a spatial resolution of 5 cm, and a temperature measurement uncertainty of ±0.2 °C, subject to environmental noise and system random noise.
[Display omitted]
•A polarization-sensitive OFDR-based temperature sensor is proposed.•This sensing method has a longer sensing distance with a high spatial resolution.•The autocorrelation demodulation method ensures high-accuracy temperature sensing over long distances.•Experimental results demonstrate the effectiveness and stability of the method. |
ArticleNumber | 115430 |
Author | Zou, Chen Yuan, Yonggui Dang, Fanyang Lin, Cuofu Yang, Jun Zhu, Yao Lin, Yicheng Zhu, Yunlong Li, Xinnuo |
Author_xml | – sequence: 1 givenname: Xinnuo surname: Li fullname: Li, Xinnuo organization: Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 2 givenname: Yao orcidid: 0000-0002-7024-8314 surname: Zhu fullname: Zhu, Yao email: zhu_yao@hrbeu.edu.cn organization: Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 3 givenname: Cuofu surname: Lin fullname: Lin, Cuofu organization: Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 4 givenname: Chen surname: Zou fullname: Zou, Chen organization: Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 5 givenname: Yunlong surname: Zhu fullname: Zhu, Yunlong organization: Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 6 givenname: Fanyang surname: Dang fullname: Dang, Fanyang organization: Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 7 givenname: Yicheng surname: Lin fullname: Lin, Yicheng organization: The Guangdong Provincial Key Laboratory of Information Photonics Technology, College of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 8 givenname: Yonggui surname: Yuan fullname: Yuan, Yonggui organization: Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 9 givenname: Jun surname: Yang fullname: Yang, Jun organization: The Guangdong Provincial Key Laboratory of Information Photonics Technology, College of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China |
BookMark | eNp9kEFuFDEQRS2USEwCB2DnC_Rgd7vtabFCgSRIkRIhsrZq7Gqoodtu2Z5BcBKOGw_DKousqvSl96X_LthZiAEZeyfFWgqp3-_WOcC6Fa1aS9mrTrxiK7kxXdMJPZyxlRha1ahWmdfsIuedEKLrjFmxvw-YxphmCA45zUuKB5wxFB5HDtxTLom2-4KeF5wXTFD2CXnGkGPiv6j84D9pijMWTHzC8L0GEDx3tYJOaV6gEEw8YY7TvlAMfAu5FtZniRMk-gPHtDmWUqED8vvrT1_fsPMRpoxv_99L9nj9-dvVbXN3f_Pl6uNd49rBlMbrjRq2ymm1Mb0BobVzVYIB2YP3xul21NpvDfT9AOOmw1H4rhUKB9Hqcei7SyZPvS7FnBOOdkk0Q_ptpbBHtXZnq1p7VGtPaitjnjGOyr8RJQFNL5IfTiTWSQfCZLMjrO49JXTF-kgv0E9E4po3 |
CitedBy_id | crossref_primary_10_3390_s24165432 crossref_primary_10_1109_JLT_2024_3457812 crossref_primary_10_1109_JSEN_2024_3428494 |
Cites_doi | 10.1364/AO.37.001735 10.1364/OL.474017 10.1364/OL.31.002526 10.1038/lsa.2016.74 10.1016/j.optcom.2013.08.022 10.1364/OE.25.016059 10.1109/JLT.2018.2883386 10.1109/JLT.2006.883607 10.1109/JLT.2021.3052036 10.1109/61.368412 10.1364/OL.34.001381 10.1109/JPHOT.2014.2320742 10.3390/s16060829 10.1109/LPT.2014.2317702 10.1364/OE.17.001248 10.1364/OE.23.033241 10.1364/OE.14.004256 10.1109/JLT.2007.893904 10.1364/CLEO_AT.2016.JTu5A.139 10.1109/JLT.2002.1007936 10.1109/ACCESS.2019.2901799 10.1109/JLT.2017.2760343 10.1364/OE.23.024923 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sna.2024.115430 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
ExternalDocumentID | 10_1016_j_sna_2024_115430 S0924424724004242 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ LY7 M36 M41 R2- SCB SCH SET SSH WUQ |
ID | FETCH-LOGICAL-c297t-d6849b4c648757a066cc0247a15add7c62f66db7a559af83ef0d3204e9026f953 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Thu Apr 24 23:11:53 EDT 2025 Tue Jul 01 02:24:58 EDT 2025 Sat May 25 15:41:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Kilometer sensing distance The birefringence of PMF Centimeter spatial resolution Polarization maintaining fiber (PMF) Distributed temperature sensors (DTS) Optical frequency domain reflectometry (OFDR) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-d6849b4c648757a066cc0247a15add7c62f66db7a559af83ef0d3204e9026f953 |
ORCID | 0000-0002-7024-8314 |
ParticipantIDs | crossref_primary_10_1016_j_sna_2024_115430 crossref_citationtrail_10_1016_j_sna_2024_115430 elsevier_sciencedirect_doi_10_1016_j_sna_2024_115430 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 2024-08-00 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Chen, Bao (b16) 2014; 311 Chen, Liu, He (b18) 2017; 35 Song, He, Hotate (b5) 2006; 31 Song, Zou, He, Hotate (b19) 2009; 34 Zou, He, Hotate, Ieee (b20) 2008 J. Chen, Q. Liu, X. Fan, Z. He, Ieee, Simultaneous Measurement of Strain and Temperature Using Sun, Tang, Yang, Li, Sigrist, Dong (b3) 2016; 16 Wegmuller, Legré, Gisin (b4) 2002; 20 Kawai, Takinami, Chino, Amano, Watanabe, Nakamura, Shiseki (b1) 1995; 10 Denisov, Soto, Thevenaz (b10) 2016; 5 Kim, Lee, Song (b8) 2015; 23 Li, Liu, Chen, He (b17) 2021; 39 Lu, Soto, Thevenaz (b15) 2017; 25 Froggatt, Gifford, Kreger, Wolfe, Soller (b23) 2006; 24 Soto, Lu, Martins, Gonzalez-Herraez, Thevenaz (b24) 2015; 23 Song, He, Hotate (b6) 2006; 14 Froggatt, Moore (b12) 1998; 37 Song, Li, Lu, Xu, Chen, Bao (b13) 2014; 6 Du, Liu, Ding, Han, Liu, Jiang, Chen, Feng (b14) 2014; 26 Phase-shifted Fiber Bragg Grating on Polarization Maintaining Fiber, in: 21st OptoElectronics and Communications Conference (OECC) / International Conference on Photonics in Switching, PS, 2016. Wang, Fan, Fu, He (b11) 2019; 37 Song, He, Hotate (b7) 2007; 25 Nikles, Vogel, Briffod, Grosswig, Sauser, Luebbecke, Bals, Pfeiffer (b2) 2004; Vol. 5384 Zou, Lin, Mou, Yu, Zhu, Zhu, Dang, Yuan, Yang, Wang, Qin (b25) 2022; 47 Wang, Fan, Fu, He (b9) 2019; 7 Zou, He, Hotate (b21) 2009; 17 Song (10.1016/j.sna.2024.115430_b6) 2006; 14 Song (10.1016/j.sna.2024.115430_b13) 2014; 6 Wang (10.1016/j.sna.2024.115430_b11) 2019; 37 Lu (10.1016/j.sna.2024.115430_b15) 2017; 25 Froggatt (10.1016/j.sna.2024.115430_b23) 2006; 24 Sun (10.1016/j.sna.2024.115430_b3) 2016; 16 Wegmuller (10.1016/j.sna.2024.115430_b4) 2002; 20 Chen (10.1016/j.sna.2024.115430_b18) 2017; 35 Zou (10.1016/j.sna.2024.115430_b25) 2022; 47 Du (10.1016/j.sna.2024.115430_b14) 2014; 26 10.1016/j.sna.2024.115430_b22 Froggatt (10.1016/j.sna.2024.115430_b12) 1998; 37 Zou (10.1016/j.sna.2024.115430_b20) 2008 Li (10.1016/j.sna.2024.115430_b16) 2014; 311 Song (10.1016/j.sna.2024.115430_b5) 2006; 31 Kim (10.1016/j.sna.2024.115430_b8) 2015; 23 Li (10.1016/j.sna.2024.115430_b17) 2021; 39 Nikles (10.1016/j.sna.2024.115430_b2) 2004; Vol. 5384 Soto (10.1016/j.sna.2024.115430_b24) 2015; 23 Kawai (10.1016/j.sna.2024.115430_b1) 1995; 10 Song (10.1016/j.sna.2024.115430_b7) 2007; 25 Song (10.1016/j.sna.2024.115430_b19) 2009; 34 Zou (10.1016/j.sna.2024.115430_b21) 2009; 17 Wang (10.1016/j.sna.2024.115430_b9) 2019; 7 Denisov (10.1016/j.sna.2024.115430_b10) 2016; 5 |
