Confinement of Cu2O by in-situ derived NH2-MIL-125@TiO2 for synergetic photothermal-driven hydrogen evolution from aqueous-phase methanol reforming
A novel hierarchical heterojunction that integrating photo- and thermal-active Cu2O catalytic species with in-situ derived NH2-MIL-125@TiO2 framework specifically facilitates photothermal aqueous phase reforming of methanol into H2. [Display omitted] •Cu2O and in-situ derived TiO2 layer were hierarc...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 465; p. 142904 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel hierarchical heterojunction that integrating photo- and thermal-active Cu2O catalytic species with in-situ derived NH2-MIL-125@TiO2 framework specifically facilitates photothermal aqueous phase reforming of methanol into H2.
[Display omitted]
•Cu2O and in-situ derived TiO2 layer were hierarchically integrated in NH2-MIL-125(Ti) framework.•Cu2O/NH2-MIL-125@TiO2 afforded 13-fold photothermally-promoted H2 yield from reforming of MeOH/H2O than thermocatalytic process.•The synergistic effect between TiO2 and Cu2O catalysts in MOF enhanced stability and mobility of charge carriers.•Photothermal effect effectively activated methanol at 100 °C and reduced reaction activation energy by 36.5%.•The reaction pathway for photothermal H2 yield was fully discussed.
Photothermal synergism can effectively activate methanol at low operating temperature and significantly reduce the activation energy of the reaction, achieving more efficiently H2 release from methanol reforming. Here, a novel hierarchical heterojunction that integrating photo- and thermal-active Cu2O catalytic species with in-situ derived NH2-MIL-125@TiO2 framework was specifically designed for photothermal-driven aqueous phase reforming of methanol into H2. The afforded Cu2O/NH2-MIL-125@TiO2 realized an outstanding photothermal H2 production activity (apparent quantum efficiency of 22.3 % at 365 nm), ca. 13-times higher than that of thermocatalytic condition. Interestingly, the photothermal effect did confer the Cu2O/NH2-MIL-125@TiO2 with unexpected activity at low temperature subsided to 100 °C and accelerated the activation of MeOH/H2O with an obvious reduction of activation energy from 82.62 kJ·mol−1 to 52.40 kJ·mol−1.The improvement of catalyst stability and the promotion of charge separation also contributed to a long-term photothermal H2 evolution activity with average rate of 1.49x106 μmolgCu-1h−1 and a total turnover number (TON) up to 5971 in 63 h, almost 125-fold promotion compared with Cu2O. |
---|---|
AbstractList | A novel hierarchical heterojunction that integrating photo- and thermal-active Cu2O catalytic species with in-situ derived NH2-MIL-125@TiO2 framework specifically facilitates photothermal aqueous phase reforming of methanol into H2.
[Display omitted]
•Cu2O and in-situ derived TiO2 layer were hierarchically integrated in NH2-MIL-125(Ti) framework.•Cu2O/NH2-MIL-125@TiO2 afforded 13-fold photothermally-promoted H2 yield from reforming of MeOH/H2O than thermocatalytic process.•The synergistic effect between TiO2 and Cu2O catalysts in MOF enhanced stability and mobility of charge carriers.•Photothermal effect effectively activated methanol at 100 °C and reduced reaction activation energy by 36.5%.•The reaction pathway for photothermal H2 yield was fully discussed.
Photothermal synergism can effectively activate methanol at low operating temperature and significantly reduce the activation energy of the reaction, achieving more efficiently H2 release from methanol reforming. Here, a novel hierarchical heterojunction that integrating photo- and thermal-active Cu2O catalytic species with in-situ derived NH2-MIL-125@TiO2 framework was specifically designed for photothermal-driven aqueous phase reforming of methanol into H2. The afforded Cu2O/NH2-MIL-125@TiO2 realized an outstanding photothermal H2 production activity (apparent quantum efficiency of 22.3 % at 365 nm), ca. 13-times higher than that of thermocatalytic condition. Interestingly, the photothermal effect did confer the Cu2O/NH2-MIL-125@TiO2 with unexpected activity at low temperature subsided to 100 °C and accelerated the activation of MeOH/H2O with an obvious reduction of activation energy from 82.62 kJ·mol−1 to 52.40 kJ·mol−1.The improvement of catalyst stability and the promotion of charge separation also contributed to a long-term photothermal H2 evolution activity with average rate of 1.49x106 μmolgCu-1h−1 and a total turnover number (TON) up to 5971 in 63 h, almost 125-fold promotion compared with Cu2O. |
ArticleNumber | 142904 |
Author | Lin, Wenting Zhang, Meijin Pi, Yunhong Wang, Tiejun Zhang, Baofang Zengcai, Ziyu |
Author_xml | – sequence: 1 givenname: Baofang surname: Zhang fullname: Zhang, Baofang – sequence: 2 givenname: Ziyu surname: Zengcai fullname: Zengcai, Ziyu – sequence: 3 givenname: Wenting surname: Lin fullname: Lin, Wenting – sequence: 4 givenname: Meijin surname: Zhang fullname: Zhang, Meijin – sequence: 5 givenname: Yunhong orcidid: 0000-0003-2673-3950 surname: Pi fullname: Pi, Yunhong email: piyunhong@gdut.edu.cn – sequence: 6 givenname: Tiejun surname: Wang fullname: Wang, Tiejun email: tjwang@gdut.edu.cn |
BookMark | eNp9kMtuEzEUhi1UJNrCA7DzCzj4MjMeiw0oAlopNJuythz7OONoxg62J1Keoy_cicKKRVfnl46-c_nu0E1MERD6zOiKUdZ9OawsHFaccrFiDVe0eYduWS8FEZzxmyWLviW9auQHdFfKgVLaKaZu0cs6RR8iTBArTh6vZ77FuzMOkZRQZ-wghxM4_PTAye_HDWG8_fYcthz7lHE5R8h7qMHi45BqqgPkyYzEXZiIh7PLab8EOKVxriFF7HOasPk7Q5oLOQ6mAJ6gDiamEWdYZk4h7j-i996MBT79q_foz88fz-sHstn-elx_3xDLlazEMb9rlDGqd5TxjradNA0TRjLVCmV2SjYSqFPG90Za71rllBc7ITtrl64X90he59qcSlnWaxuqudxZswmjZlRf3OqDXtzqi1t9dbuQ7D_ymMNk8vlN5uuVgeWlU4Csiw0QLbiQwVbtUniDfgUUVZZA |
CitedBy_id | crossref_primary_10_1016_j_fuel_2024_134202 crossref_primary_10_1016_j_apcatb_2024_124767 crossref_primary_10_1016_j_ijhydene_2024_09_009 crossref_primary_10_1016_j_fuel_2024_132117 crossref_primary_10_1021_acsnano_4c07386 crossref_primary_10_3390_molecules29215028 crossref_primary_10_1016_j_chemphys_2025_112602 crossref_primary_10_1002_anie_202423269 crossref_primary_10_1002_ange_202423269 crossref_primary_10_1016_j_fuel_2023_129990 crossref_primary_10_1016_j_jes_2024_05_034 crossref_primary_10_1016_j_seppur_2024_128942 |
Cites_doi | 10.1016/j.ccr.2015.08.004 10.1016/j.nantod.2020.100968 10.1016/j.solmat.2016.04.036 10.1021/acsami.8b01462 10.1002/anie.202204108 10.1021/jacs.9b05964 10.1021/acsanm.8b00587 10.1038/srep23684 10.1080/09629359791460 10.1016/j.cej.2019.123350 10.1021/la0264670 10.1016/j.apcatb.2019.118539 10.1006/jcat.1996.0135 10.1039/C3CS60262A 10.1016/j.nanoen.2021.105953 10.1002/anie.200462121 10.1016/j.apcata.2005.07.010 10.3390/catal7060183 10.1038/nature11891 10.1016/j.mcat.2018.04.004 10.1016/j.nanoen.2020.104909 10.1016/j.materresbull.2017.04.020 10.1021/jacs.7b11241 10.1021/cr100454n 10.1007/s12274-017-1565-8 10.1002/aenm.201801193 10.1016/j.apcata.2015.10.044 10.1021/jacs.2c06720 10.1039/C6SC03239G 10.1016/j.arabjc.2015.04.027 10.1016/j.apcatb.2019.117882 10.1039/C5CP08041J 10.1016/j.cej.2017.12.088 10.1021/acs.accounts.8b00521 10.1038/nchem.1032 10.1016/j.cej.2021.129695 10.1016/j.ijhydene.2021.10.070 10.1016/j.apcata.2020.117456 10.1016/j.seppur.2022.121563 10.1016/j.fuproc.2022.107385 10.1016/j.apcatb.2004.04.027 10.1039/C5CC07042B 10.1016/j.apcatb.2019.117790 10.1039/C9SC00015A 10.1016/j.energy.2016.12.047 10.1016/j.apcata.2021.118072 10.1016/j.apcatb.2007.07.006 10.1038/ncomms9696 10.1016/j.ijhydene.2016.08.219 10.1021/acscatal.8b04812 10.1039/D2GC01553F 10.1016/j.nanoen.2018.08.040 10.1016/j.cej.2021.130641 10.1002/nano.202000010 10.1016/j.seppur.2017.11.007 10.1016/j.apcatb.2018.11.057 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2023.142904 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2023_142904 S1385894723016352 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SSH ZY4 |
ID | FETCH-LOGICAL-c297t-d1fb49aa98d01260567a413a719539ab9747e0d9af8a7cfd59d9f3b376ccab9f3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 01:50:44 EDT 2025 Thu Apr 24 23:08:37 EDT 2025 Fri Feb 23 02:36:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrogen production from methanol aqueous-phase reforming Metal-organic framework Photothermal catalysis Controllable in-situ derived TiO2 Cu-based catalysts |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-d1fb49aa98d01260567a413a719539ab9747e0d9af8a7cfd59d9f3b376ccab9f3 |
ORCID | 0000-0003-2673-3950 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2023_142904 crossref_primary_10_1016_j_cej_2023_142904 elsevier_sciencedirect_doi_10_1016_j_cej_2023_142904 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 2023-06-00 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Peng, Wei, Li, Liu, Cao, Wang, Yu, Peng, Zhang, Zhang, Lv (b0175) 2018; 53 Song, Li, Zhu, Feng, Chen, Kaufmann, Wang, Lin (b0235) 2019; 141 Sun, Yang, Liang, Tu, Bin, Hou (b0305) 2022; 299 Zhang, Zhang, Tan, Shao, Shi, Zheng, Zhang, Yang, Han (b0190) 2018; 10 da Silva Veras, Mozer, da Costa Rubim Messeder dos Santos, da Silva César (b0015) 2017; 42 Xin, Xu, Wang, Wang (b0220) 2016; 6 Caudillo Flores, Barba Nieto, Muñoz Batista, Motta Meira, Fernández García, Kubacka (b0250) 2021; 425 Han, An, Hu, Li, Hou, Wang, Zhang (b0170) 2020; 265 Sun, Yuan, Wang, Zhao, Zhan, Han (b0205) 2020; 74 Olah (b0005) 2005; 44 Aguilera Sigalat, Bradshaw (b0135) 2016; 307 Pi, Li, Xia, Wu, Li, Li, Xiao (b0185) 2017; 10 Li, Li, Jiao, Liu, Ma, Zeng, Zheng, Jiang (b0145) 2022; 144 Pi, Wu, Zheng, Ma, Wang (b0095) 2022; 12 Pei, Gong, Zhang, Zhang, Chen, Mu, Yu (b0225) 2015; 6 Li, Ouyang, Zheng, Ye, Guo, Qin, Wu, Lin, Wang, Zhang (b0035) 2022; 43 Railey, Song, Liu, Li (b0130) 2017; 96 Pai, Banerjee, Rawool, Singhal, Nayak, Ehrman, Tripathi, Bharadwaj (b0100) 2016; 154 Li, Sun, Ma, Wei (b0110) 2020; 9 Caudillo Flores, Agostini, Marini, Kubacka, Fernández-García (b0255) 2019; 256 Nielsen, Alberico, Baumann, Drexler, Junge, Gladiali, Beller (b0050) 2013; 495 Wang, Huang, Chai, Zeng, Li, Wang, Xu (b0150) 2016; 7 Davda, Shabaker, Huber, Cortright, Dumesic (b0040) 2005; 56 Yu, Yang, Xuan, Liu, Zhang (b0115) 2021; 84 Jiao, Yang, Li, Wang, Tang (b0120) 2022; 24 Yoon, Kim, Kim, Jang, Lee (b0165) 2019; 244 Ma, Tian, Zhao, Cheng, Ding, Zhang, Zheng, Jiang, Abe, Tsubaki, Gong, Li (b0245) 2019; 10 Zheng, Fang, Yang, Ma, Meng, Lin, Liu, Zhang, Wang (b0090) 2022; 47 Turco, Bagnasco, Cammarano, Senese, Costantino, Sisani (b0085) 2007; 77 Christopher, Xin, Linic (b0020) 2011; 3 Zhang, Liu, Rao, Li, Yuan, Tang, Zhao (b0275) 2020; 384 Zhao, Zhang, Wen, Xu, Ma, Qiu (b0160) 2018; 452 Yang, Yu, Li, Dong, Jiang, Zhou, Zhuang, Liu, Hu, Zhao, Li, Chen, Hu, Su (b0055) 2021; 420 Vinoth, Karthik, Muthamizhchelvan, Neppolian, Ashokkumar (b0180) 2016; 18 Luna, Valenzuela, Colbeau Justin, Vázquez, Rodriguez, Avendaño, Alfaro, Tirado, Garduño, De la Rosa (b0105) 2016; 521 Mouithys Mickalad, Deby Dupont, Hoebeke, Mathy Hartert, Lamy, Deby (b0265) 1997; 6 Zhu, Zou, Xu (b0125) 2018; 8 Kubacka, Fernández-García, Colón (b0025) 2012; 112 Shen, Liu, Yan, Jiang, Hong, Yan, Mao, Li, Fan, Shi (b0300) 2017; 5 Jiang, Zhang, Jiang, Rong, Wang, Wu, Pan (b0215) 2012; 116 Zhao, Shi, Li, Zhou, Zhang (b0010) 2020; 1 Xiao, Jiang (b0140) 2019; 52 Karthik, Balaraman, Neppolian (b0195) 2018; 8 Xu, Shuai, Xu (b0075) 2017; 7 Zhang, Xie, Gao, Tao, Ding, Fan, Jiang (b0285) 2022; 61 Oguchi, Kanai, Utani, Matsumura, Imamura (b0070) 2005; 293 Zhang, Zhao, Yang, Zhang, Zhang (b0065) 2021; 616 Xiao, Meng, Qiu, Qiu, Wu, Ma, Wang (b0045) 2022; 236 He, Wang, Zhang, Dong, Wang, Zhang, Niu, Yao, He, Liu (b0080) 2019; 9 Pi, Jin, Li, Tu, Li, Xiao (b0270) 2019; 256 Gu, Chen, Duan, Luo, Liu, Duan (b0200) 2016; 52 Pirhashemi, Habibi Yangjeh (b0295) 2018; 193 Huang, Li, Zhou, Jiang, Hu, Xue, Guo (b0060) 2018; 337 Khani, Tahay, Bahadoran, Safari, Soltanali, Alavi (b0280) 2020; 594 Colmenares, Luque (b0030) 2014; 43 Abdullah, Al Thani, Tawbi, Al Kandari (b0210) 2016; 9 Dow, Wang, Huang (b0240) 1996; 160 Cao, Wu, Chen, Qiu, Liu, Sun, Piao (b0260) 2020; 35 Sun, Vorontsov, Smirniotis (b0290) 2003; 19 Chen, Li, Chen, Cai, Yu, Chen, Jia (b0155) 2018; 1 Ji, Song, Drake, Veroneau, Lin, Pan, Lin (b0230) 2018; 140 Xiao (10.1016/j.cej.2023.142904_b0045) 2022; 236 Karthik (10.1016/j.cej.2023.142904_b0195) 2018; 8 Pai (10.1016/j.cej.2023.142904_b0100) 2016; 154 Wang (10.1016/j.cej.2023.142904_b0150) 2016; 7 Dow (10.1016/j.cej.2023.142904_b0240) 1996; 160 Khani (10.1016/j.cej.2023.142904_b0280) 2020; 594 Pi (10.1016/j.cej.2023.142904_b0095) 2022; 12 Caudillo Flores (10.1016/j.cej.2023.142904_b0255) 2019; 256 Peng (10.1016/j.cej.2023.142904_b0175) 2018; 53 Chen (10.1016/j.cej.2023.142904_b0155) 2018; 1 Zhang (10.1016/j.cej.2023.142904_b0275) 2020; 384 da Silva Veras (10.1016/j.cej.2023.142904_b0015) 2017; 42 Vinoth (10.1016/j.cej.2023.142904_b0180) 2016; 18 Gu (10.1016/j.cej.2023.142904_b0200) 2016; 52 Zhao (10.1016/j.cej.2023.142904_b0160) 2018; 452 Zhu (10.1016/j.cej.2023.142904_b0125) 2018; 8 Sun (10.1016/j.cej.2023.142904_b0205) 2020; 74 Zhao (10.1016/j.cej.2023.142904_b0010) 2020; 1 Pi (10.1016/j.cej.2023.142904_b0185) 2017; 10 Shen (10.1016/j.cej.2023.142904_b0300) 2017; 5 Pei (10.1016/j.cej.2023.142904_b0225) 2015; 6 Railey (10.1016/j.cej.2023.142904_b0130) 2017; 96 Li (10.1016/j.cej.2023.142904_b0145) 2022; 144 Zhang (10.1016/j.cej.2023.142904_b0190) 2018; 10 Pi (10.1016/j.cej.2023.142904_b0270) 2019; 256 Huang (10.1016/j.cej.2023.142904_b0060) 2018; 337 Jiao (10.1016/j.cej.2023.142904_b0120) 2022; 24 Turco (10.1016/j.cej.2023.142904_b0085) 2007; 77 Ji (10.1016/j.cej.2023.142904_b0230) 2018; 140 Caudillo Flores (10.1016/j.cej.2023.142904_b0250) 2021; 425 Sun (10.1016/j.cej.2023.142904_b0290) 2003; 19 Aguilera Sigalat (10.1016/j.cej.2023.142904_b0135) 2016; 307 Mouithys Mickalad (10.1016/j.cej.2023.142904_b0265) 1997; 6 He (10.1016/j.cej.2023.142904_b0080) 2019; 9 Nielsen (10.1016/j.cej.2023.142904_b0050) 2013; 495 Abdullah (10.1016/j.cej.2023.142904_b0210) 2016; 9 Song (10.1016/j.cej.2023.142904_b0235) 2019; 141 Jiang (10.1016/j.cej.2023.142904_b0215) 2012; 116 Luna (10.1016/j.cej.2023.142904_b0105) 2016; 521 Li (10.1016/j.cej.2023.142904_b0110) 2020; 9 Li (10.1016/j.cej.2023.142904_b0035) 2022; 43 Han (10.1016/j.cej.2023.142904_b0170) 2020; 265 Kubacka (10.1016/j.cej.2023.142904_b0025) 2012; 112 Xu (10.1016/j.cej.2023.142904_b0075) 2017; 7 Zhang (10.1016/j.cej.2023.142904_b0285) 2022; 61 Zhang (10.1016/j.cej.2023.142904_b0065) 2021; 616 Davda (10.1016/j.cej.2023.142904_b0040) 2005; 56 Sun (10.1016/j.cej.2023.142904_b0305) 2022; 299 Xin (10.1016/j.cej.2023.142904_b0220) 2016; 6 Cao (10.1016/j.cej.2023.142904_b0260) 2020; 35 Pirhashemi (10.1016/j.cej.2023.142904_b0295) 2018; 193 Yang (10.1016/j.cej.2023.142904_b0055) 2021; 420 Yu (10.1016/j.cej.2023.142904_b0115) 2021; 84 Ma (10.1016/j.cej.2023.142904_b0245) 2019; 10 Olah (10.1016/j.cej.2023.142904_b0005) 2005; 44 Christopher (10.1016/j.cej.2023.142904_b0020) 2011; 3 Xiao (10.1016/j.cej.2023.142904_b0140) 2019; 52 Colmenares (10.1016/j.cej.2023.142904_b0030) 2014; 43 Yoon (10.1016/j.cej.2023.142904_b0165) 2019; 244 Zheng (10.1016/j.cej.2023.142904_b0090) 2022; 47 Oguchi (10.1016/j.cej.2023.142904_b0070) 2005; 293 |
References_xml | – volume: 452 start-page: 175 year: 2018 end-page: 183 ident: b0160 article-title: NH publication-title: Mole. Catal. – volume: 84 year: 2021 ident: b0115 article-title: Solar-driven low-temperature reforming of methanol into hydrogen via synergetic photo- and thermocatalysis publication-title: Nano Energy – volume: 521 start-page: 140 year: 2016 end-page: 148 ident: b0105 article-title: Photocatalytic degradation of gallic acid over CuO–TiO publication-title: Appl. Catal. A – volume: 140 start-page: 433 year: 2018 end-page: 440 ident: b0230 article-title: Titanium (III)-oxo clusters in a metal-organic framework support single-site Co (II)-hydride catalysts for arene hydrogenation publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 82 year: 2020 end-page: 88 ident: b0110 article-title: High-efficient and low-cost H publication-title: ES Energ. Environ. – volume: 144 start-page: 17075 year: 2022 end-page: 17085 ident: b0145 article-title: Light-induced selective hydrogenation over PdAg nanocages in hollow MOF microenvironment publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 8696 year: 2015 ident: b0225 article-title: Defective titanium dioxide single crystals exposed by high-energy 001 facets for efficient oxygen reduction publication-title: Nat. Commun. – volume: 141 start-page: 12219 year: 2019 end-page: 12223 ident: b0235 article-title: Titanium hydroxide secondary building units in metal-organic frameworks catalyze hydrogen evolution under visible light publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2578 year: 2019 end-page: 2584 ident: b0245 article-title: Achieving efficient and robust catalytic reforming on dual-sites of Cu species publication-title: Chem. Sci. – volume: 61 start-page: e202204108 year: 2022 ident: b0285 article-title: Charge separation by creating band bending in metal-organic frameworks for improved photocatalytic hydrogen evolution publication-title: Angew. Chem. Int. Ed. Engl. – volume: 495 start-page: 85 year: 2013 end-page: 89 ident: b0050 article-title: Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide publication-title: Nature – volume: 265 year: 2020 ident: b0170 article-title: Ti publication-title: Appl. Catal. B. Environ. – volume: 35 year: 2020 ident: b0260 article-title: Water as a cocatalyst for photocatalytic H publication-title: Nano Today – volume: 616 year: 2021 ident: b0065 article-title: In-situ self-assembled Cu publication-title: Appl. Catal. A – volume: 9 start-page: 2213 year: 2019 end-page: 2221 ident: b0080 article-title: Controllable in situ surface restructuring of Cu catalysts and remarkable enhancement of their catalytic activity publication-title: ACS Catal. – volume: 10 start-page: 3543 year: 2017 end-page: 3556 ident: b0185 article-title: Formation of willow leaf-like structures composed of NH publication-title: Nano Res. – volume: 19 start-page: 3151 year: 2003 end-page: 3156 ident: b0290 article-title: Role of platinum deposited on TiO publication-title: Langmuir – volume: 6 start-page: 327 year: 1997 end-page: 333 ident: b0265 article-title: Effects of sphingosine and sphingosine analogues on the free radical production by stimulated neutrophils: ESR and chemiluminescence studies publication-title: Mediat. Inflamm. – volume: 154 start-page: 104 year: 2016 end-page: 120 ident: b0100 article-title: A comprehensive study on sunlight driven photocatalytic hydrogen generation using low cost nanocrystalline Cu-Ti oxides publication-title: Sol. Energ. Mat. Sol. C. – volume: 299 year: 2022 ident: b0305 article-title: Construction of microspherical flower-like Zn publication-title: Sep. Purif. Technol. – volume: 53 start-page: 97 year: 2018 end-page: 107 ident: b0175 article-title: High efficiency photocatalytic hydrogen production over ternary Cu/TiO publication-title: Nano Energy – volume: 307 start-page: 267 year: 2016 end-page: 291 ident: b0135 article-title: Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites publication-title: Coord. Chem. Rev. – volume: 44 start-page: 2636 year: 2005 end-page: 2639 ident: b0005 article-title: Beyond oil and gas: the methanol economy publication-title: Angew. Chem. Int. Ed. Engl. – volume: 384 year: 2020 ident: b0275 article-title: Enhanced photocatalytic activity of TiO publication-title: Chem. Eng. J. – volume: 47 start-page: 950 year: 2022 end-page: 961 ident: b0090 article-title: A highly active and hydrothermal-resistant Cu/ZnO@NC catalyst for aqueous phase reforming of methanol to hydrogen publication-title: Int. J. Hydrogen Energ. – volume: 8 start-page: 1801193 year: 2018 ident: b0125 article-title: Metal–organic framework based catalysts for hydrogen evolution publication-title: Adv. Energ. Mater. – volume: 9 start-page: 229 year: 2016 end-page: 237 ident: b0210 article-title: Carbon/nitrogen-doped TiO publication-title: Arab. J. Chem. – volume: 116 start-page: 22619 year: 2012 end-page: 22624 ident: b0215 article-title: Characterization of oxygen vacancy associates within hydrogenated TiO publication-title: J. Phy. Chem. – volume: 52 start-page: 356 year: 2019 end-page: 366 ident: b0140 article-title: Metal–organic frameworks for photocatalysis and photothermal catalysis publication-title: Accounts. Chem. Res. – volume: 256 year: 2019 ident: b0270 article-title: Encapsulated MWCNT@MOF-derived In publication-title: Appl. Catal. B. Environ. – volume: 193 start-page: 69 year: 2018 end-page: 80 ident: b0295 article-title: ZnO/NiWO publication-title: Sep. Purif. Technol. – volume: 5 start-page: 312 year: 2017 end-page: 319 ident: b0300 article-title: All-solid-state Z-scheme system of RGO-Cu publication-title: Energy – volume: 10 start-page: 16418 year: 2018 end-page: 16423 ident: b0190 article-title: MIL-125-NH publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 116 year: 2016 end-page: 119 ident: b0200 article-title: Synthesis of Au@UiO-66(NH publication-title: Chem. Commun. – volume: 18 start-page: 5179 year: 2016 end-page: 5191 ident: b0180 article-title: Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts publication-title: PCCP – volume: 293 start-page: 64 year: 2005 end-page: 70 ident: b0070 article-title: Cu publication-title: Appl. Catal. A – volume: 43 start-page: 765 year: 2014 end-page: 778 ident: b0030 article-title: Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds publication-title: Chem. Soc. Rev. – volume: 112 start-page: 1555 year: 2012 end-page: 1614 ident: b0025 article-title: Advanced nanoarchitectures for solar photocatalytic applications publication-title: Chem. Rev. – volume: 244 start-page: 511 year: 2019 end-page: 518 ident: b0165 article-title: NH publication-title: Appl. Catal. B. Environ. – volume: 160 start-page: 155 year: 1996 end-page: 170 ident: b0240 article-title: Yttria-stabilized zirconia supported copper oxide catalyst: I. Effect of oxygen cacancy of support on copper oxide reduction publication-title: J. Catal. – volume: 594 year: 2020 ident: b0280 article-title: Synergic effect of heat and light on the catalytic reforming of methanol over Cu/x-TiO publication-title: Appl. Catal. A – volume: 1 start-page: 2971 year: 2018 end-page: 2981 ident: b0155 article-title: MOF-templated approach for hollow NiOx/Co publication-title: ACS Appl. Nano Mater. – volume: 3 start-page: 467 year: 2011 end-page: 472 ident: b0020 article-title: Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures publication-title: Nat. Chem. – volume: 43 start-page: 1258 year: 2022 end-page: 1266 ident: b0035 article-title: Synergetic photocatalytic and thermocatalytic reforming of methanol for hydrogen production based on Pt@TiO publication-title: J. Catal. – volume: 236 year: 2022 ident: b0045 article-title: Promoting mechanism of alkali for aqueous phase reforming of bio-methanol towards highly efficient production of COx-free hydrogen publication-title: Fuel Process. Technol. – volume: 8 start-page: 3286 year: 2018 end-page: 3294 ident: b0195 article-title: Efficient solar light-driven H publication-title: Sci. Technol. – volume: 337 start-page: 282 year: 2018 end-page: 289 ident: b0060 article-title: Efficient photocatalytic hydrogen production over Rh and Nb co-doped TiO publication-title: Chem. Eng. J. – volume: 256 start-page: 117790 year: 2019 ident: b0255 article-title: Hydrogen thermo-photo production using Ru/TiO publication-title: Appl. Catal. B. Environ. – volume: 12 start-page: 1941 year: 2022 end-page: 1949 ident: b0095 article-title: Chitosan–lignin carbon framework-encapsulated Cu catalyst facilitates base-free hydrogen evolution from methanol/water, Catal publication-title: Sci. Technol. – volume: 24 start-page: 8345 year: 2022 end-page: 8354 ident: b0120 article-title: On-demand continuous H publication-title: Green Chem. – volume: 1 start-page: 12 year: 2020 end-page: 29 ident: b0010 article-title: How to make use of methanol in green catalytic hydrogen production? publication-title: Nano. Select. – volume: 42 start-page: 2018 year: 2017 end-page: 2033 ident: b0015 article-title: Hydrogen: Trends, production and characterization of the main process worldwide publication-title: Int. J. Hydrogen Energ. – volume: 77 start-page: 46 year: 2007 end-page: 57 ident: b0085 article-title: Cu/ZnO/Al publication-title: Appl. Catal. B. Environ. – volume: 96 start-page: 385 year: 2017 end-page: 394 ident: b0130 article-title: Metal organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage publication-title: Mater. Rese. Bull. – volume: 425 year: 2021 ident: b0250 article-title: Thermo-photo production of hydrogen using ternary Pt-CeO publication-title: Chem. Eng. J. – volume: 74 year: 2020 ident: b0205 article-title: Selective wet-chemical etching to create TiO publication-title: Nano Energy – volume: 6 start-page: 23684 year: 2016 ident: b0220 article-title: Ti publication-title: Sci. Rep. – volume: 420 year: 2021 ident: b0055 article-title: PtO nanodots promoting Ti publication-title: Chem. Eng. J. – volume: 7 start-page: 183 year: 2017 ident: b0075 article-title: Review on copper and palladium based catalysts for methanol steam reforming to produce hydrogen publication-title: Catalysts – volume: 56 start-page: 171 year: 2005 end-page: 186 ident: b0040 article-title: A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts publication-title: Appl. Catal. B. Environ. – volume: 7 start-page: 6887 year: 2016 end-page: 6893 ident: b0150 article-title: Photothermal-enhanced catalysis in core-shell plasmonic hierarchical Cu publication-title: Chem. Sci. – volume: 307 start-page: 267 year: 2016 ident: 10.1016/j.cej.2023.142904_b0135 article-title: Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.08.004 – volume: 35 year: 2020 ident: 10.1016/j.cej.2023.142904_b0260 article-title: Water as a cocatalyst for photocatalytic H2 production from formic acid publication-title: Nano Today doi: 10.1016/j.nantod.2020.100968 – volume: 154 start-page: 104 year: 2016 ident: 10.1016/j.cej.2023.142904_b0100 article-title: A comprehensive study on sunlight driven photocatalytic hydrogen generation using low cost nanocrystalline Cu-Ti oxides publication-title: Sol. Energ. Mat. Sol. C. doi: 10.1016/j.solmat.2016.04.036 – volume: 10 start-page: 16418 issue: 19 year: 2018 ident: 10.1016/j.cej.2023.142904_b0190 article-title: MIL-125-NH2@TiO2 core-shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 production publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01462 – volume: 61 start-page: e202204108 year: 2022 ident: 10.1016/j.cej.2023.142904_b0285 article-title: Charge separation by creating band bending in metal-organic frameworks for improved photocatalytic hydrogen evolution publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202204108 – volume: 141 start-page: 12219 issue: 31 year: 2019 ident: 10.1016/j.cej.2023.142904_b0235 article-title: Titanium hydroxide secondary building units in metal-organic frameworks catalyze hydrogen evolution under visible light publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05964 – volume: 1 start-page: 2971 year: 2018 ident: 10.1016/j.cej.2023.142904_b0155 article-title: MOF-templated approach for hollow NiOx/Co3O4 catalysts: Enhanced light-driven thermocatalytic degradation of toluene publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b00587 – volume: 6 start-page: 23684 year: 2016 ident: 10.1016/j.cej.2023.142904_b0220 article-title: Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction publication-title: Sci. Rep. doi: 10.1038/srep23684 – volume: 6 start-page: 327 issue: 5–6 year: 1997 ident: 10.1016/j.cej.2023.142904_b0265 article-title: Effects of sphingosine and sphingosine analogues on the free radical production by stimulated neutrophils: ESR and chemiluminescence studies publication-title: Mediat. Inflamm. doi: 10.1080/09629359791460 – volume: 384 year: 2020 ident: 10.1016/j.cej.2023.142904_b0275 article-title: Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123350 – volume: 19 start-page: 3151 issue: 8 year: 2003 ident: 10.1016/j.cej.2023.142904_b0290 article-title: Role of platinum deposited on TiO2 in phenol photocatalytic oxidation publication-title: Langmuir doi: 10.1021/la0264670 – volume: 265 year: 2020 ident: 10.1016/j.cej.2023.142904_b0170 article-title: Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation publication-title: Appl. Catal. B. Environ. doi: 10.1016/j.apcatb.2019.118539 – volume: 160 start-page: 155 year: 1996 ident: 10.1016/j.cej.2023.142904_b0240 article-title: Yttria-stabilized zirconia supported copper oxide catalyst: I. Effect of oxygen cacancy of support on copper oxide reduction publication-title: J. Catal. doi: 10.1006/jcat.1996.0135 – volume: 43 start-page: 765 year: 2014 ident: 10.1016/j.cej.2023.142904_b0030 article-title: Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60262A – volume: 84 year: 2021 ident: 10.1016/j.cej.2023.142904_b0115 article-title: Solar-driven low-temperature reforming of methanol into hydrogen via synergetic photo- and thermocatalysis publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105953 – volume: 9 start-page: 82 year: 2020 ident: 10.1016/j.cej.2023.142904_b0110 article-title: High-efficient and low-cost H2 production by solar-driven photo-thermo-reforming of methanol with CuO catalyst publication-title: ES Energ. Environ. – volume: 44 start-page: 2636 issue: 18 year: 2005 ident: 10.1016/j.cej.2023.142904_b0005 article-title: Beyond oil and gas: the methanol economy publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200462121 – volume: 293 start-page: 64 year: 2005 ident: 10.1016/j.cej.2023.142904_b0070 article-title: Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2005.07.010 – volume: 7 start-page: 183 year: 2017 ident: 10.1016/j.cej.2023.142904_b0075 article-title: Review on copper and palladium based catalysts for methanol steam reforming to produce hydrogen publication-title: Catalysts doi: 10.3390/catal7060183 – volume: 495 start-page: 85 issue: 7439 year: 2013 ident: 10.1016/j.cej.2023.142904_b0050 article-title: Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide publication-title: Nature doi: 10.1038/nature11891 – volume: 452 start-page: 175 year: 2018 ident: 10.1016/j.cej.2023.142904_b0160 article-title: NH2-MIL-125(Ti)/TiO2 composites as superior visible-light photocatalysts for selective oxidation of cyclohexane publication-title: Mole. Catal. doi: 10.1016/j.mcat.2018.04.004 – volume: 74 year: 2020 ident: 10.1016/j.cej.2023.142904_b0205 article-title: Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104909 – volume: 96 start-page: 385 year: 2017 ident: 10.1016/j.cej.2023.142904_b0130 article-title: Metal organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage publication-title: Mater. Rese. Bull. doi: 10.1016/j.materresbull.2017.04.020 – volume: 140 start-page: 433 issue: 1 year: 2018 ident: 10.1016/j.cej.2023.142904_b0230 article-title: Titanium (III)-oxo clusters in a metal-organic framework support single-site Co (II)-hydride catalysts for arene hydrogenation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11241 – volume: 112 start-page: 1555 issue: 3 year: 2012 ident: 10.1016/j.cej.2023.142904_b0025 article-title: Advanced nanoarchitectures for solar photocatalytic applications publication-title: Chem. Rev. doi: 10.1021/cr100454n – volume: 10 start-page: 3543 issue: 10 year: 2017 ident: 10.1016/j.cej.2023.142904_b0185 article-title: Formation of willow leaf-like structures composed of NH2-MIL-68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr (VI) publication-title: Nano Res. doi: 10.1007/s12274-017-1565-8 – volume: 8 start-page: 1801193 year: 2018 ident: 10.1016/j.cej.2023.142904_b0125 article-title: Metal–organic framework based catalysts for hydrogen evolution publication-title: Adv. Energ. Mater. doi: 10.1002/aenm.201801193 – volume: 8 start-page: 3286 year: 2018 ident: 10.1016/j.cej.2023.142904_b0195 article-title: Efficient solar light-driven H2 production: Post-synthetic encapsulation of a Cu2O co-catalyst in a metal–organic framework (MOF) for boosting the effective charge carrier separation, Catal publication-title: Sci. Technol. – volume: 521 start-page: 140 year: 2016 ident: 10.1016/j.cej.2023.142904_b0105 article-title: Photocatalytic degradation of gallic acid over CuO–TiO2 composites under UV/Vis LEDs irradiation publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2015.10.044 – volume: 144 start-page: 17075 issue: 37 year: 2022 ident: 10.1016/j.cej.2023.142904_b0145 article-title: Light-induced selective hydrogenation over PdAg nanocages in hollow MOF microenvironment publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c06720 – volume: 7 start-page: 6887 issue: 12 year: 2016 ident: 10.1016/j.cej.2023.142904_b0150 article-title: Photothermal-enhanced catalysis in core-shell plasmonic hierarchical Cu7S4 microsphere@zeolitic imidazole framework-8 publication-title: Chem. Sci. doi: 10.1039/C6SC03239G – volume: 9 start-page: 229 year: 2016 ident: 10.1016/j.cej.2023.142904_b0210 article-title: Carbon/nitrogen-doped TiO2: New synthesis route, characterization and application for phenol degradation publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2015.04.027 – volume: 256 year: 2019 ident: 10.1016/j.cej.2023.142904_b0270 article-title: Encapsulated MWCNT@MOF-derived In2S3 tubular heterostructures for boosted visible-light-driven degradation of tetracycline publication-title: Appl. Catal. B. Environ. doi: 10.1016/j.apcatb.2019.117882 – volume: 18 start-page: 5179 issue: 7 year: 2016 ident: 10.1016/j.cej.2023.142904_b0180 article-title: Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts publication-title: PCCP doi: 10.1039/C5CP08041J – volume: 337 start-page: 282 year: 2018 ident: 10.1016/j.cej.2023.142904_b0060 article-title: Efficient photocatalytic hydrogen production over Rh and Nb co-doped TiO2 nanorods publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.088 – volume: 52 start-page: 356 issue: 2 year: 2019 ident: 10.1016/j.cej.2023.142904_b0140 article-title: Metal–organic frameworks for photocatalysis and photothermal catalysis publication-title: Accounts. Chem. Res. doi: 10.1021/acs.accounts.8b00521 – volume: 3 start-page: 467 issue: 6 year: 2011 ident: 10.1016/j.cej.2023.142904_b0020 article-title: Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures publication-title: Nat. Chem. doi: 10.1038/nchem.1032 – volume: 420 year: 2021 ident: 10.1016/j.cej.2023.142904_b0055 article-title: PtO nanodots promoting Ti3C2 MXene in-situ converted Ti3C2/TiO2 composites for photocatalytic hydrogen production publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129695 – volume: 47 start-page: 950 issue: 2 year: 2022 ident: 10.1016/j.cej.2023.142904_b0090 article-title: A highly active and hydrothermal-resistant Cu/ZnO@NC catalyst for aqueous phase reforming of methanol to hydrogen publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2021.10.070 – volume: 594 year: 2020 ident: 10.1016/j.cej.2023.142904_b0280 article-title: Synergic effect of heat and light on the catalytic reforming of methanol over Cu/x-TiO2 (x=La, Zn, Sm, Ce) nanocatalysts publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2020.117456 – volume: 299 year: 2022 ident: 10.1016/j.cej.2023.142904_b0305 article-title: Construction of microspherical flower-like Zn3In2S6-BGQDs/AgBr S-scheme heterojunction for photocatalytic elimination of nitrofurazone and Cr (VI) publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121563 – volume: 236 year: 2022 ident: 10.1016/j.cej.2023.142904_b0045 article-title: Promoting mechanism of alkali for aqueous phase reforming of bio-methanol towards highly efficient production of COx-free hydrogen publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2022.107385 – volume: 56 start-page: 171 issue: 1-2 year: 2005 ident: 10.1016/j.cej.2023.142904_b0040 article-title: A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts publication-title: Appl. Catal. B. Environ. doi: 10.1016/j.apcatb.2004.04.027 – volume: 52 start-page: 116 issue: 1 year: 2016 ident: 10.1016/j.cej.2023.142904_b0200 article-title: Synthesis of Au@UiO-66(NH2) structures by small molecule-assisted nucleation for plasmon-enhanced photocatalytic activity publication-title: Chem. Commun. doi: 10.1039/C5CC07042B – volume: 256 start-page: 117790 year: 2019 ident: 10.1016/j.cej.2023.142904_b0255 article-title: Hydrogen thermo-photo production using Ru/TiO2: Heat and light synergistic effects publication-title: Appl. Catal. B. Environ. doi: 10.1016/j.apcatb.2019.117790 – volume: 10 start-page: 2578 issue: 9 year: 2019 ident: 10.1016/j.cej.2023.142904_b0245 article-title: Achieving efficient and robust catalytic reforming on dual-sites of Cu species publication-title: Chem. Sci. doi: 10.1039/C9SC00015A – volume: 5 start-page: 312 year: 2017 ident: 10.1016/j.cej.2023.142904_b0300 article-title: All-solid-state Z-scheme system of RGO-Cu2O/Fe2O3 for simultaneous hydrogen production and tetracycline degradation, Mater. Today publication-title: Energy doi: 10.1016/j.energy.2016.12.047 – volume: 12 start-page: 1941 issue: 6 year: 2022 ident: 10.1016/j.cej.2023.142904_b0095 article-title: Chitosan–lignin carbon framework-encapsulated Cu catalyst facilitates base-free hydrogen evolution from methanol/water, Catal publication-title: Sci. Technol. – volume: 616 year: 2021 ident: 10.1016/j.cej.2023.142904_b0065 article-title: In-situ self-assembled Cu2O/ZnO core-shell catalysts synergistically enhance the durability of methanol steam reforming publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2021.118072 – volume: 77 start-page: 46 issue: 1-2 year: 2007 ident: 10.1016/j.cej.2023.142904_b0085 article-title: Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix publication-title: Appl. Catal. B. Environ. doi: 10.1016/j.apcatb.2007.07.006 – volume: 6 start-page: 8696 year: 2015 ident: 10.1016/j.cej.2023.142904_b0225 article-title: Defective titanium dioxide single crystals exposed by high-energy 001 facets for efficient oxygen reduction publication-title: Nat. Commun. doi: 10.1038/ncomms9696 – volume: 42 start-page: 2018 year: 2017 ident: 10.1016/j.cej.2023.142904_b0015 article-title: Hydrogen: Trends, production and characterization of the main process worldwide publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2016.08.219 – volume: 116 start-page: 22619 year: 2012 ident: 10.1016/j.cej.2023.142904_b0215 article-title: Characterization of oxygen vacancy associates within hydrogenated TiO2: A positron annihilation study publication-title: J. Phy. Chem. – volume: 9 start-page: 2213 issue: 3 year: 2019 ident: 10.1016/j.cej.2023.142904_b0080 article-title: Controllable in situ surface restructuring of Cu catalysts and remarkable enhancement of their catalytic activity publication-title: ACS Catal. doi: 10.1021/acscatal.8b04812 – volume: 43 start-page: 1258 issue: 5 year: 2022 ident: 10.1016/j.cej.2023.142904_b0035 article-title: Synergetic photocatalytic and thermocatalytic reforming of methanol for hydrogen production based on Pt@TiO2 catalyst, Chinese publication-title: J. Catal. – volume: 24 start-page: 8345 issue: 21 year: 2022 ident: 10.1016/j.cej.2023.142904_b0120 article-title: On-demand continuous H2 release by methanol dehydrogenation and reforming via photocatalysis in a membrane reactor publication-title: Green Chem. doi: 10.1039/D2GC01553F – volume: 53 start-page: 97 year: 2018 ident: 10.1016/j.cej.2023.142904_b0175 article-title: High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.040 – volume: 425 year: 2021 ident: 10.1016/j.cej.2023.142904_b0250 article-title: Thermo-photo production of hydrogen using ternary Pt-CeO2-TiO2 catalysts: A spectroscopic and mechanistic study publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130641 – volume: 1 start-page: 12 year: 2020 ident: 10.1016/j.cej.2023.142904_b0010 article-title: How to make use of methanol in green catalytic hydrogen production? publication-title: Nano. Select. doi: 10.1002/nano.202000010 – volume: 193 start-page: 69 year: 2018 ident: 10.1016/j.cej.2023.142904_b0295 article-title: ZnO/NiWO4/Ag2CrO4 nanocomposites with p-n-n heterojunctions: Highly improved activity for degradations of water contaminants under visible light publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.11.007 – volume: 244 start-page: 511 year: 2019 ident: 10.1016/j.cej.2023.142904_b0165 article-title: NH2-MIL-125(Ti)/TiO2 nanorod heterojunction photoanodes for efficient photoelectrochemical water splitting publication-title: Appl. Catal. B. Environ. doi: 10.1016/j.apcatb.2018.11.057 |
SSID | ssj0006919 |
Score | 2.4820397 |
Snippet | A novel hierarchical heterojunction that integrating photo- and thermal-active Cu2O catalytic species with in-situ derived NH2-MIL-125@TiO2 framework... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 142904 |
SubjectTerms | Controllable in-situ derived TiO2 Cu-based catalysts Hydrogen production from methanol aqueous-phase reforming Metal-organic framework Photothermal catalysis |
Title | Confinement of Cu2O by in-situ derived NH2-MIL-125@TiO2 for synergetic photothermal-driven hydrogen evolution from aqueous-phase methanol reforming |
URI | https://dx.doi.org/10.1016/j.cej.2023.142904 |
Volume | 465 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9rIdij06tF0X8LDTADWOLT90axCsSJc1BbYW682QLKlxkNpB4xTIZX9if7ikH1uLYT3sZMsgDVuk-VEmKTL2MfAyL7Ghwg8pybhAK8w1wib3pEtclCgbB1SNfD6Nxlfiy3V4vcVGXS0MpVW2tr-x6bW1bq_029nsL_O8_31AMS0pYnSi0akIyQ4LEZOWH__8k-YRybq5BxFzou4im3WOV2bnx9Q_HO2FL9tebX9h0yO8OX3FdltHEYbNs7xmW7Z4w14-2j7wLftF5Xo4pB98UDoYrf0L0BvIC77KqzUYpLu3BqZjn5-ffeXoZZxc5hc-oKMKqw1V_VEJIyxnZVUXYt2qBTfEU8BsY-5KVC6w961yAlWigEIcKdcrvpwh_AH1n1ZFuQB8l5Kyam722NXp58vRmLdNFnjmy7jiZuC0kErJxCBW4eImihUCm4opviaVpvWG9YxULlFx5kwojXSBRruEstd4-o5tF2Vh9xnEQRZGJrJ4u0QMDAUUtZM6sy40gRPJAfO66U2zdgdyaoSxSLtUs3mKEklJImkjkQP26TfLstl-4zli0cksfaJDKcLDv9kO_4_tPXtBoyZt7IhtV3dr-wEdlEr3ag3ssZ3h2WQ8pePk24_JA4Qi6Ao |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6hcGh7qIC2KoXSOfRUaRvH772BoiIHknBokLhZu97dxijYEXGQ8jv4w8zEa0RVtYfe_NixbM_6-2Y9L8a-Bl7hpSaS-CGlBQ8RhblC2uSesKmNU2mSgLKRJ9M4uw4vbqKbHTbscmEorNJhf4vpW7R2R_rubfaXZdn_OSCflggTNKLRqIgQh3epOlXUY7tno8ts-gzIsdj296DxnAQ65-Y2zKswt9-phThChi9cu7Y_6OkF5ZzvsbfOVoSz9nb22Y6pDtibFxUE37FHytjDXfrHB7WF4dq_ArWBsuKrslmDxnEPRsM08_lkNOZoaJzOyisf0FaF1YYS_yiLEZbzutnmYt3JBdckU8F8o-9rnF9gHtz8BEpGAYlUUq9XfDlHBgRqQS2regH4LDUF1vx6z67Pf8yGGXd9Fnjhi6ThemBVKKQUqUa6wvVNnEjkNpmQi01IRUsO42khbSqTwupIaGEDhdCE6le4-YH1qroyHxkkQRHFOjZ4uTQcaPIpKitUYWykAxumh8zrXm9euCLk1AtjkXfRZrc5aiQnjeStRg7Zt2eRZVuB41-Dw05n-W_TKEeG-LvYp_8T-8JeZbPJOB-PppdH7DWdaaPIjlmvuV-bz2ivNOrEzccnNOHpGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confinement+of+Cu2O+by+in-situ+derived+NH2-MIL-125%40TiO2+for+synergetic+photothermal-driven+hydrogen+evolution+from+aqueous-phase+methanol+reforming&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhang%2C+Baofang&rft.au=Zengcai%2C+Ziyu&rft.au=Lin%2C+Wenting&rft.au=Zhang%2C+Meijin&rft.date=2023-06-01&rft.issn=1385-8947&rft.volume=465&rft.spage=142904&rft_id=info:doi/10.1016%2Fj.cej.2023.142904&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2023_142904 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |