Confinement of Cu2O by in-situ derived NH2-MIL-125@TiO2 for synergetic photothermal-driven hydrogen evolution from aqueous-phase methanol reforming

A novel hierarchical heterojunction that integrating photo- and thermal-active Cu2O catalytic species with in-situ derived NH2-MIL-125@TiO2 framework specifically facilitates photothermal aqueous phase reforming of methanol into H2. [Display omitted] •Cu2O and in-situ derived TiO2 layer were hierarc...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 465; p. 142904
Main Authors Zhang, Baofang, Zengcai, Ziyu, Lin, Wenting, Zhang, Meijin, Pi, Yunhong, Wang, Tiejun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel hierarchical heterojunction that integrating photo- and thermal-active Cu2O catalytic species with in-situ derived NH2-MIL-125@TiO2 framework specifically facilitates photothermal aqueous phase reforming of methanol into H2. [Display omitted] •Cu2O and in-situ derived TiO2 layer were hierarchically integrated in NH2-MIL-125(Ti) framework.•Cu2O/NH2-MIL-125@TiO2 afforded 13-fold photothermally-promoted H2 yield from reforming of MeOH/H2O than thermocatalytic process.•The synergistic effect between TiO2 and Cu2O catalysts in MOF enhanced stability and mobility of charge carriers.•Photothermal effect effectively activated methanol at 100 °C and reduced reaction activation energy by 36.5%.•The reaction pathway for photothermal H2 yield was fully discussed. Photothermal synergism can effectively activate methanol at low operating temperature and significantly reduce the activation energy of the reaction, achieving more efficiently H2 release from methanol reforming. Here, a novel hierarchical heterojunction that integrating photo- and thermal-active Cu2O catalytic species with in-situ derived NH2-MIL-125@TiO2 framework was specifically designed for photothermal-driven aqueous phase reforming of methanol into H2. The afforded Cu2O/NH2-MIL-125@TiO2 realized an outstanding photothermal H2 production activity (apparent quantum efficiency of 22.3 % at 365 nm), ca. 13-times higher than that of thermocatalytic condition. Interestingly, the photothermal effect did confer the Cu2O/NH2-MIL-125@TiO2 with unexpected activity at low temperature subsided to 100 °C and accelerated the activation of MeOH/H2O with an obvious reduction of activation energy from 82.62 kJ·mol−1 to 52.40 kJ·mol−1.The improvement of catalyst stability and the promotion of charge separation also contributed to a long-term photothermal H2 evolution activity with average rate of 1.49x106 μmolgCu-1h−1 and a total turnover number (TON) up to 5971 in 63 h, almost 125-fold promotion compared with Cu2O.
AbstractList A novel hierarchical heterojunction that integrating photo- and thermal-active Cu2O catalytic species with in-situ derived NH2-MIL-125@TiO2 framework specifically facilitates photothermal aqueous phase reforming of methanol into H2. [Display omitted] •Cu2O and in-situ derived TiO2 layer were hierarchically integrated in NH2-MIL-125(Ti) framework.•Cu2O/NH2-MIL-125@TiO2 afforded 13-fold photothermally-promoted H2 yield from reforming of MeOH/H2O than thermocatalytic process.•The synergistic effect between TiO2 and Cu2O catalysts in MOF enhanced stability and mobility of charge carriers.•Photothermal effect effectively activated methanol at 100 °C and reduced reaction activation energy by 36.5%.•The reaction pathway for photothermal H2 yield was fully discussed. Photothermal synergism can effectively activate methanol at low operating temperature and significantly reduce the activation energy of the reaction, achieving more efficiently H2 release from methanol reforming. Here, a novel hierarchical heterojunction that integrating photo- and thermal-active Cu2O catalytic species with in-situ derived NH2-MIL-125@TiO2 framework was specifically designed for photothermal-driven aqueous phase reforming of methanol into H2. The afforded Cu2O/NH2-MIL-125@TiO2 realized an outstanding photothermal H2 production activity (apparent quantum efficiency of 22.3 % at 365 nm), ca. 13-times higher than that of thermocatalytic condition. Interestingly, the photothermal effect did confer the Cu2O/NH2-MIL-125@TiO2 with unexpected activity at low temperature subsided to 100 °C and accelerated the activation of MeOH/H2O with an obvious reduction of activation energy from 82.62 kJ·mol−1 to 52.40 kJ·mol−1.The improvement of catalyst stability and the promotion of charge separation also contributed to a long-term photothermal H2 evolution activity with average rate of 1.49x106 μmolgCu-1h−1 and a total turnover number (TON) up to 5971 in 63 h, almost 125-fold promotion compared with Cu2O.
ArticleNumber 142904
Author Lin, Wenting
Zhang, Meijin
Pi, Yunhong
Wang, Tiejun
Zhang, Baofang
Zengcai, Ziyu
Author_xml – sequence: 1
  givenname: Baofang
  surname: Zhang
  fullname: Zhang, Baofang
– sequence: 2
  givenname: Ziyu
  surname: Zengcai
  fullname: Zengcai, Ziyu
– sequence: 3
  givenname: Wenting
  surname: Lin
  fullname: Lin, Wenting
– sequence: 4
  givenname: Meijin
  surname: Zhang
  fullname: Zhang, Meijin
– sequence: 5
  givenname: Yunhong
  orcidid: 0000-0003-2673-3950
  surname: Pi
  fullname: Pi, Yunhong
  email: piyunhong@gdut.edu.cn
– sequence: 6
  givenname: Tiejun
  surname: Wang
  fullname: Wang, Tiejun
  email: tjwang@gdut.edu.cn
BookMark eNp9kMtuEzEUhi1UJNrCA7DzCzj4MjMeiw0oAlopNJuythz7OONoxg62J1Keoy_cicKKRVfnl46-c_nu0E1MERD6zOiKUdZ9OawsHFaccrFiDVe0eYduWS8FEZzxmyWLviW9auQHdFfKgVLaKaZu0cs6RR8iTBArTh6vZ77FuzMOkZRQZ-wghxM4_PTAye_HDWG8_fYcthz7lHE5R8h7qMHi45BqqgPkyYzEXZiIh7PLab8EOKVxriFF7HOasPk7Q5oLOQ6mAJ6gDiamEWdYZk4h7j-i996MBT79q_foz88fz-sHstn-elx_3xDLlazEMb9rlDGqd5TxjradNA0TRjLVCmV2SjYSqFPG90Za71rllBc7ITtrl64X90he59qcSlnWaxuqudxZswmjZlRf3OqDXtzqi1t9dbuQ7D_ymMNk8vlN5uuVgeWlU4Csiw0QLbiQwVbtUniDfgUUVZZA
CitedBy_id crossref_primary_10_1016_j_fuel_2024_134202
crossref_primary_10_1016_j_apcatb_2024_124767
crossref_primary_10_1016_j_ijhydene_2024_09_009
crossref_primary_10_1016_j_fuel_2024_132117
crossref_primary_10_1021_acsnano_4c07386
crossref_primary_10_3390_molecules29215028
crossref_primary_10_1016_j_chemphys_2025_112602
crossref_primary_10_1002_anie_202423269
crossref_primary_10_1002_ange_202423269
crossref_primary_10_1016_j_fuel_2023_129990
crossref_primary_10_1016_j_jes_2024_05_034
crossref_primary_10_1016_j_seppur_2024_128942
Cites_doi 10.1016/j.ccr.2015.08.004
10.1016/j.nantod.2020.100968
10.1016/j.solmat.2016.04.036
10.1021/acsami.8b01462
10.1002/anie.202204108
10.1021/jacs.9b05964
10.1021/acsanm.8b00587
10.1038/srep23684
10.1080/09629359791460
10.1016/j.cej.2019.123350
10.1021/la0264670
10.1016/j.apcatb.2019.118539
10.1006/jcat.1996.0135
10.1039/C3CS60262A
10.1016/j.nanoen.2021.105953
10.1002/anie.200462121
10.1016/j.apcata.2005.07.010
10.3390/catal7060183
10.1038/nature11891
10.1016/j.mcat.2018.04.004
10.1016/j.nanoen.2020.104909
10.1016/j.materresbull.2017.04.020
10.1021/jacs.7b11241
10.1021/cr100454n
10.1007/s12274-017-1565-8
10.1002/aenm.201801193
10.1016/j.apcata.2015.10.044
10.1021/jacs.2c06720
10.1039/C6SC03239G
10.1016/j.arabjc.2015.04.027
10.1016/j.apcatb.2019.117882
10.1039/C5CP08041J
10.1016/j.cej.2017.12.088
10.1021/acs.accounts.8b00521
10.1038/nchem.1032
10.1016/j.cej.2021.129695
10.1016/j.ijhydene.2021.10.070
10.1016/j.apcata.2020.117456
10.1016/j.seppur.2022.121563
10.1016/j.fuproc.2022.107385
10.1016/j.apcatb.2004.04.027
10.1039/C5CC07042B
10.1016/j.apcatb.2019.117790
10.1039/C9SC00015A
10.1016/j.energy.2016.12.047
10.1016/j.apcata.2021.118072
10.1016/j.apcatb.2007.07.006
10.1038/ncomms9696
10.1016/j.ijhydene.2016.08.219
10.1021/acscatal.8b04812
10.1039/D2GC01553F
10.1016/j.nanoen.2018.08.040
10.1016/j.cej.2021.130641
10.1002/nano.202000010
10.1016/j.seppur.2017.11.007
10.1016/j.apcatb.2018.11.057
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2023.142904
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2023_142904
S1385894723016352
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SSH
ZY4
ID FETCH-LOGICAL-c297t-d1fb49aa98d01260567a413a719539ab9747e0d9af8a7cfd59d9f3b376ccab9f3
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 01:50:44 EDT 2025
Thu Apr 24 23:08:37 EDT 2025
Fri Feb 23 02:36:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrogen production from methanol aqueous-phase reforming
Metal-organic framework
Photothermal catalysis
Controllable in-situ derived TiO2
Cu-based catalysts
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-d1fb49aa98d01260567a413a719539ab9747e0d9af8a7cfd59d9f3b376ccab9f3
ORCID 0000-0003-2673-3950
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2023_142904
crossref_primary_10_1016_j_cej_2023_142904
elsevier_sciencedirect_doi_10_1016_j_cej_2023_142904
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Peng, Wei, Li, Liu, Cao, Wang, Yu, Peng, Zhang, Zhang, Lv (b0175) 2018; 53
Song, Li, Zhu, Feng, Chen, Kaufmann, Wang, Lin (b0235) 2019; 141
Sun, Yang, Liang, Tu, Bin, Hou (b0305) 2022; 299
Zhang, Zhang, Tan, Shao, Shi, Zheng, Zhang, Yang, Han (b0190) 2018; 10
da Silva Veras, Mozer, da Costa Rubim Messeder dos Santos, da Silva César (b0015) 2017; 42
Xin, Xu, Wang, Wang (b0220) 2016; 6
Caudillo Flores, Barba Nieto, Muñoz Batista, Motta Meira, Fernández García, Kubacka (b0250) 2021; 425
Han, An, Hu, Li, Hou, Wang, Zhang (b0170) 2020; 265
Sun, Yuan, Wang, Zhao, Zhan, Han (b0205) 2020; 74
Olah (b0005) 2005; 44
Aguilera Sigalat, Bradshaw (b0135) 2016; 307
Pi, Li, Xia, Wu, Li, Li, Xiao (b0185) 2017; 10
Li, Li, Jiao, Liu, Ma, Zeng, Zheng, Jiang (b0145) 2022; 144
Pi, Wu, Zheng, Ma, Wang (b0095) 2022; 12
Pei, Gong, Zhang, Zhang, Chen, Mu, Yu (b0225) 2015; 6
Li, Ouyang, Zheng, Ye, Guo, Qin, Wu, Lin, Wang, Zhang (b0035) 2022; 43
Railey, Song, Liu, Li (b0130) 2017; 96
Pai, Banerjee, Rawool, Singhal, Nayak, Ehrman, Tripathi, Bharadwaj (b0100) 2016; 154
Li, Sun, Ma, Wei (b0110) 2020; 9
Caudillo Flores, Agostini, Marini, Kubacka, Fernández-García (b0255) 2019; 256
Nielsen, Alberico, Baumann, Drexler, Junge, Gladiali, Beller (b0050) 2013; 495
Wang, Huang, Chai, Zeng, Li, Wang, Xu (b0150) 2016; 7
Davda, Shabaker, Huber, Cortright, Dumesic (b0040) 2005; 56
Yu, Yang, Xuan, Liu, Zhang (b0115) 2021; 84
Jiao, Yang, Li, Wang, Tang (b0120) 2022; 24
Yoon, Kim, Kim, Jang, Lee (b0165) 2019; 244
Ma, Tian, Zhao, Cheng, Ding, Zhang, Zheng, Jiang, Abe, Tsubaki, Gong, Li (b0245) 2019; 10
Zheng, Fang, Yang, Ma, Meng, Lin, Liu, Zhang, Wang (b0090) 2022; 47
Turco, Bagnasco, Cammarano, Senese, Costantino, Sisani (b0085) 2007; 77
Christopher, Xin, Linic (b0020) 2011; 3
Zhang, Liu, Rao, Li, Yuan, Tang, Zhao (b0275) 2020; 384
Zhao, Zhang, Wen, Xu, Ma, Qiu (b0160) 2018; 452
Yang, Yu, Li, Dong, Jiang, Zhou, Zhuang, Liu, Hu, Zhao, Li, Chen, Hu, Su (b0055) 2021; 420
Vinoth, Karthik, Muthamizhchelvan, Neppolian, Ashokkumar (b0180) 2016; 18
Luna, Valenzuela, Colbeau Justin, Vázquez, Rodriguez, Avendaño, Alfaro, Tirado, Garduño, De la Rosa (b0105) 2016; 521
Mouithys Mickalad, Deby Dupont, Hoebeke, Mathy Hartert, Lamy, Deby (b0265) 1997; 6
Zhu, Zou, Xu (b0125) 2018; 8
Kubacka, Fernández-García, Colón (b0025) 2012; 112
Shen, Liu, Yan, Jiang, Hong, Yan, Mao, Li, Fan, Shi (b0300) 2017; 5
Jiang, Zhang, Jiang, Rong, Wang, Wu, Pan (b0215) 2012; 116
Zhao, Shi, Li, Zhou, Zhang (b0010) 2020; 1
Xiao, Jiang (b0140) 2019; 52
Karthik, Balaraman, Neppolian (b0195) 2018; 8
Xu, Shuai, Xu (b0075) 2017; 7
Zhang, Xie, Gao, Tao, Ding, Fan, Jiang (b0285) 2022; 61
Oguchi, Kanai, Utani, Matsumura, Imamura (b0070) 2005; 293
Zhang, Zhao, Yang, Zhang, Zhang (b0065) 2021; 616
Xiao, Meng, Qiu, Qiu, Wu, Ma, Wang (b0045) 2022; 236
He, Wang, Zhang, Dong, Wang, Zhang, Niu, Yao, He, Liu (b0080) 2019; 9
Pi, Jin, Li, Tu, Li, Xiao (b0270) 2019; 256
Gu, Chen, Duan, Luo, Liu, Duan (b0200) 2016; 52
Pirhashemi, Habibi Yangjeh (b0295) 2018; 193
Huang, Li, Zhou, Jiang, Hu, Xue, Guo (b0060) 2018; 337
Khani, Tahay, Bahadoran, Safari, Soltanali, Alavi (b0280) 2020; 594
Colmenares, Luque (b0030) 2014; 43
Abdullah, Al Thani, Tawbi, Al Kandari (b0210) 2016; 9
Dow, Wang, Huang (b0240) 1996; 160
Cao, Wu, Chen, Qiu, Liu, Sun, Piao (b0260) 2020; 35
Sun, Vorontsov, Smirniotis (b0290) 2003; 19
Chen, Li, Chen, Cai, Yu, Chen, Jia (b0155) 2018; 1
Ji, Song, Drake, Veroneau, Lin, Pan, Lin (b0230) 2018; 140
Xiao (10.1016/j.cej.2023.142904_b0045) 2022; 236
Karthik (10.1016/j.cej.2023.142904_b0195) 2018; 8
Pai (10.1016/j.cej.2023.142904_b0100) 2016; 154
Wang (10.1016/j.cej.2023.142904_b0150) 2016; 7
Dow (10.1016/j.cej.2023.142904_b0240) 1996; 160
Khani (10.1016/j.cej.2023.142904_b0280) 2020; 594
Pi (10.1016/j.cej.2023.142904_b0095) 2022; 12
Caudillo Flores (10.1016/j.cej.2023.142904_b0255) 2019; 256
Peng (10.1016/j.cej.2023.142904_b0175) 2018; 53
Chen (10.1016/j.cej.2023.142904_b0155) 2018; 1
Zhang (10.1016/j.cej.2023.142904_b0275) 2020; 384
da Silva Veras (10.1016/j.cej.2023.142904_b0015) 2017; 42
Vinoth (10.1016/j.cej.2023.142904_b0180) 2016; 18
Gu (10.1016/j.cej.2023.142904_b0200) 2016; 52
Zhao (10.1016/j.cej.2023.142904_b0160) 2018; 452
Zhu (10.1016/j.cej.2023.142904_b0125) 2018; 8
Sun (10.1016/j.cej.2023.142904_b0205) 2020; 74
Zhao (10.1016/j.cej.2023.142904_b0010) 2020; 1
Pi (10.1016/j.cej.2023.142904_b0185) 2017; 10
Shen (10.1016/j.cej.2023.142904_b0300) 2017; 5
Pei (10.1016/j.cej.2023.142904_b0225) 2015; 6
Railey (10.1016/j.cej.2023.142904_b0130) 2017; 96
Li (10.1016/j.cej.2023.142904_b0145) 2022; 144
Zhang (10.1016/j.cej.2023.142904_b0190) 2018; 10
Pi (10.1016/j.cej.2023.142904_b0270) 2019; 256
Huang (10.1016/j.cej.2023.142904_b0060) 2018; 337
Jiao (10.1016/j.cej.2023.142904_b0120) 2022; 24
Turco (10.1016/j.cej.2023.142904_b0085) 2007; 77
Ji (10.1016/j.cej.2023.142904_b0230) 2018; 140
Caudillo Flores (10.1016/j.cej.2023.142904_b0250) 2021; 425
Sun (10.1016/j.cej.2023.142904_b0290) 2003; 19
Aguilera Sigalat (10.1016/j.cej.2023.142904_b0135) 2016; 307
Mouithys Mickalad (10.1016/j.cej.2023.142904_b0265) 1997; 6
He (10.1016/j.cej.2023.142904_b0080) 2019; 9
Nielsen (10.1016/j.cej.2023.142904_b0050) 2013; 495
Abdullah (10.1016/j.cej.2023.142904_b0210) 2016; 9
Song (10.1016/j.cej.2023.142904_b0235) 2019; 141
Jiang (10.1016/j.cej.2023.142904_b0215) 2012; 116
Luna (10.1016/j.cej.2023.142904_b0105) 2016; 521
Li (10.1016/j.cej.2023.142904_b0110) 2020; 9
Li (10.1016/j.cej.2023.142904_b0035) 2022; 43
Han (10.1016/j.cej.2023.142904_b0170) 2020; 265
Kubacka (10.1016/j.cej.2023.142904_b0025) 2012; 112
Xu (10.1016/j.cej.2023.142904_b0075) 2017; 7
Zhang (10.1016/j.cej.2023.142904_b0285) 2022; 61
Zhang (10.1016/j.cej.2023.142904_b0065) 2021; 616
Davda (10.1016/j.cej.2023.142904_b0040) 2005; 56
Sun (10.1016/j.cej.2023.142904_b0305) 2022; 299
Xin (10.1016/j.cej.2023.142904_b0220) 2016; 6
Cao (10.1016/j.cej.2023.142904_b0260) 2020; 35
Pirhashemi (10.1016/j.cej.2023.142904_b0295) 2018; 193
Yang (10.1016/j.cej.2023.142904_b0055) 2021; 420
Yu (10.1016/j.cej.2023.142904_b0115) 2021; 84
Ma (10.1016/j.cej.2023.142904_b0245) 2019; 10
Olah (10.1016/j.cej.2023.142904_b0005) 2005; 44
Christopher (10.1016/j.cej.2023.142904_b0020) 2011; 3
Xiao (10.1016/j.cej.2023.142904_b0140) 2019; 52
Colmenares (10.1016/j.cej.2023.142904_b0030) 2014; 43
Yoon (10.1016/j.cej.2023.142904_b0165) 2019; 244
Zheng (10.1016/j.cej.2023.142904_b0090) 2022; 47
Oguchi (10.1016/j.cej.2023.142904_b0070) 2005; 293
References_xml – volume: 452
  start-page: 175
  year: 2018
  end-page: 183
  ident: b0160
  article-title: NH
  publication-title: Mole. Catal.
– volume: 84
  year: 2021
  ident: b0115
  article-title: Solar-driven low-temperature reforming of methanol into hydrogen via synergetic photo- and thermocatalysis
  publication-title: Nano Energy
– volume: 521
  start-page: 140
  year: 2016
  end-page: 148
  ident: b0105
  article-title: Photocatalytic degradation of gallic acid over CuO–TiO
  publication-title: Appl. Catal. A
– volume: 140
  start-page: 433
  year: 2018
  end-page: 440
  ident: b0230
  article-title: Titanium (III)-oxo clusters in a metal-organic framework support single-site Co (II)-hydride catalysts for arene hydrogenation
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 82
  year: 2020
  end-page: 88
  ident: b0110
  article-title: High-efficient and low-cost H
  publication-title: ES Energ. Environ.
– volume: 144
  start-page: 17075
  year: 2022
  end-page: 17085
  ident: b0145
  article-title: Light-induced selective hydrogenation over PdAg nanocages in hollow MOF microenvironment
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 8696
  year: 2015
  ident: b0225
  article-title: Defective titanium dioxide single crystals exposed by high-energy 001 facets for efficient oxygen reduction
  publication-title: Nat. Commun.
– volume: 141
  start-page: 12219
  year: 2019
  end-page: 12223
  ident: b0235
  article-title: Titanium hydroxide secondary building units in metal-organic frameworks catalyze hydrogen evolution under visible light
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2578
  year: 2019
  end-page: 2584
  ident: b0245
  article-title: Achieving efficient and robust catalytic reforming on dual-sites of Cu species
  publication-title: Chem. Sci.
– volume: 61
  start-page: e202204108
  year: 2022
  ident: b0285
  article-title: Charge separation by creating band bending in metal-organic frameworks for improved photocatalytic hydrogen evolution
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 495
  start-page: 85
  year: 2013
  end-page: 89
  ident: b0050
  article-title: Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide
  publication-title: Nature
– volume: 265
  year: 2020
  ident: b0170
  article-title: Ti
  publication-title: Appl. Catal. B. Environ.
– volume: 35
  year: 2020
  ident: b0260
  article-title: Water as a cocatalyst for photocatalytic H
  publication-title: Nano Today
– volume: 616
  year: 2021
  ident: b0065
  article-title: In-situ self-assembled Cu
  publication-title: Appl. Catal. A
– volume: 9
  start-page: 2213
  year: 2019
  end-page: 2221
  ident: b0080
  article-title: Controllable in situ surface restructuring of Cu catalysts and remarkable enhancement of their catalytic activity
  publication-title: ACS Catal.
– volume: 10
  start-page: 3543
  year: 2017
  end-page: 3556
  ident: b0185
  article-title: Formation of willow leaf-like structures composed of NH
  publication-title: Nano Res.
– volume: 19
  start-page: 3151
  year: 2003
  end-page: 3156
  ident: b0290
  article-title: Role of platinum deposited on TiO
  publication-title: Langmuir
– volume: 6
  start-page: 327
  year: 1997
  end-page: 333
  ident: b0265
  article-title: Effects of sphingosine and sphingosine analogues on the free radical production by stimulated neutrophils: ESR and chemiluminescence studies
  publication-title: Mediat. Inflamm.
– volume: 154
  start-page: 104
  year: 2016
  end-page: 120
  ident: b0100
  article-title: A comprehensive study on sunlight driven photocatalytic hydrogen generation using low cost nanocrystalline Cu-Ti oxides
  publication-title: Sol. Energ. Mat. Sol. C.
– volume: 299
  year: 2022
  ident: b0305
  article-title: Construction of microspherical flower-like Zn
  publication-title: Sep. Purif. Technol.
– volume: 53
  start-page: 97
  year: 2018
  end-page: 107
  ident: b0175
  article-title: High efficiency photocatalytic hydrogen production over ternary Cu/TiO
  publication-title: Nano Energy
– volume: 307
  start-page: 267
  year: 2016
  end-page: 291
  ident: b0135
  article-title: Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites
  publication-title: Coord. Chem. Rev.
– volume: 44
  start-page: 2636
  year: 2005
  end-page: 2639
  ident: b0005
  article-title: Beyond oil and gas: the methanol economy
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 384
  year: 2020
  ident: b0275
  article-title: Enhanced photocatalytic activity of TiO
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 950
  year: 2022
  end-page: 961
  ident: b0090
  article-title: A highly active and hydrothermal-resistant Cu/ZnO@NC catalyst for aqueous phase reforming of methanol to hydrogen
  publication-title: Int. J. Hydrogen Energ.
– volume: 8
  start-page: 1801193
  year: 2018
  ident: b0125
  article-title: Metal–organic framework based catalysts for hydrogen evolution
  publication-title: Adv. Energ. Mater.
– volume: 9
  start-page: 229
  year: 2016
  end-page: 237
  ident: b0210
  article-title: Carbon/nitrogen-doped TiO
  publication-title: Arab. J. Chem.
