Eigenfunctions and the integrated density of states on Archimedean tilings

We study existence and absence of \ell^2 -eigenfunctions of the combinatorial Laplacian on the 11 Archimedean tilings of the Euclidean plane by regular convex polygons. We show that exactly two of these tilings (namely the (3.6)^2 “kagome” tiling and the (3.12^2) tiling) have \ell^2 -eigenfunctions....

Full description

Saved in:
Bibliographic Details
Published inJournal of spectral theory Vol. 11; no. 2; pp. 461 - 488
Main Authors Peyerimhoff, Norbert, Täufer, Matthias
Format Journal Article
LanguageEnglish
Published European Mathematical Society Publishing House 01.01.2021
Subjects
Online AccessGet full text
ISSN1664-039X
1664-0403
DOI10.4171/jst/347

Cover

Loading…
Abstract We study existence and absence of \ell^2 -eigenfunctions of the combinatorial Laplacian on the 11 Archimedean tilings of the Euclidean plane by regular convex polygons. We show that exactly two of these tilings (namely the (3.6)^2 “kagome” tiling and the (3.12^2) tiling) have \ell^2 -eigenfunctions. These eigenfunctions are infinitely degenerate and are constituted of explicitly described eigenfunctions which are supported on a finite number of vertices of the underlying graph (namely the hexagons and 12-gons in the tilings, respectively). Furthermore, we provide an explicit expression for the Integrated Density of States (IDS) of the Laplacian on Archimedean tilings in terms of eigenvalues of Floquet matrices and deduce integral formulas for the IDS of the Laplacian on the (4^4) , (3^6) , (6^3) , (3.6)^2 , and (3.12^2) tilings. Our method of proof can be applied to other \mathbb Z^d -periodic graphs as well.
AbstractList We study existence and absence of \ell^2 -eigenfunctions of the combinatorial Laplacian on the 11 Archimedean tilings of the Euclidean plane by regular convex polygons. We show that exactly two of these tilings (namely the (3.6)^2 “kagome” tiling and the (3.12^2) tiling) have \ell^2 -eigenfunctions. These eigenfunctions are infinitely degenerate and are constituted of explicitly described eigenfunctions which are supported on a finite number of vertices of the underlying graph (namely the hexagons and 12-gons in the tilings, respectively). Furthermore, we provide an explicit expression for the Integrated Density of States (IDS) of the Laplacian on Archimedean tilings in terms of eigenvalues of Floquet matrices and deduce integral formulas for the IDS of the Laplacian on the (4^4) , (3^6) , (6^3) , (3.6)^2 , and (3.12^2) tilings. Our method of proof can be applied to other \mathbb Z^d -periodic graphs as well.
We study existence and absence of [l.sup.2]-eigenfunctions of the combinatorial Laplacian on the 11 Archimedean tilings of the Euclidean plane by regular convex polygons. We show that exactly two of these tilings (namely the [(3.6).sup.2] "kagome" tiling and the ([3.12.sup.2]) tiling) have [l.sup.2]-eigenfunctions. These eigenfunctions are infinitely degenerate and are constituted of explicitly described eigenfunctions which are supported on a finite number of vertices of the underlying graph (namely the hexagons and 12-gons in the tilings, respectively). Furthermore, we provide an explicit expression for the Integrated Density of States (IDS) of the Laplacian on Archimedean tilings in terms of eigenvalues of Floquet matrices and deduce integral formulas for the IDS of the Laplacian on the ([4.sup.4]), ([3.sup.6]), ([6.sup.3]), [(3.6).sup.2], and ([3.12.sup.2]) tilings. Our method of proof can be applied to other [Z.sup.d] -periodic graphs as well. Mathematics Subject Classification (2020). Primary: 81Q10; Secondary: 47B15,05C50. Keywords. Eigenfunctions, Archimedean tilings, Floquet theory, integrated density of states.
Audience Academic
Author Peyerimhoff, Norbert
Täufer, Matthias
Author_xml – sequence: 1
  givenname: Norbert
  orcidid: 0000-0001-9630-7901
  surname: Peyerimhoff
  fullname: Peyerimhoff, Norbert
– sequence: 2
  givenname: Matthias
  surname: Täufer
  fullname: Täufer, Matthias
BookMark eNplkE9LAzEQxYNUsNbiV8jN07aZJu5ujqXUfxS8KHhbstmZbco2K0k89NsbUS_KHGZ4897A_C7ZxI8eGbsGsVBQwfIQ01Kq6oxNoSxVIZSQk99Z6rcLNo_xIITISpV3U_a0dT16-vA2udFHbnzH0x658wn7YBJ2vEMfXTrxkXhMWYl89Hwd7N4dsUPjeXKD8328Yudkhojznz5jr3fbl81DsXu-f9ysd4Vd6SoVVkMLKKkFQVrVZLUqSZDoTE1QYq2tXokWtSillsKAXqEiTbJulbIGrJyxxffd3gzYOE9jCsbm6vDobOZBLuvrsgLQdXUrc6D4DtgwxhiQGuvyI_nfHHRDA6L5gtdkeE2Gl_03f_zvwR1NOP1zfgK3e3IG
CitedBy_id crossref_primary_10_1007_s00023_023_01399_7
crossref_primary_10_1063_5_0156336
ContentType Journal Article
Copyright COPYRIGHT 2021 European Mathematical Society Publishing House
Copyright_xml – notice: COPYRIGHT 2021 European Mathematical Society Publishing House
DBID AAYXX
CITATION
DOI 10.4171/jst/347
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1664-0403
EndPage 488
ExternalDocumentID A671198753
10_4171_jst_347
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID AAFWJ
AAYXX
AENEX
AFPKN
AKZPS
ALMA_UNASSIGNED_HOLDINGS
AUREJ
CITATION
FEDTE
GROUPED_DOAJ
H13
HVGLF
IAO
IGS
ITC
J9A
OK1
REW
VH7
ID FETCH-LOGICAL-c297t-c91b1e3fb10f948fc946f0f0da8f16e89c920be9063930a192e4f9f38b44ca1c3
ISSN 1664-039X
IngestDate Sat Mar 08 18:25:32 EST 2025
Thu Aug 07 06:24:47 EDT 2025
Thu Apr 24 22:52:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-c91b1e3fb10f948fc946f0f0da8f16e89c920be9063930a192e4f9f38b44ca1c3
ORCID 0000-0001-9630-7901
OpenAccessLink http://www.ems-ph.org/journals/show_pdf.php?issn=1664-039X&vol=11&iss=2&rank=3
PageCount 28
ParticipantIDs gale_infotracacademiconefile_A671198753
crossref_citationtrail_10_4171_jst_347
crossref_primary_10_4171_jst_347
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of spectral theory
PublicationYear 2021
Publisher European Mathematical Society Publishing House
Publisher_xml – name: European Mathematical Society Publishing House
SSID ssj0001667403
Score 2.167854
Snippet We study existence and absence of \ell^2 -eigenfunctions of the combinatorial Laplacian on the 11 Archimedean tilings of the Euclidean plane by regular convex...
We study existence and absence of [l.sup.2]-eigenfunctions of the combinatorial Laplacian on the 11 Archimedean tilings of the Euclidean plane by regular...
SourceID gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 461
SubjectTerms Eigenfunctions
Graph theory
Laplacian operator
Mathematical research
Title Eigenfunctions and the integrated density of states on Archimedean tilings
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaW7aUX-hb0JR8QHKoUPwbv-ogqEFoJTiBxi2InVpHQpoLsAX59Z2xvyC6VClyiyIqtxN9oPDOZ-YaxHRu8Q8NTF8rouoDaUCN3LQorvHaVqgAC1Q6fnpmTC5hdHlyORrNB1tKicz_9_T_rSl6CKo4hrlQl-wxk-0VxAO8RX7wiwnh9EsZHRKVJJ1NKZ1smQ_YUEPWPmvLTU9JFLB2KPwci2yyeghSE766u-1j5Yxs11mFSCX-3LOHPevSOWCp-t4nS8ay9ofTsPggQf77DIiRpiB3Fr6qV-IKSg_hCUonGQCF0bHiLJ8ZgDIRe0aNyIC9qoBQh0a3n8xVSG7911Q1yElU3Vboc68TCuUqPvXZs9cmE6MbQ5BKnljhxg71S6DKogXsd423GTCA2yu4_KNVQ09x9nLuvqcXOwDgZL9Mjs7Fx_pZtZgT4YYL8HRs18_fsTfYYeNbHtx_YbFUCOEoAR6j4gwTwLAG8DTxJAG_nfCABPEvAR3ZxfHT-66TI3TEKr-ykK7yVTjY6OCmChWnwFkwQQdTVNEjTTK23SrjGkg2qRYWWfAPBBj11AL6SXn9i43k7b7YYV9I1aDcLB54Ki4mDzlU1-v7BkD9ab7Pd5baUPlPHUweT63Jt77cZ7x_8k9hSHj-yR_taEva4hq9yGQi-CTGRlYdmIikQdqA__3-xL-z1g8h-ZePuZtF8QyOxc98j-n8BfThrOQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eigenfunctions+and+the+integrated+density+of+states+on+Archimedean+tilings&rft.jtitle=Journal+of+spectral+theory&rft.au=Peyerimhoff%2C+Norbert&rft.au=T%C3%A4ufer%2C+Matthias&rft.date=2021-01-01&rft.issn=1664-039X&rft.eissn=1664-0403&rft.volume=11&rft.issue=2&rft.spage=461&rft.epage=488&rft_id=info:doi/10.4171%2Fjst%2F347&rft.externalDBID=n%2Fa&rft.externalDocID=10_4171_jst_347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-039X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-039X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-039X&client=summon