References_xml | – volume: 35 start-page: 4838 year: 2017 end-page: 4844 ident: b18 article-title: High-resolution simultaneous measurement of strain and temperature using publication-title: J. Lightwave Technol. – volume: 37 start-page: 2557 year: 2019 end-page: 2567 ident: b11 article-title: Dynamic strain measurements based on high-speed single-end-access Brillouin optical correlation domain analysis publication-title: J. Lightwave Technol. – volume: 20 start-page: 800 year: 2002 end-page: 807 ident: b4 article-title: Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry publication-title: J. Lightwave Technol. – volume: Vol. 5384 start-page: 18 year: 2004 end-page: 25 ident: b2 article-title: Leakage detection using fiber optics distributed temperature monitoring publication-title: Smart Structures and Materials 2004 Conference – volume: 17 start-page: 1248 year: 2009 end-page: 1255 ident: b21 article-title: Complete discrimination of strain and temperature using brillouin frequency shift and birefringence in a polarization-maintaining fiber publication-title: Opt. Express – volume: 23 start-page: 33241 year: 2015 end-page: 33248 ident: b8 article-title: Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement publication-title: Opt. Express – volume: 37 start-page: 1735 year: 1998 end-page: 1740 ident: b12 article-title: High-spatial-resolution distributed strain measurement in optical fiber with rayleigh scatter publication-title: Appl. Opt. – volume: 31 start-page: 2526 year: 2006 end-page: 2528 ident: b5 article-title: Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis publication-title: Opt. Lett. – start-page: 889 year: 2008 end-page: 890 ident: b20 article-title: High-precision characterization of dynamic acoustic grating induced by stimulated brillouin scattering in a high-birefringence optical fiber publication-title: Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2008) – volume: 6 year: 2014 ident: b13 article-title: Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry publication-title: Ieee Photon. J. – reference: J. Chen, Q. Liu, X. Fan, Z. He, Ieee, Simultaneous Measurement of Strain and Temperature Using – volume: 5 year: 2016 ident: b10 article-title: Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration publication-title: Light-Sci. Appl. – volume: 23 start-page: 24923 year: 2015 end-page: 24936 ident: b24 article-title: Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers publication-title: Opt. Express – volume: 26 start-page: 1150 year: 2014 end-page: 1153 ident: b14 article-title: Cryogenic temperature measurement using Rayleigh backscattering spectra shift by OFDR publication-title: Ieee Photon. Technol. Lett. – volume: 47 start-page: 5373 year: 2022 end-page: 5376 ident: b25 article-title: Beyond a 107 range-resolution-1 product in an OFDR based on a periodic phase noise estimation method publication-title: Opt. Lett. – volume: 34 start-page: 1381 year: 2009 end-page: 1383 ident: b19 article-title: Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber publication-title: Opt. Lett. – volume: 25 start-page: 1238 year: 2007 end-page: 1246 ident: b7 article-title: Effects of intensity modulation of light source on Brillouin optical correlation domain analysis publication-title: J. Lightwave Technol. – volume: 311 start-page: 26 year: 2014 end-page: 32 ident: b16 article-title: Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry publication-title: Opt. Commun. – volume: 25 start-page: 16059 year: 2017 end-page: 16071 ident: b15 article-title: Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry publication-title: Opt. Express – volume: 16 year: 2016 ident: b3 article-title: Fire source localization based on distributed temperature sensing by a dual-line optical fiber system publication-title: Sensors – reference: -Phase-shifted Fiber Bragg Grating on Polarization Maintaining Fiber, in: 21st OptoElectronics and Communications Conference (OECC) / International Conference on Photonics in Switching, PS, 2016. – volume: 7 start-page: 32128 year: 2019 end-page: 32136 ident: b9 article-title: Enhancement of strain/temperature measurement range and spatial resolution in brillouin optical correlation domain analysis based on convexity extraction algorithm publication-title: Ieee Access – volume: 10 start-page: 85 year: 1995 end-page: 91 ident: b1 article-title: A new approach to cable fault location using fiber optic technology. I publication-title: IEEE Trans. Power Deliv. – volume: 14 start-page: 4256 year: 2006 end-page: 4263 ident: b6 article-title: Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme publication-title: Opt. Express – volume: 39 start-page: 2594 year: 2021 end-page: 2602 ident: b17 article-title: Centimeter spatial resolution distributed temperature sensor based on polarization-sensitive optical frequency domain reflectometry publication-title: J. Lightwave Technol. – volume: 24 start-page: 4149 year: 2006 end-page: 4154 ident: b23 article-title: Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry publication-title: J. Lightwave Technol. – volume: 37 start-page: 1735 issue: 10 year: 1998 ident: 10.1016/j.sna.2024.115430_b12 article-title: High-spatial-resolution distributed strain measurement in optical fiber with rayleigh scatter publication-title: Appl. Opt. doi: 10.1364/AO.37.001735 – volume: 47 start-page: 5373 issue: 20 year: 2022 ident: 10.1016/j.sna.2024.115430_b25 article-title: Beyond a 107 range-resolution-1 product in an OFDR based on a periodic phase noise estimation method publication-title: Opt. Lett. doi: 10.1364/OL.474017 – volume: 31 start-page: 2526 issue: 17 year: 2006 ident: 10.1016/j.sna.2024.115430_b5 article-title: Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis publication-title: Opt. Lett. doi: 10.1364/OL.31.002526 – volume: 5 year: 2016 ident: 10.1016/j.sna.2024.115430_b10 article-title: Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration publication-title: Light-Sci. Appl. doi: 10.1038/lsa.2016.74 – volume: 311 start-page: 26 year: 2014 ident: 10.1016/j.sna.2024.115430_b16 article-title: Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry publication-title: Opt. Commun. doi: 10.1016/j.optcom.2013.08.022 – volume: 25 start-page: 16059 issue: 14 year: 2017 ident: 10.1016/j.sna.2024.115430_b15 article-title: Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry publication-title: Opt. Express doi: 10.1364/OE.25.016059 – volume: Vol. 5384 start-page: 18 year: 2004 ident: 10.1016/j.sna.2024.115430_b2 article-title: Leakage detection using fiber optics distributed temperature monitoring – volume: 37 start-page: 2557 issue: 11 year: 2019 ident: 10.1016/j.sna.2024.115430_b11 article-title: Dynamic strain measurements based on high-speed single-end-access Brillouin optical correlation domain analysis publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2883386 – volume: 24 start-page: 4149 issue: 11 year: 2006 ident: 10.1016/j.sna.2024.115430_b23 article-title: Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2006.883607 – volume: 39 start-page: 2594 issue: 8 year: 2021 ident: 10.1016/j.sna.2024.115430_b17 article-title: Centimeter spatial resolution distributed temperature sensor based on polarization-sensitive optical frequency domain reflectometry publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2021.3052036 – volume: 10 start-page: 85 issue: 1 year: 1995 ident: 10.1016/j.sna.2024.115430_b1 article-title: A new approach to cable fault location using fiber optic technology. I publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.368412 – volume: 34 start-page: 1381 issue: 9 year: 2009 ident: 10.1016/j.sna.2024.115430_b19 article-title: Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber publication-title: Opt. Lett. doi: 10.1364/OL.34.001381 – volume: 6 issue: 3 year: 2014 ident: 10.1016/j.sna.2024.115430_b13 article-title: Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry publication-title: Ieee Photon. J. doi: 10.1109/JPHOT.2014.2320742 – volume: 16 issue: 6 year: 2016 ident: 10.1016/j.sna.2024.115430_b3 article-title: Fire source localization based on distributed temperature sensing by a dual-line optical fiber system publication-title: Sensors doi: 10.3390/s16060829 – volume: 26 start-page: 1150 issue: 11 year: 2014 ident: 10.1016/j.sna.2024.115430_b14 article-title: Cryogenic temperature measurement using Rayleigh backscattering spectra shift by OFDR publication-title: Ieee Photon. Technol. Lett. doi: 10.1109/LPT.2014.2317702 – volume: 17 start-page: 1248 issue: 3 year: 2009 ident: 10.1016/j.sna.2024.115430_b21 article-title: Complete discrimination of strain and temperature using brillouin frequency shift and birefringence in a polarization-maintaining fiber publication-title: Opt. Express doi: 10.1364/OE.17.001248 – volume: 23 start-page: 33241 issue: 26 year: 2015 ident: 10.1016/j.sna.2024.115430_b8 article-title: Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement publication-title: Opt. Express doi: 10.1364/OE.23.033241 – volume: 14 start-page: 4256 issue: 10 year: 2006 ident: 10.1016/j.sna.2024.115430_b6 article-title: Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme publication-title: Opt. Express doi: 10.1364/OE.14.004256 – start-page: 889 year: 2008 ident: 10.1016/j.sna.2024.115430_b20 article-title: High-precision characterization of dynamic acoustic grating induced by stimulated brillouin scattering in a high-birefringence optical fiber – volume: 25 start-page: 1238 issue: 5 year: 2007 ident: 10.1016/j.sna.2024.115430_b7 article-title: Effects of intensity modulation of light source on Brillouin optical correlation domain analysis publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2007.893904 – ident: 10.1016/j.sna.2024.115430_b22 doi: 10.1364/CLEO_AT.2016.JTu5A.139 – volume: 20 start-page: 800 issue: 5 year: 2002 ident: 10.1016/j.sna.2024.115430_b4 article-title: Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2002.1007936 – volume: 7 start-page: 32128 year: 2019 ident: 10.1016/j.sna.2024.115430_b9 article-title: Enhancement of strain/temperature measurement range and spatial resolution in brillouin optical correlation domain analysis based on convexity extraction algorithm publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2901799 – volume: 35 start-page: 4838 issue: 22 year: 2017 ident: 10.1016/j.sna.2024.115430_b18 article-title: High-resolution simultaneous measurement of strain and temperature using π-phase-shifted FBG in polarization maintaining fiber publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2760343 – volume: 23 start-page: 24923 issue: 19 year: 2015 ident: 10.1016/j.sna.2024.115430_b24 article-title: Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers publication-title: Opt. Express doi: 10.1364/OE.23.024923 |
SSID | ssj0003377 |
Score | 2.4581037 |
Snippet | A method to improve the performance of distributed temperature sensors with kilometer sensing distance and centimeter spatial resolution is proposed based on... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 115430 |
SubjectTerms | Centimeter spatial resolution Distributed temperature sensors (DTS) Kilometer sensing distance Optical frequency domain reflectometry (OFDR) Polarization maintaining fiber (PMF) The birefringence of PMF |
Title | Performance improvement of a distributed temperature sensor with kilometer length and centimeter spatial resolution based on polarization-sensitive OFDR |
URI | https://dx.doi.org/10.1016/j.sna.2024.115430 |
Volume | 373 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3yTgychu22TJtvjoi6r4io-wFtJmwSqa3fZXa_-Dn-uM23qA9SDp7YhKSEzzORLv35DyKGNQ-syLpkUScCE4oZlLuiwjuM5N0K6uGK7Xw5k_16cP8QPc-S4-RcGaZU-9tcxvYrWvqXtV7M9Lor2bQDQQURCIQsSrhiHhVDo5a3XT5oH51X1RezMsHfzZbPieE1LlB6KRAtFaZAI_VNu-pJveitk2W8UabeeyyqZs-UaWfoiH7hO3q4_Wf-0qE4HqsM-OnJUU4OSuFjNyhqKAlRePZlOAbiOJhQPYOlTMRw9IyGGYkEVaNClocjXLOrWKfKtYRaAyb2LUkx7hsLNGEGx_4uT4UsrFhK96p3cbJD73undcZ_5SgssjxI1Y0Z2RJKJXCJ8URq2IXkOy6J0GEP8U7mMnJQmUxrwh3Ydbl1geBQImwCEc0nMN8l8OSrtFqFhaGHXppU2GQThTCeZBPBurApDI2Mdb5OgWeM09zLkWA1jmDZ8s8cUzJKiWdLaLNvk6GPIuNbg-KuzaAyXfnOkFHLE78N2_jdslyziU80I3CPzs8mL3Yddyiw7qNzwgCx0zy76g3fmhOn- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgECZGD-rB-IxvOXgywW0Lhe3RqJtVd9X4SLw1tEBSH92Nu179Hf5cZ1rqI1EPntpQaAhDZ_joxzeE7No4tC7jkkmRBEwobljmgjZrO55zI6SLK7Z7_1x2b8XpXXw3QQ6bszBIq_S-v_bplbf2JS0_mq1hUbSuA4AOIhIKWZBwBT88JeDzxTQG-6-fPA_Oq_SLWJth9ebXZkXyGpWoPRSJfVSlQSb0T8HpS8DpzJM5v1KkB3VnFsiELRfJ7Bf9wCXydvlJ-6dFtT1Q7fbRgaOaGtTExXRW1lBUoPLyyXQEyHXwTHEHlj4Uj4MnZMRQzKgCBbo0FAmbRV06QsI19AJAuZ-jFOOeoXAzRFTsj3EyfGlFQ6IXnaOrZXLbOb457DKfaoHlUaLGzMi2SDKRS8QvSsM6JM9hWJQOY3CAKpeRk9JkSgMA0a7NrQsMjwJhE8BwLon5CpksB6VdJTQMLSzbtNImAy-c6SSTgN6NVWFoZKzjNRI0Y5zmXocc02E8pg3h7D4Fs6RolrQ2yxrZ-2gyrEU4_qosGsOl32ZSCkHi92br_2u2Q6a7N_1e2js5P9sgM_ikpgduksnx84vdgiXLONuupuQ7SgPrjA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+improvement+of+a+distributed+temperature+sensor+with+kilometer+length+and+centimeter+spatial+resolution+based+on+polarization-sensitive+OFDR&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Li%2C+Xinnuo&rft.au=Zhu%2C+Yao&rft.au=Lin%2C+Cuofu&rft.au=Zou%2C+Chen&rft.date=2024-08-01&rft.pub=Elsevier+B.V&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=373&rft_id=info:doi/10.1016%2Fj.sna.2024.115430&rft.externalDocID=S0924424724004242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |