Eigenfunctions and the integrated density of states on Archimedean tilings
We study existence and absence of \ell^2 -eigenfunctions of the combinatorial Laplacian on the 11 Archimedean tilings of the Euclidean plane by regular convex polygons. We show that exactly two of these tilings (namely the (3.6)^2 “kagome” tiling and the (3.12^2) tiling) have \ell^2 -eigenfunctions....
Saved in:
Published in | Journal of spectral theory Vol. 11; no. 2; pp. 461 - 488 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
European Mathematical Society Publishing House
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-039X 1664-0403 |
DOI | 10.4171/jst/347 |
Cover
Loading…
Abstract | We study existence and absence of \ell^2 -eigenfunctions of the combinatorial Laplacian on the 11 Archimedean tilings of the Euclidean plane by regular convex polygons. We show that exactly two of these tilings (namely the (3.6)^2 “kagome” tiling and the (3.12^2) tiling) have \ell^2 -eigenfunctions. These eigenfunctions are infinitely degenerate and are constituted of explicitly described eigenfunctions which are supported on a finite number of vertices of the underlying graph (namely the hexagons and 12-gons in the tilings, respectively). Furthermore, we provide an explicit expression for the Integrated Density of States (IDS) of the Laplacian on Archimedean tilings in terms of eigenvalues of Floquet matrices and deduce integral formulas for the IDS of the Laplacian on the (4^4) , (3^6) , (6^3) , (3.6)^2 , and (3.12^2) tilings. Our method of proof can be applied to other \mathbb Z^d -periodic graphs as well. |
---|---|
AbstractList | We study existence and absence of \ell^2 -eigenfunctions of the combinatorial Laplacian on the 11 Archimedean tilings of the Euclidean plane by regular convex polygons. We show that exactly two of these tilings (namely the (3.6)^2 “kagome” tiling and the (3.12^2) tiling) have \ell^2 -eigenfunctions. These eigenfunctions are infinitely degenerate and are constituted of explicitly described eigenfunctions which are supported on a finite number of vertices of the underlying graph (namely the hexagons and 12-gons in the tilings, respectively). Furthermore, we provide an explicit expression for the Integrated Density of States (IDS) of the Laplacian on Archimedean tilings in terms of eigenvalues of Floquet matrices and deduce integral formulas for the IDS of the Laplacian on the (4^4) , (3^6) , (6^3) , (3.6)^2 , and (3.12^2) tilings. Our method of proof can be applied to other \mathbb Z^d -periodic graphs as well. We study existence and absence of [l.sup.2]-eigenfunctions of the combinatorial Laplacian on the 11 Archimedean tilings of the Euclidean plane by regular convex polygons. We show that exactly two of these tilings (namely the [(3.6).sup.2] "kagome" tiling and the ([3.12.sup.2]) tiling) have [l.sup.2]-eigenfunctions. These eigenfunctions are infinitely degenerate and are constituted of explicitly described eigenfunctions which are supported on a finite number of vertices of the underlying graph (namely the hexagons and 12-gons in the tilings, respectively). Furthermore, we provide an explicit expression for the Integrated Density of States (IDS) of the Laplacian on Archimedean tilings in terms of eigenvalues of Floquet matrices and deduce integral formulas for the IDS of the Laplacian on the ([4.sup.4]), ([3.sup.6]), ([6.sup.3]), [(3.6).sup.2], and ([3.12.sup.2]) tilings. Our method of proof can be applied to other [Z.sup.d] -periodic graphs as well. Mathematics Subject Classification (2020). Primary: 81Q10; Secondary: 47B15,05C50. Keywords. Eigenfunctions, Archimedean tilings, Floquet theory, integrated density of states. |
Audience | Academic |
Author | Peyerimhoff, Norbert Täufer, Matthias |
Author_xml | – sequence: 1 givenname: Norbert orcidid: 0000-0001-9630-7901 surname: Peyerimhoff fullname: Peyerimhoff, Norbert – sequence: 2 givenname: Matthias surname: Täufer fullname: Täufer, Matthias |
BookMark | eNplkE9LAzEQxYNUsNbiV8jN07aZJu5ujqXUfxS8KHhbstmZbco2K0k89NsbUS_KHGZ4897A_C7ZxI8eGbsGsVBQwfIQ01Kq6oxNoSxVIZSQk99Z6rcLNo_xIITISpV3U_a0dT16-vA2udFHbnzH0x658wn7YBJ2vEMfXTrxkXhMWYl89Hwd7N4dsUPjeXKD8328Yudkhojznz5jr3fbl81DsXu-f9ysd4Vd6SoVVkMLKKkFQVrVZLUqSZDoTE1QYq2tXokWtSillsKAXqEiTbJulbIGrJyxxffd3gzYOE9jCsbm6vDobOZBLuvrsgLQdXUrc6D4DtgwxhiQGuvyI_nfHHRDA6L5gtdkeE2Gl_03f_zvwR1NOP1zfgK3e3IG |
CitedBy_id | crossref_primary_10_1007_s00023_023_01399_7 crossref_primary_10_1063_5_0156336 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 European Mathematical Society Publishing House |
Copyright_xml | – notice: COPYRIGHT 2021 European Mathematical Society Publishing House |
DBID | AAYXX CITATION |
DOI | 10.4171/jst/347 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1664-0403 |
EndPage | 488 |
ExternalDocumentID | A671198753 10_4171_jst_347 |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GroupedDBID | AAFWJ AAYXX AENEX AFPKN AKZPS ALMA_UNASSIGNED_HOLDINGS AUREJ CITATION FEDTE GROUPED_DOAJ H13 HVGLF IAO IGS ITC J9A OK1 REW VH7 |
ID | FETCH-LOGICAL-c297t-c91b1e3fb10f948fc946f0f0da8f16e89c920be9063930a192e4f9f38b44ca1c3 |
ISSN | 1664-039X |
IngestDate | Sat Mar 08 18:25:32 EST 2025 Thu Aug 07 06:24:47 EDT 2025 Thu Apr 24 22:52:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c297t-c91b1e3fb10f948fc946f0f0da8f16e89c920be9063930a192e4f9f38b44ca1c3 |
ORCID | 0000-0001-9630-7901 |
OpenAccessLink | http://www.ems-ph.org/journals/show_pdf.php?issn=1664-039X&vol=11&iss=2&rank=3 |
PageCount | 28 |
ParticipantIDs | gale_infotracacademiconefile_A671198753 crossref_citationtrail_10_4171_jst_347 crossref_primary_10_4171_jst_347 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of spectral theory |
PublicationYear | 2021 |
Publisher | European Mathematical Society Publishing House |
Publisher_xml | – name: European Mathematical Society Publishing House |
SSID | ssj0001667403 |
Score | 2.167854 |
Snippet | We study existence and absence of \ell^2 -eigenfunctions of the combinatorial Laplacian on the 11 Archimedean tilings of the Euclidean plane by regular convex... We study existence and absence of [l.sup.2]-eigenfunctions of the combinatorial Laplacian on the 11 Archimedean tilings of the Euclidean plane by regular... |
SourceID | gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 461 |
SubjectTerms | Eigenfunctions Graph theory Laplacian operator Mathematical research |
Title | Eigenfunctions and the integrated density of states on Archimedean tilings |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaW7aUX-hb0JR8QHKoUPwbv-ogqEFoJTiBxi2InVpHQpoLsAX59Z2xvyC6VClyiyIqtxN9oPDOZ-YaxHRu8Q8NTF8rouoDaUCN3LQorvHaVqgAC1Q6fnpmTC5hdHlyORrNB1tKicz_9_T_rSl6CKo4hrlQl-wxk-0VxAO8RX7wiwnh9EsZHRKVJJ1NKZ1smQ_YUEPWPmvLTU9JFLB2KPwci2yyeghSE766u-1j5Yxs11mFSCX-3LOHPevSOWCp-t4nS8ay9ofTsPggQf77DIiRpiB3Fr6qV-IKSg_hCUonGQCF0bHiLJ8ZgDIRe0aNyIC9qoBQh0a3n8xVSG7911Q1yElU3Vboc68TCuUqPvXZs9cmE6MbQ5BKnljhxg71S6DKogXsd423GTCA2yu4_KNVQ09x9nLuvqcXOwDgZL9Mjs7Fx_pZtZgT4YYL8HRs18_fsTfYYeNbHtx_YbFUCOEoAR6j4gwTwLAG8DTxJAG_nfCABPEvAR3ZxfHT-66TI3TEKr-ykK7yVTjY6OCmChWnwFkwQQdTVNEjTTK23SrjGkg2qRYWWfAPBBj11AL6SXn9i43k7b7YYV9I1aDcLB54Ki4mDzlU1-v7BkD9ab7Pd5baUPlPHUweT63Jt77cZ7x_8k9hSHj-yR_taEva4hq9yGQi-CTGRlYdmIikQdqA__3-xL-z1g8h-ZePuZtF8QyOxc98j-n8BfThrOQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eigenfunctions+and+the+integrated+density+of+states+on+Archimedean+tilings&rft.jtitle=Journal+of+spectral+theory&rft.au=Peyerimhoff%2C+Norbert&rft.au=T%C3%A4ufer%2C+Matthias&rft.date=2021-01-01&rft.issn=1664-039X&rft.eissn=1664-0403&rft.volume=11&rft.issue=2&rft.spage=461&rft.epage=488&rft_id=info:doi/10.4171%2Fjst%2F347&rft.externalDBID=n%2Fa&rft.externalDocID=10_4171_jst_347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-039X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-039X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-039X&client=summon |