Trajectory-based recognition of dynamic Persian sign language using hidden Markov model
•A dynamic Persian sign language dataset containing 1200 videos of 20 signs performed by 12 individuals is collected.•Hand trajectory and hand shape information is extracted from each frame of the sample videos via a region growing technique.•Hidden Markov model with Gaussian observations is used to...
Saved in:
Published in | Computer speech & language Vol. 61; p. 101053 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0885-2308 1095-8363 |
DOI | 10.1016/j.csl.2019.101053 |
Cover
Abstract | •A dynamic Persian sign language dataset containing 1200 videos of 20 signs performed by 12 individuals is collected.•Hand trajectory and hand shape information is extracted from each frame of the sample videos via a region growing technique.•Hidden Markov model with Gaussian observations is used to model the extracted time-varying trajectories.•The accuracy of 98.13% is obtained and the performance is independent of the subject and the number of training data.
Sign Language Recognition (SLR) is an important step in facilitating the communication among deaf people and the rest of society. Existing Persian sign language recognition systems are mainly restricted to static signs which are not very useful in everyday communications. In this study, a dynamic Persian sign language recognition system is presented. A collection of 1200 videos were captured from 12 individuals performing 20 dynamic signs with a simple white glove. The trajectory of the hands, along with hand shape information were extracted from each video using a simple region-growing technique. These time-varying trajectories were then modeled using Hidden Markov Model (HMM) with Gaussian probability density functions as observations. The performance of the system was evaluated in different experimental strategies. Signer-independent and signer-dependent experiments were performed on the proposed system and the average accuracy of 97.48% was obtained. The experimental results demonstrated that the performance of the system is independent of the subject and it can also perform excellently even with a limited number of training data. |
---|---|
AbstractList | •A dynamic Persian sign language dataset containing 1200 videos of 20 signs performed by 12 individuals is collected.•Hand trajectory and hand shape information is extracted from each frame of the sample videos via a region growing technique.•Hidden Markov model with Gaussian observations is used to model the extracted time-varying trajectories.•The accuracy of 98.13% is obtained and the performance is independent of the subject and the number of training data.
Sign Language Recognition (SLR) is an important step in facilitating the communication among deaf people and the rest of society. Existing Persian sign language recognition systems are mainly restricted to static signs which are not very useful in everyday communications. In this study, a dynamic Persian sign language recognition system is presented. A collection of 1200 videos were captured from 12 individuals performing 20 dynamic signs with a simple white glove. The trajectory of the hands, along with hand shape information were extracted from each video using a simple region-growing technique. These time-varying trajectories were then modeled using Hidden Markov Model (HMM) with Gaussian probability density functions as observations. The performance of the system was evaluated in different experimental strategies. Signer-independent and signer-dependent experiments were performed on the proposed system and the average accuracy of 97.48% was obtained. The experimental results demonstrated that the performance of the system is independent of the subject and it can also perform excellently even with a limited number of training data. |
ArticleNumber | 101053 |
Author | Azar, Saeideh Ghanbari Seyedarabi, Hadi |
Author_xml | – sequence: 1 givenname: Saeideh Ghanbari surname: Azar fullname: Azar, Saeideh Ghanbari email: sghanbariazar@tabrizu.ac.ir – sequence: 2 givenname: Hadi surname: Seyedarabi fullname: Seyedarabi, Hadi email: seyedarabi@tabrizu.ac.ir |
BookMark | eNp9kMtOwzAQRS1UJNrCB7DzD6TYeTixWKGKlwSCRRFLy_FMgkNqIzut1L8nUVmx6Gp0F-fqzlmQmfMOCbnmbMUZFzfdysR-lTIup8yK7IzMOZNFUmUim5E5q6oiSTNWXZBFjB1jTBR5OSefm6A7NIMPh6TWEYEGNL51drDeUd9QODi9tYa-Y4hWOxpt62ivXbvTLdJdtK6lXxYAHX3V4dvv6dYD9pfkvNF9xKu_uyQfD_eb9VPy8vb4vL57SUwqyyGpIYUyK3laQ8EY55DXjcghh1KIQoLkRmJjaqgEKypT5hUgZKAFS2UBtYRsScpjrwk-xoCNMnbQ0_ghaNsrztTkR3Vq9KMmP-roZyT5P_In2K0Oh5PM7ZHB8aW9xaCisegMgh21DQq8PUH_ApC6gTk |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e38265 crossref_primary_10_1007_s11042_023_15709_y crossref_primary_10_3390_s20164359 crossref_primary_10_1007_s10462_024_10730_5 crossref_primary_10_1109_ACCESS_2023_3305255 crossref_primary_10_32604_cmc_2024_057456 crossref_primary_10_1016_j_engappai_2022_105198 crossref_primary_10_1145_3584984 crossref_primary_10_1007_s00521_021_05802_4 crossref_primary_10_1080_03610918_2024_2404520 crossref_primary_10_1016_j_eswa_2022_119365 crossref_primary_10_1109_JSEN_2024_3407786 crossref_primary_10_1109_ACCESS_2022_3148132 crossref_primary_10_1287_ijoc_2022_1176 crossref_primary_10_3390_su13105690 crossref_primary_10_1007_s12369_021_00819_0 crossref_primary_10_1080_08839514_2021_1982184 crossref_primary_10_1109_LSENS_2022_3185181 crossref_primary_10_1145_3596909 crossref_primary_10_1109_ACCESS_2022_3204110 crossref_primary_10_1007_s11042_024_18583_4 crossref_primary_10_1109_ACCESS_2021_3118829 |
Cites_doi | 10.1016/j.asoc.2009.01.002 10.1016/j.compeleceng.2011.10.013 10.1109/TSMCB.2006.889630 10.1016/S0262-8856(03)00070-2 10.1109/TSMCA.2006.886347 10.1093/deafed/enj003 10.1109/MASSP.1986.1165342 10.1007/s00138-005-0003-1 10.1109/THMS.2015.2406692 10.1016/j.jvlc.2012.01.003 10.1007/s13042-016-0602-3 10.1016/j.jvlc.2017.01.004 10.1109/5.18626 10.1109/TPAMI.2019.2911077 10.1016/j.cviu.2015.09.013 10.1007/s13042-017-0705-5 10.1142/S0218001400000386 10.1109/TIP.2007.898960 10.1109/LSP.2018.2797228 10.1016/j.patrec.2016.12.004 10.1016/j.eswa.2016.01.047 10.1016/j.eswa.2010.08.056 10.1007/s11263-018-1121-3 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.csl.2019.101053 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1095-8363 |
ExternalDocumentID | 10_1016_j_csl_2019_101053 S0885230819302979 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AACTN AADFP AAEDT AAEDW AAFJI AAGJA AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABMMH ABOYX ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACXNI ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFYLN AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMW HMY HVGLF HZ~ IHE J1W JJJVA KOM LG5 LX9 M3U M3X M41 MO0 MVM N9A O-L O9- OAUVE OKEIE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPS SSB SSO SSS SST SSV SSY SSZ T5K TN5 UHS WUQ XFK XPP YK3 ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-bd2d73712bd50011d4bf64d4d76659d91c9efcbd86058c748ded3da60295db9d3 |
IEDL.DBID | AIKHN |
ISSN | 0885-2308 |
IngestDate | Tue Jul 01 00:18:34 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Fri Feb 23 02:47:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sign language recognition Hidden Markov model Trajectory Persian sign language Classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-bd2d73712bd50011d4bf64d4d76659d91c9efcbd86058c748ded3da60295db9d3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_csl_2019_101053 crossref_primary_10_1016_j_csl_2019_101053 elsevier_sciencedirect_doi_10_1016_j_csl_2019_101053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationTitle | Computer speech & language |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hore, Chatterjee, Santhi, Dey, Ashour, Balas, Shi (bib0012) 2017 Khelil, Amiri (bib0015) 2016 Moghaddam, Nahvi, Pak (bib0027) 2011 Gao, Ma, Wu, Wang (bib0010) 2000; 14 Available at Shanableh, Assaleh, Al-Rousan (bib0033) 2007; 37 López-Colino, Colás (bib0025) 2012; 23 Huang, Mao, Tao, Ye (bib0013) 2018; 25 Koller, Ney, Bowden (bib0018) 2015 Vogler, Metaxas (bib0036) 1999; 1 Koller, Camgoz, Ney, Bowden (bib0016) 2019 Rabiner, Juang (bib0032) 1986; 3 Starner (bib0034) 1995 Karami, Zanj, Sarkaleh (bib0014) 2011; 38 Koller, Zargaran, Ney, Bowden (bib0021) 2018; 126 Maraqa, Abu-Zaiter (bib0026) 2008 Mohandes, Deriche (bib0028) 2005; 1 Al-Rousan, Assaleh, Talaa (bib0001) 2009; 9 Wu, Tian, Sun, Estevez, Jafari (bib0038) 2015 Brand, Oliver, Pentland (bib0006) 1997 Koller, Ney, Bowden (bib0019) 2016 Lahoti, Kayal, Kumbhare, Suradkar, Pawar (bib0023) 2018 Chen, Fu, Huang (bib0007) 2003; 21 Azar, S. G., Seyedarabi, H., 2016. University of Tabriz persian sign language dataset Cheok, Omar, Jaward (bib0008) 2019; 10 Parton (bib0030) 2005; 11 Barricelli, Valtolina (bib0004) 2017; 40 Lim, Tan, Tan (bib0024) 2016; 54 Fang, Gao, Zhao (bib0009) 2007; 37 Mohandes, Deriche, Johar, Ilyas (bib0029) 2012; 38 Tubaiz, Shanableh, Assaleh (bib0035) 2015; 45 Bashir, Khokhar, Schonfeld (bib0005) 2007; 16 Rabiner (bib0031) 1989; 77 Holden, Lee, Owens (bib0011) 2005; 16 Kumar, Gauba, Roy, Dogra (bib0022) 2017; 86 von Agris, Knorr, Kraiss (bib0037) 2008 Zare, Zahiri (bib0039) 2018; 9 - . o Koller, Zargaran, Ney, Bowden (bib0020) 2016 Barkoky, Charkari (bib0003) 2011 Koller, Forster, Ney (bib0017) 2015; 141 Koller (10.1016/j.csl.2019.101053_bib0018) 2015 Huang (10.1016/j.csl.2019.101053_bib0013) 2018; 25 Gao (10.1016/j.csl.2019.101053_bib0010) 2000; 14 Shanableh (10.1016/j.csl.2019.101053_bib0033) 2007; 37 Tubaiz (10.1016/j.csl.2019.101053_bib0035) 2015; 45 Karami (10.1016/j.csl.2019.101053_bib0014) 2011; 38 Barkoky (10.1016/j.csl.2019.101053_bib0003) 2011 Lim (10.1016/j.csl.2019.101053_bib0024) 2016; 54 Koller (10.1016/j.csl.2019.101053_sbref0019) 2016 Mohandes (10.1016/j.csl.2019.101053_bib0028) 2005; 1 Kumar (10.1016/j.csl.2019.101053_bib0022) 2017; 86 Al-Rousan (10.1016/j.csl.2019.101053_bib0001) 2009; 9 Cheok (10.1016/j.csl.2019.101053_bib0008) 2019; 10 Brand (10.1016/j.csl.2019.101053_bib0006) 1997 Maraqa (10.1016/j.csl.2019.101053_bib0026) 2008 Moghaddam (10.1016/j.csl.2019.101053_bib0027) 2011 Koller (10.1016/j.csl.2019.101053_bib0016) 2019 Hore (10.1016/j.csl.2019.101053_bib0012) 2017 Rabiner (10.1016/j.csl.2019.101053_bib0032) 1986; 3 Bashir (10.1016/j.csl.2019.101053_bib0005) 2007; 16 Wu (10.1016/j.csl.2019.101053_bib0038) 2015 Barricelli (10.1016/j.csl.2019.101053_bib0004) 2017; 40 Khelil (10.1016/j.csl.2019.101053_bib0015) 2016 Koller (10.1016/j.csl.2019.101053_bib0021) 2018; 126 Mohandes (10.1016/j.csl.2019.101053_bib0029) 2012; 38 López-Colino (10.1016/j.csl.2019.101053_bib0025) 2012; 23 Fang (10.1016/j.csl.2019.101053_bib0009) 2007; 37 Rabiner (10.1016/j.csl.2019.101053_bib0031) 1989; 77 Zare (10.1016/j.csl.2019.101053_bib0039) 2018; 9 Holden (10.1016/j.csl.2019.101053_bib0011) 2005; 16 von Agris (10.1016/j.csl.2019.101053_bib0037) 2008 Koller (10.1016/j.csl.2019.101053_bib0019) 2016 Starner (10.1016/j.csl.2019.101053_bib0034) 1995 10.1016/j.csl.2019.101053_bib0002 Vogler (10.1016/j.csl.2019.101053_bib0036) 1999; 1 Chen (10.1016/j.csl.2019.101053_bib0007) 2003; 21 Parton (10.1016/j.csl.2019.101053_bib0030) 2005; 11 Koller (10.1016/j.csl.2019.101053_bib0017) 2015; 141 Lahoti (10.1016/j.csl.2019.101053_bib0023) 2018 |
References_xml | – reference: ). Available at: – volume: 3 start-page: 4 year: 1986 end-page: 16 ident: bib0032 article-title: An introduction to hidden Markov models publication-title: IEEE ASSP Mag. – start-page: 85 year: 2015 end-page: 91 ident: bib0018 article-title: Deep learning of mouth shapes for sign language publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops – reference: Azar, S. G., Seyedarabi, H., 2016. University of Tabriz persian sign language dataset ( – volume: 37 start-page: 1 year: 2007 end-page: 9 ident: bib0009 article-title: Large-vocabulary continuous sign language recognition based on transition-movement models publication-title: IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. – volume: 37 start-page: 641 year: 2007 end-page: 650 ident: bib0033 article-title: Spatio-temporal feature-extraction techniques for isolated gesture recognition in Arabic sign language publication-title: IEEE Trans. Syst. Man. Cybernet. Part B (Cybernet.) – volume: 141 start-page: 108 year: 2015 end-page: 125 ident: bib0017 article-title: Continuous sign language recognition: towards large vocabulary statistical recognition systems handling multiple signers publication-title: Comput. Vis. Image Underst. – volume: 16 start-page: 1912 year: 2007 end-page: 1919 ident: bib0005 article-title: Object trajectory-based activity classification and recognition using hidden Markov models publication-title: IEEE Trans. Image Process. – volume: 16 start-page: 312 year: 2005 ident: bib0011 article-title: Australian sign language recognition publication-title: Mach. Vis. Appl. – year: 2016 ident: bib0015 article-title: Hand gesture recognition using leap motion controller for recognition of arabic sign language publication-title: Proceedings of the 3rd International Conference ACECS’16 – volume: 126 start-page: 1311 year: 2018 end-page: 1325 ident: bib0021 article-title: Deep sign: enabling robust statistical continuous sign language recognition via hybrid CNN-HMMS publication-title: Int. J. Comput. Vis. – volume: 14 start-page: 587 year: 2000 end-page: 602 ident: bib0010 article-title: Sign language recognition based on HMM/ANN/DP publication-title: Int. J. Pattern Recognit. Artif. Intell. – volume: 25 start-page: 442 year: 2018 end-page: 446 ident: bib0013 article-title: A novel chinese sign language recognition method based on keyframe-centered clips publication-title: IEEE Signal Process. Lett. – volume: 77 start-page: 257 year: 1989 end-page: 286 ident: bib0031 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proc. IEEE – volume: 1 start-page: 86 year: 2005 end-page: 89 ident: bib0028 article-title: Image based arabic sign language recognition publication-title: Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005. – reference: - – volume: 40 start-page: 1 year: 2017 end-page: 19 ident: bib0004 article-title: A visual language and interactive system for end-user development of internet of things ecosystems publication-title: J. Vis. Lang. Comput. – volume: 10 start-page: 131 year: 2019 end-page: 153 ident: bib0008 article-title: A review of hand gesture and sign language recognition techniques publication-title: Int. J. Mach. Learn. Cybern. – volume: 9 start-page: 727 year: 2018 end-page: 741 ident: bib0039 article-title: Recognition of a real-time signer-independent static Farsi sign language based on fourier coefficients amplitude publication-title: Int. J. Mach. Learn. Cybernet. – volume: 1 start-page: 116 year: 1999 end-page: 122 ident: bib0036 article-title: Parallel hidden Markov models for American sign language recognition publication-title: Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999 – reference: o – volume: 11 start-page: 94 year: 2005 end-page: 101 ident: bib0030 article-title: Sign language recognition and translation: a multidisciplined approach from the field of artificial intelligence publication-title: J. Deaf Stud. Deaf Educ. – volume: 38 start-page: 2661 year: 2011 end-page: 2667 ident: bib0014 article-title: Persian sign language (PSL) recognition using wavelet transform and neural networks publication-title: Expert Syst. Appl. – start-page: 553 year: 2017 end-page: 563 ident: bib0012 article-title: Indian sign language recognition using optimized neural networks publication-title: Proceedings of the Information Technology and Intelligent Transportation Systems – start-page: 1 year: 2008 end-page: 6 ident: bib0037 article-title: The significance of facial features for automatic sign language recognition publication-title: Proceedings of the 2008 Eighth IEEE International Conference on Automatic Face Gesture Recognition – start-page: 1 year: 2011 end-page: 5 ident: bib0027 article-title: Static persian sign language recognition using kernel-based feature extraction publication-title: Proceedings of the Seventh Iranian Machine Vision and Image Processing (MVIP), 2011 – year: 1995 ident: bib0034 article-title: Visual Recognition of American Sign Language Using Hidden Markov Models. publication-title: Technical Report – start-page: 3793 year: 2016 end-page: 3802 ident: bib0019 article-title: Deep hand: how to train a CNN on 1 million hand images when your data is continuous and weakly labelled publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 478 year: 2008 end-page: 481 ident: bib0026 article-title: Recognition of arabic sign language (ARSL) using recurrent neural networks publication-title: Proceedings of the First International Conference on the Applications of Digital Information and Web Technologies, ICADIWT 2008. – reference: . – start-page: 6548 year: 2011 end-page: 6551 ident: bib0003 article-title: Static hand gesture recognition of Persian sign numbers using thinning method publication-title: Proceedings of the International Conference on Multimedia Technology (ICMT), 2011 – start-page: 1 year: 2018 end-page: 6 ident: bib0023 article-title: Android based american sign language recognition system with skin segmentation and svm publication-title: Proceedings of the 2018 Ninth International Conference on Computing, Communication and Networking Technologies (ICCCNT) – volume: 21 start-page: 745 year: 2003 end-page: 758 ident: bib0007 article-title: Hand gesture recognition using a real-time tracking method and hidden Markov models publication-title: Image Vis. Comput. – volume: 86 start-page: 1 year: 2017 end-page: 8 ident: bib0022 article-title: Coupled HMM-based multi-sensor data fusion for sign language recognition publication-title: Pattern Recognit. Lett. – volume: 54 start-page: 208 year: 2016 end-page: 218 ident: bib0024 article-title: A feature covariance matrix with serial particle filter for isolated sign language recognition publication-title: Expert Syst. Appl. – volume: 9 start-page: 990 year: 2009 end-page: 999 ident: bib0001 article-title: Video-based signer-independent arabic sign language recognition using hidden Markov models publication-title: Appl. Soft Comput. – volume: 45 start-page: 526 year: 2015 end-page: 533 ident: bib0035 article-title: Glove-based continuous arabic sign language recognition in user-dependent mode publication-title: IEEE Trans. Hum.-Mach. Syst. – volume: 38 start-page: 422 year: 2012 end-page: 433 ident: bib0029 article-title: A signer-independent arabic sign language recognition system using face detection, geometric features, and a hidden Markov model publication-title: Comput. Electr. Eng. – start-page: 1 year: 2015 end-page: 6 ident: bib0038 article-title: Real-time American sign language recognition using wrist-worn motion and surface EMG sensors publication-title: Proceedings of the IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2015 – start-page: 994 year: 1997 end-page: 999 ident: bib0006 article-title: Coupled hidden Markov models for complex action recognition publication-title: Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition, – year: 2016 ident: bib0020 article-title: Deep sign: hybrid CNN-HMM for continuous sign language recognition publication-title: Proceedings of the British Machine Vision Conference 2016 – year: 2019 ident: bib0016 article-title: Weakly supervised learning with multi-stream CNN-LSTM-HMMS to discover sequential parallelism in sign language videos publication-title: IEEE Trans. Pattern Anal. Mach. Intell – volume: 23 start-page: 121 year: 2012 end-page: 136 ident: bib0025 article-title: Spanish sign language synthesis system publication-title: J. Vis. Lang. Comput. – start-page: 85 year: 2015 ident: 10.1016/j.csl.2019.101053_bib0018 article-title: Deep learning of mouth shapes for sign language – volume: 9 start-page: 990 issue: 3 year: 2009 ident: 10.1016/j.csl.2019.101053_bib0001 article-title: Video-based signer-independent arabic sign language recognition using hidden Markov models publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.01.002 – volume: 38 start-page: 422 issue: 2 year: 2012 ident: 10.1016/j.csl.2019.101053_bib0029 article-title: A signer-independent arabic sign language recognition system using face detection, geometric features, and a hidden Markov model publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2011.10.013 – start-page: 6548 year: 2011 ident: 10.1016/j.csl.2019.101053_bib0003 article-title: Static hand gesture recognition of Persian sign numbers using thinning method – volume: 37 start-page: 641 issue: 3 year: 2007 ident: 10.1016/j.csl.2019.101053_bib0033 article-title: Spatio-temporal feature-extraction techniques for isolated gesture recognition in Arabic sign language publication-title: IEEE Trans. Syst. Man. Cybernet. Part B (Cybernet.) doi: 10.1109/TSMCB.2006.889630 – volume: 21 start-page: 745 issue: 8 year: 2003 ident: 10.1016/j.csl.2019.101053_bib0007 article-title: Hand gesture recognition using a real-time tracking method and hidden Markov models publication-title: Image Vis. Comput. doi: 10.1016/S0262-8856(03)00070-2 – volume: 37 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.csl.2019.101053_bib0009 article-title: Large-vocabulary continuous sign language recognition based on transition-movement models publication-title: IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. doi: 10.1109/TSMCA.2006.886347 – ident: 10.1016/j.csl.2019.101053_bib0002 – volume: 11 start-page: 94 issue: 1 year: 2005 ident: 10.1016/j.csl.2019.101053_bib0030 article-title: Sign language recognition and translation: a multidisciplined approach from the field of artificial intelligence publication-title: J. Deaf Stud. Deaf Educ. doi: 10.1093/deafed/enj003 – volume: 3 start-page: 4 issue: 1 year: 1986 ident: 10.1016/j.csl.2019.101053_bib0032 article-title: An introduction to hidden Markov models publication-title: IEEE ASSP Mag. doi: 10.1109/MASSP.1986.1165342 – year: 2016 ident: 10.1016/j.csl.2019.101053_sbref0019 article-title: Deep sign: hybrid CNN-HMM for continuous sign language recognition – volume: 16 start-page: 312 issue: 5 year: 2005 ident: 10.1016/j.csl.2019.101053_bib0011 article-title: Australian sign language recognition publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-005-0003-1 – volume: 45 start-page: 526 issue: 4 year: 2015 ident: 10.1016/j.csl.2019.101053_bib0035 article-title: Glove-based continuous arabic sign language recognition in user-dependent mode publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2015.2406692 – start-page: 1 year: 2008 ident: 10.1016/j.csl.2019.101053_bib0037 article-title: The significance of facial features for automatic sign language recognition – volume: 23 start-page: 121 issue: 3 year: 2012 ident: 10.1016/j.csl.2019.101053_bib0025 article-title: Spanish sign language synthesis system publication-title: J. Vis. Lang. Comput. doi: 10.1016/j.jvlc.2012.01.003 – start-page: 994 year: 1997 ident: 10.1016/j.csl.2019.101053_bib0006 article-title: Coupled hidden Markov models for complex action recognition – volume: 9 start-page: 727 issue: 5 year: 2018 ident: 10.1016/j.csl.2019.101053_bib0039 article-title: Recognition of a real-time signer-independent static Farsi sign language based on fourier coefficients amplitude publication-title: Int. J. Mach. Learn. Cybernet. doi: 10.1007/s13042-016-0602-3 – volume: 40 start-page: 1 year: 2017 ident: 10.1016/j.csl.2019.101053_bib0004 article-title: A visual language and interactive system for end-user development of internet of things ecosystems publication-title: J. Vis. Lang. Comput. doi: 10.1016/j.jvlc.2017.01.004 – volume: 77 start-page: 257 issue: 2 year: 1989 ident: 10.1016/j.csl.2019.101053_bib0031 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proc. IEEE doi: 10.1109/5.18626 – year: 2019 ident: 10.1016/j.csl.2019.101053_bib0016 article-title: Weakly supervised learning with multi-stream CNN-LSTM-HMMS to discover sequential parallelism in sign language videos publication-title: IEEE Trans. Pattern Anal. Mach. Intell doi: 10.1109/TPAMI.2019.2911077 – year: 2016 ident: 10.1016/j.csl.2019.101053_bib0015 article-title: Hand gesture recognition using leap motion controller for recognition of arabic sign language – volume: 141 start-page: 108 year: 2015 ident: 10.1016/j.csl.2019.101053_bib0017 article-title: Continuous sign language recognition: towards large vocabulary statistical recognition systems handling multiple signers publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2015.09.013 – year: 1995 ident: 10.1016/j.csl.2019.101053_bib0034 article-title: Visual Recognition of American Sign Language Using Hidden Markov Models. – start-page: 3793 year: 2016 ident: 10.1016/j.csl.2019.101053_bib0019 article-title: Deep hand: how to train a CNN on 1 million hand images when your data is continuous and weakly labelled – volume: 10 start-page: 131 issue: 1 year: 2019 ident: 10.1016/j.csl.2019.101053_bib0008 article-title: A review of hand gesture and sign language recognition techniques publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-017-0705-5 – volume: 1 start-page: 86 year: 2005 ident: 10.1016/j.csl.2019.101053_bib0028 article-title: Image based arabic sign language recognition – volume: 14 start-page: 587 issue: 05 year: 2000 ident: 10.1016/j.csl.2019.101053_bib0010 article-title: Sign language recognition based on HMM/ANN/DP publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001400000386 – start-page: 1 year: 2018 ident: 10.1016/j.csl.2019.101053_bib0023 article-title: Android based american sign language recognition system with skin segmentation and svm – volume: 16 start-page: 1912 issue: 7 year: 2007 ident: 10.1016/j.csl.2019.101053_bib0005 article-title: Object trajectory-based activity classification and recognition using hidden Markov models publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.898960 – volume: 25 start-page: 442 issue: 3 year: 2018 ident: 10.1016/j.csl.2019.101053_bib0013 article-title: A novel chinese sign language recognition method based on keyframe-centered clips publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2797228 – start-page: 553 year: 2017 ident: 10.1016/j.csl.2019.101053_bib0012 article-title: Indian sign language recognition using optimized neural networks – volume: 1 start-page: 116 year: 1999 ident: 10.1016/j.csl.2019.101053_bib0036 article-title: Parallel hidden Markov models for American sign language recognition – volume: 86 start-page: 1 year: 2017 ident: 10.1016/j.csl.2019.101053_bib0022 article-title: Coupled HMM-based multi-sensor data fusion for sign language recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2016.12.004 – volume: 54 start-page: 208 year: 2016 ident: 10.1016/j.csl.2019.101053_bib0024 article-title: A feature covariance matrix with serial particle filter for isolated sign language recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.01.047 – volume: 38 start-page: 2661 issue: 3 year: 2011 ident: 10.1016/j.csl.2019.101053_bib0014 article-title: Persian sign language (PSL) recognition using wavelet transform and neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.08.056 – start-page: 478 year: 2008 ident: 10.1016/j.csl.2019.101053_bib0026 article-title: Recognition of arabic sign language (ARSL) using recurrent neural networks – start-page: 1 year: 2011 ident: 10.1016/j.csl.2019.101053_bib0027 article-title: Static persian sign language recognition using kernel-based feature extraction – volume: 126 start-page: 1311 issue: 12 year: 2018 ident: 10.1016/j.csl.2019.101053_bib0021 article-title: Deep sign: enabling robust statistical continuous sign language recognition via hybrid CNN-HMMS publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-018-1121-3 – start-page: 1 year: 2015 ident: 10.1016/j.csl.2019.101053_bib0038 article-title: Real-time American sign language recognition using wrist-worn motion and surface EMG sensors |
SSID | ssj0006547 |
Score | 2.3745856 |
Snippet | •A dynamic Persian sign language dataset containing 1200 videos of 20 signs performed by 12 individuals is collected.•Hand trajectory and hand shape... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101053 |
SubjectTerms | Classification Hidden Markov model Persian sign language Sign language recognition Trajectory |
Title | Trajectory-based recognition of dynamic Persian sign language using hidden Markov model |
URI | https://dx.doi.org/10.1016/j.csl.2019.101053 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uOjBR1Wsj7IHT0Jsk-wmzbEUS1XsRYu9hezORlskLVoFL_52d5JNqaAePGbJQPgyO4_db2YAzkTiJsg95Sg0Gsy7gXSkS5VcMlSJkgpTjwqcb0fBcMyvJ2JSgX5ZC0O0Smv7C5ueW2u70rZothfTafvO7A860jQuzacJTFEV6p4fBaIG9d7VzXC0Msg0X7cIJoVDAuXlZk7zUq90AeFG9NwR_s_uac3lDHZgy8aKrFd8zi5UdNaA7XIOA7PbsgGba00F9-DBuJ9Zfhb_4ZCPQrYiCc0zNk8ZFkPoGZHfjXIwonCw8tySERH-kT1RZ5GMUSXP_J3l43L2YTy4vO8PHTs-wVEGjqUj0cPQD11PoqDID7lMA44cwyAQEUauinSqJHbpZlSFvIsafUwCA6ZAGaF_ALVsnulDYCJ1E-ELxI72TT4dylCHJm-i5n_KLOkmdErUYmV7i9OIi-e4JJHNYgN0TEDHBdBNOF-JLIrGGn-9zMtfEX_TjtgY_t_Fjv4ndgwbHmXVOa3xBGrLlzd9akKPpWxB9eLTbVkF-wJu09iJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADjwKiPD0wIYU2iR03I6qoCrRdaAVbFPsSaIWSCgoSC78dXx6lSMDAGCuWoi_nu7P93X0ApyK0Q-SOtjQaC-YtT1nKpkouJXWolcbYoQLn_sDrjvj1vbivQLushSFaZeH7c5-eeetipFGg2ZiOx41bsz7oSNOENJcUmPwlWObClcTrO__44nmQum6eSgqLXi-vNjOSl36h6wfbp-emcH8OTgsBp7MJ60WmyC7yj9mCSpTUYKNUYWDFoqzB2kJLwW24M8Fnkp3Ev1sUoZDNKUJpwtKYYS5Bz4j6bkyDEYGDlaeWjGjwD-yR-ookjOp40jeWieXswKhzOWx3rUI8wdIGjJml0EHpSttRKCjvQ65ijyNH6XnCR9_WfhRrhS26F9WStzBCF0PPQClQ-ejuQjVJk2gPmIjtULgCsRm5ZjctlYyk2TVR6z9thqI6NEvUAl10FieBi6egpJBNAgN0QEAHOdB1OJtPmeZtNf56mZe_IvhmG4Fx-79P2__ftBNY6Q77vaB3Nbg5gFWH9tcZwfEQqrPn1-jIJCEzdZwZ2Sc-ldlU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory-based+recognition+of+dynamic+Persian+sign+language+using+hidden+Markov+model&rft.jtitle=Computer+speech+%26+language&rft.au=Azar%2C+Saeideh+Ghanbari&rft.au=Seyedarabi%2C+Hadi&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=0885-2308&rft.eissn=1095-8363&rft.volume=61&rft_id=info:doi/10.1016%2Fj.csl.2019.101053&rft.externalDocID=S0885230819302979 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-2308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-2308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-2308&client=summon |