– volume: 116
  start-page: 22619
  year: 2012
  end-page: 22624
  ident: b0215
  article-title: Characterization of oxygen vacancy associates within hydrogenated TiO
  publication-title: J. Phy. Chem.
– volume: 52
  start-page: 356
  year: 2019
  end-page: 366
  ident: b0140
  article-title: Metal–organic frameworks for photocatalysis and photothermal catalysis
  publication-title: Accounts. Chem. Res.
– volume: 256
  year: 2019
  ident: b0270
  article-title: Encapsulated MWCNT@MOF-derived In
  publication-title: Appl. Catal. B. Environ.
– volume: 193
  start-page: 69
  year: 2018
  end-page: 80
  ident: b0295
  article-title: ZnO/NiWO
  publication-title: Sep. Purif. Technol.
– volume: 5
  start-page: 312
  year: 2017
  end-page: 319
  ident: b0300
  article-title: All-solid-state Z-scheme system of RGO-Cu
  publication-title: Energy
– volume: 10
  start-page: 16418
  year: 2018
  end-page: 16423
  ident: b0190
  article-title: MIL-125-NH
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 116
  year: 2016
  end-page: 119
  ident: b0200
  article-title: Synthesis of Au@UiO-66(NH
  publication-title: Chem. Commun.
– volume: 18
  start-page: 5179
  year: 2016
  end-page: 5191
  ident: b0180
  article-title: Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts
  publication-title: PCCP
– volume: 293
  start-page: 64
  year: 2005
  end-page: 70
  ident: b0070
  article-title: Cu
  publication-title: Appl. Catal. A
– volume: 43
  start-page: 765
  year: 2014
  end-page: 778
  ident: b0030
  article-title: Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds
  publication-title: Chem. Soc. Rev.
– volume: 112
  start-page: 1555
  year: 2012
  end-page: 1614
  ident: b0025
  article-title: Advanced nanoarchitectures for solar photocatalytic applications
  publication-title: Chem. Rev.
– volume: 244
  start-page: 511
  year: 2019
  end-page: 518
  ident: b0165
  article-title: NH
  publication-title: Appl. Catal. B. Environ.
– volume: 160
  start-page: 155
  year: 1996
  end-page: 170
  ident: b0240
  article-title: Yttria-stabilized zirconia supported copper oxide catalyst: I. Effect of oxygen cacancy of support on copper oxide reduction
  publication-title: J. Catal.
– volume: 594
  year: 2020
  ident: b0280
  article-title: Synergic effect of heat and light on the catalytic reforming of methanol over Cu/x-TiO
  publication-title: Appl. Catal. A
– volume: 1
  start-page: 2971
  year: 2018
  end-page: 2981
  ident: b0155
  article-title: MOF-templated approach for hollow NiOx/Co
  publication-title: ACS Appl. Nano Mater.
– volume: 3
  start-page: 467
  year: 2011
  end-page: 472
  ident: b0020
  article-title: Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures
  publication-title: Nat. Chem.
– volume: 43
  start-page: 1258
  year: 2022
  end-page: 1266
  ident: b0035
  article-title: Synergetic photocatalytic and thermocatalytic reforming of methanol for hydrogen production based on Pt@TiO
  publication-title: J. Catal.
– volume: 236
  year: 2022
  ident: b0045
  article-title: Promoting mechanism of alkali for aqueous phase reforming of bio-methanol towards highly efficient production of COx-free hydrogen
  publication-title: Fuel Process. Technol.
– volume: 8
  start-page: 3286
  year: 2018
  end-page: 3294
  ident: b0195
  article-title: Efficient solar light-driven H
  publication-title: Sci. Technol.
– volume: 337
  start-page: 282
  year: 2018
  end-page: 289
  ident: b0060
  article-title: Efficient photocatalytic hydrogen production over Rh and Nb co-doped TiO
  publication-title: Chem. Eng. J.
– volume: 256
  start-page: 117790
  year: 2019
  ident: b0255
  article-title: Hydrogen thermo-photo production using Ru/TiO
  publication-title: Appl. Catal. B. Environ.
– volume: 12
  start-page: 1941
  year: 2022
  end-page: 1949
  ident: b0095
  article-title: Chitosan–lignin carbon framework-encapsulated Cu catalyst facilitates base-free hydrogen evolution from methanol/water, Catal
  publication-title: Sci. Technol.
– volume: 24
  start-page: 8345
  year: 2022
  end-page: 8354
  ident: b0120
  article-title: On-demand continuous H
  publication-title: Green Chem.
– volume: 1
  start-page: 12
  year: 2020
  end-page: 29
  ident: b0010
  article-title: How to make use of methanol in green catalytic hydrogen production?
  publication-title: Nano. Select.
– volume: 42
  start-page: 2018
  year: 2017
  end-page: 2033
  ident: b0015
  article-title: Hydrogen: Trends, production and characterization of the main process worldwide
  publication-title: Int. J. Hydrogen Energ.
– volume: 77
  start-page: 46
  year: 2007
  end-page: 57
  ident: b0085
  article-title: Cu/ZnO/Al
  publication-title: Appl. Catal. B. Environ.
– volume: 96
  start-page: 385
  year: 2017
  end-page: 394
  ident: b0130
  article-title: Metal organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage
  publication-title: Mater. Rese. Bull.
– volume: 425
  year: 2021
  ident: b0250
  article-title: Thermo-photo production of hydrogen using ternary Pt-CeO
  publication-title: Chem. Eng. J.
– volume: 74
  year: 2020
  ident: b0205
  article-title: Selective wet-chemical etching to create TiO
  publication-title: Nano Energy
– volume: 6
  start-page: 23684
  year: 2016
  ident: b0220
  article-title: Ti
  publication-title: Sci. Rep.
– volume: 420
  year: 2021
  ident: b0055
  article-title: PtO nanodots promoting Ti
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 183
  year: 2017
  ident: b0075
  article-title: Review on copper and palladium based catalysts for methanol steam reforming to produce hydrogen
  publication-title: Catalysts
– volume: 56
  start-page: 171
  year: 2005
  end-page: 186
  ident: b0040
  article-title: A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts
  publication-title: Appl. Catal. B. Environ.
– volume: 7
  start-page: 6887
  year: 2016
  end-page: 6893
  ident: b0150
  article-title: Photothermal-enhanced catalysis in core-shell plasmonic hierarchical Cu
  publication-title: Chem. Sci.
– volume: 307
  start-page: 267
  year: 2016
  ident: 10.1016/j.cej.2023.142904_b0135
  article-title: Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.08.004
– volume: 35
  year: 2020
  ident: 10.1016/j.cej.2023.142904_b0260
  article-title: Water as a cocatalyst for photocatalytic H2 production from formic acid
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2020.100968
– volume: 154
  start-page: 104
  year: 2016
  ident: 10.1016/j.cej.2023.142904_b0100
  article-title: A comprehensive study on sunlight driven photocatalytic hydrogen generation using low cost nanocrystalline Cu-Ti oxides
  publication-title: Sol. Energ. Mat. Sol. C.
  doi: 10.1016/j.solmat.2016.04.036
– volume: 10
  start-page: 16418
  issue: 19
  year: 2018
  ident: 10.1016/j.cej.2023.142904_b0190
  article-title: MIL-125-NH2@TiO2 core-shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 production
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01462
– volume: 61
  start-page: e202204108
  year: 2022
  ident: 10.1016/j.cej.2023.142904_b0285
  article-title: Charge separation by creating band bending in metal-organic frameworks for improved photocatalytic hydrogen evolution
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202204108
– volume: 141
  start-page: 12219
  issue: 31
  year: 2019
  ident: 10.1016/j.cej.2023.142904_b0235
  article-title: Titanium hydroxide secondary building units in metal-organic frameworks catalyze hydrogen evolution under visible light
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05964
– volume: 1
  start-page: 2971
  year: 2018
  ident: 10.1016/j.cej.2023.142904_b0155
  article-title: MOF-templated approach for hollow NiOx/Co3O4 catalysts: Enhanced light-driven thermocatalytic degradation of toluene
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b00587
– volume: 6
  start-page: 23684
  year: 2016
  ident: 10.1016/j.cej.2023.142904_b0220
  article-title: Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction
  publication-title: Sci. Rep.
  doi: 10.1038/srep23684
– volume: 6
  start-page: 327
  issue: 5–6
  year: 1997
  ident: 10.1016/j.cej.2023.142904_b0265
  article-title: Effects of sphingosine and sphingosine analogues on the free radical production by stimulated neutrophils: ESR and chemiluminescence studies
  publication-title: Mediat. Inflamm.
  doi: 10.1080/09629359791460
– volume: 384
  year: 2020
  ident: 10.1016/j.cej.2023.142904_b0275
  article-title: Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123350
– volume: 19
  start-page: 3151
  issue: 8
  year: 2003
  ident: 10.1016/j.cej.2023.142904_b0290
  article-title: Role of platinum deposited on TiO2 in phenol photocatalytic oxidation
  publication-title: Langmuir
  doi: 10.1021/la0264670
– volume: 265
  year: 2020
  ident: 10.1016/j.cej.2023.142904_b0170
  article-title: Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation
  publication-title: Appl. Catal. B. Environ.
  doi: 10.1016/j.apcatb.2019.118539
– volume: 160
  start-page: 155
  year: 1996
  ident: 10.1016/j.cej.2023.142904_b0240
  article-title: Yttria-stabilized zirconia supported copper oxide catalyst: I. Effect of oxygen cacancy of support on copper oxide reduction
  publication-title: J. Catal.
  doi: 10.1006/jcat.1996.0135
– volume: 43
  start-page: 765
  year: 2014
  ident: 10.1016/j.cej.2023.142904_b0030
  article-title: Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60262A
– volume: 84
  year: 2021
  ident: 10.1016/j.cej.2023.142904_b0115
  article-title: Solar-driven low-temperature reforming of methanol into hydrogen via synergetic photo- and thermocatalysis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105953
– volume: 9
  start-page: 82
  year: 2020
  ident: 10.1016/j.cej.2023.142904_b0110
  article-title: High-efficient and low-cost H2 production by solar-driven photo-thermo-reforming of methanol with CuO catalyst
  publication-title: ES Energ. Environ.
– volume: 44
  start-page: 2636
  issue: 18
  year: 2005
  ident: 10.1016/j.cej.2023.142904_b0005
  article-title: Beyond oil and gas: the methanol economy
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200462121
– volume: 293
  start-page: 64
  year: 2005
  ident: 10.1016/j.cej.2023.142904_b0070
  article-title: Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2005.07.010
– volume: 7
  start-page: 183
  year: 2017
  ident: 10.1016/j.cej.2023.142904_b0075
  article-title: Review on copper and palladium based catalysts for methanol steam reforming to produce hydrogen
  publication-title: Catalysts
  doi: 10.3390/catal7060183
– volume: 495
  start-page: 85
  issue: 7439
  year: 2013
  ident: 10.1016/j.cej.2023.142904_b0050
  article-title: Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide
  publication-title: Nature
  doi: 10.1038/nature11891
– volume: 452
  start-page: 175
  year: 2018
  ident: 10.1016/j.cej.2023.142904_b0160
  article-title: NH2-MIL-125(Ti)/TiO2 composites as superior visible-light photocatalysts for selective oxidation of cyclohexane
  publication-title: Mole. Catal.
  doi: 10.1016/j.mcat.2018.04.004
– volume: 74
  year: 2020
  ident: 10.1016/j.cej.2023.142904_b0205
  article-title: Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104909
– volume: 96
  start-page: 385
  year: 2017
  ident: 10.1016/j.cej.2023.142904_b0130
  article-title: Metal organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage
  publication-title: Mater. Rese. Bull.
  doi: 10.1016/j.materresbull.2017.04.020
– volume: 140
  start-page: 433
  issue: 1
  year: 2018
  ident: 10.1016/j.cej.2023.142904_b0230
  article-title: Titanium (III)-oxo clusters in a metal-organic framework support single-site Co (II)-hydride catalysts for arene hydrogenation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11241
– volume: 112
  start-page: 1555
  issue: 3
  year: 2012
  ident: 10.1016/j.cej.2023.142904_b0025
  article-title: Advanced nanoarchitectures for solar photocatalytic applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr100454n
– volume: 10
  start-page: 3543
  issue: 10
  year: 2017
  ident: 10.1016/j.cej.2023.142904_b0185
  article-title: Formation of willow leaf-like structures composed of NH2-MIL-68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr (VI)
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1565-8
– volume: 8
  start-page: 1801193
  year: 2018
  ident: 10.1016/j.cej.2023.142904_b0125
  article-title: Metal–organic framework based catalysts for hydrogen evolution
  publication-title: Adv. Energ. Mater.
  doi: 10.1002/aenm.201801193
– volume: 8
  start-page: 3286
  year: 2018
  ident: 10.1016/j.cej.2023.142904_b0195
  article-title: Efficient solar light-driven H2 production: Post-synthetic encapsulation of a Cu2O co-catalyst in a metal–organic framework (MOF) for boosting the effective charge carrier separation, Catal
  publication-title: Sci. Technol.
– volume: 521
  start-page: 140
  year: 2016
  ident: 10.1016/j.cej.2023.142904_b0105
  article-title: Photocatalytic degradation of gallic acid over CuO–TiO2 composites under UV/Vis LEDs irradiation
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2015.10.044
– volume: 144
  start-page: 17075
  issue: 37
  year: 2022
  ident: 10.1016/j.cej.2023.142904_b0145
  article-title: Light-induced selective hydrogenation over PdAg nanocages in hollow MOF microenvironment
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c06720
– volume: 7
  start-page: 6887
  issue: 12
  year: 2016
  ident: 10.1016/j.cej.2023.142904_b0150
  article-title: Photothermal-enhanced catalysis in core-shell plasmonic hierarchical Cu7S4 microsphere@zeolitic imidazole framework-8
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC03239G
– volume: 9
  start-page: 229
  year: 2016
  ident: 10.1016/j.cej.2023.142904_b0210
  article-title: Carbon/nitrogen-doped TiO2: New synthesis route, characterization and application for phenol degradation
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2015.04.027
– volume: 256
  year: 2019
  ident: 10.1016/j.cej.2023.142904_b0270
  article-title: Encapsulated MWCNT@MOF-derived In2S3 tubular heterostructures for boosted visible-light-driven degradation of tetracycline
  publication-title: Appl. Catal. B. Environ.
  doi: 10.1016/j.apcatb.2019.117882
– volume: 18
  start-page: 5179
  issue: 7
  year: 2016
  ident: 10.1016/j.cej.2023.142904_b0180
  article-title: Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts
  publication-title: PCCP
  doi: 10.1039/C5CP08041J
– volume: 337
  start-page: 282
  year: 2018
  ident: 10.1016/j.cej.2023.142904_b0060
  article-title: Efficient photocatalytic hydrogen production over Rh and Nb co-doped TiO2 nanorods
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.088
– volume: 52
  start-page: 356
  issue: 2
  year: 2019
  ident: 10.1016/j.cej.2023.142904_b0140
  article-title: Metal–organic frameworks for photocatalysis and photothermal catalysis
  publication-title: Accounts. Chem. Res.
  doi: 10.1021/acs.accounts.8b00521
– volume: 3
  start-page: 467
  issue: 6
  year: 2011
  ident: 10.1016/j.cej.2023.142904_b0020
  article-title: Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1032
– volume: 420
  year: 2021
  ident: 10.1016/j.cej.2023.142904_b0055
  article-title: PtO nanodots promoting Ti3C2 MXene in-situ converted Ti3C2/TiO2 composites for photocatalytic hydrogen production
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129695
– volume: 47
  start-page: 950
  issue: 2
  year: 2022
  ident: 10.1016/j.cej.2023.142904_b0090
  article-title: A highly active and hydrothermal-resistant Cu/ZnO@NC catalyst for aqueous phase reforming of methanol to hydrogen
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2021.10.070
– volume: 594
  year: 2020
  ident: 10.1016/j.cej.2023.142904_b0280
  article-title: Synergic effect of heat and light on the catalytic reforming of methanol over Cu/x-TiO2 (x=La, Zn, Sm, Ce) nanocatalysts
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2020.117456
– volume: 299
  year: 2022
  ident: 10.1016/j.cej.2023.142904_b0305
  article-title: Construction of microspherical flower-like Zn3In2S6-BGQDs/AgBr S-scheme heterojunction for photocatalytic elimination of nitrofurazone and Cr (VI)
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121563
– volume: 236
  year: 2022
  ident: 10.1016/j.cej.2023.142904_b0045
  article-title: Promoting mechanism of alkali for aqueous phase reforming of bio-methanol towards highly efficient production of COx-free hydrogen
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2022.107385
– volume: 56
  start-page: 171
  issue: 1-2
  year: 2005
  ident: 10.1016/j.cej.2023.142904_b0040
  article-title: A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts
  publication-title: Appl. Catal. B. Environ.
  doi: 10.1016/j.apcatb.2004.04.027
– volume: 52
  start-page: 116
  issue: 1
  year: 2016
  ident: 10.1016/j.cej.2023.142904_b0200
  article-title: Synthesis of Au@UiO-66(NH2) structures by small molecule-assisted nucleation for plasmon-enhanced photocatalytic activity
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC07042B
– volume: 256
  start-page: 117790
  year: 2019
  ident: 10.1016/j.cej.2023.142904_b0255
  article-title: Hydrogen thermo-photo production using Ru/TiO2: Heat and light synergistic effects
  publication-title: Appl. Catal. B. Environ.
  doi: 10.1016/j.apcatb.2019.117790
– volume: 10
  start-page: 2578
  issue: 9
  year: 2019
  ident: 10.1016/j.cej.2023.142904_b0245
  article-title: Achieving efficient and robust catalytic reforming on dual-sites of Cu species
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC00015A
– volume: 5
  start-page: 312
  year: 2017
  ident: 10.1016/j.cej.2023.142904_b0300
  article-title: All-solid-state Z-scheme system of RGO-Cu2O/Fe2O3 for simultaneous hydrogen production and tetracycline degradation, Mater. Today
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.047
– volume: 12
  start-page: 1941
  issue: 6
  year: 2022
  ident: 10.1016/j.cej.2023.142904_b0095
  article-title: Chitosan–lignin carbon framework-encapsulated Cu catalyst facilitates base-free hydrogen evolution from methanol/water, Catal
  publication-title: Sci. Technol.
– volume: 616
  year: 2021
  ident: 10.1016/j.cej.2023.142904_b0065
  article-title: In-situ self-assembled Cu2O/ZnO core-shell catalysts synergistically enhance the durability of methanol steam reforming
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2021.118072
– volume: 77
  start-page: 46
  issue: 1-2
  year: 2007
  ident: 10.1016/j.cej.2023.142904_b0085
  article-title: Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix
  publication-title: Appl. Catal. B. Environ.
  doi: 10.1016/j.apcatb.2007.07.006
– volume: 6
  start-page: 8696
  year: 2015
  ident: 10.1016/j.cej.2023.142904_b0225
  article-title: Defective titanium dioxide single crystals exposed by high-energy 001 facets for efficient oxygen reduction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9696
– volume: 42
  start-page: 2018
  year: 2017
  ident: 10.1016/j.cej.2023.142904_b0015
  article-title: Hydrogen: Trends, production and characterization of the main process worldwide
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2016.08.219
– volume: 116
  start-page: 22619
  year: 2012
  ident: 10.1016/j.cej.2023.142904_b0215
  article-title: Characterization of oxygen vacancy associates within hydrogenated TiO2: A positron annihilation study
  publication-title: J. Phy. Chem.
– volume: 9
  start-page: 2213
  issue: 3
  year: 2019
  ident: 10.1016/j.cej.2023.142904_b0080
  article-title: Controllable in situ surface restructuring of Cu catalysts and remarkable enhancement of their catalytic activity
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04812
– volume: 43
  start-page: 1258
  issue: 5
  year: 2022
  ident: 10.1016/j.cej.2023.142904_b0035
  article-title: Synergetic photocatalytic and thermocatalytic reforming of methanol for hydrogen production based on Pt@TiO2 catalyst, Chinese
  publication-title: J. Catal.
– volume: 24
  start-page: 8345
  issue: 21
  year: 2022
  ident: 10.1016/j.cej.2023.142904_b0120
  article-title: On-demand continuous H2 release by methanol dehydrogenation and reforming via photocatalysis in a membrane reactor
  publication-title: Green Chem.
  doi: 10.1039/D2GC01553F
– volume: 53
  start-page: 97
  year: 2018
  ident: 10.1016/j.cej.2023.142904_b0175
  article-title: High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.040
– volume: 425
  year: 2021
  ident: 10.1016/j.cej.2023.142904_b0250
  article-title: Thermo-photo production of hydrogen using ternary Pt-CeO2-TiO2 catalysts: A spectroscopic and mechanistic study
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130641
– volume: 1
  start-page: 12
  year: 2020
  ident: 10.1016/j.cej.2023.142904_b0010
  article-title: How to make use of methanol in green catalytic hydrogen production?
  publication-title: Nano. Select.
  doi: 10.1002/nano.202000010
– volume: 193
  start-page: 69
  year: 2018
  ident: 10.1016/j.cej.2023.142904_b0295
  article-title: ZnO/NiWO4/Ag2CrO4 nanocomposites with p-n-n heterojunctions: Highly improved activity for degradations of water contaminants under visible light
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.11.007
– volume: 244
  start-page: 511
  year: 2019
  ident: 10.1016/j.cej.2023.142904_b0165
  article-title: NH2-MIL-125(Ti)/TiO2 nanorod heterojunction photoanodes for efficient photoelectrochemical water splitting
  publication-title: Appl. Catal. B. Environ.
  doi: 10.1016/j.apcatb.2018.11.057
SSID ssj0006919
Score 2.4820397
Snippet A novel hierarchical heterojunction that integrating photo- and thermal-active Cu2O catalytic species with in-situ derived NH2-MIL-125@TiO2 framework...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 142904
SubjectTerms Controllable in-situ derived TiO2
Cu-based catalysts
Hydrogen production from methanol aqueous-phase reforming
Metal-organic framework
Photothermal catalysis
Title Confinement of Cu2O by in-situ derived NH2-MIL-125@TiO2 for synergetic photothermal-driven hydrogen evolution from aqueous-phase methanol reforming
URI https://dx.doi.org/10.1016/j.cej.2023.142904
Volume 465
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9rIdij06tF0X8LDTADWOLT90axCsSJc1BbYW682QLKlxkNpB4xTIZX9if7ikH1uLYT3sZMsgDVuk-VEmKTL2MfAyL7Ghwg8pybhAK8w1wib3pEtclCgbB1SNfD6Nxlfiy3V4vcVGXS0MpVW2tr-x6bW1bq_029nsL_O8_31AMS0pYnSi0akIyQ4LEZOWH__8k-YRybq5BxFzou4im3WOV2bnx9Q_HO2FL9tebX9h0yO8OX3FdltHEYbNs7xmW7Z4w14-2j7wLftF5Xo4pB98UDoYrf0L0BvIC77KqzUYpLu3BqZjn5-ffeXoZZxc5hc-oKMKqw1V_VEJIyxnZVUXYt2qBTfEU8BsY-5KVC6w961yAlWigEIcKdcrvpwh_AH1n1ZFuQB8l5Kyam722NXp58vRmLdNFnjmy7jiZuC0kErJxCBW4eImihUCm4opviaVpvWG9YxULlFx5kwojXSBRruEstd4-o5tF2Vh9xnEQRZGJrJ4u0QMDAUUtZM6sy40gRPJAfO66U2zdgdyaoSxSLtUs3mKEklJImkjkQP26TfLstl-4zli0cksfaJDKcLDv9kO_4_tPXtBoyZt7IhtV3dr-wEdlEr3ag3ssZ3h2WQ8pePk24_JA4Qi6Ao
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6hcGh7qIC2KoXSOfRUaRvH772BoiIHknBokLhZu97dxijYEXGQ8jv4w8zEa0RVtYfe_NixbM_6-2Y9L8a-Bl7hpSaS-CGlBQ8RhblC2uSesKmNU2mSgLKRJ9M4uw4vbqKbHTbscmEorNJhf4vpW7R2R_rubfaXZdn_OSCflggTNKLRqIgQh3epOlXUY7tno8ts-gzIsdj296DxnAQ65-Y2zKswt9-phThChi9cu7Y_6OkF5ZzvsbfOVoSz9nb22Y6pDtibFxUE37FHytjDXfrHB7WF4dq_ArWBsuKrslmDxnEPRsM08_lkNOZoaJzOyisf0FaF1YYS_yiLEZbzutnmYt3JBdckU8F8o-9rnF9gHtz8BEpGAYlUUq9XfDlHBgRqQS2regH4LDUF1vx6z67Pf8yGGXd9Fnjhi6ThemBVKKQUqUa6wvVNnEjkNpmQi01IRUsO42khbSqTwupIaGEDhdCE6le4-YH1qroyHxkkQRHFOjZ4uTQcaPIpKitUYWykAxumh8zrXm9euCLk1AtjkXfRZrc5aiQnjeStRg7Zt2eRZVuB41-Dw05n-W_TKEeG-LvYp_8T-8JeZbPJOB-PppdH7DWdaaPIjlmvuV-bz2ivNOrEzccnNOHpGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confinement+of+Cu2O+by+in-situ+derived+NH2-MIL-125%40TiO2+for+synergetic+photothermal-driven+hydrogen+evolution+from+aqueous-phase+methanol+reforming&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhang%2C+Baofang&rft.au=Zengcai%2C+Ziyu&rft.au=Lin%2C+Wenting&rft.au=Zhang%2C+Meijin&rft.date=2023-06-01&rft.issn=1385-8947&rft.volume=465&rft.spage=142904&rft_id=info:doi/10.1016%2Fj.cej.2023.142904&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2023_142904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon