Old tree blossoms anew: Research progress on the structures and optical properties of ultraviolet selenites
This paper comprehensively reviews 63 selenite compounds with bandgaps above 4.2 eV in four major categories. The focus is on their structures, optical properties, and design strategies, offering valuable insights for the future development of UV selenites. [Display omitted] •This article provides t...
Saved in:
Published in | Coordination chemistry reviews Vol. 517; p. 216000 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper comprehensively reviews 63 selenite compounds with bandgaps above 4.2 eV in four major categories. The focus is on their structures, optical properties, and design strategies, offering valuable insights for the future development of UV selenites.
[Display omitted]
•This article provides the first comprehensive review of UV selenite materials.•The article emphasizes the classification, structure, optical property, and design strategy of UV selenite.•We have summarized UV selenites’ distribution by space group, symmetry, chemical composition, and optical properties.•We have offered guidance for UV selenites development, encompassing synthesis, design strategies, and so on.
Nonlinear optical materials and birefringent materials are essential components of modern industrial technology. Selenites, owing to the unique stereochemical activity of the lone pair electrons, have a history spanning several decades as both linear and nonlinear optical materials. Up to now (January 16, 2024), nearly 1100 selenite materials have been discovered, some of which exhibit strong second-harmonic generation effects or large birefringence. With the strategic layout of nations and the rapid advancement of modern industrial technology, the demands on the transparency range of linear and nonlinear optical crystals have become increasingly stringent. Crystals transparent only in the visible spectrum are no longer adequate to meet current requirements. Selenites, which have a long history in the field, seem to have encountered a bottleneck in their recent development, primarily due to an excessive focus on their applications in the visible and near-infrared regions while neglecting their potential uses in the ultraviolet (UV) window. To explore new development directions of selenites, our research group is actively investigating their application as UV optical materials. Through a fluorination control strategy, we successfully synthesized a UV nonlinear optical crystal Y3F(SeO3)4 and a birefringent crystal CaYF(SeO3)2, thereby developing the application of selenites in the UV region. Additionally, we found that some previously reported selenites with band gaps larger than 4.2 eV have not received sufficient attention from researchers, and their potential application in the UV region have been overlooked. To further promote the research progress of UV selenite materials, this paper comprehensively summarizes the reported selenite materials with bandgaps larger than 4.2 eV, totaling 63 compounds across 6 crystal systems and 19 space groups. We provide a detailed analysis of their structures, optical properties, and design strategies. These materials can be classified into four categories based on different anionic groups: simple selenites, fluoride selenites, selenites with tetrahedral groups, and other selenite compounds. Through a comprehensive review of UV selenites, we have identified ions or groups conducive to expanding the band gaps of selenites, proposed several reliable design methods for UV selenites, and offered useful suggestions for the development of UV selenites. Despite having a long history, selenite systems still hold significant untapped potential for further exploration. We hope this review provides valuable guidance and insights for the future development of inorganic selenites. |
---|---|
AbstractList | This paper comprehensively reviews 63 selenite compounds with bandgaps above 4.2 eV in four major categories. The focus is on their structures, optical properties, and design strategies, offering valuable insights for the future development of UV selenites.
[Display omitted]
•This article provides the first comprehensive review of UV selenite materials.•The article emphasizes the classification, structure, optical property, and design strategy of UV selenite.•We have summarized UV selenites’ distribution by space group, symmetry, chemical composition, and optical properties.•We have offered guidance for UV selenites development, encompassing synthesis, design strategies, and so on.
Nonlinear optical materials and birefringent materials are essential components of modern industrial technology. Selenites, owing to the unique stereochemical activity of the lone pair electrons, have a history spanning several decades as both linear and nonlinear optical materials. Up to now (January 16, 2024), nearly 1100 selenite materials have been discovered, some of which exhibit strong second-harmonic generation effects or large birefringence. With the strategic layout of nations and the rapid advancement of modern industrial technology, the demands on the transparency range of linear and nonlinear optical crystals have become increasingly stringent. Crystals transparent only in the visible spectrum are no longer adequate to meet current requirements. Selenites, which have a long history in the field, seem to have encountered a bottleneck in their recent development, primarily due to an excessive focus on their applications in the visible and near-infrared regions while neglecting their potential uses in the ultraviolet (UV) window. To explore new development directions of selenites, our research group is actively investigating their application as UV optical materials. Through a fluorination control strategy, we successfully synthesized a UV nonlinear optical crystal Y3F(SeO3)4 and a birefringent crystal CaYF(SeO3)2, thereby developing the application of selenites in the UV region. Additionally, we found that some previously reported selenites with band gaps larger than 4.2 eV have not received sufficient attention from researchers, and their potential application in the UV region have been overlooked. To further promote the research progress of UV selenite materials, this paper comprehensively summarizes the reported selenite materials with bandgaps larger than 4.2 eV, totaling 63 compounds across 6 crystal systems and 19 space groups. We provide a detailed analysis of their structures, optical properties, and design strategies. These materials can be classified into four categories based on different anionic groups: simple selenites, fluoride selenites, selenites with tetrahedral groups, and other selenite compounds. Through a comprehensive review of UV selenites, we have identified ions or groups conducive to expanding the band gaps of selenites, proposed several reliable design methods for UV selenites, and offered useful suggestions for the development of UV selenites. Despite having a long history, selenite systems still hold significant untapped potential for further exploration. We hope this review provides valuable guidance and insights for the future development of inorganic selenites. |
ArticleNumber | 216000 |
Author | Mao, Jiang-Gao Kong, Fang Hu, Chun-Li Li, Peng-Fei |
Author_xml | – sequence: 1 givenname: Peng-Fei surname: Li fullname: Li, Peng-Fei organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China – sequence: 2 givenname: Chun-Li surname: Hu fullname: Hu, Chun-Li organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China – sequence: 3 givenname: Jiang-Gao surname: Mao fullname: Mao, Jiang-Gao organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China – sequence: 4 givenname: Fang orcidid: 0000-0001-8538-5226 surname: Kong fullname: Kong, Fang email: kongfang@fjirsm.ac.cn organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China |
BookMark | eNp9kN1KAzEQhXNRwbb6AN7lBXZNdrs_0Ssp_kGhIHodspNZm5puliSt-Pam1CsvCgPDHOYb5pwZmQxuQEJuOMs54_XtNgfwecGKRV7wmjE2IVPGOMvaalFdklkI2zTWQhRT8rW2mkaPSDvrQnC7QNWA33f0DQMqDxs6evfpMQTqBho3SEP0e4j7JKVNTd0YDSh7XBvRR5Nk19O9jV4djLMYaUCLg4kYrshFr2zA678-Jx9Pj-_Ll2y1fn5dPqwyKEQTMxB1qho7qESnOqFEU5Vlj2WLdaPLAqAtGsVblVSh6uRJC814x7DhIJgu56Q53QWfLHnsJZioonFDespYyZk85iS3MuUkjznJU06J5P_I0Zud8j9nmfsTg8nSwaCXAQwOgNp4hCi1M2foX4HchuI |
CitedBy_id | crossref_primary_10_1039_D4SC07322C crossref_primary_10_1002_lpor_202401488 crossref_primary_10_1002_lpor_202401785 crossref_primary_10_1021_acs_inorgchem_4c02401 crossref_primary_10_1039_D5QI00039D crossref_primary_10_1002_lpor_202400992 crossref_primary_10_1039_D4TC05126B crossref_primary_10_1021_acs_inorgchem_4c04170 crossref_primary_10_1039_D4SC06403H crossref_primary_10_1002_adom_202403241 crossref_primary_10_1002_anie_202424053 crossref_primary_10_1021_acs_inorgchem_4c04781 crossref_primary_10_1002_ange_202424053 crossref_primary_10_1021_acs_inorgchem_4c05135 crossref_primary_10_1039_D4CE01123F crossref_primary_10_1021_acs_cgd_4c01398 crossref_primary_10_1002_adom_202401762 crossref_primary_10_1039_D4QI03203A crossref_primary_10_1002_ange_202501481 crossref_primary_10_1002_anie_202501481 crossref_primary_10_1039_D4SC05640J crossref_primary_10_1021_acs_chemmater_4c02779 crossref_primary_10_1039_D4MH01043D crossref_primary_10_1039_D5NJ00763A |
Cites_doi | 10.1021/ic400458a 10.1039/D3SC06683E 10.1039/D3MH00257H 10.1039/D3MH00389B 10.1021/acs.inorgchem.3c01428 10.1021/acs.inorgchem.1c00210 10.1107/S0108270192000015 10.1021/jacs.2c11645 10.1021/acs.inorgchem.3c00556 10.1016/j.ccr.2021.214380 10.1002/smll.202310423 10.1039/D2QI02272A 10.1021/acs.inorgchem.2c01381 10.1039/D2QM00983H 10.1039/D1QI00373A 10.1039/D2QM00773H 10.1021/jacs.3c09566 10.1021/jacs.0c00702 10.1002/anie.202301420 10.1021/ic500548v 10.1039/D0QI01130D 10.1021/acs.inorgchem.3c00986 10.1002/anie.202302025 10.1039/D2QI01817A 10.1039/c3cc45747h 10.1021/jacs.3c09573 10.1016/j.jssc.2015.09.033 10.1021/acs.inorgchem.4c00033 10.1021/acs.inorgchem.2c03267 10.1021/acs.inorgchem.3c02532 10.1039/D2CE01627C 10.1021/acs.chemmater.0c02167 10.1007/s40843-019-1193-x 10.1021/acs.inorgchem.3c02644 10.1002/smll.202305473 10.1002/anie.202213499 10.1021/acs.inorgchem.2c04368 10.1021/acs.inorgchem.3c01540 10.1039/D2MH00060A 10.1039/D4SC01376J 10.1039/D2QI01466A 10.1016/j.ccr.2021.214328 10.1021/jacs.3c02400 10.1016/j.jssc.2017.09.014 10.1021/cm980140w 10.1002/adom.202300987 10.1039/C5TC02925B 10.1002/smll.202207709 10.1021/jacs.8b11485 10.1021/acs.inorgchem.3c02025 10.1021/acs.inorgchem.4c00366 10.1002/anie.202116790 10.1016/j.jssc.2018.03.033 10.1021/acs.inorgchem.3c02845 10.1021/jacs.1c06061 10.1016/j.scriptamat.2022.114764 10.1039/D1CC00346A 10.1021/acs.inorgchem.2c02521 10.1002/smll.202304563 10.1021/acs.inorgchem.8b00305 10.1021/ic3026705 10.1016/j.jallcom.2015.04.021 10.1021/jacs.4c01740 10.1007/s40843-023-2592-x 10.1039/C9SC04832D 10.1021/acs.chemmater.2c01922 10.1021/acs.chemmater.3c01246 10.1021/acs.chemrev.0c00796 10.1021/acs.inorgchem.3c01461 10.1021/acs.inorgchem.5b00653 10.1039/D3QM00451A 10.1039/D0DT00116C 10.1039/D1DT00536G 10.1002/anie.202318976 10.1021/jacs.6b06680 10.1021/ja0620991 10.1039/D4TC00554F 10.1021/acs.inorgchem.1c02315 10.1021/acs.inorgchem.5b02074 10.1002/adom.202301426 10.1039/D3QI02561F 10.1039/D3QI00979C 10.1021/acs.chemmater.0c00034 10.1002/smll.202300248 10.1021/acsmaterialslett.2c00114 10.1107/S0567740878005440 10.1039/D1SC06026K 10.1021/acs.inorgchem.3c00628 10.1021/ja035314b 10.1039/D1CC02494A 10.1002/advs.202304463 10.1039/D3QI00513E 10.1002/adom.202300736 10.1021/ic501548m 10.1016/j.ccr.2023.215059 10.1039/D3QM00811H 10.1021/ic200511q 10.1002/adom.202301060 10.1039/D3MH01790G 10.1039/D2QI01469F 10.1021/acs.inorgchem.2c04331 10.1039/D2QI01207C 10.1021/acs.chemmater.3c03278 10.1002/adom.202202195 10.1016/j.ccr.2023.215212 10.1002/anie.202102992 10.1039/D3SC03052K 10.1021/acs.inorgchem.3c03515 10.1039/D2SC03760B 10.1107/S0108767306097741 10.1039/D3QI01937C 10.1016/j.jssc.2016.09.031 10.1021/ic2021403 10.1039/D1DT02890A 10.1016/j.ccr.2022.214706 10.1021/cm100476m 10.1039/D2MH01200F 10.1016/j.ccr.2018.02.017 10.1021/acs.chemmater.0c02837 10.1016/j.jssc.2019.02.033 10.1021/ic301442f 10.1021/acs.accounts.1c00188 10.1039/D2CC01035F 10.1021/jacs.2c02310 10.1039/D0QI01056A 10.1002/adom.202300579 10.1016/j.jssc.2020.121292 10.1021/acs.inorgchem.2c03787 10.1039/D2QI01860H 10.1021/acs.inorgchem.3c00515 10.1039/C7DT04443G 10.1021/acs.inorgchem.2c01802 10.1021/acsami.1c25098 10.1039/D2SC00099G 10.1039/D0DT02514C 10.1016/j.ccr.2020.213692 10.1021/acs.inorgchem.2c03059 10.1039/c2ce26524a 10.1021/acs.inorgchem.3c01459 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ccr.2024.216000 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
ExternalDocumentID | 10_1016_j_ccr_2024_216000 S0010854524003461 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6J9 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABFRF ABJNI ABMAC ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M23 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K TN5 TWZ UPT WH7 XPP YK3 ZMT ~G- 29F AAQXK AATTM AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HMH HVGLF HZ~ H~9 NDZJH OHT R2- SCB SIC SSH UQL VH1 WUQ XJT ZKB ZY4 |
ID | FETCH-LOGICAL-c297t-c96c966ebc59bab9a97533fe38e67d32cc827a18a5339a6545d9d01b0e71c90d3 |
IEDL.DBID | .~1 |
ISSN | 0010-8545 |
IngestDate | Tue Jul 01 02:42:32 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 Sat Nov 09 16:01:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Second harmonic-generation UV selenites Crystal structures Birefringence Nonlinear optical crystals |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-c96c966ebc59bab9a97533fe38e67d32cc827a18a5339a6545d9d01b0e71c90d3 |
ORCID | 0000-0001-8538-5226 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ccr_2024_216000 crossref_primary_10_1016_j_ccr_2024_216000 elsevier_sciencedirect_doi_10_1016_j_ccr_2024_216000 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-15 |
PublicationDateYYYYMMDD | 2024-10-15 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Coordination chemistry reviews |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Robert, Balisetty, Mohanrao, Mannamala, Mangalassery, Rao, Vidyasagar (b0520) 2023; 62 Li, Chen, Li, Zhang, Yang, Pan (b0745) 2023; 11 Li, Hu, Gong, Kong, Mao (b0355) 2021; 57 Wang, Liu, Hu, Wang, Zhu, Meng, Xu (b0665) 2022; 62 Li, Mao, Kong (b0465) 2023; 37 Cao, Hu, Kong, Mao (b0395) 2015; 54 Li, Hu, Li, Mao, Kong (b0410) 2023; 10 Li, Kong, Mao (b0310) 2020; 286 Chen, Hu, Kong, Mao (b0150) 2021; 54 Wu, Hu, Xu, Chen, Ma, Huang, Du, Chen (b0010) 2023; 14 Ran, Zhou, Wei, Li, Wu, Lin, Zhu (b0055) 2023; 19 Li, Hu, Li, Kong, Mao (b0450) 2023; 959 Chen, Chen, Mao, Liu, Li, Wu, Du (b0060) 2022; 9 Wu, Li, Lin, Huang, Humphrey, Zhang (b0365) 2020; 32 Bai, Wang, Huang, Dou, Chen, Zhang, Wang (b0755) 2023; 62 Shi, Tudi, Gai, Yang, Han, Pan (b0290) 2023; 35 Liu, Long, Zeng, Tian, Zeng, Dong, Lin, Zou (b0300) 2023; 62 Chen, Lin, Jiang, Yang, Luo, Zhao, Li, Peng, Ye, Hu, Wang, Wu (b0230) 2023; 10 Dang, Mei, Wu, Lin (b0630) 2021; 431 Ma, Hu, Li, Kong, Mao (b0555) 1846; 57 Wang, Li, Hu, Kong, Mao (b0350) 2019; 62 Xu, Li, Huang, Yang, Zhang, Mao (b0015) 2023; 62 Oyeka, Winiarski, Swiatek, Balliew, McMillen, Liang, Sorolla, Tran (b0680) 2022; 61 Kong, Huang, Sun, Mao, Cheng (b0650) 2006; 128 Long, Dong, Huang, Zeng, Lin, Zhou, Zou (b0195) 2022; 28 Nguyen, Halasyamani (b0385) 2013; 52 Lü, Jo, Oh, Ok (b0515) 2017; 256 Shiv Halasyamani, Poeppelmeier (b0315) 1998; 10 Han, Tudi, Zhang, Hou, Yang, Pan (b0105) 2023; 62 Berdonosov, Akselrud, Prots, Abakumov, Smet, Poelman, Van Tendeloo, Dolgikh (b0325) 2013; 52 Bai, Ok (b0475) 2023; 490 Wang, Jiang, Liu, Yang, Lin, Hu, Meng, Chen, Qin (b0320) 2018; 47 Zhao, Gong, Zhang, Lin, Hu, Wu (b0405) 2020; 49 Chen, Du (b0145) 2022; 61 Harrison (b0535) 2006; 62 Yan, Ren, Liu, Mao, Ma, Tang, Huang, Zhang, Zhang, Li (b0085) 2023; 62 Zhou, Wang, Chu, Wang, Pan, Li (b0215) 2023; 11 Jo, Lee, Choi, Ok (b0505) 2018; 57 He, Guan, Trinquet, Brunin, Wang, Robinson, Zu, Yoshida, Lee, Wang, Zhu, Rignanese, Mao, Gopalan (b0250) 2023; 11 Wu, Jiang, Wang, Sha, Lin, Huang, Long, Humphrey, Zhang (b0720) 2021; 60 Dong, Huang, Zeng, Lin, Ok, Zou (b0125) 2022; 61 Dou, Shi, Bai, Chen, Zhang, Wang (b0135) 2023; 7 Tang, Hu, Xie, Huang, Mao (b0615) 2021; 60 Zhou, He, Lin, Shang, Chen, Li, Huang, Hong, Zhao, Luo (b0210) 2023; 20 Meng, Geng, Chen, Wei, Dai, Lu, Cheng (b0570) 2015; 640 Li, Meng, Li, Yao (b0200) 2022; 453 Lee, Ok (b0495) 2013; 52 Wei, Wang, Zhang, Ying, Zhang (b0725) 2023; 62 Harrison, Harrison, Morrsi, Cheethami (b0525) 1992; 48 Yuan, Wu, Hu, Wang, Wu, Yu (b0190) 2022; 34 Hu, Wu, Jiang, Wang, Huang, Lin, Long, Humphrey, Zhang (b0180) 2021; 143 Ran, Wang, Wei, Wu, Lin, Zhu (b0225) 2023; 481 Jia, Zhang, Chen, Jiang, Song, Lin, Zhang (b0430) 2022; 61 Ra, Ok, Halasyamani (b0185) 2003; 125 Chung, Jo, Yeon, Byun, You, Jang, Ok (b0425) 2020; 32 Yi, Zeng, Zhou, Zeng, Lin, Zou (b0700) 2023; 63 Xu, Chen, Zheng, Huang, Chen, Mao (b0065) 2023; 62 Liu, Pei, Jiang, Guo (b0045) 2022; 9 Pei, Liu, Chen, Jiang, Guo (b0005) 2023; 10 Wu, Yang, Humphrey, Zhang (b0275) 2018; 375 Wu, Jiang, Wei, Jiang, Wang, Lin, Huang, Humphrey, Zhang (b0610) 2023; 145 Bang, Lee, Ok (b0490) 2014; 53 Zhang, Kong, Yang, Mao (b0655) 2012; 14 Yang, Ran, Zhou, Wu, Lin, Zhu (b0035) 2022; 13 Bai, Lee, Kim, Kuk, Choi, Hu, Ok (b0460) 2023; 19 You, Liang, Huang, Hu, Wu, Lin (b0560) 2019; 141 Li, Hu, Ma, Mao, Zheng, Zhang, Yan (b0735) 2022; 61 Sha, Shang, Wang, Su, He, Yang, Long (b0160) 2023 Zhang, Cheng, Wang, Yang, Yang, Han, Pan (b0285) 2023; 10 Lan, Ren, Zhang, Dong, Huang, Cao, Gao, Zou (b0100) 2024; 35 Hu, Wu, Zhang, Han, Hou, Zhang, Yang, Pan (b0110) 2023; 11 Zhou, Wu, Yu, Jiang, Hu, Wang, Wu, Halasyamani (b0050) 2020; 142 Chen, Hu, Mao, Zhang, Yang, Mao (b0090) 2019; 10 Qiu, Li, Jin, Lu, Yang, Pan, Mutailipu (b0590) 2022; 58 Cheng, Wu, Yu, Hu, Wang, Wu (b0255) 2022; 13 Sun, Lin, Fang, Tian, Ye, Luo (b0140) 2022; 9 Cao, Hu, Kong, Xiong, Mao (b0660) 2021; 50 Yang, Guo, Chen, Hu, Zhang, Zhang (b0715) 2022; 9 Bonnin, Bayarjargal, Wolf, Milman, Winkler, Feldmann (b0360) 2021; 60 Wang, Li, Ren, Lv, Tang, Chen, Huang, Zhang, Yan (b0075) 2024; 63 Xie, Tang, Yan, Ma, Hu, Mao (b0770) 2023 Song, Xiao, Yang, Wang, Zhang (b0265) 2024 Zhou, Wu, Liu, Guo (b0235) 2023; 477 Park, Ok (b0565) 2020; 7 Rastsvetaeva, Andrianov, Volodina (b0530) 1986; 291 Han, Zhao, Xu, Li, Ye, Luo (b0690) 2022; 902 Wu, Li, Lin, Huang, Humphrey, Zhang (b0670) 2020; 49 Cao, Hu, Xu, Kong, Mao (b0575) 2013; 49 Nguyen, Kim, Halasyamani (b0380) 2011; 50 Ran, Zhou, Wu, Lin, Zhu (b0260) 2024; 44 Zhang, Cao, Yang, Wang, Wu, Lee, Zhang (b0760) 2022; 4 Wu, Jiang, Lin, Wu, Lin, Huang, Humphrey, Zhang (b0340) 2021; 8 Ren, Chen, Ren, Zhou, Dong, Gao, Huang, Cao, Ye (b0640) 2023; 62 Shi, Lin, Zhao, Luo, Cao, Peng, Ye (b0345) 2021; 57 Ma, Li, Hu, Mao, Kong (b0400) 2023; 10 Zhang, Wu, Hu, Li, Kong, Mao (b0545) 2023; 10 Zheng, Wang, Ren, Cao, Huang, Gao, Bi, Zou (b0705) 2022; 9 Mutailipu, Poeppelmeier, Pan (b0625) 2021; 121 Zhang, Wei, Yang, Wang, Zhang (b0765) 2023; 10 Li, Hu, Mao, Kong (b0120) 2024; 15 Lü, Jo, Oh, Ok (b0510) 2017; 245 Cho, Ok (b0685) 2023; 7 Zhang, Zhang, Wang, Wu, Zhang (b0710) 2022; 61 Shang, Halasyamani (b0635) 2020; 286 Yeon, Kim, Nguyen, Lee, Halasyamani (b0390) 2012; 51 Sha, Xu, Huang, Xiong, Wang, Su, He, Yang, Long (b0295) 2022; 217 Sha, Xiong, Xu, Wang, Su, He, Yang, Long, Liu (b0585) 2022; 14 Wu, Hu, Jiang, Mao, Kong (b0775) 2023; 145 Song, Ok (b0485) 2015; 54 Liu, Mei, Xu, Wu (b0500) 2015; 232 Liu, Gong, Huang, Sun, Zhao, Lin, Yao (b0740) 2023; 62 Xie, Tikhonov, Chu, Wu, Kruglov, Pan, Yang (b0780) 2023; 66 Zhang, Huang, Han, Yang, Pan (b0130) 2022; 144 Li, Hu, Kong, Mao (b0170) 2022; 6 Li, Hu, Mao, Kong (b0455) 2024; 11 Shi, Lin, Yang, Cao, Li, Yan, Luo, Ye (b0435) 2020; 32 Ma, Gong, Hu, Mao, Kong (b0645) 2018; 262 Chen, Ran, Zhou, Wu, Lin, Zhu (b0270) 2023; 34 Valkonen, Leskelä (b0540) 1978; 34 Liu, Wu, Yu, Hu, Wang, Wu (b0595) 2022; 896 Li, Hu, Tang, Ma, Mao, Zheng, Zhang, Yan (b0220) 2022; 61 Chen, Ran, Wei, Wu, Lin, Zhu (b0245) 2022; 470 Wu, Jiang, Wu, Lin, Huang, Humphrey, Zhang (b0605) 2023; 10 Tudi, Han, Yang, Pan (b0095) 2022; 459 Li, Hu, Kong, Mao (b0025) 2023; 62 Dong, Huang, Huang, Zhou, Zhang, Zeng, Lin, Zou (b0305) 2024; 63 Lin, Jiang, Wu, Lin, Huang, Humphrey, Zhang (b0370) 2021; 50 Liu, Tang, Ma, Lv, Liu, Guo (b0730) 2023; 62 Li, Hu, Kong, Mao (b0440) 2023; 62 Liang, Hu, Kong, Mao (b0415) 2016; 138 Chen, Li, Liu, Cui, Mutailipu (b0750) 2023; 62 Qiu, Li, Li, Yang, Pan, Mutailipu (b0040) 2023; 145 Fang, Ma, Chen, Zhu, Zeng, Li, Zhou, Song, Duan (b0155) 2024; 11 Yan, Dong, Huang, Zhou, Lin, Zou (b0675) 2023; 62 Li, Hu, Li, Mao, Kong (b0695) 2024; 63 Li, Hu, Kong, Ying, Mao (b0175) 2021; 8 Liu, Wu, Hu, Wang, Wu, Yu (b0280) 2023; 145 Cao, Kong, Hu, Xu, Mao (b0580) 2014; 53 Sha, Shang, Wang, Su, He, Yang, Long (b0020) 2023; 11 Sha, Yang, Shang, Wang, Su, He, Yang, Long (b0070) 2024 Liang, Zhang, Izvarin, Waters, Rondinelli, Halasyamani (b0335) 2024; 36 Lv, Li, Guan, Lin, Zhang, Jia, Tao (b0470) 2023; 25 Liu, Wang, Xiao, Li, Chu, Sun, Halasyamani (b0330) 2024; 12 Chen, Yu, Guo, Xue, Hao, Yao, Zhang (b0600) 2022; 896 Zhang, Yu, Hu, Wang, Wu, Wu (b0480) 2023; 35 Huang, Wang, Yang, Zhang (b0030) 2023; 62 Shang, Liu, Halasyamani (b0550) 2019; 273 Li, Gong, Hu, Zhang, Mao, Kong (b0445) 2024; 12 Ran, Zhou, Wei, Li, Wu, Lin, Zhu (b0205) 2024; 20 Yan, Tang, Yao, Liu, Guo (b0165) 2024; 15 Geng, Li, Meng, Dai, Lu, Lin, Cheng (b0420) 2015; 3 Cheng, Hou, Yang, Pan (b0620) 2023; 7 Chen, Hu, Lin, Chen, Chen, Mao (b0080) 2022; 13 Li, Hu, Li, Mao, Kong (b0115) 2024; 146 Chang, Kim, Halasyamani (b0375) 2010; 22 Zhou, Fan, Zhang, Yang, Pan, Li (b0240) 2023; 10 Fang (10.1016/j.ccr.2024.216000_b0155) 2024; 11 Nguyen (10.1016/j.ccr.2024.216000_b0380) 2011; 50 Zhou (10.1016/j.ccr.2024.216000_b0235) 2023; 477 Li (10.1016/j.ccr.2024.216000_b0440) 2023; 62 Chen (10.1016/j.ccr.2024.216000_b0145) 2022; 61 Ma (10.1016/j.ccr.2024.216000_b0400) 2023; 10 Jia (10.1016/j.ccr.2024.216000_b0430) 2022; 61 Wu (10.1016/j.ccr.2024.216000_b0605) 2023; 10 Mutailipu (10.1016/j.ccr.2024.216000_b0625) 2021; 121 Li (10.1016/j.ccr.2024.216000_b0025) 2023; 62 Wu (10.1016/j.ccr.2024.216000_b0365) 2020; 32 Li (10.1016/j.ccr.2024.216000_b0355) 2021; 57 Zhao (10.1016/j.ccr.2024.216000_b0405) 2020; 49 Sha (10.1016/j.ccr.2024.216000_b0160) 2023 Cho (10.1016/j.ccr.2024.216000_b0685) 2023; 7 Song (10.1016/j.ccr.2024.216000_b0265) 2024 Liang (10.1016/j.ccr.2024.216000_b0415) 2016; 138 Geng (10.1016/j.ccr.2024.216000_b0420) 2015; 3 Harrison (10.1016/j.ccr.2024.216000_b0525) 1992; 48 Chen (10.1016/j.ccr.2024.216000_b0080) 2022; 13 Harrison (10.1016/j.ccr.2024.216000_b0535) 2006; 62 Liang (10.1016/j.ccr.2024.216000_b0335) 2024; 36 Yan (10.1016/j.ccr.2024.216000_b0165) 2024; 15 Zhang (10.1016/j.ccr.2024.216000_b0480) 2023; 35 Dong (10.1016/j.ccr.2024.216000_b0305) 2024; 63 Ma (10.1016/j.ccr.2024.216000_b0645) 2018; 262 Chen (10.1016/j.ccr.2024.216000_b0750) 2023; 62 Berdonosov (10.1016/j.ccr.2024.216000_b0325) 2013; 52 Nguyen (10.1016/j.ccr.2024.216000_b0385) 2013; 52 Ran (10.1016/j.ccr.2024.216000_b0205) 2024; 20 Liu (10.1016/j.ccr.2024.216000_b0280) 2023; 145 Zheng (10.1016/j.ccr.2024.216000_b0705) 2022; 9 Zhang (10.1016/j.ccr.2024.216000_b0285) 2023; 10 Yang (10.1016/j.ccr.2024.216000_b0715) 2022; 9 Sun (10.1016/j.ccr.2024.216000_b0140) 2022; 9 Li (10.1016/j.ccr.2024.216000_b0175) 2021; 8 Lü (10.1016/j.ccr.2024.216000_b0510) 2017; 245 Wang (10.1016/j.ccr.2024.216000_b0075) 2024; 63 Liu (10.1016/j.ccr.2024.216000_b0300) 2023; 62 Zhang (10.1016/j.ccr.2024.216000_b0655) 2012; 14 Huang (10.1016/j.ccr.2024.216000_b0030) 2023; 62 Chung (10.1016/j.ccr.2024.216000_b0425) 2020; 32 Han (10.1016/j.ccr.2024.216000_b0690) 2022; 902 Zhang (10.1016/j.ccr.2024.216000_b0765) 2023; 10 Pei (10.1016/j.ccr.2024.216000_b0005) 2023; 10 Wu (10.1016/j.ccr.2024.216000_b0275) 2018; 375 Song (10.1016/j.ccr.2024.216000_b0485) 2015; 54 Wu (10.1016/j.ccr.2024.216000_b0720) 2021; 60 Ran (10.1016/j.ccr.2024.216000_b0260) 2024; 44 Bai (10.1016/j.ccr.2024.216000_b0475) 2023; 490 Dong (10.1016/j.ccr.2024.216000_b0125) 2022; 61 Sha (10.1016/j.ccr.2024.216000_b0295) 2022; 217 Zhou (10.1016/j.ccr.2024.216000_b0050) 2020; 142 Sha (10.1016/j.ccr.2024.216000_b0070) 2024 Jo (10.1016/j.ccr.2024.216000_b0505) 2018; 57 Sha (10.1016/j.ccr.2024.216000_b0020) 2023; 11 Chen (10.1016/j.ccr.2024.216000_b0090) 2019; 10 Lan (10.1016/j.ccr.2024.216000_b0100) 2024; 35 Meng (10.1016/j.ccr.2024.216000_b0570) 2015; 640 Chen (10.1016/j.ccr.2024.216000_b0150) 2021; 54 Li (10.1016/j.ccr.2024.216000_b0170) 2022; 6 Li (10.1016/j.ccr.2024.216000_b0745) 2023; 11 Ma (10.1016/j.ccr.2024.216000_b0555) 1846; 57 Tang (10.1016/j.ccr.2024.216000_b0615) 2021; 60 Li (10.1016/j.ccr.2024.216000_b0735) 2022; 61 Cao (10.1016/j.ccr.2024.216000_b0395) 2015; 54 Park (10.1016/j.ccr.2024.216000_b0565) 2020; 7 Bonnin (10.1016/j.ccr.2024.216000_b0360) 2021; 60 Shiv Halasyamani (10.1016/j.ccr.2024.216000_b0315) 1998; 10 Zhang (10.1016/j.ccr.2024.216000_b0545) 2023; 10 Wu (10.1016/j.ccr.2024.216000_b0610) 2023; 145 Xie (10.1016/j.ccr.2024.216000_b0780) 2023; 66 Long (10.1016/j.ccr.2024.216000_b0195) 2022; 28 Ran (10.1016/j.ccr.2024.216000_b0225) 2023; 481 Cheng (10.1016/j.ccr.2024.216000_b0620) 2023; 7 Chen (10.1016/j.ccr.2024.216000_b0270) 2023; 34 He (10.1016/j.ccr.2024.216000_b0250) 2023; 11 Liu (10.1016/j.ccr.2024.216000_b0500) 2015; 232 You (10.1016/j.ccr.2024.216000_b0560) 2019; 141 Li (10.1016/j.ccr.2024.216000_b0120) 2024; 15 Zhang (10.1016/j.ccr.2024.216000_b0130) 2022; 144 Chang (10.1016/j.ccr.2024.216000_b0375) 2010; 22 Qiu (10.1016/j.ccr.2024.216000_b0040) 2023; 145 Bai (10.1016/j.ccr.2024.216000_b0755) 2023; 62 Xu (10.1016/j.ccr.2024.216000_b0065) 2023; 62 Chen (10.1016/j.ccr.2024.216000_b0245) 2022; 470 Wu (10.1016/j.ccr.2024.216000_b0775) 2023; 145 Cao (10.1016/j.ccr.2024.216000_b0575) 2013; 49 Wang (10.1016/j.ccr.2024.216000_b0665) 2022; 62 Wu (10.1016/j.ccr.2024.216000_b0670) 2020; 49 Liu (10.1016/j.ccr.2024.216000_b0740) 2023; 62 Robert (10.1016/j.ccr.2024.216000_b0520) 2023; 62 Yeon (10.1016/j.ccr.2024.216000_b0390) 2012; 51 Cheng (10.1016/j.ccr.2024.216000_b0255) 2022; 13 Cao (10.1016/j.ccr.2024.216000_b0580) 2014; 53 Liu (10.1016/j.ccr.2024.216000_b0330) 2024; 12 Yi (10.1016/j.ccr.2024.216000_b0700) 2023; 63 Hu (10.1016/j.ccr.2024.216000_b0180) 2021; 143 Yan (10.1016/j.ccr.2024.216000_b0675) 2023; 62 Yuan (10.1016/j.ccr.2024.216000_b0190) 2022; 34 Li (10.1016/j.ccr.2024.216000_b0310) 2020; 286 Zhou (10.1016/j.ccr.2024.216000_b0215) 2023; 11 Shi (10.1016/j.ccr.2024.216000_b0345) 2021; 57 Lv (10.1016/j.ccr.2024.216000_b0470) 2023; 25 Sha (10.1016/j.ccr.2024.216000_b0585) 2022; 14 Dou (10.1016/j.ccr.2024.216000_b0135) 2023; 7 Zhou (10.1016/j.ccr.2024.216000_b0210) 2023; 20 Xie (10.1016/j.ccr.2024.216000_b0770) 2023 Yan (10.1016/j.ccr.2024.216000_b0085) 2023; 62 Liu (10.1016/j.ccr.2024.216000_b0045) 2022; 9 Han (10.1016/j.ccr.2024.216000_b0105) 2023; 62 Lee (10.1016/j.ccr.2024.216000_b0495) 2013; 52 Wu (10.1016/j.ccr.2024.216000_b0340) 2021; 8 Lin (10.1016/j.ccr.2024.216000_b0370) 2021; 50 Yang (10.1016/j.ccr.2024.216000_b0035) 2022; 13 Chen (10.1016/j.ccr.2024.216000_b0600) 2022; 896 Shi (10.1016/j.ccr.2024.216000_b0290) 2023; 35 Rastsvetaeva (10.1016/j.ccr.2024.216000_b0530) 1986; 291 Zhou (10.1016/j.ccr.2024.216000_b0240) 2023; 10 Liu (10.1016/j.ccr.2024.216000_b0730) 2023; 62 Hu (10.1016/j.ccr.2024.216000_b0110) 2023; 11 Li (10.1016/j.ccr.2024.216000_b0465) 2023; 37 Li (10.1016/j.ccr.2024.216000_b0455) 2024; 11 Lü (10.1016/j.ccr.2024.216000_b0515) 2017; 256 Zhang (10.1016/j.ccr.2024.216000_b0710) 2022; 61 Li (10.1016/j.ccr.2024.216000_b0450) 2023; 959 Ren (10.1016/j.ccr.2024.216000_b0640) 2023; 62 Chen (10.1016/j.ccr.2024.216000_b0060) 2022; 9 Shi (10.1016/j.ccr.2024.216000_b0435) 2020; 32 Bai (10.1016/j.ccr.2024.216000_b0460) 2023; 19 Cao (10.1016/j.ccr.2024.216000_b0660) 2021; 50 Ran (10.1016/j.ccr.2024.216000_b0055) 2023; 19 Wei (10.1016/j.ccr.2024.216000_b0725) 2023; 62 Tudi (10.1016/j.ccr.2024.216000_b0095) 2022; 459 Li (10.1016/j.ccr.2024.216000_b0115) 2024; 146 Liu (10.1016/j.ccr.2024.216000_b0595) 2022; 896 Wang (10.1016/j.ccr.2024.216000_b0350) 2019; 62 Xu (10.1016/j.ccr.2024.216000_b0015) 2023; 62 Ra (10.1016/j.ccr.2024.216000_b0185) 2003; 125 Dang (10.1016/j.ccr.2024.216000_b0630) 2021; 431 Wu (10.1016/j.ccr.2024.216000_b0010) 2023; 14 Bang (10.1016/j.ccr.2024.216000_b0490) 2014; 53 Valkonen (10.1016/j.ccr.2024.216000_b0540) 1978; 34 Oyeka (10.1016/j.ccr.2024.216000_b0680) 2022; 61 Li (10.1016/j.ccr.2024.216000_b0445) 2024; 12 Li (10.1016/j.ccr.2024.216000_b0695) 2024; 63 Shang (10.1016/j.ccr.2024.216000_b0550) 2019; 273 Wang (10.1016/j.ccr.2024.216000_b0320) 2018; 47 Zhang (10.1016/j.ccr.2024.216000_b0760) 2022; 4 Li (10.1016/j.ccr.2024.216000_b0220) 2022; 61 Shang (10.1016/j.ccr.2024.216000_b0635) 2020; 286 Li (10.1016/j.ccr.2024.216000_b0410) 2023; 10 Qiu (10.1016/j.ccr.2024.216000_b0590) 2022; 58 Li (10.1016/j.ccr.2024.216000_b0200) 2022; 453 Chen (10.1016/j.ccr.2024.216000_b0230) 2023; 10 Kong (10.1016/j.ccr.2024.216000_b0650) 2006; 128 |
References_xml | – volume: 62 start-page: 9130 year: 2023 end-page: 9138 ident: b0640 publication-title: Inorg. Chem. – volume: 66 start-page: 4473 year: 2023 end-page: 4479 ident: b0780 publication-title: Sci. China Mater. – volume: 453 year: 2022 ident: b0200 publication-title: Coord. Chem. Rev. – volume: 7 start-page: 4469 year: 2020 end-page: 4476 ident: b0565 publication-title: Inorg. Chem. Front. – volume: 13 start-page: 10725 year: 2022 end-page: 10733 ident: b0035 publication-title: Chem. Sci. – volume: 35 year: 2024 ident: b0100 publication-title: Chinese Chem. Lett. – volume: 10 start-page: 787 year: 2023 end-page: 792 ident: b0285 publication-title: Inorg. Chem. Front. – volume: 146 start-page: 7868 year: 2024 end-page: 7874 ident: b0115 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 10978 year: 2015 end-page: 10984 ident: b0395 publication-title: Inorg. Chem. – volume: 232 start-page: 193 year: 2015 end-page: 199 ident: b0500 publication-title: J. Solid State Chem. – volume: 459 year: 2022 ident: b0095 publication-title: Coord. Chem. Rev. – volume: 125 start-page: 7764 year: 2003 end-page: 7765 ident: b0185 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 7343 year: 2023 end-page: 7350 ident: b0410 publication-title: Inorg. Chem. Front. – volume: 11 start-page: 2300736 year: 2023 ident: b0215 publication-title: Adv. Optical Mater. – volume: 481 year: 2023 ident: b0225 publication-title: Coord. Chem. Rev. – volume: 138 start-page: 9433 year: 2016 end-page: 9436 ident: b0415 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 14806 year: 2021 end-page: 14810 ident: b0720 publication-title: Angew. Chem. Int. Ed. – volume: 142 start-page: 4616 year: 2020 end-page: 4620 ident: b0050 publication-title: J. Am. Chem. Soc. – volume: 61 start-page: e202116790 year: 2022 ident: b0125 publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 7104 year: 2024 end-page: 7110 ident: b0120 publication-title: Chem. Sci. – volume: 262 start-page: 320 year: 2018 end-page: 326 ident: b0645 publication-title: J. Solid State Chem. – volume: 11 start-page: 2300987 year: 2023 ident: b0020 publication-title: Adv. Optical Mater. – volume: 60 start-page: 3539 year: 2021 end-page: 3542 ident: b0615 publication-title: Inorg. Chem. – volume: 10 start-page: 2921 year: 2023 end-page: 2926 ident: b0005 publication-title: Mater. Horiz. – volume: 13 start-page: 454 year: 2022 end-page: 460 ident: b0080 publication-title: Chem. Sci. – volume: 34 start-page: 8004 year: 2022 end-page: 8012 ident: b0190 publication-title: Chem. Mater. – volume: 3 start-page: 12290 year: 2015 end-page: 12296 ident: b0420 publication-title: J. Mater. Chem. C – volume: 145 start-page: 12691 year: 2023 end-page: 12700 ident: b0280 publication-title: J. Am. Chem. Soc. – volume: 286 year: 2020 ident: b0310 publication-title: J. Solid State Chem. – volume: 11 start-page: 2202195 year: 2023 ident: b0745 publication-title: Adv. Optical Mater. – volume: 35 year: 2023 ident: b0480 publication-title: Mater. Today Phys. – volume: 145 start-page: 24401 year: 2023 end-page: 24407 ident: b0040 publication-title: J. Am. Chem. Soc. – volume: 28 year: 2022 ident: b0195 publication-title: Mater. Today Phys. – volume: 61 start-page: 10182 year: 2022 end-page: 10189 ident: b0735 publication-title: Inorg. Chem. – volume: 53 start-page: 4756 year: 2014 end-page: 4762 ident: b0490 publication-title: Inorg. Chem. – volume: 49 start-page: 3253 year: 2020 end-page: 3259 ident: b0670 publication-title: Dalton Trans. – volume: 10 start-page: 1328 year: 2023 end-page: 1337 ident: b0545 publication-title: Inorg. Chem. Front. – volume: 52 start-page: 2637 year: 2013 end-page: 2647 ident: b0385 publication-title: Inorg. Chem. – volume: 63 start-page: 39 year: 2023 end-page: 43 ident: b0700 publication-title: Inorg. Chem. – volume: 62 start-page: 557 year: 2022 end-page: 564 ident: b0665 publication-title: Inorg. Chem. – volume: 10 start-page: 2753 year: 1998 end-page: 2769 ident: b0315 publication-title: Chem. Mater. – volume: 896 year: 2022 ident: b0600 publication-title: J. Alloy. Compd. – volume: 10 start-page: 10870 year: 2019 end-page: 10875 ident: b0090 publication-title: Chem. Sci. – volume: 431 start-page: 213916 year: 2021 ident: b0630 publication-title: Coord. Chem. Rev. – volume: 7 start-page: 5924 year: 2023 end-page: 5931 ident: b0135 publication-title: Mater. Chem. Front. – volume: 902 year: 2022 ident: b0690 publication-title: J. Alloy. Compd. – volume: 128 start-page: 7750 year: 2006 end-page: 7751 ident: b0650 publication-title: J. Am. Chem. Soc. – volume: 490 year: 2023 ident: b0475 publication-title: Coord. Chem. Rev. – volume: 143 start-page: 12455 year: 2021 end-page: 12459 ident: b0180 publication-title: J. Am. Chem. Soc. – volume: 62 start-page: 1744 year: 2023 end-page: 1751 ident: b0015 publication-title: Inorg. Chem. – volume: 959 year: 2023 ident: b0450 publication-title: J. Alloy. Compd. – volume: 62 start-page: e202302025 year: 2023 ident: b0105 publication-title: Angew. Chem. Int. Ed. – volume: 34 year: 2023 ident: b0270 publication-title: Chinese Chem. Lett. – volume: 14 start-page: 10588 year: 2022 end-page: 10593 ident: b0585 publication-title: ACS Appl. Mater. Interfaces – volume: 61 start-page: 18622 year: 2022 end-page: 18628 ident: b0710 publication-title: Inorg. Chem. – volume: 62 start-page: 10461 year: 2023 end-page: 10469 ident: b0740 publication-title: Inorg. Chem. – volume: 62 start-page: 1069 year: 2023 end-page: 1074 ident: b0730 publication-title: Inorg. Chem. – volume: 62 start-page: e202301420 year: 2023 ident: b0440 publication-title: Angew. Chem. Int. Ed. – volume: 245 start-page: 1 year: 2017 end-page: 9 ident: b0510 publication-title: J. Solid State Chem. – volume: 9 start-page: 6490 year: 2022 end-page: 6497 ident: b0140 publication-title: Inorg. Chem. Front. – volume: 121 start-page: 1130 year: 2021 end-page: 1202 ident: b0625 publication-title: Chem. Rev. – volume: 10 start-page: 2304463 year: 2023 ident: b0400 publication-title: Adv. Sci. – volume: 61 start-page: 15368 year: 2022 end-page: 15376 ident: b0430 publication-title: Inorg. Chem. – volume: 375 start-page: 459 year: 2018 end-page: 488 ident: b0275 publication-title: Coord. Chem. Rev. – volume: 62 start-page: 14512 year: 2023 end-page: 14517 ident: b0750 publication-title: Inorg. Chem. – volume: 37 year: 2023 ident: b0465 publication-title: Mater. Today Phys. – volume: 10 start-page: 4711 year: 2023 end-page: 4718 ident: b0765 publication-title: Inorg. Chem. Front. – volume: 470 year: 2022 ident: b0245 publication-title: Coord. Chem. Rev. – volume: 50 start-page: 15057 year: 2021 end-page: 15061 ident: b0660 publication-title: Dalton Trans. – volume: 286 year: 2020 ident: b0635 publication-title: J. Solid State Chem. – volume: 62 start-page: 13626 year: 2023 end-page: 13631 ident: b0030 publication-title: Inorg. Chem. – volume: 13 start-page: 5305 year: 2022 end-page: 5310 ident: b0255 publication-title: Chem. Sci. – volume: 36 start-page: 2113 year: 2024 end-page: 2123 ident: b0335 publication-title: Chem. Mater. – volume: 53 start-page: 8816 year: 2014 end-page: 8824 ident: b0580 publication-title: Inorg. Chem. – volume: 58 start-page: 5594 year: 2022 end-page: 5597 ident: b0590 publication-title: Chem. Commun. – volume: 51 start-page: 609 year: 2012 end-page: 619 ident: b0390 publication-title: Inorg. Chem. – volume: 11 start-page: 1704 year: 2024 end-page: 1709 ident: b0455 publication-title: Mater. Horiz. – volume: 52 start-page: 3611 year: 2013 end-page: 3619 ident: b0325 publication-title: Inorg. Chem. – volume: 49 start-page: 9965 year: 2013 end-page: 9967 ident: b0575 publication-title: Chem. Commun. – volume: 8 start-page: 164 year: 2021 end-page: 172 ident: b0175 publication-title: Inorg. Chem. Front. – volume: 8 start-page: 3141 year: 2021 end-page: 3148 ident: b0340 publication-title: Inorg. Chem. Front. – volume: 49 start-page: 14046 year: 2020 end-page: 14051 ident: b0405 publication-title: Dalton Trans. – volume: 61 start-page: 17893 year: 2022 end-page: 17901 ident: b0145 publication-title: Inorg. Chem. – volume: 4 start-page: 572 year: 2022 end-page: 576 ident: b0760 publication-title: ACS Mater. Lett. – volume: 145 start-page: 24416 year: 2023 end-page: 24424 ident: b0775 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 2301060 year: 2023 ident: b0250 publication-title: Adv. Optical Mater. – volume: 50 start-page: 7238 year: 2021 end-page: 7245 ident: b0370 publication-title: Dalton Trans. – volume: 32 start-page: 7318 year: 2020 end-page: 7326 ident: b0425 publication-title: Chem. Mater. – volume: 54 start-page: 5032 year: 2015 end-page: 5038 ident: b0485 publication-title: Inorg. Chem. – volume: 48 start-page: 1365 year: 1992 end-page: 1367 ident: b0525 publication-title: Acta Cryst. C – volume: 62 start-page: i152 year: 2006 end-page: i154 ident: b0535 publication-title: Acta Cryst. – volume: 15 start-page: 2883 year: 2024 end-page: 2888 ident: b0165 publication-title: Chem. Sci. – volume: 44 year: 2024 ident: b0260 publication-title: Mater. Today Phys. – volume: 63 start-page: 4487 year: 2024 end-page: 4491 ident: b0075 publication-title: Inorg. Chem. – volume: 10 start-page: 619 year: 2023 end-page: 624 ident: b0240 publication-title: Mater. Horiz. – volume: 34 start-page: 1323 year: 1978 end-page: 1326 ident: b0540 publication-title: Acta Cryst. – volume: 7 start-page: 65 year: 2023 end-page: 71 ident: b0685 publication-title: Mater. Chem. Front. – volume: 640 start-page: 39 year: 2015 end-page: 44 ident: b0570 publication-title: J. Alloy. Compd. – volume: 63 start-page: e202318976 year: 2024 ident: b0305 publication-title: Angew. Chem. Int. Ed. – volume: 62 start-page: 1821 year: 2019 end-page: 1830 ident: b0350 publication-title: Sci. China Mater. – volume: 477 year: 2023 ident: b0235 publication-title: Coord. Chem. Rev. – volume: 141 start-page: 748 year: 2019 end-page: 752 ident: b0560 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2876 year: 2023 end-page: 2882 ident: b0230 publication-title: Mater. Horiz. – volume: 14 start-page: 8727 year: 2012 end-page: 8733 ident: b0655 publication-title: CrstEngComm – volume: 20 start-page: 2304563 year: 2024 ident: b0205 publication-title: Small – volume: 9 start-page: 4705 year: 2022 end-page: 4713 ident: b0705 publication-title: Inorg. Chem. Front. – volume: 60 start-page: 15653 year: 2021 end-page: 15658 ident: b0360 publication-title: Inorg. Chem. – volume: 291 start-page: 352 year: 1986 end-page: 356 ident: b0530 publication-title: Dokl. Akad. Nauk SSSR – volume: 19 start-page: 2207709 year: 2023 ident: b0460 publication-title: Small – volume: 145 start-page: 3040 year: 2023 end-page: 3046 ident: b0610 publication-title: J. Am. Chem. Soc. – volume: 61 start-page: e202213499 year: 2022 ident: b0680 publication-title: Angew. Chem. Int. Ed. – volume: 62 start-page: 8494 year: 2023 end-page: 8499 ident: b0025 publication-title: Inorg. Chem. – volume: 62 start-page: 19135 year: 2023 end-page: 19141 ident: b0300 publication-title: Inorg. Chem. – volume: 273 start-page: 106 year: 2019 end-page: 111 ident: b0550 publication-title: J. Solid State Chem. – volume: 62 start-page: 4752 year: 2023 end-page: 4756 ident: b0675 publication-title: Inorg. Chem. – volume: 9 start-page: 5469 year: 2022 end-page: 5477 ident: b0715 publication-title: Inorg. Chem. Front. – volume: 9 start-page: 5917 year: 2022 end-page: 5925 ident: b0060 publication-title: Inorg. Chem. Front. – start-page: e2309776 year: 2023 ident: b0160 publication-title: Small – volume: 12 start-page: 4986 year: 2024 end-page: 4994 ident: b0330 publication-title: J. Mater. Chem. C – volume: 57 start-page: 7039 year: 2021 end-page: 7042 ident: b0355 publication-title: Chem. Commun. – volume: 9 start-page: 1513 year: 2022 end-page: 1517 ident: b0045 publication-title: Mater. Horiz. – volume: 63 start-page: 4011 year: 2024 end-page: 4016 ident: b0695 publication-title: Inorg. Chem. – year: 2024 ident: b0070 publication-title: Chin. Chem. Lett. – start-page: 2307072 year: 2023 ident: b0770 publication-title: Small – volume: 32 start-page: 7958 year: 2020 end-page: 7964 ident: b0435 publication-title: Chem. Mater. – volume: 144 start-page: 9083 year: 2022 end-page: 9090 ident: b0130 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 5680 year: 2023 end-page: 5688 ident: b0290 publication-title: Chem. Mater. – volume: 256 start-page: 213 year: 2017 end-page: 218 ident: b0515 publication-title: J. Solid State Chem. – volume: 19 start-page: 2300248 year: 2023 ident: b0055 publication-title: Small – volume: 22 start-page: 3241 year: 2010 end-page: 3250 ident: b0375 publication-title: Chem. Mater. – volume: 57 start-page: 2982 year: 2021 end-page: 2985 ident: b0345 publication-title: Chem. Commun. – volume: 57 start-page: 11839 year: 1846 end-page: 111831 ident: b0555 publication-title: Inorg. Chem. – volume: 47 start-page: 1911 year: 2018 end-page: 1917 ident: b0320 publication-title: Dalton Trans. – volume: 12 start-page: 2301426 year: 2024 ident: b0445 publication-title: Adv. Optical Mater. – volume: 25 start-page: 1675 year: 2023 end-page: 1682 ident: b0470 publication-title: CrstEngComm – volume: 62 start-page: 9295 year: 2023 end-page: 9299 ident: b0065 publication-title: Inorg. Chem. – volume: 217 year: 2022 ident: b0295 publication-title: Scr. Mater. – volume: 62 start-page: 15293 year: 2023 end-page: 15299 ident: b0755 publication-title: Inorg. Chem. – volume: 52 start-page: 5176 year: 2013 end-page: 5184 ident: b0495 publication-title: Inorg. Chem. – volume: 62 start-page: 4757 year: 2023 end-page: 4761 ident: b0085 publication-title: Inorg. Chem. – volume: 11 start-page: 2300579 year: 2023 ident: b0110 publication-title: Adv. Optical Mater. – volume: 61 start-page: 14880 year: 2022 end-page: 14886 ident: b0220 publication-title: Inorg. Chem. – volume: 20 start-page: 2305473 year: 2023 ident: b0210 publication-title: Small – volume: 62 start-page: 7890 year: 2023 end-page: 7897 ident: b0520 publication-title: Inorg. Chem. – volume: 896 year: 2022 ident: b0595 publication-title: J. Alloy. Compd. – volume: 14 start-page: 9533 year: 2023 end-page: 9542 ident: b0010 publication-title: Chem. Sci. – volume: 62 start-page: 11215 year: 2023 end-page: 11224 ident: b0725 publication-title: Inorg. Chem. – start-page: e2310423 year: 2024 ident: b0265 publication-title: Small – volume: 57 start-page: 3465 year: 2018 end-page: 3473 ident: b0505 publication-title: Inorg. Chem. – volume: 50 start-page: 5215 year: 2011 end-page: 5222 ident: b0380 publication-title: Inorg. Chem. – volume: 11 start-page: 1775 year: 2024 end-page: 1780 ident: b0155 publication-title: Inorg. Chem. Front. – volume: 54 start-page: 2775 year: 2021 end-page: 2783 ident: b0150 publication-title: Acc. Chem. Res. – volume: 32 start-page: 3043 year: 2020 end-page: 3053 ident: b0365 publication-title: Chem. Mater. – volume: 7 start-page: 4683 year: 2023 end-page: 4692 ident: b0620 publication-title: Mater. Chem. Front. – volume: 6 start-page: 3567 year: 2022 end-page: 3576 ident: b0170 publication-title: Mater. Chem. Front. – volume: 10 start-page: 5270 year: 2023 end-page: 5277 ident: b0605 publication-title: Inorg. Chem. Front. – volume: 52 start-page: 5176 year: 2013 ident: 10.1016/j.ccr.2024.216000_b0495 publication-title: Inorg. Chem. doi: 10.1021/ic400458a – volume: 15 start-page: 2883 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0165 publication-title: Chem. Sci. doi: 10.1039/D3SC06683E – volume: 10 start-page: 2876 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0230 publication-title: Mater. Horiz. doi: 10.1039/D3MH00257H – volume: 10 start-page: 2921 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0005 publication-title: Mater. Horiz. doi: 10.1039/D3MH00389B – volume: 291 start-page: 352 year: 1986 ident: 10.1016/j.ccr.2024.216000_b0530 publication-title: Dokl. Akad. Nauk SSSR – volume: 62 start-page: 8494 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0025 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c01428 – volume: 60 start-page: 3539 year: 2021 ident: 10.1016/j.ccr.2024.216000_b0615 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c00210 – volume: 48 start-page: 1365 year: 1992 ident: 10.1016/j.ccr.2024.216000_b0525 publication-title: Acta Cryst. C doi: 10.1107/S0108270192000015 – volume: 145 start-page: 3040 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0610 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c11645 – volume: 62 start-page: 4757 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0085 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c00556 – volume: 459 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0095 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214380 – start-page: e2310423 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0265 publication-title: Small doi: 10.1002/smll.202310423 – volume: 10 start-page: 1328 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0545 publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI02272A – volume: 61 start-page: 10182 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0735 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c01381 – volume: 7 start-page: 65 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0685 publication-title: Mater. Chem. Front. doi: 10.1039/D2QM00983H – volume: 8 start-page: 3141 year: 2021 ident: 10.1016/j.ccr.2024.216000_b0340 publication-title: Inorg. Chem. Front. doi: 10.1039/D1QI00373A – volume: 6 start-page: 3567 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0170 publication-title: Mater. Chem. Front. doi: 10.1039/D2QM00773H – volume: 145 start-page: 24416 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0775 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c09566 – volume: 142 start-page: 4616 year: 2020 ident: 10.1016/j.ccr.2024.216000_b0050 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00702 – volume: 62 start-page: e202301420 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0440 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202301420 – volume: 53 start-page: 4756 year: 2014 ident: 10.1016/j.ccr.2024.216000_b0490 publication-title: Inorg. Chem. doi: 10.1021/ic500548v – volume: 8 start-page: 164 year: 2021 ident: 10.1016/j.ccr.2024.216000_b0175 publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI01130D – volume: 62 start-page: 9130 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0640 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c00986 – volume: 62 start-page: e202302025 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0105 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202302025 – volume: 35 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0480 publication-title: Mater. Today Phys. – volume: 9 start-page: 5917 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0060 publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI01817A – volume: 49 start-page: 9965 year: 2013 ident: 10.1016/j.ccr.2024.216000_b0575 publication-title: Chem. Commun. doi: 10.1039/c3cc45747h – volume: 145 start-page: 24401 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0040 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c09573 – volume: 232 start-page: 193 year: 2015 ident: 10.1016/j.ccr.2024.216000_b0500 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2015.09.033 – volume: 63 start-page: 4011 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0695 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.4c00033 – volume: 61 start-page: 17893 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0145 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c03267 – volume: 62 start-page: 15293 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0755 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c02532 – volume: 25 start-page: 1675 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0470 publication-title: CrstEngComm doi: 10.1039/D2CE01627C – volume: 32 start-page: 7318 year: 2020 ident: 10.1016/j.ccr.2024.216000_b0425 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c02167 – volume: 62 start-page: 1821 year: 2019 ident: 10.1016/j.ccr.2024.216000_b0350 publication-title: Sci. China Mater. doi: 10.1007/s40843-019-1193-x – volume: 62 start-page: 14512 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0750 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c02644 – volume: 20 start-page: 2305473 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0210 publication-title: Small doi: 10.1002/smll.202305473 – volume: 61 start-page: e202213499 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0680 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202213499 – volume: 62 start-page: 1744 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0015 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c04368 – volume: 62 start-page: 9295 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0065 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c01540 – volume: 9 start-page: 1513 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0045 publication-title: Mater. Horiz. doi: 10.1039/D2MH00060A – volume: 15 start-page: 7104 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0120 publication-title: Chem. Sci. doi: 10.1039/D4SC01376J – volume: 10 start-page: 787 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0285 publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI01466A – volume: 453 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0200 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214328 – volume: 145 start-page: 12691 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0280 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c02400 – start-page: 2307072 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0770 publication-title: Small – volume: 256 start-page: 213 year: 2017 ident: 10.1016/j.ccr.2024.216000_b0515 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2017.09.014 – volume: 10 start-page: 2753 year: 1998 ident: 10.1016/j.ccr.2024.216000_b0315 publication-title: Chem. Mater. doi: 10.1021/cm980140w – volume: 11 start-page: 2300987 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0020 publication-title: Adv. Optical Mater. doi: 10.1002/adom.202300987 – volume: 3 start-page: 12290 year: 2015 ident: 10.1016/j.ccr.2024.216000_b0420 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC02925B – volume: 19 start-page: 2207709 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0460 publication-title: Small doi: 10.1002/smll.202207709 – volume: 141 start-page: 748 year: 2019 ident: 10.1016/j.ccr.2024.216000_b0560 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11485 – volume: 477 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0235 publication-title: Coord. Chem. Rev. – volume: 62 start-page: 13626 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0030 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c02025 – year: 2024 ident: 10.1016/j.ccr.2024.216000_b0070 publication-title: Chin. Chem. Lett. – volume: 63 start-page: 4487 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0075 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.4c00366 – volume: 61 start-page: e202116790 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0125 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202116790 – volume: 262 start-page: 320 year: 2018 ident: 10.1016/j.ccr.2024.216000_b0645 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2018.03.033 – volume: 63 start-page: 39 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0700 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c02845 – volume: 143 start-page: 12455 year: 2021 ident: 10.1016/j.ccr.2024.216000_b0180 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c06061 – volume: 217 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0295 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2022.114764 – volume: 57 start-page: 2982 year: 2021 ident: 10.1016/j.ccr.2024.216000_b0345 publication-title: Chem. Commun. doi: 10.1039/D1CC00346A – volume: 61 start-page: 14880 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0220 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c02521 – volume: 20 start-page: 2304563 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0205 publication-title: Small doi: 10.1002/smll.202304563 – volume: 57 start-page: 3465 year: 2018 ident: 10.1016/j.ccr.2024.216000_b0505 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b00305 – volume: 52 start-page: 2637 year: 2013 ident: 10.1016/j.ccr.2024.216000_b0385 publication-title: Inorg. Chem. doi: 10.1021/ic3026705 – volume: 902 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0690 publication-title: J. Alloy. Compd. – volume: 640 start-page: 39 year: 2015 ident: 10.1016/j.ccr.2024.216000_b0570 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.04.021 – volume: 146 start-page: 7868 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0115 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c01740 – volume: 896 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0595 publication-title: J. Alloy. Compd. – volume: 66 start-page: 4473 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0780 publication-title: Sci. China Mater. doi: 10.1007/s40843-023-2592-x – volume: 10 start-page: 10870 year: 2019 ident: 10.1016/j.ccr.2024.216000_b0090 publication-title: Chem. Sci. doi: 10.1039/C9SC04832D – volume: 34 start-page: 8004 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0190 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.2c01922 – volume: 35 start-page: 5680 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0290 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.3c01246 – volume: 896 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0600 publication-title: J. Alloy. Compd. – volume: 121 start-page: 1130 year: 2021 ident: 10.1016/j.ccr.2024.216000_b0625 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00796 – volume: 62 start-page: 11215 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0725 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c01461 – volume: 54 start-page: 5032 year: 2015 ident: 10.1016/j.ccr.2024.216000_b0485 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00653 – volume: 7 start-page: 4683 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0620 publication-title: Mater. Chem. Front. doi: 10.1039/D3QM00451A – volume: 49 start-page: 3253 year: 2020 ident: 10.1016/j.ccr.2024.216000_b0670 publication-title: Dalton Trans. doi: 10.1039/D0DT00116C – volume: 50 start-page: 7238 year: 2021 ident: 10.1016/j.ccr.2024.216000_b0370 publication-title: Dalton Trans. doi: 10.1039/D1DT00536G – volume: 63 start-page: e202318976 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0305 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202318976 – volume: 138 start-page: 9433 year: 2016 ident: 10.1016/j.ccr.2024.216000_b0415 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06680 – volume: 37 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0465 publication-title: Mater. Today Phys. – volume: 128 start-page: 7750 year: 2006 ident: 10.1016/j.ccr.2024.216000_b0650 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0620991 – volume: 12 start-page: 4986 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0330 publication-title: J. Mater. Chem. C doi: 10.1039/D4TC00554F – volume: 60 start-page: 15653 year: 2021 ident: 10.1016/j.ccr.2024.216000_b0360 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c02315 – volume: 57 start-page: 11839 issue: 2018 year: 1846 ident: 10.1016/j.ccr.2024.216000_b0555 publication-title: Inorg. Chem. – volume: 54 start-page: 10978 year: 2015 ident: 10.1016/j.ccr.2024.216000_b0395 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b02074 – volume: 12 start-page: 2301426 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0445 publication-title: Adv. Optical Mater. doi: 10.1002/adom.202301426 – volume: 286 year: 2020 ident: 10.1016/j.ccr.2024.216000_b0310 publication-title: J. Solid State Chem. – volume: 11 start-page: 1775 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0155 publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI02561F – volume: 10 start-page: 4711 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0765 publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI00979C – volume: 959 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0450 publication-title: J. Alloy. Compd. – volume: 32 start-page: 3043 year: 2020 ident: 10.1016/j.ccr.2024.216000_b0365 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c00034 – volume: 19 start-page: 2300248 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0055 publication-title: Small doi: 10.1002/smll.202300248 – volume: 4 start-page: 572 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0760 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.2c00114 – volume: 34 start-page: 1323 year: 1978 ident: 10.1016/j.ccr.2024.216000_b0540 publication-title: Acta Cryst. doi: 10.1107/S0567740878005440 – volume: 13 start-page: 454 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0080 publication-title: Chem. Sci. doi: 10.1039/D1SC06026K – volume: 62 start-page: 7890 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0520 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c00628 – volume: 125 start-page: 7764 year: 2003 ident: 10.1016/j.ccr.2024.216000_b0185 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja035314b – volume: 57 start-page: 7039 year: 2021 ident: 10.1016/j.ccr.2024.216000_b0355 publication-title: Chem. Commun. doi: 10.1039/D1CC02494A – volume: 10 start-page: 2304463 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0400 publication-title: Adv. Sci. doi: 10.1002/advs.202304463 – volume: 10 start-page: 5270 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0605 publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI00513E – volume: 11 start-page: 2300736 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0215 publication-title: Adv. Optical Mater. doi: 10.1002/adom.202300736 – volume: 53 start-page: 8816 year: 2014 ident: 10.1016/j.ccr.2024.216000_b0580 publication-title: Inorg. Chem. doi: 10.1021/ic501548m – volume: 481 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0225 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2023.215059 – volume: 7 start-page: 5924 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0135 publication-title: Mater. Chem. Front. doi: 10.1039/D3QM00811H – volume: 50 start-page: 5215 year: 2011 ident: 10.1016/j.ccr.2024.216000_b0380 publication-title: Inorg. Chem. doi: 10.1021/ic200511q – volume: 11 start-page: 2301060 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0250 publication-title: Adv. Optical Mater. doi: 10.1002/adom.202301060 – volume: 11 start-page: 1704 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0455 publication-title: Mater. Horiz. doi: 10.1039/D3MH01790G – volume: 9 start-page: 5469 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0715 publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI01469F – volume: 62 start-page: 1069 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0730 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c04331 – volume: 9 start-page: 4705 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0705 publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI01207C – volume: 36 start-page: 2113 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0335 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.3c03278 – volume: 11 start-page: 2202195 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0745 publication-title: Adv. Optical Mater. doi: 10.1002/adom.202202195 – volume: 490 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0475 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2023.215212 – volume: 60 start-page: 14806 year: 2021 ident: 10.1016/j.ccr.2024.216000_b0720 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202102992 – volume: 14 start-page: 9533 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0010 publication-title: Chem. Sci. doi: 10.1039/D3SC03052K – volume: 62 start-page: 19135 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0300 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c03515 – volume: 13 start-page: 10725 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0035 publication-title: Chem. Sci. doi: 10.1039/D2SC03760B – volume: 34 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0270 publication-title: Chinese Chem. Lett. – volume: 62 start-page: i152 year: 2006 ident: 10.1016/j.ccr.2024.216000_b0535 publication-title: Acta Cryst. doi: 10.1107/S0108767306097741 – volume: 10 start-page: 7343 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0410 publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI01937C – volume: 245 start-page: 1 year: 2017 ident: 10.1016/j.ccr.2024.216000_b0510 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2016.09.031 – volume: 51 start-page: 609 year: 2012 ident: 10.1016/j.ccr.2024.216000_b0390 publication-title: Inorg. Chem. doi: 10.1021/ic2021403 – volume: 50 start-page: 15057 year: 2021 ident: 10.1016/j.ccr.2024.216000_b0660 publication-title: Dalton Trans. doi: 10.1039/D1DT02890A – volume: 470 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0245 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214706 – volume: 22 start-page: 3241 year: 2010 ident: 10.1016/j.ccr.2024.216000_b0375 publication-title: Chem. Mater. doi: 10.1021/cm100476m – volume: 35 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0100 publication-title: Chinese Chem. Lett. – volume: 10 start-page: 619 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0240 publication-title: Mater. Horiz. doi: 10.1039/D2MH01200F – volume: 375 start-page: 459 year: 2018 ident: 10.1016/j.ccr.2024.216000_b0275 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.02.017 – volume: 32 start-page: 7958 year: 2020 ident: 10.1016/j.ccr.2024.216000_b0435 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c02837 – volume: 273 start-page: 106 year: 2019 ident: 10.1016/j.ccr.2024.216000_b0550 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2019.02.033 – volume: 52 start-page: 3611 year: 2013 ident: 10.1016/j.ccr.2024.216000_b0325 publication-title: Inorg. Chem. doi: 10.1021/ic301442f – volume: 54 start-page: 2775 year: 2021 ident: 10.1016/j.ccr.2024.216000_b0150 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00188 – start-page: e2309776 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0160 publication-title: Small – volume: 58 start-page: 5594 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0590 publication-title: Chem. Commun. doi: 10.1039/D2CC01035F – volume: 144 start-page: 9083 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0130 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c02310 – volume: 7 start-page: 4469 year: 2020 ident: 10.1016/j.ccr.2024.216000_b0565 publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI01056A – volume: 11 start-page: 2300579 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0110 publication-title: Adv. Optical Mater. doi: 10.1002/adom.202300579 – volume: 286 year: 2020 ident: 10.1016/j.ccr.2024.216000_b0635 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2020.121292 – volume: 62 start-page: 557 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0665 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c03787 – volume: 9 start-page: 6490 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0140 publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI01860H – volume: 62 start-page: 4752 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0675 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c00515 – volume: 47 start-page: 1911 year: 2018 ident: 10.1016/j.ccr.2024.216000_b0320 publication-title: Dalton Trans. doi: 10.1039/C7DT04443G – volume: 61 start-page: 15368 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0430 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c01802 – volume: 14 start-page: 10588 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0585 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c25098 – volume: 13 start-page: 5305 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0255 publication-title: Chem. Sci. doi: 10.1039/D2SC00099G – volume: 28 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0195 publication-title: Mater. Today Phys. – volume: 49 start-page: 14046 year: 2020 ident: 10.1016/j.ccr.2024.216000_b0405 publication-title: Dalton Trans. doi: 10.1039/D0DT02514C – volume: 431 start-page: 213916 year: 2021 ident: 10.1016/j.ccr.2024.216000_b0630 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213692 – volume: 61 start-page: 18622 year: 2022 ident: 10.1016/j.ccr.2024.216000_b0710 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c03059 – volume: 44 year: 2024 ident: 10.1016/j.ccr.2024.216000_b0260 publication-title: Mater. Today Phys. – volume: 14 start-page: 8727 year: 2012 ident: 10.1016/j.ccr.2024.216000_b0655 publication-title: CrstEngComm doi: 10.1039/c2ce26524a – volume: 62 start-page: 10461 year: 2023 ident: 10.1016/j.ccr.2024.216000_b0740 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c01459 |
SSID | ssj0016992 |
Score | 2.5869567 |
SecondaryResourceType | review_article |
Snippet | This paper comprehensively reviews 63 selenite compounds with bandgaps above 4.2 eV in four major categories. The focus is on their structures, optical... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 216000 |
SubjectTerms | Birefringence Crystal structures Nonlinear optical crystals Second harmonic-generation UV selenites |
Title | Old tree blossoms anew: Research progress on the structures and optical properties of ultraviolet selenites |
URI | https://dx.doi.org/10.1016/j.ccr.2024.216000 |
Volume | 517 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsCCeIpn5YEJKW3iOLHNVlVUBURZqNQtsp1EKpQkounKb-cujwokYEDKktPZis7O3Zf4uztCrhiLfSO1cpRQqcO11o4BZOqwgOlQe9J6EvOdH6fhZMbv58G8Q0ZtLgzSKhvfX_v0yls3kkFjzUGxWGCOLzLneYAsSJ9Xn0CcC9zl_Y8NzcMLlaorhoO_Qe32ZLPieFmLJUEZ7zMPAr_7c2z6Em_Ge2S3AYp0WD_LPukk2QHZHrX92Q7J69MypnimTM0SZsvfVlQDRr6hLZmOVtwr8GQ0zyjgPFrXil2DCDRjmhfVf2xUK5BdDeI8petl-a6r4_qSYicmxKSrIzIb3z6PJk7TOsGxTInSsSqEK0yMDZTRRmnMn_XTxJdJKGKfWSuZgKXQIFU6BLvEKnY94ybCs8qN_WPSzfIsOSFUcKUBREnNleTwvmoJM8JcKSgK1yanxG2NFtmmrji2t1hGLYHsJQI7R2jnqLbzKbneDCnqohp_KfN2JaJvOyMCp__7sLP_DTsnO3iH0ckLLkgXFia5BNhRml61r3pka3j3MJl-Ag8q1zU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6m7TAuiKd4kwMnpLI2TR_hNk1MHXtw2aTdojTtpEFpK9b9f-w-JpCAA1JPrh1VTmq79WebkDvGIjv0lTCEJ1YGV0oZIUSmBnOYcpXla8vHeufpzA0W_HnpLFtk0NTCIKyytv2VTS-tdU3p1drs5es11vgicp47iIK0OX4CdbA7ldMmnf5oHMx2yQRXiKppOJgcFGiSmyXMS2vsCsr4A7PA95s_u6cvLmd4QPbrWJH2q8c5JK04PSLdQTOi7Zi8vSQRxbQyDRNYLXvfUAVh8iNt8HS0hF-BMaNZSiHUo1W72C2QgDOiWV7-yka2HAHWQM5WdJsUH6rM2BcUhzFhWLo5IYvh03wQGPX0BEMz4RWGFi5cbhxqR4QqFApLaO1VbPux60U209pnHuyGAqpQLuglEpFphWbsWVqYkX1K2mmWxmeEelwoiKN8xYXP4ZVVPqwIa62A0TN1fE7MRmlS163FccJFIhsM2asEPUvUs6z0fE7udyJ51VfjL2be7IT8djgk2P3fxS7-J3ZLusF8OpGT0Wx8SfbwDjory7kibdik-BqikCK8qU_ZJ3xX2eY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Old+tree+blossoms+anew%3A+Research+progress+on+the+structures+and+optical+properties+of+ultraviolet+selenites&rft.jtitle=Coordination+chemistry+reviews&rft.au=Li%2C+Peng-Fei&rft.au=Hu%2C+Chun-Li&rft.au=Mao%2C+Jiang-Gao&rft.au=Kong%2C+Fang&rft.date=2024-10-15&rft.pub=Elsevier+B.V&rft.issn=0010-8545&rft.volume=517&rft_id=info:doi/10.1016%2Fj.ccr.2024.216000&rft.externalDocID=S0010854524003461 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon |