Fibonacci-run graphs I: Basic properties

Among the classical models for interconnection networks are hypercubes and Fibonacci cubes. Fibonacci cubes are induced subgraphs of hypercubes obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s, counted by Fibonacci numbers. Another set of binary stri...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Applied Mathematics Vol. 295; pp. 70 - 84
Main Authors Eğecioğlu, Ömer, Iršič, Vesna
Format Journal Article
LanguageEnglish
Published Elsevier B.V 31.05.2021
Subjects
Online AccessGet full text
ISSN0166-218X
1872-6771
DOI10.1016/j.dam.2021.02.025

Cover

Loading…
Abstract Among the classical models for interconnection networks are hypercubes and Fibonacci cubes. Fibonacci cubes are induced subgraphs of hypercubes obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s, counted by Fibonacci numbers. Another set of binary strings which are counted by Fibonacci numbers are those with a restriction on the runlengths. Induced subgraphs of the hypercube on the latter strings as vertices define Fibonacci-run graphs. They have the same number of vertices as Fibonacci cubes, but fewer edges and different graph theoretical properties. We obtain properties of Fibonacci-run graphs including the number of edges, the analogue of the fundamental recursion, the average degree of a vertex, Hamiltonicity, special degree sequences, and the number of hypercubes they contain. A detailed study of the degree sequences of Fibonacci-run graphs is interesting in its own right and is reported in a companion paper.
AbstractList Among the classical models for interconnection networks are hypercubes and Fibonacci cubes. Fibonacci cubes are induced subgraphs of hypercubes obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s, counted by Fibonacci numbers. Another set of binary strings which are counted by Fibonacci numbers are those with a restriction on the runlengths. Induced subgraphs of the hypercube on the latter strings as vertices define Fibonacci-run graphs. They have the same number of vertices as Fibonacci cubes, but fewer edges and different graph theoretical properties. We obtain properties of Fibonacci-run graphs including the number of edges, the analogue of the fundamental recursion, the average degree of a vertex, Hamiltonicity, special degree sequences, and the number of hypercubes they contain. A detailed study of the degree sequences of Fibonacci-run graphs is interesting in its own right and is reported in a companion paper.
Author Eğecioğlu, Ömer
Iršič, Vesna
Author_xml – sequence: 1
  givenname: Ömer
  orcidid: 0000-0002-6070-761X
  surname: Eğecioğlu
  fullname: Eğecioğlu, Ömer
  email: omer@cs.ucsb.edu
  organization: Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 2
  givenname: Vesna
  orcidid: 0000-0001-5302-5250
  surname: Iršič
  fullname: Iršič, Vesna
  email: vesna.irsic@fmf.uni-lj.si
  organization: Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
BookMark eNp9j8FKAzEQhoNUcFt9AG979LJrJttssnrSYrVQ8KLgLYzZiaa0u0uyCr69KfXkofDDMPB_w3xTNun6jhi7BF4Ch_p6U7a4KwUXUHKRIk9YBlqJolYKJixLnboQoN_O2DTGDecc0paxq6V_7zu01hfhq8s_Ag6fMV_d5PcYvc2H0A8URk_xnJ063Ea6-Jsz9rp8eFk8Fevnx9Xibl1Y0aixsFzL-RwEYXpFkkRUpLRrpQWkpgXlkCM66axuwcmKKt2IisOcAzlNdTVj6nDXhj7GQM5YP-Lo-24M6LcGuNkLm41JwmYvbLhIkYmEf-QQ_A7Dz1Hm9sBQUvr2FEy0njpLrQ9kR9P2_gj9C65tbyM
CitedBy_id crossref_primary_10_1016_j_disc_2025_114457
crossref_primary_10_1007_s40840_024_01776_3
crossref_primary_10_1016_j_dam_2025_01_020
crossref_primary_10_1016_j_dam_2022_09_004
crossref_primary_10_1080_00150517_2022_12427439
crossref_primary_10_1016_j_dam_2022_10_007
crossref_primary_10_1016_j_tcs_2022_06_003
crossref_primary_10_1080_00150517_2022_12427440
crossref_primary_10_3390_axioms13120837
crossref_primary_10_2478_puma_2022_0005
crossref_primary_10_1016_j_dam_2021_05_018
Cites_doi 10.1016/j.disc.2004.02.023
10.1016/j.dam.2018.05.015
10.1016/j.ejc.2018.02.019
10.1080/00150517.2001.12428753
10.1109/71.205649
10.1016/j.dam.2016.10.029
10.26493/1855-3974.1591.92e
10.1007/s10878-011-9433-z
10.1007/s00026-014-0233-x
10.1109/IPPS.1993.262788
10.1142/S0129054120500318
10.1016/j.disc.2011.02.015
10.26493/1855-3974.1172.bae
10.1016/0166-218X(84)90069-6
10.1016/j.dam.2017.04.026
10.1142/S1793557120500576
10.1016/j.disc.2011.03.019
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.dam.2021.02.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 84
ExternalDocumentID 10_1016_j_dam_2021_02_025
S0166218X21000780
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
ID FETCH-LOGICAL-c297t-c0854412ea0215e5aa7e78fd5c1ae9d17fa0aaf5fc8d1f53e3892301401ef8e63
IEDL.DBID AIKHN
ISSN 0166-218X
IngestDate Thu Jul 03 08:45:14 EDT 2025
Thu Apr 24 22:53:37 EDT 2025
Sat Apr 29 22:41:22 EDT 2023
IsPeerReviewed true
IsScholarly true
Keywords Fibonacci cube
Fibonacci number
Hypercube
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-c0854412ea0215e5aa7e78fd5c1ae9d17fa0aaf5fc8d1f53e3892301401ef8e63
ORCID 0000-0001-5302-5250
0000-0002-6070-761X
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_dam_2021_02_025
crossref_primary_10_1016_j_dam_2021_02_025
elsevier_sciencedirect_doi_10_1016_j_dam_2021_02_025
PublicationCentury 2000
PublicationDate 2021-05-31
PublicationDateYYYYMMDD 2021-05-31
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-31
  day: 31
PublicationDecade 2020
PublicationTitle Discrete Applied Mathematics
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Klavžar, Mollard, Petkovšek (b13) 2011; 311
Zeckendorf (b21) 1972; 41
Saygı (b17) 2019; 16
Mollard (b14) 2017; 219
Munarini, Perelli Cippo, Zagaglia Salvi (b15) 2001; 39
Eğecioğlu, Saygı, Saygı (b5) 2020; 31
Klavžar, Mollard (b11) 2014; 18
Saygı, Eğecioğlu (b18) 2017; 226
Ilić, Klavžar, Rho (b7) 2012; 312
Klavžar (b10) 2013; 25
Winkler (b20) 1984; 7
Azarija, Klavžar, Rho, Sim (b1) 2018; 14
Saygı, Eğecioğlu (b19) 2019; 266
Savitha, Vijayakumar (b16) 2020; 13
Klavžar (b9) 2005; 299
Baril, Kirgizov, Vajnovszki (b2) 2020
Klavžar, Mollard (b12) 2019; 80
Eğecioğlu, Iršič (b4) 2020
Imrich, Klavžar (b8) 2000
B. Cong, S.Q. Zheng, S. Sharma, On simulations of linear arrays, rings and 2d meshes on Fibonacci cube networks, in: [1993] Proceedings Seventh International Parallel Processing Symposium, 1993, pp. 748–751.
Hsu (b6) 1993; 4
Klavžar (10.1016/j.dam.2021.02.025_b13) 2011; 311
Klavžar (10.1016/j.dam.2021.02.025_b12) 2019; 80
Klavžar (10.1016/j.dam.2021.02.025_b10) 2013; 25
10.1016/j.dam.2021.02.025_b3
Klavžar (10.1016/j.dam.2021.02.025_b9) 2005; 299
Hsu (10.1016/j.dam.2021.02.025_b6) 1993; 4
Mollard (10.1016/j.dam.2021.02.025_b14) 2017; 219
Azarija (10.1016/j.dam.2021.02.025_b1) 2018; 14
Munarini (10.1016/j.dam.2021.02.025_b15) 2001; 39
Klavžar (10.1016/j.dam.2021.02.025_b11) 2014; 18
Eğecioğlu (10.1016/j.dam.2021.02.025_b5) 2020; 31
Winkler (10.1016/j.dam.2021.02.025_b20) 1984; 7
Savitha (10.1016/j.dam.2021.02.025_b16) 2020; 13
Zeckendorf (10.1016/j.dam.2021.02.025_b21) 1972; 41
Saygı (10.1016/j.dam.2021.02.025_b19) 2019; 266
Eğecioğlu (10.1016/j.dam.2021.02.025_b4) 2020
Saygı (10.1016/j.dam.2021.02.025_b18) 2017; 226
Imrich (10.1016/j.dam.2021.02.025_b8) 2000
Baril (10.1016/j.dam.2021.02.025_b2) 2020
Ilić (10.1016/j.dam.2021.02.025_b7) 2012; 312
Saygı (10.1016/j.dam.2021.02.025_b17) 2019; 16
References_xml – year: 2020
  ident: b2
  article-title: Gray codes for Fibonacci q-decreasing words
– year: 2020
  ident: b4
  article-title: Fibonacci-run graphs II: degree sequences
– reference: B. Cong, S.Q. Zheng, S. Sharma, On simulations of linear arrays, rings and 2d meshes on Fibonacci cube networks, in: [1993] Proceedings Seventh International Parallel Processing Symposium, 1993, pp. 748–751.
– volume: 312
  start-page: 2
  year: 2012
  end-page: 11
  ident: b7
  article-title: Generalized Fibonacci cubes
  publication-title: Discrete Math.
– volume: 299
  start-page: 145
  year: 2005
  end-page: 153
  ident: b9
  article-title: On median nature and enumerative properties of Fibonacci-like cubes
  publication-title: Discrete Math.
– volume: 18
  start-page: 447
  year: 2014
  end-page: 457
  ident: b11
  article-title: Asymptotic properties of Fibonacci cubes and Lucas cubes
  publication-title: Ann. Comb.
– volume: 16
  start-page: 245
  year: 2019
  end-page: 255
  ident: b17
  article-title: On the domination number and the total domination number of Fibonacci cubes
  publication-title: Ars Math. Contemp.
– volume: 39
  start-page: 12
  year: 2001
  end-page: 21
  ident: b15
  article-title: On the Lucas cubes
  publication-title: Fibonacci Quart.
– year: 2000
  ident: b8
  article-title: Product graphs, structure and recognition 01
– volume: 311
  start-page: 1310
  year: 2011
  end-page: 1322
  ident: b13
  article-title: The degree sequence of Fibonacci and Lucas cubes
  publication-title: Discrete Math.
– volume: 4
  start-page: 3
  year: 1993
  end-page: 12
  ident: b6
  article-title: Fibonacci cubes - new interconnection topology
  publication-title: Parallel Distrib. Syst. IEEE Trans.
– volume: 219
  start-page: 219
  year: 2017
  end-page: 221
  ident: b14
  article-title: Non covered vertices in Fibonacci cubes by a maximum set of disjoint hypercubes
  publication-title: Discrete Appl. Math.
– volume: 14
  start-page: 387
  year: 2018
  end-page: 395
  ident: b1
  article-title: On domination-type invariants of Fibonacci cubes and hypercubes
  publication-title: Ars Math. Contemp.
– volume: 31
  start-page: 639
  year: 2020
  end-page: 661
  ident: b5
  article-title: -Fibonacci cubes: A family of subgraphs of Fibonacci cubes
  publication-title: Internat. J. Found. Comput. Sci.
– volume: 266
  start-page: 191
  year: 2019
  end-page: 199
  ident: b19
  article-title: Boundary enumerator polynomial of hypercubes in Fibonacci cubes
  publication-title: Discrete Appl. Math.
– volume: 41
  start-page: 179
  year: 1972
  end-page: 182
  ident: b21
  article-title: Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas
  publication-title: Bull. Soc. Roy. Sci. Liège
– volume: 80
  start-page: 214
  year: 2019
  end-page: 223
  ident: b12
  article-title: Daisy cubes and distance cube polynomial
  publication-title: European J. Combin.
– volume: 13
  year: 2020
  ident: b16
  article-title: Some diameter notions of Fibonacci cubes
  publication-title: Asian-Eur. J. Math.
– volume: 7
  start-page: 221
  year: 1984
  end-page: 225
  ident: b20
  article-title: Isometric embedding in products of complete graphs
  publication-title: Discrete Appl. Math.
– volume: 25
  start-page: 505
  year: 2013
  end-page: 522
  ident: b10
  article-title: Structure of Fibonacci cubes: A survey
  publication-title: J. Comb. Optim.
– volume: 226
  start-page: 127
  year: 2017
  end-page: 137
  ident: b18
  article-title: -cube enumerator polynomial of Fibonacci cubes
  publication-title: Discrete Appl. Math.
– volume: 299
  start-page: 145
  issue: 1–3
  year: 2005
  ident: 10.1016/j.dam.2021.02.025_b9
  article-title: On median nature and enumerative properties of Fibonacci-like cubes
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2004.02.023
– volume: 266
  start-page: 191
  year: 2019
  ident: 10.1016/j.dam.2021.02.025_b19
  article-title: Boundary enumerator polynomial of hypercubes in Fibonacci cubes
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2018.05.015
– volume: 80
  start-page: 214
  year: 2019
  ident: 10.1016/j.dam.2021.02.025_b12
  article-title: Daisy cubes and distance cube polynomial
  publication-title: European J. Combin.
  doi: 10.1016/j.ejc.2018.02.019
– year: 2000
  ident: 10.1016/j.dam.2021.02.025_b8
– volume: 39
  start-page: 12
  issue: 1
  year: 2001
  ident: 10.1016/j.dam.2021.02.025_b15
  article-title: On the Lucas cubes
  publication-title: Fibonacci Quart.
  doi: 10.1080/00150517.2001.12428753
– volume: 4
  start-page: 3
  year: 1993
  ident: 10.1016/j.dam.2021.02.025_b6
  article-title: Fibonacci cubes - new interconnection topology
  publication-title: Parallel Distrib. Syst. IEEE Trans.
  doi: 10.1109/71.205649
– volume: 219
  start-page: 219
  year: 2017
  ident: 10.1016/j.dam.2021.02.025_b14
  article-title: Non covered vertices in Fibonacci cubes by a maximum set of disjoint hypercubes
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2016.10.029
– volume: 16
  start-page: 245
  issue: 1
  year: 2019
  ident: 10.1016/j.dam.2021.02.025_b17
  article-title: On the domination number and the total domination number of Fibonacci cubes
  publication-title: Ars Math. Contemp.
  doi: 10.26493/1855-3974.1591.92e
– volume: 25
  start-page: 505
  issue: 4
  year: 2013
  ident: 10.1016/j.dam.2021.02.025_b10
  article-title: Structure of Fibonacci cubes: A survey
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-011-9433-z
– volume: 18
  start-page: 447
  issue: 3
  year: 2014
  ident: 10.1016/j.dam.2021.02.025_b11
  article-title: Asymptotic properties of Fibonacci cubes and Lucas cubes
  publication-title: Ann. Comb.
  doi: 10.1007/s00026-014-0233-x
– ident: 10.1016/j.dam.2021.02.025_b3
  doi: 10.1109/IPPS.1993.262788
– volume: 31
  start-page: 639
  issue: 5
  year: 2020
  ident: 10.1016/j.dam.2021.02.025_b5
  article-title: k-Fibonacci cubes: A family of subgraphs of Fibonacci cubes
  publication-title: Internat. J. Found. Comput. Sci.
  doi: 10.1142/S0129054120500318
– volume: 312
  start-page: 2
  issue: 1
  year: 2012
  ident: 10.1016/j.dam.2021.02.025_b7
  article-title: Generalized Fibonacci cubes
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2011.02.015
– volume: 41
  start-page: 179
  year: 1972
  ident: 10.1016/j.dam.2021.02.025_b21
  article-title: Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas
  publication-title: Bull. Soc. Roy. Sci. Liège
– volume: 14
  start-page: 387
  issue: 2
  year: 2018
  ident: 10.1016/j.dam.2021.02.025_b1
  article-title: On domination-type invariants of Fibonacci cubes and hypercubes
  publication-title: Ars Math. Contemp.
  doi: 10.26493/1855-3974.1172.bae
– year: 2020
  ident: 10.1016/j.dam.2021.02.025_b2
– volume: 7
  start-page: 221
  issue: 2
  year: 1984
  ident: 10.1016/j.dam.2021.02.025_b20
  article-title: Isometric embedding in products of complete graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(84)90069-6
– year: 2020
  ident: 10.1016/j.dam.2021.02.025_b4
– volume: 226
  start-page: 127
  year: 2017
  ident: 10.1016/j.dam.2021.02.025_b18
  article-title: q-cube enumerator polynomial of Fibonacci cubes
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2017.04.026
– volume: 13
  issue: 3
  year: 2020
  ident: 10.1016/j.dam.2021.02.025_b16
  article-title: Some diameter notions of Fibonacci cubes
  publication-title: Asian-Eur. J. Math.
  doi: 10.1142/S1793557120500576
– volume: 311
  start-page: 1310
  issue: 14
  year: 2011
  ident: 10.1016/j.dam.2021.02.025_b13
  article-title: The degree sequence of Fibonacci and Lucas cubes
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2011.03.019
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.4195235
Snippet Among the classical models for interconnection networks are hypercubes and Fibonacci cubes. Fibonacci cubes are induced subgraphs of hypercubes obtained by...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 70
SubjectTerms Fibonacci cube
Fibonacci number
Hypercube
Title Fibonacci-run graphs I: Basic properties
URI https://dx.doi.org/10.1016/j.dam.2021.02.025
Volume 295
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe6kH8Yn1UXLwIMLavDbbeGuLpVXsRQu5hclmAxWJpY-rv93ZZFMrqAchlw2ZkMwm8327O_sNwBWG6BMroB8JbcV8wZElKF2Wdm2ecAJ8D4tsi0kwmvoPEY9qMKj2wui0ShP7y5heRGtzpmO82ZnPZp1nIisBAVTkOgXQ0bi94XphwOvQ6I0fR5MtFSktkdas5l2-lhkIbn0j_h0wfatq2bNIAEtR71R3S01PXUr7J-DaAqPhPuwZFmn1ygc9gJrKD2H3aSPBujyC6-EsIZYt5Ywt1rlVCFMvrfGd1UfqGGuuJ-EXWk31GKbD-5fBiJmyCEy6oVgxSSyJSIyrUOO14ohCiW6WcumgClNHZGgjZjo5K3Uy7iniJG45klJZVwXeCdTz91ydguVh6IfKD1IvIGpnS60RinpWVMg0EZlogV29cyyNZrguXfEWV8lhrzG5KdZuim2XDt6Cm43JvBTM-Otiv3Jk_K3XYwrov5ud_c_sHJq6Va79X0B9tVirS6IUq6QNO7cfTtt8ONQaR_1PPp_Fog
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KPVgP4hPrMwcPIizNa7ONN1ssrba92EJuy2SzgYrE0sf_dzaPWkE9CDklmZCdTeb7dnb2W4BbDNEnVkA_Etqa-YIji1G5LGnbPOYE-B7m1RbjoD_1nyMe1aBbrYUxZZVl7C9ieh6tyzOt0put-WzWeiWyEhBARa6TAx2N23eIDQRGQH8QdbY0pIxAWqPKunxNMhDY-qX0d8DMg6pJz7z8K0GzTt0tFD3NRto_wdYWFPUOYL_kkNZj8ZqHUNPZEeyNNgKsy2O4681i4thKzdhinVm5LPXSGjxYHaRuseYmBb8wWqonMO09Tbp9Vm6KwJQbihVTxJGIwrgaDVprjii0aKcJVw7qMHFEijZiakqzEiflniZG4hbjKJ22deCdQj37yPQZWB6Gfqj9IPECIna2MgqhaHKiQiWxSEUT7KrNUpWK4WbjindZlYa9SXKTNG6StksHb8L9xmReyGX8dbNfOVJ-63NJ4fx3s_P_md3Abn8yGsrhYPxyAQ1zpagCuIT6arHWV0QuVvF1_vF8AkjKxXY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fibonacci-run+graphs+I%3A+Basic+properties&rft.jtitle=Discrete+Applied+Mathematics&rft.au=E%C4%9Fecio%C4%9Flu%2C+%C3%96mer&rft.au=Ir%C5%A1i%C4%8D%2C+Vesna&rft.date=2021-05-31&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=295&rft.spage=70&rft.epage=84&rft_id=info:doi/10.1016%2Fj.dam.2021.02.025&rft.externalDocID=S0166218X21000780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon