Ensemble learning of multi-kernel Kriging surrogate models using regional discrepancy and space-filling criteria-based hybrid sampling method

Kriging surrogate model has been widely used to simulate expensive models in engineering application. Ensemble of multi-kernel Kriging surrogate models can integrate the information of different kernel functions and enhance the predictive robustness. The performance of the ensemble Kriging model is...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering informatics Vol. 58; p. 102186
Main Authors Shang, Xiaobing, Zhang, Zhi, Fang, Hai, Li, Bo, Li, Yunhui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2023
Subjects
Online AccessGet full text
ISSN1474-0346
1873-5320
DOI10.1016/j.aei.2023.102186

Cover

Loading…
Abstract Kriging surrogate model has been widely used to simulate expensive models in engineering application. Ensemble of multi-kernel Kriging surrogate models can integrate the information of different kernel functions and enhance the predictive robustness. The performance of the ensemble Kriging model is dependent on the collection of samples. However, the traditional sampling methods primarily concentrate on the accuracy of individual-kernel Kriging, disregarding the difference among different kernel functions. To deal with the issue of sample selection in the context of ensemble Kriging, a regional discrepancy and space-filling criteria-based hybrid sampling (RSHS) method is proposed in this paper. According to the bias-variance decomposition, the expected leave-one-out cross validation error is introduced to compute the weight of each Kriging component. Considering the disagreement of different kernel-based Kriging models, the combination of regional correlation and regional predictive error is derived to measure the regional discrepancy for pursuing local accuracy. The space-filling criterion is also employed to ensure the even coverage across the entire space for global exploration. Therefore, the hybrid sampling criterion is developed to select sample point sequentially by maximizing the regional discrepancy with subject to the constraint of space-filling criterion. The performance of the proposed method is validated by six benchmark examples and an engineering application of airfoil shape model. The results demonstrate the RSHS sampling method can provide promising accuracy and robustness for ensemble Kriging metamodeling.
AbstractList Kriging surrogate model has been widely used to simulate expensive models in engineering application. Ensemble of multi-kernel Kriging surrogate models can integrate the information of different kernel functions and enhance the predictive robustness. The performance of the ensemble Kriging model is dependent on the collection of samples. However, the traditional sampling methods primarily concentrate on the accuracy of individual-kernel Kriging, disregarding the difference among different kernel functions. To deal with the issue of sample selection in the context of ensemble Kriging, a regional discrepancy and space-filling criteria-based hybrid sampling (RSHS) method is proposed in this paper. According to the bias-variance decomposition, the expected leave-one-out cross validation error is introduced to compute the weight of each Kriging component. Considering the disagreement of different kernel-based Kriging models, the combination of regional correlation and regional predictive error is derived to measure the regional discrepancy for pursuing local accuracy. The space-filling criterion is also employed to ensure the even coverage across the entire space for global exploration. Therefore, the hybrid sampling criterion is developed to select sample point sequentially by maximizing the regional discrepancy with subject to the constraint of space-filling criterion. The performance of the proposed method is validated by six benchmark examples and an engineering application of airfoil shape model. The results demonstrate the RSHS sampling method can provide promising accuracy and robustness for ensemble Kriging metamodeling.
ArticleNumber 102186
Author Li, Bo
Fang, Hai
Zhang, Zhi
Li, Yunhui
Shang, Xiaobing
Author_xml – sequence: 1
  givenname: Xiaobing
  surname: Shang
  fullname: Shang, Xiaobing
  organization: College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
– sequence: 2
  givenname: Zhi
  surname: Zhang
  fullname: Zhang, Zhi
  email: zhangzhi1981@hrbeu.edu.cn
  organization: College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
– sequence: 3
  givenname: Hai
  surname: Fang
  fullname: Fang, Hai
  organization: Shanghai Electro-mechanical Engineering Institute, Shanghai, China
– sequence: 4
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  organization: College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
– sequence: 5
  givenname: Yunhui
  surname: Li
  fullname: Li, Yunhui
  organization: Shanghai Universality, Shanghai, China
BookMark eNp9kEtu2zAQQIkiBZqkPUB3vIBcUl8KWQVB2hQ1kE26JkbkyBmXoowhXcCHyJ0jxV11kdV83wDzrsRFnCMK8VWrjVa6_bbfANKmVGW11KU27QdxqU1XFU1Vqoslr7u6UFXdfhJXKe3Vwpi-uxQv9zHhNASUAYEjxZ2cRzkdQ6biD3LEIH8x7dZ-OjLPO8gop9ljSPKY1jbjjuYIQXpKjvEA0Z0kRC_TARwWI4WwrjmmjExQDJDQy-fTwLTswHR4G0-Yn2f_WXwcIST88i9ei9_f75_uHort44-fd7fbwpV9lwtnoKtQqXFse4BSDY1veqOM6ZwrfW1MO0CnwFV9j6puKtQt1I0blGo1jHVZXYvufNfxnBLjaB1lyMsfmYGC1cquVu3eLlbtatWerS6k_o88ME3Ap3eZmzOzSMO_hGyTI4wOPTG6bP1M79CvsL2VLQ
CitedBy_id crossref_primary_10_1016_j_aei_2024_102675
crossref_primary_10_1002_advs_202403543
crossref_primary_10_1109_ACCESS_2024_3510686
crossref_primary_10_1007_s12205_024_0196_3
crossref_primary_10_1016_j_ress_2024_110226
crossref_primary_10_1080_09544828_2024_2366686
crossref_primary_10_1109_ACCESS_2024_3443139
crossref_primary_10_1016_j_aei_2024_102704
crossref_primary_10_1016_j_aei_2024_102535
Cites_doi 10.1007/s00158-018-1925-3
10.1609/aaai.v28i1.8904
10.2514/1.J052008
10.1016/j.ins.2022.09.063
10.1016/j.aei.2016.04.004
10.1016/j.ejor.2016.06.041
10.1080/0305215X.2019.1584618
10.1016/j.aei.2022.101689
10.1007/s00158-017-1739-8
10.1007/s00158-018-2053-9
10.1016/j.ress.2021.107611
10.1007/s11831-020-09474-6
10.1016/j.ress.2022.108858
10.1016/j.aei.2021.101430
10.1137/090761811
10.1016/j.compchemeng.2014.05.021
10.1057/palgrave.jors.2601747
10.1016/j.apm.2019.01.040
10.1016/j.aei.2021.101342
10.1080/00401706.2000.10486045
10.1016/j.ifacol.2015.12.183
10.1016/j.compchemeng.2016.10.006
10.1016/j.ress.2017.10.013
10.1002/2015WR016967
10.1007/s10957-013-0442-1
10.1007/s00158-017-1841-y
10.1007/s11831-019-09327-x
10.1007/s00158-008-0338-0
10.1002/qre.945
10.1080/0305215X.2017.1296435
10.1016/j.compchemeng.2017.09.017
10.1080/0305215X.2015.1100470
10.1007/s00158-020-02559-7
10.1115/DETC2002/DAC-34092
10.1007/s00158-021-03001-2
10.2514/1.J054664
10.1016/j.advengsoft.2021.102974
10.2514/1.J058807
10.1016/j.compchemeng.2017.05.025
10.1080/0305215X.2020.1739280
10.1007/s00158-014-1067-1
10.1007/s00158-009-0395-z
10.1007/s00158-013-1028-0
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.aei.2023.102186
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-5320
ExternalDocumentID 10_1016_j_aei_2023_102186
S1474034623003142
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
UHS
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-c8a73e00ff69aa20b5d5980887cc2d4886ba70ac399e0453e16a45cb0061af423
IEDL.DBID .~1
ISSN 1474-0346
IngestDate Tue Jul 01 02:02:41 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Fri Feb 23 02:36:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Kernel function
Sampling criterion
Space-filling
Ensemble learning
Kriging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-c8a73e00ff69aa20b5d5980887cc2d4886ba70ac399e0453e16a45cb0061af423
ParticipantIDs crossref_citationtrail_10_1016_j_aei_2023_102186
crossref_primary_10_1016_j_aei_2023_102186
elsevier_sciencedirect_doi_10_1016_j_aei_2023_102186
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Advanced engineering informatics
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sacks, Welch, Mitchell, Wynn (b0220) 1989; 409–423
Zhang, Chowdhury, Zhang, Messac, Castillo (b0100) 2013; 51
Jiang, Shu, Zhou, Zhou, Shao, Xu (b0165) 2015; 48
Shang, Su, Fang, Zeng, Zhang (b0040) 2023; 229
Liu, Ong, Cai (b0125) 2018; 57
Böttcher, Fuchs, Leichsenring, Graf, Kaliske (b0200) 2021; 154
Palar, Shimoyama (b0210) 2019; 59
Hu, Zhou, Jiang, Shao, Xie (b0230) 2018; 50
Chen, Qiu, Jiang, Cai, Gao (b0115) 2018; 57
Crombecq, Gorissen, Deschrijver, Dhaene (b0170) 2011; 33
Liu, Cai, Ong (b0160) 2017; 106
Fang, Lin, Winker, Zhang (b0140) 2000; 42
Lovison, Rigoni (b0150) 2011; 1
Kleijnen (b0225) 2017; 256
Shang, Chao, Ma, Yang (b0130) 2020; 52
R.C. Jin, W. Chen, A. Sudjianto. On sequential sampling for global metamodeling in engineering design. In: ASME 2002 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers. 2002, 2: 539-548.
Li, Zhang, Li, Tian, Cheng, Chen, Wang (b0075) 2022; 53
Zhou, Shao, Jiang, Gao, Wang, Shu (b0045) 2016; 30
J.R. Lloyd, D. Duvenaud, R. Grosse, J. Tenenbaum, Z. Ghahramani. Automatic construction and natural-Language description of nonparametric regression models. 28th AAAI Conference on Artificial Intelligence, 2014.
Ginsbourger, Helbet, Carraro (b0205) 2008; 24
Palar, Zuhal, Shimoyama (b0060) 2020; 58
Fuhg, Fau, Nackenhorst (b0145) 2021; 28
Liu, Xu, Wang, Meng, Yang (b0110) 2016; 54
Zhang, Wu, Jiang, Choi, Zhou (b0015) 2022; 51
Ben Salem, Tomaso (b0235) 2018; 58
Y. Freund Y, H. Seung. E. Shamir, N. Tishby. Information, prediction, and query by committee. In: Advances in neural information processing systems. 1993, 483-490.
Viana, Gogu, Goel (b0025) 2021; 64
Kleijnen, Van Beers (b0190) 2004; 55
Sun, Sun, Li, Zhang, Akhtar (b0135) 2022; 615
Shi, Liu, Long, Liu (b0095) 2016; 48
Eason, Cremaschi (b0195) 2014; 68
Garud, Karimi, Kraft (b0180) 2017; 96
Lee, Choi (b0105) 2014; 50
Acar (b0085) 2014; 49
Zhang, Yue, Qiu, Zhang, Wang (b0120) 2020; 53
Ebrahimi, Jahangirian (b0245) 2014; 162
Goel, Haftka, Shyy, Queipo (b0080) 2007; 33
Gamboa, Klein, Lagnoux, Moreno (b0020) 2021; 212
Faes, Moens (b0010) 2020; 27
(b0050) 2005
Hao, Ye, Jia, Wang, Allen (b0005) 2021; 49
Li, Aute, Azarm (b0175) 2010; 40
Palar, Zuhal, Shimoyama, Tsuchiya (b0240) 2018; 170
Bhosekar, Leraptritou (b0035) 2018; 108
Asher, Croke, Jakeman, Peeters (b0030) 2015; 51
Xu, Ji, Wei, Wang, Yuan (b0070) 2022
Viana, Haftka, Steffen (b0090) 2009; 39
Jin (b0065) 2020; 62
Shi, Lu, Xu, Chen (b0215) 2019; 70
Goel (10.1016/j.aei.2023.102186_b0080) 2007; 33
Lee (10.1016/j.aei.2023.102186_b0105) 2014; 50
Bhosekar (10.1016/j.aei.2023.102186_b0035) 2018; 108
Ebrahimi (10.1016/j.aei.2023.102186_b0245) 2014; 162
Zhou (10.1016/j.aei.2023.102186_b0045) 2016; 30
10.1016/j.aei.2023.102186_b0155
Li (10.1016/j.aei.2023.102186_b0175) 2010; 40
Liu (10.1016/j.aei.2023.102186_b0110) 2016; 54
Faes (10.1016/j.aei.2023.102186_b0010) 2020; 27
Ben Salem (10.1016/j.aei.2023.102186_b0235) 2018; 58
Shi (10.1016/j.aei.2023.102186_b0095) 2016; 48
Lovison (10.1016/j.aei.2023.102186_b0150) 2011; 1
Sacks (10.1016/j.aei.2023.102186_b0220) 1989; 409–423
Palar (10.1016/j.aei.2023.102186_b0060) 2020; 58
10.1016/j.aei.2023.102186_b0185
Eason (10.1016/j.aei.2023.102186_b0195) 2014; 68
Chen (10.1016/j.aei.2023.102186_b0115) 2018; 57
Zhang (10.1016/j.aei.2023.102186_b0120) 2020; 53
Jiang (10.1016/j.aei.2023.102186_b0165) 2015; 48
Kleijnen (10.1016/j.aei.2023.102186_b0225) 2017; 256
Shi (10.1016/j.aei.2023.102186_b0215) 2019; 70
Palar (10.1016/j.aei.2023.102186_b0240) 2018; 170
Gamboa (10.1016/j.aei.2023.102186_b0020) 2021; 212
Liu (10.1016/j.aei.2023.102186_b0160) 2017; 106
Asher (10.1016/j.aei.2023.102186_b0030) 2015; 51
Hu (10.1016/j.aei.2023.102186_b0230) 2018; 50
Li (10.1016/j.aei.2023.102186_b0075) 2022; 53
Ginsbourger (10.1016/j.aei.2023.102186_b0205) 2008; 24
Fuhg (10.1016/j.aei.2023.102186_b0145) 2021; 28
Sun (10.1016/j.aei.2023.102186_b0135) 2022; 615
Kleijnen (10.1016/j.aei.2023.102186_b0190) 2004; 55
Shang (10.1016/j.aei.2023.102186_b0130) 2020; 52
Crombecq (10.1016/j.aei.2023.102186_b0170) 2011; 33
10.1016/j.aei.2023.102186_b0055
Acar (10.1016/j.aei.2023.102186_b0085) 2014; 49
Zhang (10.1016/j.aei.2023.102186_b0100) 2013; 51
Viana (10.1016/j.aei.2023.102186_b0025) 2021; 64
Xu (10.1016/j.aei.2023.102186_b0070) 2022
Garud (10.1016/j.aei.2023.102186_b0180) 2017; 96
Palar (10.1016/j.aei.2023.102186_b0210) 2019; 59
Viana (10.1016/j.aei.2023.102186_b0090) 2009; 39
Zhang (10.1016/j.aei.2023.102186_b0015) 2022; 51
Shang (10.1016/j.aei.2023.102186_b0040) 2023; 229
Jin (10.1016/j.aei.2023.102186_b0065) 2020; 62
Liu (10.1016/j.aei.2023.102186_b0125) 2018; 57
Hao (10.1016/j.aei.2023.102186_b0005) 2021; 49
Fang (10.1016/j.aei.2023.102186_b0140) 2000; 42
Böttcher (10.1016/j.aei.2023.102186_b0200) 2021; 154
(10.1016/j.aei.2023.102186_b0050) 2005
References_xml – volume: 49
  start-page: 969
  year: 2014
  end-page: 978
  ident: b0085
  article-title: Simultaneous optimization of shape parameters and weight factors in ensemble of radial basis functions
  publication-title: Struct. Multidiscip. Optim.
– volume: 68
  start-page: 220
  year: 2014
  end-page: 232
  ident: b0195
  article-title: Adaptive sequential sampling for surrogate model generation with artificial neural networks
  publication-title: Comput. Chem. Eng.
– volume: 70
  start-page: 545
  year: 2019
  end-page: 571
  ident: b0215
  article-title: An adaptive multiple-Kriging-surrogate method for time-dependent reliability analysis
  publication-title: App. Math. Model.
– volume: 57
  start-page: 393
  year: 2018
  end-page: 416
  ident: b0125
  article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design
  publication-title: Struct. Multidiscip. Optim.
– volume: 50
  start-page: 383
  year: 2014
  end-page: 394
  ident: b0105
  article-title: Pointwise ensemble of meta-models using v nearest points cross-validation
  publication-title: Struct. Multidiscip. Optim.
– volume: 50
  start-page: 145
  year: 2018
  end-page: 163
  ident: b0230
  article-title: An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging
  publication-title: Eng. Optim.
– reference: Y. Freund Y, H. Seung. E. Shamir, N. Tishby. Information, prediction, and query by committee. In: Advances in neural information processing systems. 1993, 483-490.
– volume: 30
  start-page: 283
  year: 2016
  end-page: 297
  ident: b0045
  article-title: An active learning metamodeling approach by sequentially exploiting difference information from variable-fidelity models
  publication-title: Adv. Eng. Inf.
– volume: 48
  start-page: 1202
  year: 2016
  end-page: 1225
  ident: b0095
  article-title: An efficient ensemble of radial basis functions method based on quadratic programming
  publication-title: Eng. Optim.
– volume: 212
  year: 2021
  ident: b0020
  article-title: Sensitivity analysis in general metric spaces
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 58
  start-page: 1864
  year: 2020
  end-page: 1880
  ident: b0060
  article-title: Gaussian process surrogate model with composite kernel learning for engineering design
  publication-title: AIAA J.
– volume: 170
  start-page: 175
  year: 2018
  end-page: 190
  ident: b0240
  article-title: Global sensitivity analysis via multi-fidelity polynomial chaos expansion
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 64
  start-page: 2881
  year: 2021
  end-page: 2908
  ident: b0025
  article-title: Surrogate modeling: Tricks that endured the test of time and some recent developments
  publication-title: Struct. Multidiscip. Optim.
– volume: 53
  start-page: 474
  year: 2020
  end-page: 495
  ident: b0120
  article-title: A unified ensemble of surrogates with global and local measures for global metamodeling
  publication-title: Eng. Optim.
– year: 2022
  ident: b0070
  article-title: A novel ensemble model using artificial neural network for predicting wave-induced forces on coastal bridge decks
  publication-title: Eng. Comput.
– volume: 40
  start-page: 137
  year: 2010
  end-page: 155
  ident: b0175
  article-title: An accumulative error based adaptive design of experiments for offline metamodeling
  publication-title: Structural Multidisciplinary Optimization.
– volume: 39
  start-page: 439
  year: 2009
  end-page: 457
  ident: b0090
  article-title: Multiple surrogates: How cross-validation errors can help us to obtain the best predictor
  publication-title: Struct. Multidiscip. Optim.
– volume: 24
  start-page: 681
  year: 2008
  end-page: 691
  ident: b0205
  article-title: Discrete mixtures of kernels for Kriging-based optimization
  publication-title: Qual. Reliab. Eng. Int.
– volume: 55
  start-page: 876
  year: 2004
  end-page: 883
  ident: b0190
  article-title: Application-driven sequential designs for simulation experiments: Kriging metamodelling
  publication-title: J. Oper. Res. Soc.
– volume: 51
  start-page: 5957
  year: 2015
  end-page: 5973
  ident: b0030
  article-title: A review of surrogate models and their application to groundwater modeling
  publication-title: Water Resour. Res.
– volume: 33
  start-page: 1948
  year: 2011
  end-page: 1974
  ident: b0170
  article-title: A novel hybrid sequential design strategy for global surrogate modeling of computer experiments
  publication-title: SIAM J. Sci. Comput.
– volume: 615
  start-page: 226
  year: 2022
  end-page: 237
  ident: b0135
  article-title: Surrogate ensemble assisted large-scale expensive optimization with random grouping
  publication-title: Inf. Sci.
– volume: 256
  start-page: 1
  year: 2017
  end-page: 16
  ident: b0225
  article-title: Regression and Kriging metamodels with their experimental designs in simulation: A review
  publication-title: Eur. J. Oper. Res.
– volume: 106
  start-page: 171
  year: 2017
  end-page: 182
  ident: b0160
  article-title: An adaptive sampling approach for Kriging metamodeling by maximizing expected prediction error
  publication-title: Comput. Chem. Eng.
– volume: 108
  start-page: 250
  year: 2018
  end-page: 267
  ident: b0035
  article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: A review
  publication-title: Comput. Chem. Eng.
– volume: 54
  start-page: 3117
  year: 2016
  end-page: 3133
  ident: b0110
  article-title: Optimal weighted pointwise ensemble of radial basis functions with different basis functions
  publication-title: AIAA J.
– volume: 57
  start-page: 1711
  year: 2018
  end-page: 1729
  ident: b0115
  article-title: Ensemble of surrogates with hybrid method using global and local measures for engineering design
  publication-title: Struct. Multidiscip. Optim.
– volume: 51
  start-page: 643
  year: 2013
  end-page: 656
  ident: b0100
  article-title: Adaptive hybrid surrogate modeling for complex systems
  publication-title: AIAA J.
– volume: 162
  start-page: 257
  year: 2014
  end-page: 271
  ident: b0245
  article-title: Aerodynamic optimization of airfoils using adaptive parameterization and genetic algorithm
  publication-title: J. Optim. Theory Appl.
– volume: 27
  start-page: 633
  year: 2020
  end-page: 671
  ident: b0010
  article-title: Recent trends in the modeling and quantification of non-probabilistic uncertainty
  publication-title: Arch. Comput. Meth. Eng.
– volume: 48
  start-page: 532
  year: 2015
  end-page: 537
  ident: b0165
  article-title: A novel sequential exploration-exploitation sampling strategy for global metamodeling
  publication-title: IFAC-PapersOnLine.
– year: 2005
  ident: b0050
  publication-title: Gaussian Processes for Machine Learning
– volume: 62
  start-page: 1313
  year: 2020
  end-page: 1351
  ident: b0065
  article-title: Compositional kernel learning using tree-based genetic programming for Gaussian process regression
  publication-title: Struct. Multidiscip. Optim.
– volume: 51
  start-page: 101430
  year: 2022
  ident: b0015
  article-title: A multi-fidelity surrogate modeling approach for incorporating multiple non-hierarchical low-fidelity data
  publication-title: Adv. Eng. Inf.
– volume: 96
  start-page: 103
  year: 2017
  end-page: 114
  ident: b0180
  article-title: Smart sampling algorithm for surrogate model development
  publication-title: Comput. Chem. Eng.
– volume: 409–423
  year: 1989
  ident: b0220
  article-title: Design and analysis of computer experiments
  publication-title: Stat. Sci.
– volume: 1
  start-page: 110
  year: 2011
  end-page: 126
  ident: b0150
  article-title: Adaptive sampling with a Lipschitz criterion for accurate metamodeling
  publication-title: Communications in Applied and Industrial Mathematics.
– volume: 229
  start-page: 108858
  year: 2023
  ident: b0040
  article-title: An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 53
  start-page: 101689
  year: 2022
  ident: b0075
  article-title: On-line transfer learning for multi-fidelity data fusion with ensemble of deep neural networks
  publication-title: Adv. Eng. Inf.
– reference: R.C. Jin, W. Chen, A. Sudjianto. On sequential sampling for global metamodeling in engineering design. In: ASME 2002 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers. 2002, 2: 539-548.
– volume: 154
  start-page: 102974
  year: 2021
  ident: b0200
  article-title: ELSA: An efficient, adaptive Ensemble Learning-based Sampling Approach
  publication-title: Advances in Engineering Softwares.
– volume: 28
  start-page: 2689
  year: 2021
  end-page: 2747
  ident: b0145
  article-title: State-of-the-art and comparative review of adaptive sampling methods for Kriging
  publication-title: Archives Computational Methods in Engineering.
– volume: 49
  start-page: 101342
  year: 2021
  ident: b0005
  article-title: Building surrogate models for engineering problems by integrating limited simulation data and monotonic engineering knowledge
  publication-title: Adv. Eng. Inf.
– reference: J.R. Lloyd, D. Duvenaud, R. Grosse, J. Tenenbaum, Z. Ghahramani. Automatic construction and natural-Language description of nonparametric regression models. 28th AAAI Conference on Artificial Intelligence, 2014.
– volume: 33
  start-page: 199
  year: 2007
  end-page: 216
  ident: b0080
  article-title: Ensemble of surrogates. Structural Multidisciplinary
  publication-title: Optimization
– volume: 42
  start-page: 237
  year: 2000
  end-page: 248
  ident: b0140
  article-title: Uniform Design: Theory and Application
  publication-title: Technometrics
– volume: 59
  start-page: 93
  year: 2019
  end-page: 116
  ident: b0210
  article-title: Efficient global optimization with ensemble and selection of kernel functions for engineering design
  publication-title: Struct. Multidiscip. Optim.
– volume: 58
  start-page: 719
  year: 2018
  end-page: 734
  ident: b0235
  article-title: Automatic selection for general surrogate models
  publication-title: Struct. Multidiscip. Optim.
– volume: 52
  start-page: 271
  year: 2020
  end-page: 287
  ident: b0130
  article-title: An efficient local search-based genetic algorithm for constructing optimal Latin hypercube design
  publication-title: Eng. Optim.
– volume: 33
  start-page: 199
  issue: 3
  year: 2007
  ident: 10.1016/j.aei.2023.102186_b0080
  article-title: Ensemble of surrogates. Structural Multidisciplinary
  publication-title: Optimization
– volume: 58
  start-page: 719
  issue: 2
  year: 2018
  ident: 10.1016/j.aei.2023.102186_b0235
  article-title: Automatic selection for general surrogate models
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-1925-3
– ident: 10.1016/j.aei.2023.102186_b0055
  doi: 10.1609/aaai.v28i1.8904
– volume: 51
  start-page: 643
  issue: 3
  year: 2013
  ident: 10.1016/j.aei.2023.102186_b0100
  article-title: Adaptive hybrid surrogate modeling for complex systems
  publication-title: AIAA J.
  doi: 10.2514/1.J052008
– year: 2005
  ident: 10.1016/j.aei.2023.102186_b0050
– volume: 615
  start-page: 226
  year: 2022
  ident: 10.1016/j.aei.2023.102186_b0135
  article-title: Surrogate ensemble assisted large-scale expensive optimization with random grouping
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.09.063
– volume: 30
  start-page: 283
  issue: 3
  year: 2016
  ident: 10.1016/j.aei.2023.102186_b0045
  article-title: An active learning metamodeling approach by sequentially exploiting difference information from variable-fidelity models
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2016.04.004
– volume: 256
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.aei.2023.102186_b0225
  article-title: Regression and Kriging metamodels with their experimental designs in simulation: A review
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.06.041
– volume: 52
  start-page: 271
  issue: 2
  year: 2020
  ident: 10.1016/j.aei.2023.102186_b0130
  article-title: An efficient local search-based genetic algorithm for constructing optimal Latin hypercube design
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2019.1584618
– volume: 53
  start-page: 101689
  year: 2022
  ident: 10.1016/j.aei.2023.102186_b0075
  article-title: On-line transfer learning for multi-fidelity data fusion with ensemble of deep neural networks
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2022.101689
– volume: 57
  start-page: 393
  issue: 1
  year: 2018
  ident: 10.1016/j.aei.2023.102186_b0125
  article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-017-1739-8
– volume: 1
  start-page: 110
  issue: 2
  year: 2011
  ident: 10.1016/j.aei.2023.102186_b0150
  article-title: Adaptive sampling with a Lipschitz criterion for accurate metamodeling
  publication-title: Communications in Applied and Industrial Mathematics.
– volume: 59
  start-page: 93
  issue: 1
  year: 2019
  ident: 10.1016/j.aei.2023.102186_b0210
  article-title: Efficient global optimization with ensemble and selection of kernel functions for engineering design
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-2053-9
– volume: 212
  year: 2021
  ident: 10.1016/j.aei.2023.102186_b0020
  article-title: Sensitivity analysis in general metric spaces
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107611
– volume: 28
  start-page: 2689
  issue: 4
  year: 2021
  ident: 10.1016/j.aei.2023.102186_b0145
  article-title: State-of-the-art and comparative review of adaptive sampling methods for Kriging
  publication-title: Archives Computational Methods in Engineering.
  doi: 10.1007/s11831-020-09474-6
– volume: 229
  start-page: 108858
  year: 2023
  ident: 10.1016/j.aei.2023.102186_b0040
  article-title: An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108858
– volume: 51
  start-page: 101430
  year: 2022
  ident: 10.1016/j.aei.2023.102186_b0015
  article-title: A multi-fidelity surrogate modeling approach for incorporating multiple non-hierarchical low-fidelity data
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2021.101430
– volume: 33
  start-page: 1948
  issue: 4
  year: 2011
  ident: 10.1016/j.aei.2023.102186_b0170
  article-title: A novel hybrid sequential design strategy for global surrogate modeling of computer experiments
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090761811
– volume: 68
  start-page: 220
  year: 2014
  ident: 10.1016/j.aei.2023.102186_b0195
  article-title: Adaptive sequential sampling for surrogate model generation with artificial neural networks
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.05.021
– volume: 55
  start-page: 876
  issue: 8
  year: 2004
  ident: 10.1016/j.aei.2023.102186_b0190
  article-title: Application-driven sequential designs for simulation experiments: Kriging metamodelling
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601747
– volume: 70
  start-page: 545
  year: 2019
  ident: 10.1016/j.aei.2023.102186_b0215
  article-title: An adaptive multiple-Kriging-surrogate method for time-dependent reliability analysis
  publication-title: App. Math. Model.
  doi: 10.1016/j.apm.2019.01.040
– volume: 49
  start-page: 101342
  year: 2021
  ident: 10.1016/j.aei.2023.102186_b0005
  article-title: Building surrogate models for engineering problems by integrating limited simulation data and monotonic engineering knowledge
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2021.101342
– volume: 42
  start-page: 237
  issue: 3
  year: 2000
  ident: 10.1016/j.aei.2023.102186_b0140
  article-title: Uniform Design: Theory and Application
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10486045
– volume: 48
  start-page: 532
  issue: 28
  year: 2015
  ident: 10.1016/j.aei.2023.102186_b0165
  article-title: A novel sequential exploration-exploitation sampling strategy for global metamodeling
  publication-title: IFAC-PapersOnLine.
  doi: 10.1016/j.ifacol.2015.12.183
– volume: 96
  start-page: 103
  year: 2017
  ident: 10.1016/j.aei.2023.102186_b0180
  article-title: Smart sampling algorithm for surrogate model development
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2016.10.006
– volume: 170
  start-page: 175
  year: 2018
  ident: 10.1016/j.aei.2023.102186_b0240
  article-title: Global sensitivity analysis via multi-fidelity polynomial chaos expansion
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.10.013
– year: 2022
  ident: 10.1016/j.aei.2023.102186_b0070
  article-title: A novel ensemble model using artificial neural network for predicting wave-induced forces on coastal bridge decks
  publication-title: Eng. Comput.
– volume: 51
  start-page: 5957
  issue: 8
  year: 2015
  ident: 10.1016/j.aei.2023.102186_b0030
  article-title: A review of surrogate models and their application to groundwater modeling
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR016967
– volume: 162
  start-page: 257
  issue: 1
  year: 2014
  ident: 10.1016/j.aei.2023.102186_b0245
  article-title: Aerodynamic optimization of airfoils using adaptive parameterization and genetic algorithm
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0442-1
– volume: 57
  start-page: 1711
  issue: 4
  year: 2018
  ident: 10.1016/j.aei.2023.102186_b0115
  article-title: Ensemble of surrogates with hybrid method using global and local measures for engineering design
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-017-1841-y
– ident: 10.1016/j.aei.2023.102186_b0185
– volume: 27
  start-page: 633
  issue: 3
  year: 2020
  ident: 10.1016/j.aei.2023.102186_b0010
  article-title: Recent trends in the modeling and quantification of non-probabilistic uncertainty
  publication-title: Arch. Comput. Meth. Eng.
  doi: 10.1007/s11831-019-09327-x
– volume: 39
  start-page: 439
  issue: 4
  year: 2009
  ident: 10.1016/j.aei.2023.102186_b0090
  article-title: Multiple surrogates: How cross-validation errors can help us to obtain the best predictor
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-008-0338-0
– volume: 409–423
  year: 1989
  ident: 10.1016/j.aei.2023.102186_b0220
  article-title: Design and analysis of computer experiments
  publication-title: Stat. Sci.
– volume: 24
  start-page: 681
  issue: 6
  year: 2008
  ident: 10.1016/j.aei.2023.102186_b0205
  article-title: Discrete mixtures of kernels for Kriging-based optimization
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.945
– volume: 50
  start-page: 145
  issue: 1
  year: 2018
  ident: 10.1016/j.aei.2023.102186_b0230
  article-title: An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2017.1296435
– volume: 108
  start-page: 250
  year: 2018
  ident: 10.1016/j.aei.2023.102186_b0035
  article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: A review
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.09.017
– volume: 48
  start-page: 1202
  issue: 7
  year: 2016
  ident: 10.1016/j.aei.2023.102186_b0095
  article-title: An efficient ensemble of radial basis functions method based on quadratic programming
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2015.1100470
– volume: 62
  start-page: 1313
  issue: 3
  year: 2020
  ident: 10.1016/j.aei.2023.102186_b0065
  article-title: Compositional kernel learning using tree-based genetic programming for Gaussian process regression
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02559-7
– ident: 10.1016/j.aei.2023.102186_b0155
  doi: 10.1115/DETC2002/DAC-34092
– volume: 64
  start-page: 2881
  issue: 5
  year: 2021
  ident: 10.1016/j.aei.2023.102186_b0025
  article-title: Surrogate modeling: Tricks that endured the test of time and some recent developments
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-021-03001-2
– volume: 54
  start-page: 3117
  issue: 10
  year: 2016
  ident: 10.1016/j.aei.2023.102186_b0110
  article-title: Optimal weighted pointwise ensemble of radial basis functions with different basis functions
  publication-title: AIAA J.
  doi: 10.2514/1.J054664
– volume: 154
  start-page: 102974
  year: 2021
  ident: 10.1016/j.aei.2023.102186_b0200
  article-title: ELSA: An efficient, adaptive Ensemble Learning-based Sampling Approach
  publication-title: Advances in Engineering Softwares.
  doi: 10.1016/j.advengsoft.2021.102974
– volume: 58
  start-page: 1864
  issue: 4
  year: 2020
  ident: 10.1016/j.aei.2023.102186_b0060
  article-title: Gaussian process surrogate model with composite kernel learning for engineering design
  publication-title: AIAA J.
  doi: 10.2514/1.J058807
– volume: 106
  start-page: 171
  year: 2017
  ident: 10.1016/j.aei.2023.102186_b0160
  article-title: An adaptive sampling approach for Kriging metamodeling by maximizing expected prediction error
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.05.025
– volume: 53
  start-page: 474
  issue: 3
  year: 2020
  ident: 10.1016/j.aei.2023.102186_b0120
  article-title: A unified ensemble of surrogates with global and local measures for global metamodeling
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2020.1739280
– volume: 50
  start-page: 383
  issue: 3
  year: 2014
  ident: 10.1016/j.aei.2023.102186_b0105
  article-title: Pointwise ensemble of meta-models using v nearest points cross-validation
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-014-1067-1
– volume: 40
  start-page: 137
  issue: 1-6
  year: 2010
  ident: 10.1016/j.aei.2023.102186_b0175
  article-title: An accumulative error based adaptive design of experiments for offline metamodeling
  publication-title: Structural Multidisciplinary Optimization.
  doi: 10.1007/s00158-009-0395-z
– volume: 49
  start-page: 969
  issue: 6
  year: 2014
  ident: 10.1016/j.aei.2023.102186_b0085
  article-title: Simultaneous optimization of shape parameters and weight factors in ensemble of radial basis functions
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-1028-0
SSID ssj0016897
Score 2.4389613
Snippet Kriging surrogate model has been widely used to simulate expensive models in engineering application. Ensemble of multi-kernel Kriging surrogate models can...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102186
SubjectTerms Ensemble learning
Kernel function
Kriging
Sampling criterion
Space-filling
Title Ensemble learning of multi-kernel Kriging surrogate models using regional discrepancy and space-filling criteria-based hybrid sampling method
URI https://dx.doi.org/10.1016/j.aei.2023.102186
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T-QwELUQNDR8n45PTUGFZNbZOE5cIgRaQNAAEl3k2M6yx5JFyVJcc__g_vPNJA7iJKCgTGJLkWc88xK_mcfYoYljb6VWHNG45dLhB4pR9BsOof0wNcpoSye61zdqdC8vH5KHBXba18IQrTLE_i6mt9E63BmE1Ry8TCaD20imUsQS8zd5pqQ4TN3r0KeP_7zRPCKVdQIrOJjT6P5ks-V4GT85Jv1wamAQUTn1R7npXb45X2MrASjCSfcu62zBVxtsNYBGCFuy2WR_z6rGPxdTD0EAYgyzElqeIH_ydeWncNWKX42hea3rGf02g1b_pgEivY-BtBkIjwNV6NaYnjDegqkcYLCxnpeTtm03YHihvs6GU-Jz8Pibar2gMURJx8edFPUWuz8_uzsd8aCxwO1Qp3NuM5PGXoiyVNqYoSgSl-iMQo-1Q4e7WxUmFcai7Tyiv9hHysjE0maNTIlY7AdbrGaV_8lAC-0SW8Y-QVAjvDZx5jKrC1cKlykht5noVze3oQE56WBM855p9itHg-RkkLwzyDY7epvy0nXf-Gqw7E2W_-dCOWaHz6ftfG_aLlumq47Xt8cW5_Wr30d8Mi8OWgc8YEsnF1ejm389peXk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELXQcmgvtLQgtpR2Dj0hmfVuHCc-IgRaurAXQOIWObazLCxZlCwHPoJ_ZiZxEJVaDr3GGSny2G9e7Jl5jP0yUeSt1IojG7dcOvxBMYqO4ZDajxKjjLZ0o3s-VeMr-fs6vl5jR10tDKVVBuxvMb1B6_BkEGZz8DCfDy6GMpEikhi_aWVKxOF16k4le2z98HQynr5eJqi01VjBMU4G3eVmk-Zl_PyAJMSph8GQKqr_Fp7ehJyTz2wjcEU4bD9nk6358gv7FHgjhF1Zf2XPx2Xt7_OFh6ABMYNlAU2qIL_zVekXMGn0r2ZQP1bVkk7OoJHAqYHy3mdA8gxEyYGKdCuMUAi5YEoHiDfW82LedO4GRBhq7Ww4xT4HN09U7gW1oax0HG7VqLfY1cnx5dGYB5kFbkc6WXGbmiTyQhSF0saMRB67WKeEPtaOHG5wlZtEGIvu80gAIz9URsaW9uvQFEjHtlmvXJZ-h4EW2sW2iHyMvEZ4baLUpVbnrhAuVUL2mehmN7OhBzlJYSyyLtnsNkOHZOSQrHVIn-2_mjy0DTjee1l2Lsv-WEUZBoh_m337P7Of7MP48vwsOzudTnbZRxpp0_y-s96qevR7SFdW-Y-wHF8AIWbolQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+learning+of+multi-kernel+Kriging+surrogate+models+using+regional+discrepancy+and+space-filling+criteria-based+hybrid+sampling+method&rft.jtitle=Advanced+engineering+informatics&rft.au=Shang%2C+Xiaobing&rft.au=Zhang%2C+Zhi&rft.au=Fang%2C+Hai&rft.au=Li%2C+Bo&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=1474-0346&rft.eissn=1873-5320&rft.volume=58&rft_id=info:doi/10.1016%2Fj.aei.2023.102186&rft.externalDocID=S1474034623003142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon