Old tree blossoms anew: Research progress on the structures and optical properties of ultraviolet selenites

This paper comprehensively reviews 63 selenite compounds with bandgaps above 4.2 eV in four major categories. The focus is on their structures, optical properties, and design strategies, offering valuable insights for the future development of UV selenites. [Display omitted] •This article provides t...

Full description

Saved in:
Bibliographic Details
Published inCoordination chemistry reviews Vol. 517; p. 216000
Main Authors Li, Peng-Fei, Hu, Chun-Li, Mao, Jiang-Gao, Kong, Fang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper comprehensively reviews 63 selenite compounds with bandgaps above 4.2 eV in four major categories. The focus is on their structures, optical properties, and design strategies, offering valuable insights for the future development of UV selenites. [Display omitted] •This article provides the first comprehensive review of UV selenite materials.•The article emphasizes the classification, structure, optical property, and design strategy of UV selenite.•We have summarized UV selenites’ distribution by space group, symmetry, chemical composition, and optical properties.•We have offered guidance for UV selenites development, encompassing synthesis, design strategies, and so on. Nonlinear optical materials and birefringent materials are essential components of modern industrial technology. Selenites, owing to the unique stereochemical activity of the lone pair electrons, have a history spanning several decades as both linear and nonlinear optical materials. Up to now (January 16, 2024), nearly 1100 selenite materials have been discovered, some of which exhibit strong second-harmonic generation effects or large birefringence. With the strategic layout of nations and the rapid advancement of modern industrial technology, the demands on the transparency range of linear and nonlinear optical crystals have become increasingly stringent. Crystals transparent only in the visible spectrum are no longer adequate to meet current requirements. Selenites, which have a long history in the field, seem to have encountered a bottleneck in their recent development, primarily due to an excessive focus on their applications in the visible and near-infrared regions while neglecting their potential uses in the ultraviolet (UV) window. To explore new development directions of selenites, our research group is actively investigating their application as UV optical materials. Through a fluorination control strategy, we successfully synthesized a UV nonlinear optical crystal Y3F(SeO3)4 and a birefringent crystal CaYF(SeO3)2, thereby developing the application of selenites in the UV region. Additionally, we found that some previously reported selenites with band gaps larger than 4.2 eV have not received sufficient attention from researchers, and their potential application in the UV region have been overlooked. To further promote the research progress of UV selenite materials, this paper comprehensively summarizes the reported selenite materials with bandgaps larger than 4.2 eV, totaling 63 compounds across 6 crystal systems and 19 space groups. We provide a detailed analysis of their structures, optical properties, and design strategies. These materials can be classified into four categories based on different anionic groups: simple selenites, fluoride selenites, selenites with tetrahedral groups, and other selenite compounds. Through a comprehensive review of UV selenites, we have identified ions or groups conducive to expanding the band gaps of selenites, proposed several reliable design methods for UV selenites, and offered useful suggestions for the development of UV selenites. Despite having a long history, selenite systems still hold significant untapped potential for further exploration. We hope this review provides valuable guidance and insights for the future development of inorganic selenites.
AbstractList This paper comprehensively reviews 63 selenite compounds with bandgaps above 4.2 eV in four major categories. The focus is on their structures, optical properties, and design strategies, offering valuable insights for the future development of UV selenites. [Display omitted] •This article provides the first comprehensive review of UV selenite materials.•The article emphasizes the classification, structure, optical property, and design strategy of UV selenite.•We have summarized UV selenites’ distribution by space group, symmetry, chemical composition, and optical properties.•We have offered guidance for UV selenites development, encompassing synthesis, design strategies, and so on. Nonlinear optical materials and birefringent materials are essential components of modern industrial technology. Selenites, owing to the unique stereochemical activity of the lone pair electrons, have a history spanning several decades as both linear and nonlinear optical materials. Up to now (January 16, 2024), nearly 1100 selenite materials have been discovered, some of which exhibit strong second-harmonic generation effects or large birefringence. With the strategic layout of nations and the rapid advancement of modern industrial technology, the demands on the transparency range of linear and nonlinear optical crystals have become increasingly stringent. Crystals transparent only in the visible spectrum are no longer adequate to meet current requirements. Selenites, which have a long history in the field, seem to have encountered a bottleneck in their recent development, primarily due to an excessive focus on their applications in the visible and near-infrared regions while neglecting their potential uses in the ultraviolet (UV) window. To explore new development directions of selenites, our research group is actively investigating their application as UV optical materials. Through a fluorination control strategy, we successfully synthesized a UV nonlinear optical crystal Y3F(SeO3)4 and a birefringent crystal CaYF(SeO3)2, thereby developing the application of selenites in the UV region. Additionally, we found that some previously reported selenites with band gaps larger than 4.2 eV have not received sufficient attention from researchers, and their potential application in the UV region have been overlooked. To further promote the research progress of UV selenite materials, this paper comprehensively summarizes the reported selenite materials with bandgaps larger than 4.2 eV, totaling 63 compounds across 6 crystal systems and 19 space groups. We provide a detailed analysis of their structures, optical properties, and design strategies. These materials can be classified into four categories based on different anionic groups: simple selenites, fluoride selenites, selenites with tetrahedral groups, and other selenite compounds. Through a comprehensive review of UV selenites, we have identified ions or groups conducive to expanding the band gaps of selenites, proposed several reliable design methods for UV selenites, and offered useful suggestions for the development of UV selenites. Despite having a long history, selenite systems still hold significant untapped potential for further exploration. We hope this review provides valuable guidance and insights for the future development of inorganic selenites.
ArticleNumber 216000
Author Mao, Jiang-Gao
Kong, Fang
Hu, Chun-Li
Li, Peng-Fei
Author_xml – sequence: 1
  givenname: Peng-Fei
  surname: Li
  fullname: Li, Peng-Fei
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
– sequence: 2
  givenname: Chun-Li
  surname: Hu
  fullname: Hu, Chun-Li
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
– sequence: 3
  givenname: Jiang-Gao
  surname: Mao
  fullname: Mao, Jiang-Gao
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
– sequence: 4
  givenname: Fang
  orcidid: 0000-0001-8538-5226
  surname: Kong
  fullname: Kong, Fang
  email: kongfang@fjirsm.ac.cn
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
BookMark eNp9kN1KAzEQhXNRwbb6AN7lBXZNdrs_0Ssp_kGhIHodspNZm5puliSt-Pam1CsvCgPDHOYb5pwZmQxuQEJuOMs54_XtNgfwecGKRV7wmjE2IVPGOMvaalFdklkI2zTWQhRT8rW2mkaPSDvrQnC7QNWA33f0DQMqDxs6evfpMQTqBho3SEP0e4j7JKVNTd0YDSh7XBvRR5Nk19O9jV4djLMYaUCLg4kYrshFr2zA678-Jx9Pj-_Ll2y1fn5dPqwyKEQTMxB1qho7qESnOqFEU5Vlj2WLdaPLAqAtGsVblVSh6uRJC814x7DhIJgu56Q53QWfLHnsJZioonFDespYyZk85iS3MuUkjznJU06J5P_I0Zud8j9nmfsTg8nSwaCXAQwOgNp4hCi1M2foX4HchuI
CitedBy_id crossref_primary_10_1039_D4SC07322C
crossref_primary_10_1002_lpor_202401488
crossref_primary_10_1002_lpor_202401785
crossref_primary_10_1021_acs_inorgchem_4c02401
crossref_primary_10_1039_D5QI00039D
crossref_primary_10_1002_lpor_202400992
crossref_primary_10_1039_D4TC05126B
crossref_primary_10_1021_acs_inorgchem_4c04170
crossref_primary_10_1039_D4SC06403H
crossref_primary_10_1002_adom_202403241
crossref_primary_10_1002_anie_202424053
crossref_primary_10_1021_acs_inorgchem_4c04781
crossref_primary_10_1002_ange_202424053
crossref_primary_10_1021_acs_inorgchem_4c05135
crossref_primary_10_1039_D4CE01123F
crossref_primary_10_1021_acs_cgd_4c01398
crossref_primary_10_1002_adom_202401762
crossref_primary_10_1039_D4QI03203A
crossref_primary_10_1002_ange_202501481
crossref_primary_10_1002_anie_202501481
crossref_primary_10_1039_D4SC05640J
crossref_primary_10_1021_acs_chemmater_4c02779
crossref_primary_10_1039_D4MH01043D
crossref_primary_10_1039_D5NJ00763A
Cites_doi 10.1021/ic400458a
10.1039/D3SC06683E
10.1039/D3MH00257H
10.1039/D3MH00389B
10.1021/acs.inorgchem.3c01428
10.1021/acs.inorgchem.1c00210
10.1107/S0108270192000015
10.1021/jacs.2c11645
10.1021/acs.inorgchem.3c00556
10.1016/j.ccr.2021.214380
10.1002/smll.202310423
10.1039/D2QI02272A
10.1021/acs.inorgchem.2c01381
10.1039/D2QM00983H
10.1039/D1QI00373A
10.1039/D2QM00773H
10.1021/jacs.3c09566
10.1021/jacs.0c00702
10.1002/anie.202301420
10.1021/ic500548v
10.1039/D0QI01130D
10.1021/acs.inorgchem.3c00986
10.1002/anie.202302025
10.1039/D2QI01817A
10.1039/c3cc45747h
10.1021/jacs.3c09573
10.1016/j.jssc.2015.09.033
10.1021/acs.inorgchem.4c00033
10.1021/acs.inorgchem.2c03267
10.1021/acs.inorgchem.3c02532
10.1039/D2CE01627C
10.1021/acs.chemmater.0c02167
10.1007/s40843-019-1193-x
10.1021/acs.inorgchem.3c02644
10.1002/smll.202305473
10.1002/anie.202213499
10.1021/acs.inorgchem.2c04368
10.1021/acs.inorgchem.3c01540
10.1039/D2MH00060A
10.1039/D4SC01376J
10.1039/D2QI01466A
10.1016/j.ccr.2021.214328
10.1021/jacs.3c02400
10.1016/j.jssc.2017.09.014
10.1021/cm980140w
10.1002/adom.202300987
10.1039/C5TC02925B
10.1002/smll.202207709
10.1021/jacs.8b11485
10.1021/acs.inorgchem.3c02025
10.1021/acs.inorgchem.4c00366
10.1002/anie.202116790
10.1016/j.jssc.2018.03.033
10.1021/acs.inorgchem.3c02845
10.1021/jacs.1c06061
10.1016/j.scriptamat.2022.114764
10.1039/D1CC00346A
10.1021/acs.inorgchem.2c02521
10.1002/smll.202304563
10.1021/acs.inorgchem.8b00305
10.1021/ic3026705
10.1016/j.jallcom.2015.04.021
10.1021/jacs.4c01740
10.1007/s40843-023-2592-x
10.1039/C9SC04832D
10.1021/acs.chemmater.2c01922
10.1021/acs.chemmater.3c01246
10.1021/acs.chemrev.0c00796
10.1021/acs.inorgchem.3c01461
10.1021/acs.inorgchem.5b00653
10.1039/D3QM00451A
10.1039/D0DT00116C
10.1039/D1DT00536G
10.1002/anie.202318976
10.1021/jacs.6b06680
10.1021/ja0620991
10.1039/D4TC00554F
10.1021/acs.inorgchem.1c02315
10.1021/acs.inorgchem.5b02074
10.1002/adom.202301426
10.1039/D3QI02561F
10.1039/D3QI00979C
10.1021/acs.chemmater.0c00034
10.1002/smll.202300248
10.1021/acsmaterialslett.2c00114
10.1107/S0567740878005440
10.1039/D1SC06026K
10.1021/acs.inorgchem.3c00628
10.1021/ja035314b
10.1039/D1CC02494A
10.1002/advs.202304463
10.1039/D3QI00513E
10.1002/adom.202300736
10.1021/ic501548m
10.1016/j.ccr.2023.215059
10.1039/D3QM00811H
10.1021/ic200511q
10.1002/adom.202301060
10.1039/D3MH01790G
10.1039/D2QI01469F
10.1021/acs.inorgchem.2c04331
10.1039/D2QI01207C
10.1021/acs.chemmater.3c03278
10.1002/adom.202202195
10.1016/j.ccr.2023.215212
10.1002/anie.202102992
10.1039/D3SC03052K
10.1021/acs.inorgchem.3c03515
10.1039/D2SC03760B
10.1107/S0108767306097741
10.1039/D3QI01937C
10.1016/j.jssc.2016.09.031
10.1021/ic2021403
10.1039/D1DT02890A
10.1016/j.ccr.2022.214706
10.1021/cm100476m
10.1039/D2MH01200F
10.1016/j.ccr.2018.02.017
10.1021/acs.chemmater.0c02837
10.1016/j.jssc.2019.02.033
10.1021/ic301442f
10.1021/acs.accounts.1c00188
10.1039/D2CC01035F
10.1021/jacs.2c02310
10.1039/D0QI01056A
10.1002/adom.202300579
10.1016/j.jssc.2020.121292
10.1021/acs.inorgchem.2c03787
10.1039/D2QI01860H
10.1021/acs.inorgchem.3c00515
10.1039/C7DT04443G
10.1021/acs.inorgchem.2c01802
10.1021/acsami.1c25098
10.1039/D2SC00099G
10.1039/D0DT02514C
10.1016/j.ccr.2020.213692
10.1021/acs.inorgchem.2c03059
10.1039/c2ce26524a
10.1021/acs.inorgchem.3c01459
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ccr.2024.216000
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
ExternalDocumentID 10_1016_j_ccr_2024_216000
S0010854524003461
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
6J9
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M23
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
UPT
WH7
XPP
YK3
ZMT
~G-
29F
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMH
HVGLF
HZ~
H~9
NDZJH
OHT
R2-
SCB
SIC
SSH
UQL
VH1
WUQ
XJT
ZKB
ZY4
ID FETCH-LOGICAL-c297t-c96c966ebc59bab9a97533fe38e67d32cc827a18a5339a6545d9d01b0e71c90d3
IEDL.DBID .~1
ISSN 0010-8545
IngestDate Tue Jul 01 02:42:32 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
Sat Nov 09 16:01:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Second harmonic-generation
UV selenites
Crystal structures
Birefringence
Nonlinear optical crystals
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-c96c966ebc59bab9a97533fe38e67d32cc827a18a5339a6545d9d01b0e71c90d3
ORCID 0000-0001-8538-5226
ParticipantIDs crossref_citationtrail_10_1016_j_ccr_2024_216000
crossref_primary_10_1016_j_ccr_2024_216000
elsevier_sciencedirect_doi_10_1016_j_ccr_2024_216000
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-15
PublicationDateYYYYMMDD 2024-10-15
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Coordination chemistry reviews
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Robert, Balisetty, Mohanrao, Mannamala, Mangalassery, Rao, Vidyasagar (b0520) 2023; 62
Li, Chen, Li, Zhang, Yang, Pan (b0745) 2023; 11
Li, Hu, Gong, Kong, Mao (b0355) 2021; 57
Wang, Liu, Hu, Wang, Zhu, Meng, Xu (b0665) 2022; 62
Li, Mao, Kong (b0465) 2023; 37
Cao, Hu, Kong, Mao (b0395) 2015; 54
Li, Hu, Li, Mao, Kong (b0410) 2023; 10
Li, Kong, Mao (b0310) 2020; 286
Chen, Hu, Kong, Mao (b0150) 2021; 54
Wu, Hu, Xu, Chen, Ma, Huang, Du, Chen (b0010) 2023; 14
Ran, Zhou, Wei, Li, Wu, Lin, Zhu (b0055) 2023; 19
Li, Hu, Li, Kong, Mao (b0450) 2023; 959
Chen, Chen, Mao, Liu, Li, Wu, Du (b0060) 2022; 9
Wu, Li, Lin, Huang, Humphrey, Zhang (b0365) 2020; 32
Bai, Wang, Huang, Dou, Chen, Zhang, Wang (b0755) 2023; 62
Shi, Tudi, Gai, Yang, Han, Pan (b0290) 2023; 35
Liu, Long, Zeng, Tian, Zeng, Dong, Lin, Zou (b0300) 2023; 62
Chen, Lin, Jiang, Yang, Luo, Zhao, Li, Peng, Ye, Hu, Wang, Wu (b0230) 2023; 10
Dang, Mei, Wu, Lin (b0630) 2021; 431
Ma, Hu, Li, Kong, Mao (b0555) 1846; 57
Wang, Li, Hu, Kong, Mao (b0350) 2019; 62
Xu, Li, Huang, Yang, Zhang, Mao (b0015) 2023; 62
Oyeka, Winiarski, Swiatek, Balliew, McMillen, Liang, Sorolla, Tran (b0680) 2022; 61
Kong, Huang, Sun, Mao, Cheng (b0650) 2006; 128
Long, Dong, Huang, Zeng, Lin, Zhou, Zou (b0195) 2022; 28
Nguyen, Halasyamani (b0385) 2013; 52
Lü, Jo, Oh, Ok (b0515) 2017; 256
Shiv Halasyamani, Poeppelmeier (b0315) 1998; 10
Han, Tudi, Zhang, Hou, Yang, Pan (b0105) 2023; 62
Berdonosov, Akselrud, Prots, Abakumov, Smet, Poelman, Van Tendeloo, Dolgikh (b0325) 2013; 52
Bai, Ok (b0475) 2023; 490
Wang, Jiang, Liu, Yang, Lin, Hu, Meng, Chen, Qin (b0320) 2018; 47
Zhao, Gong, Zhang, Lin, Hu, Wu (b0405) 2020; 49
Chen, Du (b0145) 2022; 61
Harrison (b0535) 2006; 62
Yan, Ren, Liu, Mao, Ma, Tang, Huang, Zhang, Zhang, Li (b0085) 2023; 62
Zhou, Wang, Chu, Wang, Pan, Li (b0215) 2023; 11
Jo, Lee, Choi, Ok (b0505) 2018; 57
He, Guan, Trinquet, Brunin, Wang, Robinson, Zu, Yoshida, Lee, Wang, Zhu, Rignanese, Mao, Gopalan (b0250) 2023; 11
Wu, Jiang, Wang, Sha, Lin, Huang, Long, Humphrey, Zhang (b0720) 2021; 60
Dong, Huang, Zeng, Lin, Ok, Zou (b0125) 2022; 61
Dou, Shi, Bai, Chen, Zhang, Wang (b0135) 2023; 7
Tang, Hu, Xie, Huang, Mao (b0615) 2021; 60
Zhou, He, Lin, Shang, Chen, Li, Huang, Hong, Zhao, Luo (b0210) 2023; 20
Meng, Geng, Chen, Wei, Dai, Lu, Cheng (b0570) 2015; 640
Li, Meng, Li, Yao (b0200) 2022; 453
Lee, Ok (b0495) 2013; 52
Wei, Wang, Zhang, Ying, Zhang (b0725) 2023; 62
Harrison, Harrison, Morrsi, Cheethami (b0525) 1992; 48
Yuan, Wu, Hu, Wang, Wu, Yu (b0190) 2022; 34
Hu, Wu, Jiang, Wang, Huang, Lin, Long, Humphrey, Zhang (b0180) 2021; 143
Ran, Wang, Wei, Wu, Lin, Zhu (b0225) 2023; 481
Jia, Zhang, Chen, Jiang, Song, Lin, Zhang (b0430) 2022; 61
Ra, Ok, Halasyamani (b0185) 2003; 125
Chung, Jo, Yeon, Byun, You, Jang, Ok (b0425) 2020; 32
Yi, Zeng, Zhou, Zeng, Lin, Zou (b0700) 2023; 63
Xu, Chen, Zheng, Huang, Chen, Mao (b0065) 2023; 62
Liu, Pei, Jiang, Guo (b0045) 2022; 9
Pei, Liu, Chen, Jiang, Guo (b0005) 2023; 10
Wu, Yang, Humphrey, Zhang (b0275) 2018; 375
Wu, Jiang, Wei, Jiang, Wang, Lin, Huang, Humphrey, Zhang (b0610) 2023; 145
Bang, Lee, Ok (b0490) 2014; 53
Zhang, Kong, Yang, Mao (b0655) 2012; 14
Yang, Ran, Zhou, Wu, Lin, Zhu (b0035) 2022; 13
Bai, Lee, Kim, Kuk, Choi, Hu, Ok (b0460) 2023; 19
You, Liang, Huang, Hu, Wu, Lin (b0560) 2019; 141
Li, Hu, Ma, Mao, Zheng, Zhang, Yan (b0735) 2022; 61
Sha, Shang, Wang, Su, He, Yang, Long (b0160) 2023
Zhang, Cheng, Wang, Yang, Yang, Han, Pan (b0285) 2023; 10
Lan, Ren, Zhang, Dong, Huang, Cao, Gao, Zou (b0100) 2024; 35
Hu, Wu, Zhang, Han, Hou, Zhang, Yang, Pan (b0110) 2023; 11
Zhou, Wu, Yu, Jiang, Hu, Wang, Wu, Halasyamani (b0050) 2020; 142
Chen, Hu, Mao, Zhang, Yang, Mao (b0090) 2019; 10
Qiu, Li, Jin, Lu, Yang, Pan, Mutailipu (b0590) 2022; 58
Cheng, Wu, Yu, Hu, Wang, Wu (b0255) 2022; 13
Sun, Lin, Fang, Tian, Ye, Luo (b0140) 2022; 9
Cao, Hu, Kong, Xiong, Mao (b0660) 2021; 50
Yang, Guo, Chen, Hu, Zhang, Zhang (b0715) 2022; 9
Bonnin, Bayarjargal, Wolf, Milman, Winkler, Feldmann (b0360) 2021; 60
Wang, Li, Ren, Lv, Tang, Chen, Huang, Zhang, Yan (b0075) 2024; 63
Xie, Tang, Yan, Ma, Hu, Mao (b0770) 2023
Song, Xiao, Yang, Wang, Zhang (b0265) 2024
Zhou, Wu, Liu, Guo (b0235) 2023; 477
Park, Ok (b0565) 2020; 7
Rastsvetaeva, Andrianov, Volodina (b0530) 1986; 291
Han, Zhao, Xu, Li, Ye, Luo (b0690) 2022; 902
Wu, Li, Lin, Huang, Humphrey, Zhang (b0670) 2020; 49
Cao, Hu, Xu, Kong, Mao (b0575) 2013; 49
Nguyen, Kim, Halasyamani (b0380) 2011; 50
Ran, Zhou, Wu, Lin, Zhu (b0260) 2024; 44
Zhang, Cao, Yang, Wang, Wu, Lee, Zhang (b0760) 2022; 4
Wu, Jiang, Lin, Wu, Lin, Huang, Humphrey, Zhang (b0340) 2021; 8
Ren, Chen, Ren, Zhou, Dong, Gao, Huang, Cao, Ye (b0640) 2023; 62
Shi, Lin, Zhao, Luo, Cao, Peng, Ye (b0345) 2021; 57
Ma, Li, Hu, Mao, Kong (b0400) 2023; 10
Zhang, Wu, Hu, Li, Kong, Mao (b0545) 2023; 10
Zheng, Wang, Ren, Cao, Huang, Gao, Bi, Zou (b0705) 2022; 9
Mutailipu, Poeppelmeier, Pan (b0625) 2021; 121
Zhang, Wei, Yang, Wang, Zhang (b0765) 2023; 10
Li, Hu, Mao, Kong (b0120) 2024; 15
Lü, Jo, Oh, Ok (b0510) 2017; 245
Cho, Ok (b0685) 2023; 7
Zhang, Zhang, Wang, Wu, Zhang (b0710) 2022; 61
Shang, Halasyamani (b0635) 2020; 286
Yeon, Kim, Nguyen, Lee, Halasyamani (b0390) 2012; 51
Sha, Xu, Huang, Xiong, Wang, Su, He, Yang, Long (b0295) 2022; 217
Sha, Xiong, Xu, Wang, Su, He, Yang, Long, Liu (b0585) 2022; 14
Wu, Hu, Jiang, Mao, Kong (b0775) 2023; 145
Song, Ok (b0485) 2015; 54
Liu, Mei, Xu, Wu (b0500) 2015; 232
Liu, Gong, Huang, Sun, Zhao, Lin, Yao (b0740) 2023; 62
Xie, Tikhonov, Chu, Wu, Kruglov, Pan, Yang (b0780) 2023; 66
Zhang, Huang, Han, Yang, Pan (b0130) 2022; 144
Li, Hu, Kong, Mao (b0170) 2022; 6
Li, Hu, Mao, Kong (b0455) 2024; 11
Shi, Lin, Yang, Cao, Li, Yan, Luo, Ye (b0435) 2020; 32
Ma, Gong, Hu, Mao, Kong (b0645) 2018; 262
Chen, Ran, Zhou, Wu, Lin, Zhu (b0270) 2023; 34
Valkonen, Leskelä (b0540) 1978; 34
Liu, Wu, Yu, Hu, Wang, Wu (b0595) 2022; 896
Li, Hu, Tang, Ma, Mao, Zheng, Zhang, Yan (b0220) 2022; 61
Chen, Ran, Wei, Wu, Lin, Zhu (b0245) 2022; 470
Wu, Jiang, Wu, Lin, Huang, Humphrey, Zhang (b0605) 2023; 10
Tudi, Han, Yang, Pan (b0095) 2022; 459
Li, Hu, Kong, Mao (b0025) 2023; 62
Dong, Huang, Huang, Zhou, Zhang, Zeng, Lin, Zou (b0305) 2024; 63
Lin, Jiang, Wu, Lin, Huang, Humphrey, Zhang (b0370) 2021; 50
Liu, Tang, Ma, Lv, Liu, Guo (b0730) 2023; 62
Li, Hu, Kong, Mao (b0440) 2023; 62
Liang, Hu, Kong, Mao (b0415) 2016; 138
Chen, Li, Liu, Cui, Mutailipu (b0750) 2023; 62
Qiu, Li, Li, Yang, Pan, Mutailipu (b0040) 2023; 145
Fang, Ma, Chen, Zhu, Zeng, Li, Zhou, Song, Duan (b0155) 2024; 11
Yan, Dong, Huang, Zhou, Lin, Zou (b0675) 2023; 62
Li, Hu, Li, Mao, Kong (b0695) 2024; 63
Li, Hu, Kong, Ying, Mao (b0175) 2021; 8
Liu, Wu, Hu, Wang, Wu, Yu (b0280) 2023; 145
Cao, Kong, Hu, Xu, Mao (b0580) 2014; 53
Sha, Shang, Wang, Su, He, Yang, Long (b0020) 2023; 11
Sha, Yang, Shang, Wang, Su, He, Yang, Long (b0070) 2024
Liang, Zhang, Izvarin, Waters, Rondinelli, Halasyamani (b0335) 2024; 36
Lv, Li, Guan, Lin, Zhang, Jia, Tao (b0470) 2023; 25
Liu, Wang, Xiao, Li, Chu, Sun, Halasyamani (b0330) 2024; 12
Chen, Yu, Guo, Xue, Hao, Yao, Zhang (b0600) 2022; 896
Zhang, Yu, Hu, Wang, Wu, Wu (b0480) 2023; 35
Huang, Wang, Yang, Zhang (b0030) 2023; 62
Shang, Liu, Halasyamani (b0550) 2019; 273
Li, Gong, Hu, Zhang, Mao, Kong (b0445) 2024; 12
Ran, Zhou, Wei, Li, Wu, Lin, Zhu (b0205) 2024; 20
Yan, Tang, Yao, Liu, Guo (b0165) 2024; 15
Geng, Li, Meng, Dai, Lu, Lin, Cheng (b0420) 2015; 3
Cheng, Hou, Yang, Pan (b0620) 2023; 7
Chen, Hu, Lin, Chen, Chen, Mao (b0080) 2022; 13
Li, Hu, Li, Mao, Kong (b0115) 2024; 146
Chang, Kim, Halasyamani (b0375) 2010; 22
Zhou, Fan, Zhang, Yang, Pan, Li (b0240) 2023; 10
Fang (10.1016/j.ccr.2024.216000_b0155) 2024; 11
Nguyen (10.1016/j.ccr.2024.216000_b0380) 2011; 50
Zhou (10.1016/j.ccr.2024.216000_b0235) 2023; 477
Li (10.1016/j.ccr.2024.216000_b0440) 2023; 62
Chen (10.1016/j.ccr.2024.216000_b0145) 2022; 61
Ma (10.1016/j.ccr.2024.216000_b0400) 2023; 10
Jia (10.1016/j.ccr.2024.216000_b0430) 2022; 61
Wu (10.1016/j.ccr.2024.216000_b0605) 2023; 10
Mutailipu (10.1016/j.ccr.2024.216000_b0625) 2021; 121
Li (10.1016/j.ccr.2024.216000_b0025) 2023; 62
Wu (10.1016/j.ccr.2024.216000_b0365) 2020; 32
Li (10.1016/j.ccr.2024.216000_b0355) 2021; 57
Zhao (10.1016/j.ccr.2024.216000_b0405) 2020; 49
Sha (10.1016/j.ccr.2024.216000_b0160) 2023
Cho (10.1016/j.ccr.2024.216000_b0685) 2023; 7
Song (10.1016/j.ccr.2024.216000_b0265) 2024
Liang (10.1016/j.ccr.2024.216000_b0415) 2016; 138
Geng (10.1016/j.ccr.2024.216000_b0420) 2015; 3
Harrison (10.1016/j.ccr.2024.216000_b0525) 1992; 48
Chen (10.1016/j.ccr.2024.216000_b0080) 2022; 13
Harrison (10.1016/j.ccr.2024.216000_b0535) 2006; 62
Liang (10.1016/j.ccr.2024.216000_b0335) 2024; 36
Yan (10.1016/j.ccr.2024.216000_b0165) 2024; 15
Zhang (10.1016/j.ccr.2024.216000_b0480) 2023; 35
Dong (10.1016/j.ccr.2024.216000_b0305) 2024; 63
Ma (10.1016/j.ccr.2024.216000_b0645) 2018; 262
Chen (10.1016/j.ccr.2024.216000_b0750) 2023; 62
Berdonosov (10.1016/j.ccr.2024.216000_b0325) 2013; 52
Nguyen (10.1016/j.ccr.2024.216000_b0385) 2013; 52
Ran (10.1016/j.ccr.2024.216000_b0205) 2024; 20
Liu (10.1016/j.ccr.2024.216000_b0280) 2023; 145
Zheng (10.1016/j.ccr.2024.216000_b0705) 2022; 9
Zhang (10.1016/j.ccr.2024.216000_b0285) 2023; 10
Yang (10.1016/j.ccr.2024.216000_b0715) 2022; 9
Sun (10.1016/j.ccr.2024.216000_b0140) 2022; 9
Li (10.1016/j.ccr.2024.216000_b0175) 2021; 8
Lü (10.1016/j.ccr.2024.216000_b0510) 2017; 245
Wang (10.1016/j.ccr.2024.216000_b0075) 2024; 63
Liu (10.1016/j.ccr.2024.216000_b0300) 2023; 62
Zhang (10.1016/j.ccr.2024.216000_b0655) 2012; 14
Huang (10.1016/j.ccr.2024.216000_b0030) 2023; 62
Chung (10.1016/j.ccr.2024.216000_b0425) 2020; 32
Han (10.1016/j.ccr.2024.216000_b0690) 2022; 902
Zhang (10.1016/j.ccr.2024.216000_b0765) 2023; 10
Pei (10.1016/j.ccr.2024.216000_b0005) 2023; 10
Wu (10.1016/j.ccr.2024.216000_b0275) 2018; 375
Song (10.1016/j.ccr.2024.216000_b0485) 2015; 54
Wu (10.1016/j.ccr.2024.216000_b0720) 2021; 60
Ran (10.1016/j.ccr.2024.216000_b0260) 2024; 44
Bai (10.1016/j.ccr.2024.216000_b0475) 2023; 490
Dong (10.1016/j.ccr.2024.216000_b0125) 2022; 61
Sha (10.1016/j.ccr.2024.216000_b0295) 2022; 217
Zhou (10.1016/j.ccr.2024.216000_b0050) 2020; 142
Sha (10.1016/j.ccr.2024.216000_b0070) 2024
Jo (10.1016/j.ccr.2024.216000_b0505) 2018; 57
Sha (10.1016/j.ccr.2024.216000_b0020) 2023; 11
Chen (10.1016/j.ccr.2024.216000_b0090) 2019; 10
Lan (10.1016/j.ccr.2024.216000_b0100) 2024; 35
Meng (10.1016/j.ccr.2024.216000_b0570) 2015; 640
Chen (10.1016/j.ccr.2024.216000_b0150) 2021; 54
Li (10.1016/j.ccr.2024.216000_b0170) 2022; 6
Li (10.1016/j.ccr.2024.216000_b0745) 2023; 11
Ma (10.1016/j.ccr.2024.216000_b0555) 1846; 57
Tang (10.1016/j.ccr.2024.216000_b0615) 2021; 60
Li (10.1016/j.ccr.2024.216000_b0735) 2022; 61
Cao (10.1016/j.ccr.2024.216000_b0395) 2015; 54
Park (10.1016/j.ccr.2024.216000_b0565) 2020; 7
Bonnin (10.1016/j.ccr.2024.216000_b0360) 2021; 60
Shiv Halasyamani (10.1016/j.ccr.2024.216000_b0315) 1998; 10
Zhang (10.1016/j.ccr.2024.216000_b0545) 2023; 10
Wu (10.1016/j.ccr.2024.216000_b0610) 2023; 145
Xie (10.1016/j.ccr.2024.216000_b0780) 2023; 66
Long (10.1016/j.ccr.2024.216000_b0195) 2022; 28
Ran (10.1016/j.ccr.2024.216000_b0225) 2023; 481
Cheng (10.1016/j.ccr.2024.216000_b0620) 2023; 7
Chen (10.1016/j.ccr.2024.216000_b0270) 2023; 34
He (10.1016/j.ccr.2024.216000_b0250) 2023; 11
Liu (10.1016/j.ccr.2024.216000_b0500) 2015; 232
You (10.1016/j.ccr.2024.216000_b0560) 2019; 141
Li (10.1016/j.ccr.2024.216000_b0120) 2024; 15
Zhang (10.1016/j.ccr.2024.216000_b0130) 2022; 144
Chang (10.1016/j.ccr.2024.216000_b0375) 2010; 22
Qiu (10.1016/j.ccr.2024.216000_b0040) 2023; 145
Bai (10.1016/j.ccr.2024.216000_b0755) 2023; 62
Xu (10.1016/j.ccr.2024.216000_b0065) 2023; 62
Chen (10.1016/j.ccr.2024.216000_b0245) 2022; 470
Wu (10.1016/j.ccr.2024.216000_b0775) 2023; 145
Cao (10.1016/j.ccr.2024.216000_b0575) 2013; 49
Wang (10.1016/j.ccr.2024.216000_b0665) 2022; 62
Wu (10.1016/j.ccr.2024.216000_b0670) 2020; 49
Liu (10.1016/j.ccr.2024.216000_b0740) 2023; 62
Robert (10.1016/j.ccr.2024.216000_b0520) 2023; 62
Yeon (10.1016/j.ccr.2024.216000_b0390) 2012; 51
Cheng (10.1016/j.ccr.2024.216000_b0255) 2022; 13
Cao (10.1016/j.ccr.2024.216000_b0580) 2014; 53
Liu (10.1016/j.ccr.2024.216000_b0330) 2024; 12
Yi (10.1016/j.ccr.2024.216000_b0700) 2023; 63
Hu (10.1016/j.ccr.2024.216000_b0180) 2021; 143
Yan (10.1016/j.ccr.2024.216000_b0675) 2023; 62
Yuan (10.1016/j.ccr.2024.216000_b0190) 2022; 34
Li (10.1016/j.ccr.2024.216000_b0310) 2020; 286
Zhou (10.1016/j.ccr.2024.216000_b0215) 2023; 11
Shi (10.1016/j.ccr.2024.216000_b0345) 2021; 57
Lv (10.1016/j.ccr.2024.216000_b0470) 2023; 25
Sha (10.1016/j.ccr.2024.216000_b0585) 2022; 14
Dou (10.1016/j.ccr.2024.216000_b0135) 2023; 7
Zhou (10.1016/j.ccr.2024.216000_b0210) 2023; 20
Xie (10.1016/j.ccr.2024.216000_b0770) 2023
Yan (10.1016/j.ccr.2024.216000_b0085) 2023; 62
Liu (10.1016/j.ccr.2024.216000_b0045) 2022; 9
Han (10.1016/j.ccr.2024.216000_b0105) 2023; 62
Lee (10.1016/j.ccr.2024.216000_b0495) 2013; 52
Wu (10.1016/j.ccr.2024.216000_b0340) 2021; 8
Lin (10.1016/j.ccr.2024.216000_b0370) 2021; 50
Yang (10.1016/j.ccr.2024.216000_b0035) 2022; 13
Chen (10.1016/j.ccr.2024.216000_b0600) 2022; 896
Shi (10.1016/j.ccr.2024.216000_b0290) 2023; 35
Rastsvetaeva (10.1016/j.ccr.2024.216000_b0530) 1986; 291
Zhou (10.1016/j.ccr.2024.216000_b0240) 2023; 10
Liu (10.1016/j.ccr.2024.216000_b0730) 2023; 62
Hu (10.1016/j.ccr.2024.216000_b0110) 2023; 11
Li (10.1016/j.ccr.2024.216000_b0465) 2023; 37
Li (10.1016/j.ccr.2024.216000_b0455) 2024; 11
Lü (10.1016/j.ccr.2024.216000_b0515) 2017; 256
Zhang (10.1016/j.ccr.2024.216000_b0710) 2022; 61
Li (10.1016/j.ccr.2024.216000_b0450) 2023; 959
Ren (10.1016/j.ccr.2024.216000_b0640) 2023; 62
Chen (10.1016/j.ccr.2024.216000_b0060) 2022; 9
Shi (10.1016/j.ccr.2024.216000_b0435) 2020; 32
Bai (10.1016/j.ccr.2024.216000_b0460) 2023; 19
Cao (10.1016/j.ccr.2024.216000_b0660) 2021; 50
Ran (10.1016/j.ccr.2024.216000_b0055) 2023; 19
Wei (10.1016/j.ccr.2024.216000_b0725) 2023; 62
Tudi (10.1016/j.ccr.2024.216000_b0095) 2022; 459
Li (10.1016/j.ccr.2024.216000_b0115) 2024; 146
Liu (10.1016/j.ccr.2024.216000_b0595) 2022; 896
Wang (10.1016/j.ccr.2024.216000_b0350) 2019; 62
Xu (10.1016/j.ccr.2024.216000_b0015) 2023; 62
Ra (10.1016/j.ccr.2024.216000_b0185) 2003; 125
Dang (10.1016/j.ccr.2024.216000_b0630) 2021; 431
Wu (10.1016/j.ccr.2024.216000_b0010) 2023; 14
Bang (10.1016/j.ccr.2024.216000_b0490) 2014; 53
Valkonen (10.1016/j.ccr.2024.216000_b0540) 1978; 34
Oyeka (10.1016/j.ccr.2024.216000_b0680) 2022; 61
Li (10.1016/j.ccr.2024.216000_b0445) 2024; 12
Li (10.1016/j.ccr.2024.216000_b0695) 2024; 63
Shang (10.1016/j.ccr.2024.216000_b0550) 2019; 273
Wang (10.1016/j.ccr.2024.216000_b0320) 2018; 47
Zhang (10.1016/j.ccr.2024.216000_b0760) 2022; 4
Li (10.1016/j.ccr.2024.216000_b0220) 2022; 61
Shang (10.1016/j.ccr.2024.216000_b0635) 2020; 286
Li (10.1016/j.ccr.2024.216000_b0410) 2023; 10
Qiu (10.1016/j.ccr.2024.216000_b0590) 2022; 58
Li (10.1016/j.ccr.2024.216000_b0200) 2022; 453
Chen (10.1016/j.ccr.2024.216000_b0230) 2023; 10
Kong (10.1016/j.ccr.2024.216000_b0650) 2006; 128
References_xml – volume: 62
  start-page: 9130
  year: 2023
  end-page: 9138
  ident: b0640
  publication-title: Inorg. Chem.
– volume: 66
  start-page: 4473
  year: 2023
  end-page: 4479
  ident: b0780
  publication-title: Sci. China Mater.
– volume: 453
  year: 2022
  ident: b0200
  publication-title: Coord. Chem. Rev.
– volume: 7
  start-page: 4469
  year: 2020
  end-page: 4476
  ident: b0565
  publication-title: Inorg. Chem. Front.
– volume: 13
  start-page: 10725
  year: 2022
  end-page: 10733
  ident: b0035
  publication-title: Chem. Sci.
– volume: 35
  year: 2024
  ident: b0100
  publication-title: Chinese Chem. Lett.
– volume: 10
  start-page: 787
  year: 2023
  end-page: 792
  ident: b0285
  publication-title: Inorg. Chem. Front.
– volume: 146
  start-page: 7868
  year: 2024
  end-page: 7874
  ident: b0115
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 10978
  year: 2015
  end-page: 10984
  ident: b0395
  publication-title: Inorg. Chem.
– volume: 232
  start-page: 193
  year: 2015
  end-page: 199
  ident: b0500
  publication-title: J. Solid State Chem.
– volume: 459
  year: 2022
  ident: b0095
  publication-title: Coord. Chem. Rev.
– volume: 125
  start-page: 7764
  year: 2003
  end-page: 7765
  ident: b0185
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 7343
  year: 2023
  end-page: 7350
  ident: b0410
  publication-title: Inorg. Chem. Front.
– volume: 11
  start-page: 2300736
  year: 2023
  ident: b0215
  publication-title: Adv. Optical Mater.
– volume: 481
  year: 2023
  ident: b0225
  publication-title: Coord. Chem. Rev.
– volume: 138
  start-page: 9433
  year: 2016
  end-page: 9436
  ident: b0415
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 14806
  year: 2021
  end-page: 14810
  ident: b0720
  publication-title: Angew. Chem. Int. Ed.
– volume: 142
  start-page: 4616
  year: 2020
  end-page: 4620
  ident: b0050
  publication-title: J. Am. Chem. Soc.
– volume: 61
  start-page: e202116790
  year: 2022
  ident: b0125
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 7104
  year: 2024
  end-page: 7110
  ident: b0120
  publication-title: Chem. Sci.
– volume: 262
  start-page: 320
  year: 2018
  end-page: 326
  ident: b0645
  publication-title: J. Solid State Chem.
– volume: 11
  start-page: 2300987
  year: 2023
  ident: b0020
  publication-title: Adv. Optical Mater.
– volume: 60
  start-page: 3539
  year: 2021
  end-page: 3542
  ident: b0615
  publication-title: Inorg. Chem.
– volume: 10
  start-page: 2921
  year: 2023
  end-page: 2926
  ident: b0005
  publication-title: Mater. Horiz.
– volume: 13
  start-page: 454
  year: 2022
  end-page: 460
  ident: b0080
  publication-title: Chem. Sci.
– volume: 34
  start-page: 8004
  year: 2022
  end-page: 8012
  ident: b0190
  publication-title: Chem. Mater.
– volume: 3
  start-page: 12290
  year: 2015
  end-page: 12296
  ident: b0420
  publication-title: J. Mater. Chem. C
– volume: 145
  start-page: 12691
  year: 2023
  end-page: 12700
  ident: b0280
  publication-title: J. Am. Chem. Soc.
– volume: 286
  year: 2020
  ident: b0310
  publication-title: J. Solid State Chem.
– volume: 11
  start-page: 2202195
  year: 2023
  ident: b0745
  publication-title: Adv. Optical Mater.
– volume: 35
  year: 2023
  ident: b0480
  publication-title: Mater. Today Phys.
– volume: 145
  start-page: 24401
  year: 2023
  end-page: 24407
  ident: b0040
  publication-title: J. Am. Chem. Soc.
– volume: 28
  year: 2022
  ident: b0195
  publication-title: Mater. Today Phys.
– volume: 61
  start-page: 10182
  year: 2022
  end-page: 10189
  ident: b0735
  publication-title: Inorg. Chem.
– volume: 53
  start-page: 4756
  year: 2014
  end-page: 4762
  ident: b0490
  publication-title: Inorg. Chem.
– volume: 49
  start-page: 3253
  year: 2020
  end-page: 3259
  ident: b0670
  publication-title: Dalton Trans.
– volume: 10
  start-page: 1328
  year: 2023
  end-page: 1337
  ident: b0545
  publication-title: Inorg. Chem. Front.
– volume: 52
  start-page: 2637
  year: 2013
  end-page: 2647
  ident: b0385
  publication-title: Inorg. Chem.
– volume: 63
  start-page: 39
  year: 2023
  end-page: 43
  ident: b0700
  publication-title: Inorg. Chem.
– volume: 62
  start-page: 557
  year: 2022
  end-page: 564
  ident: b0665
  publication-title: Inorg. Chem.
– volume: 10
  start-page: 2753
  year: 1998
  end-page: 2769
  ident: b0315
  publication-title: Chem. Mater.
– volume: 896
  year: 2022
  ident: b0600
  publication-title: J. Alloy. Compd.
– volume: 10
  start-page: 10870
  year: 2019
  end-page: 10875
  ident: b0090
  publication-title: Chem. Sci.
– volume: 431
  start-page: 213916
  year: 2021
  ident: b0630
  publication-title: Coord. Chem. Rev.
– volume: 7
  start-page: 5924
  year: 2023
  end-page: 5931
  ident: b0135
  publication-title: Mater. Chem. Front.
– volume: 902
  year: 2022
  ident: b0690
  publication-title: J. Alloy. Compd.
– volume: 128
  start-page: 7750
  year: 2006
  end-page: 7751
  ident: b0650
  publication-title: J. Am. Chem. Soc.
– volume: 490
  year: 2023
  ident: b0475
  publication-title: Coord. Chem. Rev.
– volume: 143
  start-page: 12455
  year: 2021
  end-page: 12459
  ident: b0180
  publication-title: J. Am. Chem. Soc.
– volume: 62
  start-page: 1744
  year: 2023
  end-page: 1751
  ident: b0015
  publication-title: Inorg. Chem.
– volume: 959
  year: 2023
  ident: b0450
  publication-title: J. Alloy. Compd.
– volume: 62
  start-page: e202302025
  year: 2023
  ident: b0105
  publication-title: Angew. Chem. Int. Ed.
– volume: 34
  year: 2023
  ident: b0270
  publication-title: Chinese Chem. Lett.
– volume: 14
  start-page: 10588
  year: 2022
  end-page: 10593
  ident: b0585
  publication-title: ACS Appl. Mater. Interfaces
– volume: 61
  start-page: 18622
  year: 2022
  end-page: 18628
  ident: b0710
  publication-title: Inorg. Chem.
– volume: 62
  start-page: 10461
  year: 2023
  end-page: 10469
  ident: b0740
  publication-title: Inorg. Chem.
– volume: 62
  start-page: 1069
  year: 2023
  end-page: 1074
  ident: b0730
  publication-title: Inorg. Chem.
– volume: 62
  start-page: e202301420
  year: 2023
  ident: b0440
  publication-title: Angew. Chem. Int. Ed.
– volume: 245
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0510
  publication-title: J. Solid State Chem.
– volume: 9
  start-page: 6490
  year: 2022
  end-page: 6497
  ident: b0140
  publication-title: Inorg. Chem. Front.
– volume: 121
  start-page: 1130
  year: 2021
  end-page: 1202
  ident: b0625
  publication-title: Chem. Rev.
– volume: 10
  start-page: 2304463
  year: 2023
  ident: b0400
  publication-title: Adv. Sci.
– volume: 61
  start-page: 15368
  year: 2022
  end-page: 15376
  ident: b0430
  publication-title: Inorg. Chem.
– volume: 375
  start-page: 459
  year: 2018
  end-page: 488
  ident: b0275
  publication-title: Coord. Chem. Rev.
– volume: 62
  start-page: 14512
  year: 2023
  end-page: 14517
  ident: b0750
  publication-title: Inorg. Chem.
– volume: 37
  year: 2023
  ident: b0465
  publication-title: Mater. Today Phys.
– volume: 10
  start-page: 4711
  year: 2023
  end-page: 4718
  ident: b0765
  publication-title: Inorg. Chem. Front.
– volume: 470
  year: 2022
  ident: b0245
  publication-title: Coord. Chem. Rev.
– volume: 50
  start-page: 15057
  year: 2021
  end-page: 15061
  ident: b0660
  publication-title: Dalton Trans.
– volume: 286
  year: 2020
  ident: b0635
  publication-title: J. Solid State Chem.
– volume: 62
  start-page: 13626
  year: 2023
  end-page: 13631
  ident: b0030
  publication-title: Inorg. Chem.
– volume: 13
  start-page: 5305
  year: 2022
  end-page: 5310
  ident: b0255
  publication-title: Chem. Sci.
– volume: 36
  start-page: 2113
  year: 2024
  end-page: 2123
  ident: b0335
  publication-title: Chem. Mater.
– volume: 53
  start-page: 8816
  year: 2014
  end-page: 8824
  ident: b0580
  publication-title: Inorg. Chem.
– volume: 58
  start-page: 5594
  year: 2022
  end-page: 5597
  ident: b0590
  publication-title: Chem. Commun.
– volume: 51
  start-page: 609
  year: 2012
  end-page: 619
  ident: b0390
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 1704
  year: 2024
  end-page: 1709
  ident: b0455
  publication-title: Mater. Horiz.
– volume: 52
  start-page: 3611
  year: 2013
  end-page: 3619
  ident: b0325
  publication-title: Inorg. Chem.
– volume: 49
  start-page: 9965
  year: 2013
  end-page: 9967
  ident: b0575
  publication-title: Chem. Commun.
– volume: 8
  start-page: 164
  year: 2021
  end-page: 172
  ident: b0175
  publication-title: Inorg. Chem. Front.
– volume: 8
  start-page: 3141
  year: 2021
  end-page: 3148
  ident: b0340
  publication-title: Inorg. Chem. Front.
– volume: 49
  start-page: 14046
  year: 2020
  end-page: 14051
  ident: b0405
  publication-title: Dalton Trans.
– volume: 61
  start-page: 17893
  year: 2022
  end-page: 17901
  ident: b0145
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 572
  year: 2022
  end-page: 576
  ident: b0760
  publication-title: ACS Mater. Lett.
– volume: 145
  start-page: 24416
  year: 2023
  end-page: 24424
  ident: b0775
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 2301060
  year: 2023
  ident: b0250
  publication-title: Adv. Optical Mater.
– volume: 50
  start-page: 7238
  year: 2021
  end-page: 7245
  ident: b0370
  publication-title: Dalton Trans.
– volume: 32
  start-page: 7318
  year: 2020
  end-page: 7326
  ident: b0425
  publication-title: Chem. Mater.
– volume: 54
  start-page: 5032
  year: 2015
  end-page: 5038
  ident: b0485
  publication-title: Inorg. Chem.
– volume: 48
  start-page: 1365
  year: 1992
  end-page: 1367
  ident: b0525
  publication-title: Acta Cryst. C
– volume: 62
  start-page: i152
  year: 2006
  end-page: i154
  ident: b0535
  publication-title: Acta Cryst.
– volume: 15
  start-page: 2883
  year: 2024
  end-page: 2888
  ident: b0165
  publication-title: Chem. Sci.
– volume: 44
  year: 2024
  ident: b0260
  publication-title: Mater. Today Phys.
– volume: 63
  start-page: 4487
  year: 2024
  end-page: 4491
  ident: b0075
  publication-title: Inorg. Chem.
– volume: 10
  start-page: 619
  year: 2023
  end-page: 624
  ident: b0240
  publication-title: Mater. Horiz.
– volume: 34
  start-page: 1323
  year: 1978
  end-page: 1326
  ident: b0540
  publication-title: Acta Cryst.
– volume: 7
  start-page: 65
  year: 2023
  end-page: 71
  ident: b0685
  publication-title: Mater. Chem. Front.
– volume: 640
  start-page: 39
  year: 2015
  end-page: 44
  ident: b0570
  publication-title: J. Alloy. Compd.
– volume: 63
  start-page: e202318976
  year: 2024
  ident: b0305
  publication-title: Angew. Chem. Int. Ed.
– volume: 62
  start-page: 1821
  year: 2019
  end-page: 1830
  ident: b0350
  publication-title: Sci. China Mater.
– volume: 477
  year: 2023
  ident: b0235
  publication-title: Coord. Chem. Rev.
– volume: 141
  start-page: 748
  year: 2019
  end-page: 752
  ident: b0560
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2876
  year: 2023
  end-page: 2882
  ident: b0230
  publication-title: Mater. Horiz.
– volume: 14
  start-page: 8727
  year: 2012
  end-page: 8733
  ident: b0655
  publication-title: CrstEngComm
– volume: 20
  start-page: 2304563
  year: 2024
  ident: b0205
  publication-title: Small
– volume: 9
  start-page: 4705
  year: 2022
  end-page: 4713
  ident: b0705
  publication-title: Inorg. Chem. Front.
– volume: 60
  start-page: 15653
  year: 2021
  end-page: 15658
  ident: b0360
  publication-title: Inorg. Chem.
– volume: 291
  start-page: 352
  year: 1986
  end-page: 356
  ident: b0530
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 19
  start-page: 2207709
  year: 2023
  ident: b0460
  publication-title: Small
– volume: 145
  start-page: 3040
  year: 2023
  end-page: 3046
  ident: b0610
  publication-title: J. Am. Chem. Soc.
– volume: 61
  start-page: e202213499
  year: 2022
  ident: b0680
  publication-title: Angew. Chem. Int. Ed.
– volume: 62
  start-page: 8494
  year: 2023
  end-page: 8499
  ident: b0025
  publication-title: Inorg. Chem.
– volume: 62
  start-page: 19135
  year: 2023
  end-page: 19141
  ident: b0300
  publication-title: Inorg. Chem.
– volume: 273
  start-page: 106
  year: 2019
  end-page: 111
  ident: b0550
  publication-title: J. Solid State Chem.
– volume: 62
  start-page: 4752
  year: 2023
  end-page: 4756
  ident: b0675
  publication-title: Inorg. Chem.
– volume: 9
  start-page: 5469
  year: 2022
  end-page: 5477
  ident: b0715
  publication-title: Inorg. Chem. Front.
– volume: 9
  start-page: 5917
  year: 2022
  end-page: 5925
  ident: b0060
  publication-title: Inorg. Chem. Front.
– start-page: e2309776
  year: 2023
  ident: b0160
  publication-title: Small
– volume: 12
  start-page: 4986
  year: 2024
  end-page: 4994
  ident: b0330
  publication-title: J. Mater. Chem. C
– volume: 57
  start-page: 7039
  year: 2021
  end-page: 7042
  ident: b0355
  publication-title: Chem. Commun.
– volume: 9
  start-page: 1513
  year: 2022
  end-page: 1517
  ident: b0045
  publication-title: Mater. Horiz.
– volume: 63
  start-page: 4011
  year: 2024
  end-page: 4016
  ident: b0695
  publication-title: Inorg. Chem.
– year: 2024
  ident: b0070
  publication-title: Chin. Chem. Lett.
– start-page: 2307072
  year: 2023
  ident: b0770
  publication-title: Small
– volume: 32
  start-page: 7958
  year: 2020
  end-page: 7964
  ident: b0435
  publication-title: Chem. Mater.
– volume: 144
  start-page: 9083
  year: 2022
  end-page: 9090
  ident: b0130
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 5680
  year: 2023
  end-page: 5688
  ident: b0290
  publication-title: Chem. Mater.
– volume: 256
  start-page: 213
  year: 2017
  end-page: 218
  ident: b0515
  publication-title: J. Solid State Chem.
– volume: 19
  start-page: 2300248
  year: 2023
  ident: b0055
  publication-title: Small
– volume: 22
  start-page: 3241
  year: 2010
  end-page: 3250
  ident: b0375
  publication-title: Chem. Mater.
– volume: 57
  start-page: 2982
  year: 2021
  end-page: 2985
  ident: b0345
  publication-title: Chem. Commun.
– volume: 57
  start-page: 11839
  year: 1846
  end-page: 111831
  ident: b0555
  publication-title: Inorg. Chem.
– volume: 47
  start-page: 1911
  year: 2018
  end-page: 1917
  ident: b0320
  publication-title: Dalton Trans.
– volume: 12
  start-page: 2301426
  year: 2024
  ident: b0445
  publication-title: Adv. Optical Mater.
– volume: 25
  start-page: 1675
  year: 2023
  end-page: 1682
  ident: b0470
  publication-title: CrstEngComm
– volume: 62
  start-page: 9295
  year: 2023
  end-page: 9299
  ident: b0065
  publication-title: Inorg. Chem.
– volume: 217
  year: 2022
  ident: b0295
  publication-title: Scr. Mater.
– volume: 62
  start-page: 15293
  year: 2023
  end-page: 15299
  ident: b0755
  publication-title: Inorg. Chem.
– volume: 52
  start-page: 5176
  year: 2013
  end-page: 5184
  ident: b0495
  publication-title: Inorg. Chem.
– volume: 62
  start-page: 4757
  year: 2023
  end-page: 4761
  ident: b0085
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 2300579
  year: 2023
  ident: b0110
  publication-title: Adv. Optical Mater.
– volume: 61
  start-page: 14880
  year: 2022
  end-page: 14886
  ident: b0220
  publication-title: Inorg. Chem.
– volume: 20
  start-page: 2305473
  year: 2023
  ident: b0210
  publication-title: Small
– volume: 62
  start-page: 7890
  year: 2023
  end-page: 7897
  ident: b0520
  publication-title: Inorg. Chem.
– volume: 896
  year: 2022
  ident: b0595
  publication-title: J. Alloy. Compd.
– volume: 14
  start-page: 9533
  year: 2023
  end-page: 9542
  ident: b0010
  publication-title: Chem. Sci.
– volume: 62
  start-page: 11215
  year: 2023
  end-page: 11224
  ident: b0725
  publication-title: Inorg. Chem.
– start-page: e2310423
  year: 2024
  ident: b0265
  publication-title: Small
– volume: 57
  start-page: 3465
  year: 2018
  end-page: 3473
  ident: b0505
  publication-title: Inorg. Chem.
– volume: 50
  start-page: 5215
  year: 2011
  end-page: 5222
  ident: b0380
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 1775
  year: 2024
  end-page: 1780
  ident: b0155
  publication-title: Inorg. Chem. Front.
– volume: 54
  start-page: 2775
  year: 2021
  end-page: 2783
  ident: b0150
  publication-title: Acc. Chem. Res.
– volume: 32
  start-page: 3043
  year: 2020
  end-page: 3053
  ident: b0365
  publication-title: Chem. Mater.
– volume: 7
  start-page: 4683
  year: 2023
  end-page: 4692
  ident: b0620
  publication-title: Mater. Chem. Front.
– volume: 6
  start-page: 3567
  year: 2022
  end-page: 3576
  ident: b0170
  publication-title: Mater. Chem. Front.
– volume: 10
  start-page: 5270
  year: 2023
  end-page: 5277
  ident: b0605
  publication-title: Inorg. Chem. Front.
– volume: 52
  start-page: 5176
  year: 2013
  ident: 10.1016/j.ccr.2024.216000_b0495
  publication-title: Inorg. Chem.
  doi: 10.1021/ic400458a
– volume: 15
  start-page: 2883
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0165
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC06683E
– volume: 10
  start-page: 2876
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0230
  publication-title: Mater. Horiz.
  doi: 10.1039/D3MH00257H
– volume: 10
  start-page: 2921
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0005
  publication-title: Mater. Horiz.
  doi: 10.1039/D3MH00389B
– volume: 291
  start-page: 352
  year: 1986
  ident: 10.1016/j.ccr.2024.216000_b0530
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 62
  start-page: 8494
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0025
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c01428
– volume: 60
  start-page: 3539
  year: 2021
  ident: 10.1016/j.ccr.2024.216000_b0615
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c00210
– volume: 48
  start-page: 1365
  year: 1992
  ident: 10.1016/j.ccr.2024.216000_b0525
  publication-title: Acta Cryst. C
  doi: 10.1107/S0108270192000015
– volume: 145
  start-page: 3040
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0610
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c11645
– volume: 62
  start-page: 4757
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0085
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c00556
– volume: 459
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0095
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214380
– start-page: e2310423
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0265
  publication-title: Small
  doi: 10.1002/smll.202310423
– volume: 10
  start-page: 1328
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0545
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI02272A
– volume: 61
  start-page: 10182
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0735
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c01381
– volume: 7
  start-page: 65
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0685
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D2QM00983H
– volume: 8
  start-page: 3141
  year: 2021
  ident: 10.1016/j.ccr.2024.216000_b0340
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D1QI00373A
– volume: 6
  start-page: 3567
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0170
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D2QM00773H
– volume: 145
  start-page: 24416
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0775
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c09566
– volume: 142
  start-page: 4616
  year: 2020
  ident: 10.1016/j.ccr.2024.216000_b0050
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00702
– volume: 62
  start-page: e202301420
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0440
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202301420
– volume: 53
  start-page: 4756
  year: 2014
  ident: 10.1016/j.ccr.2024.216000_b0490
  publication-title: Inorg. Chem.
  doi: 10.1021/ic500548v
– volume: 8
  start-page: 164
  year: 2021
  ident: 10.1016/j.ccr.2024.216000_b0175
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI01130D
– volume: 62
  start-page: 9130
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0640
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c00986
– volume: 62
  start-page: e202302025
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0105
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202302025
– volume: 35
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0480
  publication-title: Mater. Today Phys.
– volume: 9
  start-page: 5917
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0060
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI01817A
– volume: 49
  start-page: 9965
  year: 2013
  ident: 10.1016/j.ccr.2024.216000_b0575
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc45747h
– volume: 145
  start-page: 24401
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0040
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c09573
– volume: 232
  start-page: 193
  year: 2015
  ident: 10.1016/j.ccr.2024.216000_b0500
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2015.09.033
– volume: 63
  start-page: 4011
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0695
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.4c00033
– volume: 61
  start-page: 17893
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0145
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c03267
– volume: 62
  start-page: 15293
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0755
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c02532
– volume: 25
  start-page: 1675
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0470
  publication-title: CrstEngComm
  doi: 10.1039/D2CE01627C
– volume: 32
  start-page: 7318
  year: 2020
  ident: 10.1016/j.ccr.2024.216000_b0425
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c02167
– volume: 62
  start-page: 1821
  year: 2019
  ident: 10.1016/j.ccr.2024.216000_b0350
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-019-1193-x
– volume: 62
  start-page: 14512
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0750
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c02644
– volume: 20
  start-page: 2305473
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0210
  publication-title: Small
  doi: 10.1002/smll.202305473
– volume: 61
  start-page: e202213499
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0680
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202213499
– volume: 62
  start-page: 1744
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0015
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c04368
– volume: 62
  start-page: 9295
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0065
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c01540
– volume: 9
  start-page: 1513
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0045
  publication-title: Mater. Horiz.
  doi: 10.1039/D2MH00060A
– volume: 15
  start-page: 7104
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0120
  publication-title: Chem. Sci.
  doi: 10.1039/D4SC01376J
– volume: 10
  start-page: 787
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0285
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI01466A
– volume: 453
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0200
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214328
– volume: 145
  start-page: 12691
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0280
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c02400
– start-page: 2307072
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0770
  publication-title: Small
– volume: 256
  start-page: 213
  year: 2017
  ident: 10.1016/j.ccr.2024.216000_b0515
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2017.09.014
– volume: 10
  start-page: 2753
  year: 1998
  ident: 10.1016/j.ccr.2024.216000_b0315
  publication-title: Chem. Mater.
  doi: 10.1021/cm980140w
– volume: 11
  start-page: 2300987
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0020
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.202300987
– volume: 3
  start-page: 12290
  year: 2015
  ident: 10.1016/j.ccr.2024.216000_b0420
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC02925B
– volume: 19
  start-page: 2207709
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0460
  publication-title: Small
  doi: 10.1002/smll.202207709
– volume: 141
  start-page: 748
  year: 2019
  ident: 10.1016/j.ccr.2024.216000_b0560
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11485
– volume: 477
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0235
  publication-title: Coord. Chem. Rev.
– volume: 62
  start-page: 13626
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0030
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c02025
– year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0070
  publication-title: Chin. Chem. Lett.
– volume: 63
  start-page: 4487
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0075
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.4c00366
– volume: 61
  start-page: e202116790
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0125
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202116790
– volume: 262
  start-page: 320
  year: 2018
  ident: 10.1016/j.ccr.2024.216000_b0645
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2018.03.033
– volume: 63
  start-page: 39
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0700
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c02845
– volume: 143
  start-page: 12455
  year: 2021
  ident: 10.1016/j.ccr.2024.216000_b0180
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c06061
– volume: 217
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0295
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2022.114764
– volume: 57
  start-page: 2982
  year: 2021
  ident: 10.1016/j.ccr.2024.216000_b0345
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC00346A
– volume: 61
  start-page: 14880
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0220
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c02521
– volume: 20
  start-page: 2304563
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0205
  publication-title: Small
  doi: 10.1002/smll.202304563
– volume: 57
  start-page: 3465
  year: 2018
  ident: 10.1016/j.ccr.2024.216000_b0505
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b00305
– volume: 52
  start-page: 2637
  year: 2013
  ident: 10.1016/j.ccr.2024.216000_b0385
  publication-title: Inorg. Chem.
  doi: 10.1021/ic3026705
– volume: 902
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0690
  publication-title: J. Alloy. Compd.
– volume: 640
  start-page: 39
  year: 2015
  ident: 10.1016/j.ccr.2024.216000_b0570
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.04.021
– volume: 146
  start-page: 7868
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0115
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c01740
– volume: 896
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0595
  publication-title: J. Alloy. Compd.
– volume: 66
  start-page: 4473
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0780
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-023-2592-x
– volume: 10
  start-page: 10870
  year: 2019
  ident: 10.1016/j.ccr.2024.216000_b0090
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC04832D
– volume: 34
  start-page: 8004
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0190
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.2c01922
– volume: 35
  start-page: 5680
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0290
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.3c01246
– volume: 896
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0600
  publication-title: J. Alloy. Compd.
– volume: 121
  start-page: 1130
  year: 2021
  ident: 10.1016/j.ccr.2024.216000_b0625
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00796
– volume: 62
  start-page: 11215
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0725
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c01461
– volume: 54
  start-page: 5032
  year: 2015
  ident: 10.1016/j.ccr.2024.216000_b0485
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00653
– volume: 7
  start-page: 4683
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0620
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D3QM00451A
– volume: 49
  start-page: 3253
  year: 2020
  ident: 10.1016/j.ccr.2024.216000_b0670
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT00116C
– volume: 50
  start-page: 7238
  year: 2021
  ident: 10.1016/j.ccr.2024.216000_b0370
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT00536G
– volume: 63
  start-page: e202318976
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0305
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202318976
– volume: 138
  start-page: 9433
  year: 2016
  ident: 10.1016/j.ccr.2024.216000_b0415
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06680
– volume: 37
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0465
  publication-title: Mater. Today Phys.
– volume: 128
  start-page: 7750
  year: 2006
  ident: 10.1016/j.ccr.2024.216000_b0650
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0620991
– volume: 12
  start-page: 4986
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0330
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D4TC00554F
– volume: 60
  start-page: 15653
  year: 2021
  ident: 10.1016/j.ccr.2024.216000_b0360
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c02315
– volume: 57
  start-page: 11839
  issue: 2018
  year: 1846
  ident: 10.1016/j.ccr.2024.216000_b0555
  publication-title: Inorg. Chem.
– volume: 54
  start-page: 10978
  year: 2015
  ident: 10.1016/j.ccr.2024.216000_b0395
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b02074
– volume: 12
  start-page: 2301426
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0445
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.202301426
– volume: 286
  year: 2020
  ident: 10.1016/j.ccr.2024.216000_b0310
  publication-title: J. Solid State Chem.
– volume: 11
  start-page: 1775
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0155
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI02561F
– volume: 10
  start-page: 4711
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0765
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI00979C
– volume: 959
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0450
  publication-title: J. Alloy. Compd.
– volume: 32
  start-page: 3043
  year: 2020
  ident: 10.1016/j.ccr.2024.216000_b0365
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c00034
– volume: 19
  start-page: 2300248
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0055
  publication-title: Small
  doi: 10.1002/smll.202300248
– volume: 4
  start-page: 572
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0760
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.2c00114
– volume: 34
  start-page: 1323
  year: 1978
  ident: 10.1016/j.ccr.2024.216000_b0540
  publication-title: Acta Cryst.
  doi: 10.1107/S0567740878005440
– volume: 13
  start-page: 454
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0080
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC06026K
– volume: 62
  start-page: 7890
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0520
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c00628
– volume: 125
  start-page: 7764
  year: 2003
  ident: 10.1016/j.ccr.2024.216000_b0185
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja035314b
– volume: 57
  start-page: 7039
  year: 2021
  ident: 10.1016/j.ccr.2024.216000_b0355
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC02494A
– volume: 10
  start-page: 2304463
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0400
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202304463
– volume: 10
  start-page: 5270
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0605
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI00513E
– volume: 11
  start-page: 2300736
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0215
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.202300736
– volume: 53
  start-page: 8816
  year: 2014
  ident: 10.1016/j.ccr.2024.216000_b0580
  publication-title: Inorg. Chem.
  doi: 10.1021/ic501548m
– volume: 481
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0225
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2023.215059
– volume: 7
  start-page: 5924
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0135
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D3QM00811H
– volume: 50
  start-page: 5215
  year: 2011
  ident: 10.1016/j.ccr.2024.216000_b0380
  publication-title: Inorg. Chem.
  doi: 10.1021/ic200511q
– volume: 11
  start-page: 2301060
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0250
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.202301060
– volume: 11
  start-page: 1704
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0455
  publication-title: Mater. Horiz.
  doi: 10.1039/D3MH01790G
– volume: 9
  start-page: 5469
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0715
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI01469F
– volume: 62
  start-page: 1069
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0730
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c04331
– volume: 9
  start-page: 4705
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0705
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI01207C
– volume: 36
  start-page: 2113
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0335
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.3c03278
– volume: 11
  start-page: 2202195
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0745
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.202202195
– volume: 490
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0475
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2023.215212
– volume: 60
  start-page: 14806
  year: 2021
  ident: 10.1016/j.ccr.2024.216000_b0720
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202102992
– volume: 14
  start-page: 9533
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0010
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC03052K
– volume: 62
  start-page: 19135
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0300
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c03515
– volume: 13
  start-page: 10725
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0035
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC03760B
– volume: 34
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0270
  publication-title: Chinese Chem. Lett.
– volume: 62
  start-page: i152
  year: 2006
  ident: 10.1016/j.ccr.2024.216000_b0535
  publication-title: Acta Cryst.
  doi: 10.1107/S0108767306097741
– volume: 10
  start-page: 7343
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0410
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI01937C
– volume: 245
  start-page: 1
  year: 2017
  ident: 10.1016/j.ccr.2024.216000_b0510
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2016.09.031
– volume: 51
  start-page: 609
  year: 2012
  ident: 10.1016/j.ccr.2024.216000_b0390
  publication-title: Inorg. Chem.
  doi: 10.1021/ic2021403
– volume: 50
  start-page: 15057
  year: 2021
  ident: 10.1016/j.ccr.2024.216000_b0660
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT02890A
– volume: 470
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0245
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214706
– volume: 22
  start-page: 3241
  year: 2010
  ident: 10.1016/j.ccr.2024.216000_b0375
  publication-title: Chem. Mater.
  doi: 10.1021/cm100476m
– volume: 35
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0100
  publication-title: Chinese Chem. Lett.
– volume: 10
  start-page: 619
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0240
  publication-title: Mater. Horiz.
  doi: 10.1039/D2MH01200F
– volume: 375
  start-page: 459
  year: 2018
  ident: 10.1016/j.ccr.2024.216000_b0275
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.02.017
– volume: 32
  start-page: 7958
  year: 2020
  ident: 10.1016/j.ccr.2024.216000_b0435
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c02837
– volume: 273
  start-page: 106
  year: 2019
  ident: 10.1016/j.ccr.2024.216000_b0550
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2019.02.033
– volume: 52
  start-page: 3611
  year: 2013
  ident: 10.1016/j.ccr.2024.216000_b0325
  publication-title: Inorg. Chem.
  doi: 10.1021/ic301442f
– volume: 54
  start-page: 2775
  year: 2021
  ident: 10.1016/j.ccr.2024.216000_b0150
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00188
– start-page: e2309776
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0160
  publication-title: Small
– volume: 58
  start-page: 5594
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0590
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC01035F
– volume: 144
  start-page: 9083
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0130
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c02310
– volume: 7
  start-page: 4469
  year: 2020
  ident: 10.1016/j.ccr.2024.216000_b0565
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI01056A
– volume: 11
  start-page: 2300579
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0110
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.202300579
– volume: 286
  year: 2020
  ident: 10.1016/j.ccr.2024.216000_b0635
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2020.121292
– volume: 62
  start-page: 557
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0665
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c03787
– volume: 9
  start-page: 6490
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0140
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI01860H
– volume: 62
  start-page: 4752
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0675
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c00515
– volume: 47
  start-page: 1911
  year: 2018
  ident: 10.1016/j.ccr.2024.216000_b0320
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT04443G
– volume: 61
  start-page: 15368
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0430
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c01802
– volume: 14
  start-page: 10588
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0585
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c25098
– volume: 13
  start-page: 5305
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0255
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC00099G
– volume: 28
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0195
  publication-title: Mater. Today Phys.
– volume: 49
  start-page: 14046
  year: 2020
  ident: 10.1016/j.ccr.2024.216000_b0405
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT02514C
– volume: 431
  start-page: 213916
  year: 2021
  ident: 10.1016/j.ccr.2024.216000_b0630
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213692
– volume: 61
  start-page: 18622
  year: 2022
  ident: 10.1016/j.ccr.2024.216000_b0710
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c03059
– volume: 44
  year: 2024
  ident: 10.1016/j.ccr.2024.216000_b0260
  publication-title: Mater. Today Phys.
– volume: 14
  start-page: 8727
  year: 2012
  ident: 10.1016/j.ccr.2024.216000_b0655
  publication-title: CrstEngComm
  doi: 10.1039/c2ce26524a
– volume: 62
  start-page: 10461
  year: 2023
  ident: 10.1016/j.ccr.2024.216000_b0740
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c01459
SSID ssj0016992
Score 2.5869567
SecondaryResourceType review_article
Snippet This paper comprehensively reviews 63 selenite compounds with bandgaps above 4.2 eV in four major categories. The focus is on their structures, optical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 216000
SubjectTerms Birefringence
Crystal structures
Nonlinear optical crystals
Second harmonic-generation
UV selenites
Title Old tree blossoms anew: Research progress on the structures and optical properties of ultraviolet selenites
URI https://dx.doi.org/10.1016/j.ccr.2024.216000
Volume 517
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsCCeIpn5YEJKW3iOLHNVlVUBURZqNQtsp1EKpQkounKb-cujwokYEDKktPZis7O3Zf4uztCrhiLfSO1cpRQqcO11o4BZOqwgOlQe9J6EvOdH6fhZMbv58G8Q0ZtLgzSKhvfX_v0yls3kkFjzUGxWGCOLzLneYAsSJ9Xn0CcC9zl_Y8NzcMLlaorhoO_Qe32ZLPieFmLJUEZ7zMPAr_7c2z6Em_Ge2S3AYp0WD_LPukk2QHZHrX92Q7J69MypnimTM0SZsvfVlQDRr6hLZmOVtwr8GQ0zyjgPFrXil2DCDRjmhfVf2xUK5BdDeI8petl-a6r4_qSYicmxKSrIzIb3z6PJk7TOsGxTInSsSqEK0yMDZTRRmnMn_XTxJdJKGKfWSuZgKXQIFU6BLvEKnY94ybCs8qN_WPSzfIsOSFUcKUBREnNleTwvmoJM8JcKSgK1yanxG2NFtmmrji2t1hGLYHsJQI7R2jnqLbzKbneDCnqohp_KfN2JaJvOyMCp__7sLP_DTsnO3iH0ckLLkgXFia5BNhRml61r3pka3j3MJl-Ag8q1zU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6m7TAuiKd4kwMnpLI2TR_hNk1MHXtw2aTdojTtpEFpK9b9f-w-JpCAA1JPrh1VTmq79WebkDvGIjv0lTCEJ1YGV0oZIUSmBnOYcpXla8vHeufpzA0W_HnpLFtk0NTCIKyytv2VTS-tdU3p1drs5es11vgicp47iIK0OX4CdbA7ldMmnf5oHMx2yQRXiKppOJgcFGiSmyXMS2vsCsr4A7PA95s_u6cvLmd4QPbrWJH2q8c5JK04PSLdQTOi7Zi8vSQRxbQyDRNYLXvfUAVh8iNt8HS0hF-BMaNZSiHUo1W72C2QgDOiWV7-yka2HAHWQM5WdJsUH6rM2BcUhzFhWLo5IYvh03wQGPX0BEMz4RWGFi5cbhxqR4QqFApLaO1VbPux60U209pnHuyGAqpQLuglEpFphWbsWVqYkX1K2mmWxmeEelwoiKN8xYXP4ZVVPqwIa62A0TN1fE7MRmlS163FccJFIhsM2asEPUvUs6z0fE7udyJ51VfjL2be7IT8djgk2P3fxS7-J3ZLusF8OpGT0Wx8SfbwDjory7kibdik-BqikCK8qU_ZJ3xX2eY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Old+tree+blossoms+anew%3A+Research+progress+on+the+structures+and+optical+properties+of+ultraviolet+selenites&rft.jtitle=Coordination+chemistry+reviews&rft.au=Li%2C+Peng-Fei&rft.au=Hu%2C+Chun-Li&rft.au=Mao%2C+Jiang-Gao&rft.au=Kong%2C+Fang&rft.date=2024-10-15&rft.pub=Elsevier+B.V&rft.issn=0010-8545&rft.volume=517&rft_id=info:doi/10.1016%2Fj.ccr.2024.216000&rft.externalDocID=S0010854524003461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon