Fibonacci-run graphs I: Basic properties
Among the classical models for interconnection networks are hypercubes and Fibonacci cubes. Fibonacci cubes are induced subgraphs of hypercubes obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s, counted by Fibonacci numbers. Another set of binary stri...
Saved in:
Published in | Discrete Applied Mathematics Vol. 295; pp. 70 - 84 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
31.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0166-218X 1872-6771 |
DOI | 10.1016/j.dam.2021.02.025 |
Cover
Loading…
Abstract | Among the classical models for interconnection networks are hypercubes and Fibonacci cubes. Fibonacci cubes are induced subgraphs of hypercubes obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s, counted by Fibonacci numbers. Another set of binary strings which are counted by Fibonacci numbers are those with a restriction on the runlengths. Induced subgraphs of the hypercube on the latter strings as vertices define Fibonacci-run graphs. They have the same number of vertices as Fibonacci cubes, but fewer edges and different graph theoretical properties.
We obtain properties of Fibonacci-run graphs including the number of edges, the analogue of the fundamental recursion, the average degree of a vertex, Hamiltonicity, special degree sequences, and the number of hypercubes they contain. A detailed study of the degree sequences of Fibonacci-run graphs is interesting in its own right and is reported in a companion paper. |
---|---|
AbstractList | Among the classical models for interconnection networks are hypercubes and Fibonacci cubes. Fibonacci cubes are induced subgraphs of hypercubes obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s, counted by Fibonacci numbers. Another set of binary strings which are counted by Fibonacci numbers are those with a restriction on the runlengths. Induced subgraphs of the hypercube on the latter strings as vertices define Fibonacci-run graphs. They have the same number of vertices as Fibonacci cubes, but fewer edges and different graph theoretical properties.
We obtain properties of Fibonacci-run graphs including the number of edges, the analogue of the fundamental recursion, the average degree of a vertex, Hamiltonicity, special degree sequences, and the number of hypercubes they contain. A detailed study of the degree sequences of Fibonacci-run graphs is interesting in its own right and is reported in a companion paper. |
Author | Eğecioğlu, Ömer Iršič, Vesna |
Author_xml | – sequence: 1 givenname: Ömer orcidid: 0000-0002-6070-761X surname: Eğecioğlu fullname: Eğecioğlu, Ömer email: omer@cs.ucsb.edu organization: Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 2 givenname: Vesna orcidid: 0000-0001-5302-5250 surname: Iršič fullname: Iršič, Vesna email: vesna.irsic@fmf.uni-lj.si organization: Faculty of Mathematics and Physics, University of Ljubljana, Slovenia |
BookMark | eNp9j8FKAzEQhoNUcFt9AG979LJrJttssnrSYrVQ8KLgLYzZiaa0u0uyCr69KfXkofDDMPB_w3xTNun6jhi7BF4Ch_p6U7a4KwUXUHKRIk9YBlqJolYKJixLnboQoN_O2DTGDecc0paxq6V_7zu01hfhq8s_Ag6fMV_d5PcYvc2H0A8URk_xnJ063Ea6-Jsz9rp8eFk8Fevnx9Xibl1Y0aixsFzL-RwEYXpFkkRUpLRrpQWkpgXlkCM66axuwcmKKt2IisOcAzlNdTVj6nDXhj7GQM5YP-Lo-24M6LcGuNkLm41JwmYvbLhIkYmEf-QQ_A7Dz1Hm9sBQUvr2FEy0njpLrQ9kR9P2_gj9C65tbyM |
CitedBy_id | crossref_primary_10_1016_j_disc_2025_114457 crossref_primary_10_1007_s40840_024_01776_3 crossref_primary_10_1016_j_dam_2025_01_020 crossref_primary_10_1016_j_dam_2022_09_004 crossref_primary_10_1080_00150517_2022_12427439 crossref_primary_10_1016_j_dam_2022_10_007 crossref_primary_10_1016_j_tcs_2022_06_003 crossref_primary_10_1080_00150517_2022_12427440 crossref_primary_10_3390_axioms13120837 crossref_primary_10_2478_puma_2022_0005 crossref_primary_10_1016_j_dam_2021_05_018 |
Cites_doi | 10.1016/j.disc.2004.02.023 10.1016/j.dam.2018.05.015 10.1016/j.ejc.2018.02.019 10.1080/00150517.2001.12428753 10.1109/71.205649 10.1016/j.dam.2016.10.029 10.26493/1855-3974.1591.92e 10.1007/s10878-011-9433-z 10.1007/s00026-014-0233-x 10.1109/IPPS.1993.262788 10.1142/S0129054120500318 10.1016/j.disc.2011.02.015 10.26493/1855-3974.1172.bae 10.1016/0166-218X(84)90069-6 10.1016/j.dam.2017.04.026 10.1142/S1793557120500576 10.1016/j.disc.2011.03.019 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.dam.2021.02.025 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-6771 |
EndPage | 84 |
ExternalDocumentID | 10_1016_j_dam_2021_02_025 S0166218X21000780 |
GroupedDBID | -~X ADEZE AFTJW ALMA_UNASSIGNED_HOLDINGS FDB OAUVE AAYXX AI. CITATION FA8 VH1 WUQ |
ID | FETCH-LOGICAL-c297t-c0854412ea0215e5aa7e78fd5c1ae9d17fa0aaf5fc8d1f53e3892301401ef8e63 |
IEDL.DBID | AIKHN |
ISSN | 0166-218X |
IngestDate | Thu Jul 03 08:45:14 EDT 2025 Thu Apr 24 22:53:37 EDT 2025 Sat Apr 29 22:41:22 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fibonacci cube Fibonacci number Hypercube |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-c0854412ea0215e5aa7e78fd5c1ae9d17fa0aaf5fc8d1f53e3892301401ef8e63 |
ORCID | 0000-0001-5302-5250 0000-0002-6070-761X |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1016_j_dam_2021_02_025 crossref_primary_10_1016_j_dam_2021_02_025 elsevier_sciencedirect_doi_10_1016_j_dam_2021_02_025 |
PublicationCentury | 2000 |
PublicationDate | 2021-05-31 |
PublicationDateYYYYMMDD | 2021-05-31 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Discrete Applied Mathematics |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Klavžar, Mollard, Petkovšek (b13) 2011; 311 Zeckendorf (b21) 1972; 41 Saygı (b17) 2019; 16 Mollard (b14) 2017; 219 Munarini, Perelli Cippo, Zagaglia Salvi (b15) 2001; 39 Eğecioğlu, Saygı, Saygı (b5) 2020; 31 Klavžar, Mollard (b11) 2014; 18 Saygı, Eğecioğlu (b18) 2017; 226 Ilić, Klavžar, Rho (b7) 2012; 312 Klavžar (b10) 2013; 25 Winkler (b20) 1984; 7 Azarija, Klavžar, Rho, Sim (b1) 2018; 14 Saygı, Eğecioğlu (b19) 2019; 266 Savitha, Vijayakumar (b16) 2020; 13 Klavžar (b9) 2005; 299 Baril, Kirgizov, Vajnovszki (b2) 2020 Klavžar, Mollard (b12) 2019; 80 Eğecioğlu, Iršič (b4) 2020 Imrich, Klavžar (b8) 2000 B. Cong, S.Q. Zheng, S. Sharma, On simulations of linear arrays, rings and 2d meshes on Fibonacci cube networks, in: [1993] Proceedings Seventh International Parallel Processing Symposium, 1993, pp. 748–751. Hsu (b6) 1993; 4 Klavžar (10.1016/j.dam.2021.02.025_b13) 2011; 311 Klavžar (10.1016/j.dam.2021.02.025_b12) 2019; 80 Klavžar (10.1016/j.dam.2021.02.025_b10) 2013; 25 10.1016/j.dam.2021.02.025_b3 Klavžar (10.1016/j.dam.2021.02.025_b9) 2005; 299 Hsu (10.1016/j.dam.2021.02.025_b6) 1993; 4 Mollard (10.1016/j.dam.2021.02.025_b14) 2017; 219 Azarija (10.1016/j.dam.2021.02.025_b1) 2018; 14 Munarini (10.1016/j.dam.2021.02.025_b15) 2001; 39 Klavžar (10.1016/j.dam.2021.02.025_b11) 2014; 18 Eğecioğlu (10.1016/j.dam.2021.02.025_b5) 2020; 31 Winkler (10.1016/j.dam.2021.02.025_b20) 1984; 7 Savitha (10.1016/j.dam.2021.02.025_b16) 2020; 13 Zeckendorf (10.1016/j.dam.2021.02.025_b21) 1972; 41 Saygı (10.1016/j.dam.2021.02.025_b19) 2019; 266 Eğecioğlu (10.1016/j.dam.2021.02.025_b4) 2020 Saygı (10.1016/j.dam.2021.02.025_b18) 2017; 226 Imrich (10.1016/j.dam.2021.02.025_b8) 2000 Baril (10.1016/j.dam.2021.02.025_b2) 2020 Ilić (10.1016/j.dam.2021.02.025_b7) 2012; 312 Saygı (10.1016/j.dam.2021.02.025_b17) 2019; 16 |
References_xml | – year: 2020 ident: b2 article-title: Gray codes for Fibonacci q-decreasing words – year: 2020 ident: b4 article-title: Fibonacci-run graphs II: degree sequences – reference: B. Cong, S.Q. Zheng, S. Sharma, On simulations of linear arrays, rings and 2d meshes on Fibonacci cube networks, in: [1993] Proceedings Seventh International Parallel Processing Symposium, 1993, pp. 748–751. – volume: 312 start-page: 2 year: 2012 end-page: 11 ident: b7 article-title: Generalized Fibonacci cubes publication-title: Discrete Math. – volume: 299 start-page: 145 year: 2005 end-page: 153 ident: b9 article-title: On median nature and enumerative properties of Fibonacci-like cubes publication-title: Discrete Math. – volume: 18 start-page: 447 year: 2014 end-page: 457 ident: b11 article-title: Asymptotic properties of Fibonacci cubes and Lucas cubes publication-title: Ann. Comb. – volume: 16 start-page: 245 year: 2019 end-page: 255 ident: b17 article-title: On the domination number and the total domination number of Fibonacci cubes publication-title: Ars Math. Contemp. – volume: 39 start-page: 12 year: 2001 end-page: 21 ident: b15 article-title: On the Lucas cubes publication-title: Fibonacci Quart. – year: 2000 ident: b8 article-title: Product graphs, structure and recognition 01 – volume: 311 start-page: 1310 year: 2011 end-page: 1322 ident: b13 article-title: The degree sequence of Fibonacci and Lucas cubes publication-title: Discrete Math. – volume: 4 start-page: 3 year: 1993 end-page: 12 ident: b6 article-title: Fibonacci cubes - new interconnection topology publication-title: Parallel Distrib. Syst. IEEE Trans. – volume: 219 start-page: 219 year: 2017 end-page: 221 ident: b14 article-title: Non covered vertices in Fibonacci cubes by a maximum set of disjoint hypercubes publication-title: Discrete Appl. Math. – volume: 14 start-page: 387 year: 2018 end-page: 395 ident: b1 article-title: On domination-type invariants of Fibonacci cubes and hypercubes publication-title: Ars Math. Contemp. – volume: 31 start-page: 639 year: 2020 end-page: 661 ident: b5 article-title: -Fibonacci cubes: A family of subgraphs of Fibonacci cubes publication-title: Internat. J. Found. Comput. Sci. – volume: 266 start-page: 191 year: 2019 end-page: 199 ident: b19 article-title: Boundary enumerator polynomial of hypercubes in Fibonacci cubes publication-title: Discrete Appl. Math. – volume: 41 start-page: 179 year: 1972 end-page: 182 ident: b21 article-title: Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas publication-title: Bull. Soc. Roy. Sci. Liège – volume: 80 start-page: 214 year: 2019 end-page: 223 ident: b12 article-title: Daisy cubes and distance cube polynomial publication-title: European J. Combin. – volume: 13 year: 2020 ident: b16 article-title: Some diameter notions of Fibonacci cubes publication-title: Asian-Eur. J. Math. – volume: 7 start-page: 221 year: 1984 end-page: 225 ident: b20 article-title: Isometric embedding in products of complete graphs publication-title: Discrete Appl. Math. – volume: 25 start-page: 505 year: 2013 end-page: 522 ident: b10 article-title: Structure of Fibonacci cubes: A survey publication-title: J. Comb. Optim. – volume: 226 start-page: 127 year: 2017 end-page: 137 ident: b18 article-title: -cube enumerator polynomial of Fibonacci cubes publication-title: Discrete Appl. Math. – volume: 299 start-page: 145 issue: 1–3 year: 2005 ident: 10.1016/j.dam.2021.02.025_b9 article-title: On median nature and enumerative properties of Fibonacci-like cubes publication-title: Discrete Math. doi: 10.1016/j.disc.2004.02.023 – volume: 266 start-page: 191 year: 2019 ident: 10.1016/j.dam.2021.02.025_b19 article-title: Boundary enumerator polynomial of hypercubes in Fibonacci cubes publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2018.05.015 – volume: 80 start-page: 214 year: 2019 ident: 10.1016/j.dam.2021.02.025_b12 article-title: Daisy cubes and distance cube polynomial publication-title: European J. Combin. doi: 10.1016/j.ejc.2018.02.019 – year: 2000 ident: 10.1016/j.dam.2021.02.025_b8 – volume: 39 start-page: 12 issue: 1 year: 2001 ident: 10.1016/j.dam.2021.02.025_b15 article-title: On the Lucas cubes publication-title: Fibonacci Quart. doi: 10.1080/00150517.2001.12428753 – volume: 4 start-page: 3 year: 1993 ident: 10.1016/j.dam.2021.02.025_b6 article-title: Fibonacci cubes - new interconnection topology publication-title: Parallel Distrib. Syst. IEEE Trans. doi: 10.1109/71.205649 – volume: 219 start-page: 219 year: 2017 ident: 10.1016/j.dam.2021.02.025_b14 article-title: Non covered vertices in Fibonacci cubes by a maximum set of disjoint hypercubes publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2016.10.029 – volume: 16 start-page: 245 issue: 1 year: 2019 ident: 10.1016/j.dam.2021.02.025_b17 article-title: On the domination number and the total domination number of Fibonacci cubes publication-title: Ars Math. Contemp. doi: 10.26493/1855-3974.1591.92e – volume: 25 start-page: 505 issue: 4 year: 2013 ident: 10.1016/j.dam.2021.02.025_b10 article-title: Structure of Fibonacci cubes: A survey publication-title: J. Comb. Optim. doi: 10.1007/s10878-011-9433-z – volume: 18 start-page: 447 issue: 3 year: 2014 ident: 10.1016/j.dam.2021.02.025_b11 article-title: Asymptotic properties of Fibonacci cubes and Lucas cubes publication-title: Ann. Comb. doi: 10.1007/s00026-014-0233-x – ident: 10.1016/j.dam.2021.02.025_b3 doi: 10.1109/IPPS.1993.262788 – volume: 31 start-page: 639 issue: 5 year: 2020 ident: 10.1016/j.dam.2021.02.025_b5 article-title: k-Fibonacci cubes: A family of subgraphs of Fibonacci cubes publication-title: Internat. J. Found. Comput. Sci. doi: 10.1142/S0129054120500318 – volume: 312 start-page: 2 issue: 1 year: 2012 ident: 10.1016/j.dam.2021.02.025_b7 article-title: Generalized Fibonacci cubes publication-title: Discrete Math. doi: 10.1016/j.disc.2011.02.015 – volume: 41 start-page: 179 year: 1972 ident: 10.1016/j.dam.2021.02.025_b21 article-title: Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas publication-title: Bull. Soc. Roy. Sci. Liège – volume: 14 start-page: 387 issue: 2 year: 2018 ident: 10.1016/j.dam.2021.02.025_b1 article-title: On domination-type invariants of Fibonacci cubes and hypercubes publication-title: Ars Math. Contemp. doi: 10.26493/1855-3974.1172.bae – year: 2020 ident: 10.1016/j.dam.2021.02.025_b2 – volume: 7 start-page: 221 issue: 2 year: 1984 ident: 10.1016/j.dam.2021.02.025_b20 article-title: Isometric embedding in products of complete graphs publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(84)90069-6 – year: 2020 ident: 10.1016/j.dam.2021.02.025_b4 – volume: 226 start-page: 127 year: 2017 ident: 10.1016/j.dam.2021.02.025_b18 article-title: q-cube enumerator polynomial of Fibonacci cubes publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2017.04.026 – volume: 13 issue: 3 year: 2020 ident: 10.1016/j.dam.2021.02.025_b16 article-title: Some diameter notions of Fibonacci cubes publication-title: Asian-Eur. J. Math. doi: 10.1142/S1793557120500576 – volume: 311 start-page: 1310 issue: 14 year: 2011 ident: 10.1016/j.dam.2021.02.025_b13 article-title: The degree sequence of Fibonacci and Lucas cubes publication-title: Discrete Math. doi: 10.1016/j.disc.2011.03.019 |
SSID | ssj0001218 ssj0000186 ssj0006644 |
Score | 2.4195235 |
Snippet | Among the classical models for interconnection networks are hypercubes and Fibonacci cubes. Fibonacci cubes are induced subgraphs of hypercubes obtained by... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 70 |
SubjectTerms | Fibonacci cube Fibonacci number Hypercube |
Title | Fibonacci-run graphs I: Basic properties |
URI | https://dx.doi.org/10.1016/j.dam.2021.02.025 |
Volume | 295 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe6kH8Yn1UXLwIMLavDbbeGuLpVXsRQu5hclmAxWJpY-rv93ZZFMrqAchlw2ZkMwm8327O_sNwBWG6BMroB8JbcV8wZElKF2Wdm2ecAJ8D4tsi0kwmvoPEY9qMKj2wui0ShP7y5heRGtzpmO82ZnPZp1nIisBAVTkOgXQ0bi94XphwOvQ6I0fR5MtFSktkdas5l2-lhkIbn0j_h0wfatq2bNIAEtR71R3S01PXUr7J-DaAqPhPuwZFmn1ygc9gJrKD2H3aSPBujyC6-EsIZYt5Ywt1rlVCFMvrfGd1UfqGGuuJ-EXWk31GKbD-5fBiJmyCEy6oVgxSSyJSIyrUOO14ohCiW6WcumgClNHZGgjZjo5K3Uy7iniJG45klJZVwXeCdTz91ydguVh6IfKD1IvIGpnS60RinpWVMg0EZlogV29cyyNZrguXfEWV8lhrzG5KdZuim2XDt6Cm43JvBTM-Otiv3Jk_K3XYwrov5ud_c_sHJq6Va79X0B9tVirS6IUq6QNO7cfTtt8ONQaR_1PPp_Fog |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KPVgP4hPrMwcPIizNa7ONN1ssrba92EJuy2SzgYrE0sf_dzaPWkE9CDklmZCdTeb7dnb2W4BbDNEnVkA_Etqa-YIji1G5LGnbPOYE-B7m1RbjoD_1nyMe1aBbrYUxZZVl7C9ieh6tyzOt0put-WzWeiWyEhBARa6TAx2N23eIDQRGQH8QdbY0pIxAWqPKunxNMhDY-qX0d8DMg6pJz7z8K0GzTt0tFD3NRto_wdYWFPUOYL_kkNZj8ZqHUNPZEeyNNgKsy2O4681i4thKzdhinVm5LPXSGjxYHaRuseYmBb8wWqonMO09Tbp9Vm6KwJQbihVTxJGIwrgaDVprjii0aKcJVw7qMHFEijZiakqzEiflniZG4hbjKJ22deCdQj37yPQZWB6Gfqj9IPECIna2MgqhaHKiQiWxSEUT7KrNUpWK4WbjindZlYa9SXKTNG6StksHb8L9xmReyGX8dbNfOVJ-63NJ4fx3s_P_md3Abn8yGsrhYPxyAQ1zpagCuIT6arHWV0QuVvF1_vF8AkjKxXY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fibonacci-run+graphs+I%3A+Basic+properties&rft.jtitle=Discrete+Applied+Mathematics&rft.au=E%C4%9Fecio%C4%9Flu%2C+%C3%96mer&rft.au=Ir%C5%A1i%C4%8D%2C+Vesna&rft.date=2021-05-31&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=295&rft.spage=70&rft.epage=84&rft_id=info:doi/10.1016%2Fj.dam.2021.02.025&rft.externalDocID=S0166218X21000780 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon |