Predictive trajectory planning for autonomous vehicles at intersections using reinforcement learning

In this work we put forward a predictive trajectory planning framework to help autonomous vehicles plan future trajectories. We develop a partially observable Markov decision process (POMDP) to model this sequential decision making problem, and a deep reinforcement learning solution methodology to l...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part C, Emerging technologies Vol. 149; p. 104063
Main Authors Zhang, Ethan, Zhang, Ruixuan, Masoud, Neda
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Subjects
Online AccessGet full text
ISSN0968-090X
1879-2359
DOI10.1016/j.trc.2023.104063

Cover

Loading…
Abstract In this work we put forward a predictive trajectory planning framework to help autonomous vehicles plan future trajectories. We develop a partially observable Markov decision process (POMDP) to model this sequential decision making problem, and a deep reinforcement learning solution methodology to learn high-quality policies. The POMDP model utilizes driving scenarios, condensed into graphs, as inputs. More specifically, an input graph contains information on the history trajectory of the subject vehicle, predicted trajectories of other agents in the scene (e.g., other vehicles, pedestrians, and cyclists), as well as predicted risk levels posed by surrounding vehicles to devise safe, comfortable, and energy-efficient trajectories for the subject vehicle to follow. In order to obtain sufficient driving scenarios to use as training data, we propose a simulation framework to generate socially acceptable driving scenarios using a real world autonomous vehicle dataset. The simulation framework utilizes Bayesian Gaussian mixture models to learn trajectory patterns of different agent types, and Gibbs sampling to ensure that the distribution of simulated scenarios matches that of the real-world dataset collected by an autonomous fleet. We evaluate the proposed work in two complex urban driving environments: a non-signalized T-junction and a non-signalized lane merge intersection. Both environments provide vastly more complex driving scenarios compared to a highway driving environment, which has been mostly the focus of previous studies. The framework demonstrates promising performance for planning horizons as long as five seconds. We compare safety, comfort, and energy efficiency of the planned trajectories against human-driven trajectories in both experimental driving environments, and demonstrate that it outperforms human-driven trajectories in a statistically significant fashion in all aspects. •A predictive–prescriptive trajectory planning framework.•Planned trajectories account for safety, comfort, and fuel efficiency.•Graph-based reinforcement learning is used to obtain a policy.•Planned trajectories outperform human-driven trajectories.
AbstractList In this work we put forward a predictive trajectory planning framework to help autonomous vehicles plan future trajectories. We develop a partially observable Markov decision process (POMDP) to model this sequential decision making problem, and a deep reinforcement learning solution methodology to learn high-quality policies. The POMDP model utilizes driving scenarios, condensed into graphs, as inputs. More specifically, an input graph contains information on the history trajectory of the subject vehicle, predicted trajectories of other agents in the scene (e.g., other vehicles, pedestrians, and cyclists), as well as predicted risk levels posed by surrounding vehicles to devise safe, comfortable, and energy-efficient trajectories for the subject vehicle to follow. In order to obtain sufficient driving scenarios to use as training data, we propose a simulation framework to generate socially acceptable driving scenarios using a real world autonomous vehicle dataset. The simulation framework utilizes Bayesian Gaussian mixture models to learn trajectory patterns of different agent types, and Gibbs sampling to ensure that the distribution of simulated scenarios matches that of the real-world dataset collected by an autonomous fleet. We evaluate the proposed work in two complex urban driving environments: a non-signalized T-junction and a non-signalized lane merge intersection. Both environments provide vastly more complex driving scenarios compared to a highway driving environment, which has been mostly the focus of previous studies. The framework demonstrates promising performance for planning horizons as long as five seconds. We compare safety, comfort, and energy efficiency of the planned trajectories against human-driven trajectories in both experimental driving environments, and demonstrate that it outperforms human-driven trajectories in a statistically significant fashion in all aspects. •A predictive–prescriptive trajectory planning framework.•Planned trajectories account for safety, comfort, and fuel efficiency.•Graph-based reinforcement learning is used to obtain a policy.•Planned trajectories outperform human-driven trajectories.
ArticleNumber 104063
Author Masoud, Neda
Zhang, Ruixuan
Zhang, Ethan
Author_xml – sequence: 1
  givenname: Ethan
  orcidid: 0000-0003-3249-0617
  surname: Zhang
  fullname: Zhang, Ethan
– sequence: 2
  givenname: Ruixuan
  orcidid: 0000-0002-9638-4883
  surname: Zhang
  fullname: Zhang, Ruixuan
– sequence: 3
  givenname: Neda
  orcidid: 0000-0002-6526-3317
  surname: Masoud
  fullname: Masoud, Neda
  email: nmasoud@umich.edu
BookMark eNp9kM1KAzEURoNUsK0-gLu8wNRkMpOZ4EqKf1DQhYK7kMncaIZpUpK00Lc3Q1256Opy4Z6P-50FmjnvAKFbSlaUUH43rFLQq5KULO8V4ewCzWnbiKJktZihORG8LYggX1doEeNACKGibuaofw_QW53sAXAKagCdfDji3aics-4bGx-w2ifv_NbvIz7Aj9UjRKwSti5BiBmw3kW8j9N5AOsyomELLuERVJhSrtGlUWOEm7-5RJ9Pjx_rl2Lz9vy6ftgUuhRNKjpNKROVMYRVrWp4yYETXvGadmXfmdrUqtSGMaPajmjViEa1PW3bqqlI1VLClqg55ergYwxgpLZJTf_lanaUlMhJlhxkliUnWfIkK5P0H7kLdqvC8Sxzf2IgVzpYCDJqC05nnyFbkb23Z-hf4GKG7A
CitedBy_id crossref_primary_10_1177_09544070241287240
crossref_primary_10_1109_TITS_2024_3462495
crossref_primary_10_1016_j_trc_2024_104606
crossref_primary_10_1109_TITS_2024_3450471
crossref_primary_10_3390_app14104181
crossref_primary_10_1002_aisy_202401040
crossref_primary_10_1016_j_trc_2023_104441
crossref_primary_10_1145_3714478
crossref_primary_10_1016_j_jestch_2025_101950
crossref_primary_10_1177_03611981241235229
crossref_primary_10_3389_fnbot_2025_1451923
crossref_primary_10_1109_OJITS_2024_3515270
crossref_primary_10_1080_23249935_2024_2374523
crossref_primary_10_1109_ACCESS_2025_3546325
crossref_primary_10_1016_j_aei_2024_102941
crossref_primary_10_1109_TITS_2024_3513436
crossref_primary_10_1016_j_aej_2024_10_039
crossref_primary_10_1016_j_trc_2024_104555
crossref_primary_10_1016_j_trc_2024_104797
crossref_primary_10_1016_j_trc_2024_104974
crossref_primary_10_1109_TITS_2024_3443397
crossref_primary_10_1109_ACCESS_2024_3513700
crossref_primary_10_1016_j_rser_2024_114381
crossref_primary_10_1007_s13177_024_00407_2
crossref_primary_10_1155_2024_5948944
crossref_primary_10_1016_j_simpat_2024_103003
crossref_primary_10_3390_vehicles6010007
crossref_primary_10_1016_j_eswa_2024_124496
crossref_primary_10_1061_JTEPBS_TEENG_8557
Cites_doi 10.1016/j.aap.2019.05.005
10.1109/LRA.2020.3045925
10.1016/j.tre.2017.10.011
10.1109/CVPR.2016.90
10.1016/j.procs.2020.04.017
10.1016/j.aap.2020.105937
10.1016/j.ijinfomgt.2019.04.003
10.1016/j.trf.2021.02.009
10.1016/j.trc.2020.102929
10.1109/TIE.2015.2410258
10.1109/LRA.2020.3011912
10.1109/MSP.2017.2743240
10.1016/j.aap.2017.04.012
10.1016/j.cogsys.2022.09.002
10.1109/TITS.2019.2901817
10.1109/CVPR.2018.00553
10.1146/annurev-control-053018-023825
10.1109/TITS.2019.2913998
10.1145/3306618.3314237
10.1016/j.engappai.2010.01.001
10.1109/CVPR.2017.233
10.1016/j.aap.2021.106477
10.1016/j.aap.2021.105973
10.1016/j.trc.2016.08.007
10.1177/0278364920917446
10.1016/j.aap.2011.02.009
10.1007/978-3-319-25808-9_4
10.1016/j.techfore.2019.02.010
10.1016/j.trc.2018.12.012
10.1016/j.tre.2020.102033
10.1016/j.patcog.2020.107800
10.1109/TITS.2015.2389215
10.3141/2434-13
10.1109/TITS.2008.2011697
10.1109/TITS.2018.2874234
10.1016/j.trc.2018.10.024
10.1109/TIV.2017.2788208
10.1609/aaai.v33i01.33016120
10.1145/3152465.3152476
10.1109/TMECH.2015.2493980
10.1016/j.ssci.2019.07.022
10.1109/MITS.2016.2583491
10.1038/nmeth.4526
10.1109/CVPR.2018.00240
10.1016/j.trf.2021.03.008
10.4271/12-04-04-0025
10.1109/TNNLS.2020.2978386
10.1287/mnsc.2018.3253
10.1109/CVPRW.2018.00196
10.1038/nature14236
10.1016/j.trf.2021.04.018
10.1016/j.trc.2020.02.011
10.1109/TITS.2020.2972409
10.1016/j.trc.2021.103550
10.1109/CVPR.2016.110
10.1109/TITS.2020.2998907
10.1016/j.trc.2020.102715
10.1016/j.trd.2017.04.020
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.trc.2023.104063
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
ExternalDocumentID 10_1016_j_trc_2023_104063
S0968090X23000529
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-bc11394ff0348a7626e6064651b2dbf5f5a2cf33fa8b0ca797a8d188474048103
IEDL.DBID .~1
ISSN 0968-090X
IngestDate Tue Jul 01 01:45:17 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Fri Feb 23 02:38:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Trajectory prediction
Trajectory planning
Autonomous vehicles
Reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-bc11394ff0348a7626e6064651b2dbf5f5a2cf33fa8b0ca797a8d188474048103
ORCID 0000-0002-9638-4883
0000-0002-6526-3317
0000-0003-3249-0617
ParticipantIDs crossref_citationtrail_10_1016_j_trc_2023_104063
crossref_primary_10_1016_j_trc_2023_104063
elsevier_sciencedirect_doi_10_1016_j_trc_2023_104063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Houston, Zuidhof, Bergamini, Ye, Chen, Jain, Omari, Iglovikov, Ondruska (b25) 2020
Svensson, Masson, Mohan, Ward, Brenden, Feng, Törngren (b60) 2018
Zhang, Liu, Wolshon, Sheng (b78) 2020; 22
Ali, Ali, Imran, Naqvi, Siddiqi, Kwak (b2) 2021; 151
Ye, Zhang, Wang, Chan (b74) 2021
Josef, Degani (b29) 2020; 5
Liu, Masoud, Zhu, Khojandi (b37) 2022; 136
Zhang, Pizzi, Masoud (b83) 2021
Feng, Bao, Sayer, Flannagan, Manser, Wunderlich (b17) 2017; 104
Fu, Zhang, Yang, Zhu, Wang (b18) 2015
Geary, T., Danks, D., 2019. Balancing the benefits of autonomous vehicles. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. pp. 181–186.
Hasan, Van Hentenryck (b22) 2021; 124
Moody, Bailey, Zhao (b44) 2020; 121
Kim, Kang, Kim, Lee, Chung, Choi (b31) 2017
Kühl, Goutier, Baier, Wolff, Martin (b33) 2022
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
Wang, Wang, Zhang, Liu, Sun (b66) 2022
Arulkumaran, Deisenroth, Brundage, Bharath (b4) 2017; 34
Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D., 2019. Trafficpredict: Trajectory prediction for heterogeneous traffic-agents. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. pp. 6120–6127.
Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A., 2018. Social gan: Socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2255–2264.
Sadat, Casas, Ren, Wu, Dhawan, Urtasun (b57) 2020
Rasouli, Tsotsos (b54) 2019; 21
Cai, Sun, Chen, Liu (b9) 2019
Deo, N., Trivedi, M.M., 2018. Convolutional social pooling for vehicle trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 1468–1476.
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (b43) 2015; 518
Wang, Xu, Gong (b67) 2010; 23
Zhu, Wang, Wang (b88) 2018; 97
Bzdok, Krzywinski, Altman (b8) 2017; 14
Zhang, Tafreshian, Masoud (b84) 2020; 141
Huang, Wang, Pi, Song, Yang (b26) 2021; 112
Zhang, Masoud (b79) 2020; 22
Houenou, Bonnifait, Cherfaoui, Yao (b24) 2013
Xu, Y., Piao, Z., Gao, S., 2018. Encoding crowd interaction with deep neural network for pedestrian trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5275–5284.
Carvalho, Gao, Gray, Tseng, Borrelli (b10) 2013
Patel, Kushwaha (b48) 2020; 171
Das (b12) 2021; 81
Masoud, Jayakrishnan (b42) 2017; 108
Wang, Y., Xu, W., Zhang, Y., Qin, Y., Zhang, W., Wu, X., 2017. Machine learning methods for driving risk prediction. In: Proceedings of the 3rd ACM SIGSPATIAL Workshop on Emergency Management using. pp. 1–6.
Recht (b55) 2019; 2
Raffo, Gomes, Normey-Rico, Kelber, Becker (b51) 2009; 10
Wu, Pan, Chen, Long, Zhang, Philip (b69) 2020; 32
Rahman, Dey, Das, Sherfinski (b52) 2021; 78
Xu, Wang, Fu, Gong, Sobhani (b72) 2022; 164
Galvin (b19) 2017; 53
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S., 2016. Social lstm: Human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 961–971.
Ma, Xue, Kawabata, Zhu, Ma, Zheng (b39) 2015; 16
Pool, Kooij, Gavrila (b50) 2017
Raju, Gupta, Lomate (b53) 2019
Ntousakis, Nikolos, Papageorgiou (b45) 2016; 71
Ding, Shen (b14) 2019
Mannion, Duggan, Howley (b41) 2016
van Wyk, Khojandi, Masoud (b63) 2020; 114
Claussmann, Revilloud, Gruyer, Glaser (b11) 2019; 21
Burger, Lauer (b7) 2018
Lepenioti, Bousdekis, Apostolou, Mentzas (b35) 2020; 50
Liu, Zhao, Masoud, Zhu (b38) 2021; 4
Zhou, He, Wang, Jiang, Zhu, Hu, Miao, Luo (b87) 2020; 6
Hubmann, Schulz, Becker, Althoff, Stiller (b27) 2018; 3
Zhao, Li, Pei, Li, Wang, Wu (b85) 2021; 150
Zhou, Cholette, Bhaskar, Chung (b86) 2018; 20
Song, Hu, Yu, Bai, Chen (b59) 2018
Xue, Huynh, Reynolds (b73) 2018
Zhang, Masoud, Bandegi, Lull, Malhan (b80) 2022
Pandey, Wang, Boyles (b47) 2020; 119
Fan, Ma, Li, He, Zhao, Tang, Yin (b16) 2019
Zhang, Masoud, Bandegi, Malhan (b81) 2022
Koopman, Wagner (b32) 2017; 9
van Wyk, Khojandi, Masoud (b64) 2020
Vitelli, Chang, Ye, Ferreira, Wołczyk, Osiński, Niendorf, Grimmett, Huang, Jain (b65) 2022
Wu, Stern, Cui, Delle Monache, Bhadani, Bunting, Churchill, Hamilton, Piccoli, Seibold (b70) 2019; 99
Zaki, Sayed, Shaaban (b75) 2014; 2434
Fagnant, Kockelman (b15) 2015; 77
Shi, Wong, Li, Palanisamy, Chai (b58) 2019; 129
Zhang, Masoud, Zhang, Malhan (b82) 2021
Bertsimas, Kallus (b6) 2020; 66
Rudenko, Palmieri, Herman, Kitani, Gavrila, Arras (b56) 2020; 39
Pammer, Gauld, McKerral, Reeves (b46) 2021; 78
Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M., 2017. Desire: Distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 336–345.
Kalra, Paddock (b30) 2016; 94
Aradi (b3) 2020
Li, Sun, Cao, He, Zhu (b36) 2015; 21
Jo, Kim, Kim, Jang, Sunwoo (b28) 2015; 62
Toghi, Valiente, Sadigh, Pedarsani, Fallah (b61) 2021
Bagdadi, Várhelyi (b5) 2011; 43
Zernetsch, Kohnen, Goldhammer, Doll, Sick (b76) 2016
Zhang, Deng, Zhao, Sun, Litkouhi (b77) 2013
Penmetsa, Adanu, Wood, Wang, Jones (b49) 2019; 143
Tsuchiya, Takei, Sakai, Khiat (b62) 2021
Fan (10.1016/j.trc.2023.104063_b16) 2019
10.1016/j.trc.2023.104063_b1
Wang (10.1016/j.trc.2023.104063_b66) 2022
Fagnant (10.1016/j.trc.2023.104063_b15) 2015; 77
Wu (10.1016/j.trc.2023.104063_b70) 2019; 99
Bertsimas (10.1016/j.trc.2023.104063_b6) 2020; 66
Jo (10.1016/j.trc.2023.104063_b28) 2015; 62
Song (10.1016/j.trc.2023.104063_b59) 2018
Bagdadi (10.1016/j.trc.2023.104063_b5) 2011; 43
Hasan (10.1016/j.trc.2023.104063_b22) 2021; 124
Zhang (10.1016/j.trc.2023.104063_b77) 2013
Raffo (10.1016/j.trc.2023.104063_b51) 2009; 10
Liu (10.1016/j.trc.2023.104063_b37) 2022; 136
Aradi (10.1016/j.trc.2023.104063_b3) 2020
Zernetsch (10.1016/j.trc.2023.104063_b76) 2016
Ding (10.1016/j.trc.2023.104063_b14) 2019
Zhang (10.1016/j.trc.2023.104063_b79) 2020; 22
Claussmann (10.1016/j.trc.2023.104063_b11) 2019; 21
Svensson (10.1016/j.trc.2023.104063_b60) 2018
Hubmann (10.1016/j.trc.2023.104063_b27) 2018; 3
Zaki (10.1016/j.trc.2023.104063_b75) 2014; 2434
Zhang (10.1016/j.trc.2023.104063_b80) 2022
Arulkumaran (10.1016/j.trc.2023.104063_b4) 2017; 34
Houston (10.1016/j.trc.2023.104063_b25) 2020
Li (10.1016/j.trc.2023.104063_b36) 2015; 21
Rahman (10.1016/j.trc.2023.104063_b52) 2021; 78
Toghi (10.1016/j.trc.2023.104063_b61) 2021
Mnih (10.1016/j.trc.2023.104063_b43) 2015; 518
10.1016/j.trc.2023.104063_b40
Ali (10.1016/j.trc.2023.104063_b2) 2021; 151
Liu (10.1016/j.trc.2023.104063_b38) 2021; 4
Tsuchiya (10.1016/j.trc.2023.104063_b62) 2021
Zhang (10.1016/j.trc.2023.104063_b81) 2022
10.1016/j.trc.2023.104063_b34
Cai (10.1016/j.trc.2023.104063_b9) 2019
Rasouli (10.1016/j.trc.2023.104063_b54) 2019; 21
Zhao (10.1016/j.trc.2023.104063_b85) 2021; 150
Houenou (10.1016/j.trc.2023.104063_b24) 2013
Xu (10.1016/j.trc.2023.104063_b72) 2022; 164
Wang (10.1016/j.trc.2023.104063_b67) 2010; 23
Huang (10.1016/j.trc.2023.104063_b26) 2021; 112
Sadat (10.1016/j.trc.2023.104063_b57) 2020
Kalra (10.1016/j.trc.2023.104063_b30) 2016; 94
Zhang (10.1016/j.trc.2023.104063_b84) 2020; 141
Fu (10.1016/j.trc.2023.104063_b18) 2015
Shi (10.1016/j.trc.2023.104063_b58) 2019; 129
Burger (10.1016/j.trc.2023.104063_b7) 2018
Feng (10.1016/j.trc.2023.104063_b17) 2017; 104
Wu (10.1016/j.trc.2023.104063_b69) 2020; 32
Xue (10.1016/j.trc.2023.104063_b73) 2018
Ma (10.1016/j.trc.2023.104063_b39) 2015; 16
10.1016/j.trc.2023.104063_b71
Zhang (10.1016/j.trc.2023.104063_b82) 2021
Masoud (10.1016/j.trc.2023.104063_b42) 2017; 108
Recht (10.1016/j.trc.2023.104063_b55) 2019; 2
10.1016/j.trc.2023.104063_b21
10.1016/j.trc.2023.104063_b23
10.1016/j.trc.2023.104063_b68
Carvalho (10.1016/j.trc.2023.104063_b10) 2013
Mannion (10.1016/j.trc.2023.104063_b41) 2016
Das (10.1016/j.trc.2023.104063_b12) 2021; 81
Kim (10.1016/j.trc.2023.104063_b31) 2017
Kühl (10.1016/j.trc.2023.104063_b33) 2022
Zhou (10.1016/j.trc.2023.104063_b87) 2020; 6
Ntousakis (10.1016/j.trc.2023.104063_b45) 2016; 71
van Wyk (10.1016/j.trc.2023.104063_b64) 2020
Ye (10.1016/j.trc.2023.104063_b74) 2021
Patel (10.1016/j.trc.2023.104063_b48) 2020; 171
Raju (10.1016/j.trc.2023.104063_b53) 2019
Lepenioti (10.1016/j.trc.2023.104063_b35) 2020; 50
Pammer (10.1016/j.trc.2023.104063_b46) 2021; 78
Zhou (10.1016/j.trc.2023.104063_b86) 2018; 20
van Wyk (10.1016/j.trc.2023.104063_b63) 2020; 114
Rudenko (10.1016/j.trc.2023.104063_b56) 2020; 39
Zhang (10.1016/j.trc.2023.104063_b78) 2020; 22
Zhang (10.1016/j.trc.2023.104063_b83) 2021
Bzdok (10.1016/j.trc.2023.104063_b8) 2017; 14
Koopman (10.1016/j.trc.2023.104063_b32) 2017; 9
10.1016/j.trc.2023.104063_b20
10.1016/j.trc.2023.104063_b13
Moody (10.1016/j.trc.2023.104063_b44) 2020; 121
Pandey (10.1016/j.trc.2023.104063_b47) 2020; 119
Josef (10.1016/j.trc.2023.104063_b29) 2020; 5
Penmetsa (10.1016/j.trc.2023.104063_b49) 2019; 143
Galvin (10.1016/j.trc.2023.104063_b19) 2017; 53
Pool (10.1016/j.trc.2023.104063_b50) 2017
Vitelli (10.1016/j.trc.2023.104063_b65) 2022
Zhu (10.1016/j.trc.2023.104063_b88) 2018; 97
References_xml – volume: 108
  start-page: 179
  year: 2017
  end-page: 194
  ident: b42
  article-title: Autonomous or driver-less vehicles: Implementation strategies and operational concerns
  publication-title: Transp. Res. E
– volume: 2434
  start-page: 103
  year: 2014
  end-page: 112
  ident: b75
  article-title: Use of drivers’ jerk profiles in computer vision–based traffic safety evaluations
  publication-title: Transp. Res. Rec.
– start-page: 907
  year: 2015
  end-page: 912
  ident: b18
  article-title: Collision-free and kinematically feasible path planning along a reference path for autonomous vehicle
  publication-title: 2015 IEEE Intelligent Vehicles Symposium (IV)
– volume: 114
  start-page: 517
  year: 2020
  end-page: 531
  ident: b63
  article-title: Optimal switching policy between driving entities in semi-autonomous vehicles
  publication-title: Transp. Res. C
– volume: 66
  start-page: 1025
  year: 2020
  end-page: 1044
  ident: b6
  article-title: From predictive to prescriptive analytics
  publication-title: Manage. Sci.
– start-page: 414
  year: 2020
  end-page: 430
  ident: b57
  article-title: Perceive, predict, and plan: Safe motion planning through interpretable semantic representations
  publication-title: European Conference on Computer Vision
– start-page: 1001
  year: 2021
  end-page: 1007
  ident: b62
  article-title: Exemplar trajectory generation for prior driving experience re-usage in autonomous driving
  publication-title: 2021 IEEE Intelligent Vehicles Symposium (IV)
– start-page: 1853
  year: 2021
  end-page: 1858
  ident: b83
  article-title: A learning-based method for predicting heterogeneous traffic agent trajectories: Implications for transfer learning
  publication-title: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC)
– volume: 53
  start-page: 234
  year: 2017
  end-page: 248
  ident: b19
  article-title: Energy consumption effects of speed and acceleration in electric vehicles: Laboratory case studies and implications for drivers and policymakers
  publication-title: Transp. Res. D
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: b43
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– start-page: 4161
  year: 2013
  end-page: 4166
  ident: b77
  article-title: Dynamic trajectory planning for vehicle autonomous driving
  publication-title: 2013 IEEE International Conference on Systems, Man, and Cybernetics
– volume: 119
  year: 2020
  ident: b47
  article-title: Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations
  publication-title: Transp. Res. C
– start-page: 47
  year: 2016
  end-page: 66
  ident: b41
  article-title: An experimental review of reinforcement learning algorithms for adaptive traffic signal control
  publication-title: Auton. Road Transp. Support Syst.
– start-page: 2736
  year: 2019
  end-page: 2742
  ident: b9
  article-title: Vision-based trajectory planning via imitation learning for autonomous vehicles
  publication-title: 2019 IEEE Intelligent Transportation Systems Conference (ITSC)
– volume: 136
  year: 2022
  ident: b37
  article-title: A markov decision process framework to incorporate network-level data in motion planning for connected and automated vehicles
  publication-title: Transp. Res. C
– volume: 22
  start-page: 6954
  year: 2020
  end-page: 6966
  ident: b78
  article-title: Virtual traffic signals: Safe, rapid, efficient and autonomous driving without traffic control
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 106
  year: 2020
  end-page: 120
  ident: b64
  article-title: A path towards understanding factors affecting crash severity in autonomous vehicles using current naturalistic driving data
  publication-title: Intelligent Systems and Applications: Proceedings of the 2019 Intelligent Systems Conference (IntelliSys) Volume 2
– volume: 164
  year: 2022
  ident: b72
  article-title: Aggressive driving behavior prediction considering driver’s intention based on multivariate-temporal feature data
  publication-title: Accid. Anal. Prev.
– reference: Geary, T., Danks, D., 2019. Balancing the benefits of autonomous vehicles. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. pp. 181–186.
– reference: Xu, Y., Piao, Z., Gao, S., 2018. Encoding crowd interaction with deep neural network for pedestrian trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5275–5284.
– volume: 10
  start-page: 92
  year: 2009
  end-page: 102
  ident: b51
  article-title: A predictive controller for autonomous vehicle path tracking
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 94
  start-page: 182
  year: 2016
  end-page: 193
  ident: b30
  article-title: Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?
  publication-title: Transp. Res. A
– start-page: 9610
  year: 2019
  end-page: 9616
  ident: b14
  article-title: Online vehicle trajectory prediction using policy anticipation network and optimization-based context reasoning
  publication-title: 2019 International Conference on Robotics and Automation (ICRA)
– volume: 150
  year: 2021
  ident: b85
  article-title: A comparative study of state-of-the-art driving strategies for autonomous vehicles
  publication-title: Accid. Anal. Prev.
– start-page: 289
  year: 2017
  end-page: 296
  ident: b50
  article-title: Using road topology to improve cyclist path prediction
  publication-title: 2017 IEEE Intelligent Vehicles Symposium (IV)
– volume: 23
  start-page: 1247
  year: 2010
  end-page: 1254
  ident: b67
  article-title: Real-time driving danger-level prediction
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 417
  year: 2019
  end-page: 426
  ident: b16
  article-title: Graph neural networks for social recommendation
  publication-title: The World Wide Web Conference
– reference: Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M., 2017. Desire: Distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 336–345.
– start-page: 1137
  year: 2018
  end-page: 1142
  ident: b59
  article-title: Learning a deep motion planning model for autonomous driving
  publication-title: 2018 Ieee Intelligent Vehicles Symposium (IV)
– start-page: 4517
  year: 2021
  end-page: 4524
  ident: b61
  article-title: Cooperative autonomous vehicles that sympathize with human drivers
  publication-title: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– volume: 32
  start-page: 4
  year: 2020
  end-page: 24
  ident: b69
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1
  year: 2019
  end-page: 5
  ident: b53
  article-title: Performance of open autonomous vehicle platforms: Autoware and Apollo
  publication-title: 2019 IEEE 5th International Conference for Convergence in Technology (I2CT)
– volume: 129
  start-page: 170
  year: 2019
  end-page: 179
  ident: b58
  article-title: A feature learning approach based on XGBoost for driving assessment and risk prediction
  publication-title: Accid. Anal. Prev.
– reference: Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D., 2019. Trafficpredict: Trajectory prediction for heterogeneous traffic-agents. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. pp. 6120–6127.
– volume: 141
  year: 2020
  ident: b84
  article-title: Modular transit: Using autonomy and modularity to improve performance in public transportation
  publication-title: Transp. Res. E
– volume: 143
  start-page: 9
  year: 2019
  end-page: 13
  ident: b49
  article-title: Perceptions and expectations of autonomous vehicles–A snapshot of vulnerable road user opinion
  publication-title: Technol. Forecast. Soc. Change
– volume: 121
  start-page: 634
  year: 2020
  end-page: 650
  ident: b44
  article-title: Public perceptions of autonomous vehicle safety: An international comparison
  publication-title: Saf. Sci.
– volume: 78
  start-page: 246
  year: 2021
  end-page: 258
  ident: b46
  article-title: “They have to be better than human drivers!” Motorcyclists’ and cyclists’ perceptions of autonomous vehicles
  publication-title: Transp. Res. F
– start-page: 1186
  year: 2018
  end-page: 1194
  ident: b73
  article-title: SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction
  publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)
– volume: 50
  start-page: 57
  year: 2020
  end-page: 70
  ident: b35
  article-title: Prescriptive analytics: Literature review and research challenges
  publication-title: Int. J. Inf. Manage.
– start-page: 517
  year: 2018
  end-page: 522
  ident: b60
  article-title: Safe stop trajectory planning for highly automated vehicles: An optimal control problem formulation
  publication-title: 2018 IEEE Intelligent Vehicles Symposium (IV)
– volume: 21
  start-page: 1826
  year: 2019
  end-page: 1848
  ident: b11
  article-title: A review of motion planning for highway autonomous driving
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 21
  start-page: 740
  year: 2015
  end-page: 753
  ident: b36
  article-title: Real-time trajectory planning for autonomous urban driving: Framework, algorithms, and verifications
  publication-title: IEEE/ASME Trans. Mechatronics
– year: 2022
  ident: b80
  article-title: Step attention: Sequential pedestrian trajectory prediction
  publication-title: IEEE Sens. J.
– reference: Deo, N., Trivedi, M.M., 2018. Convolutional social pooling for vehicle trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 1468–1476.
– volume: 34
  start-page: 26
  year: 2017
  end-page: 38
  ident: b4
  article-title: Deep reinforcement learning: A brief survey
  publication-title: IEEE Signal Process. Mag.
– volume: 112
  year: 2021
  ident: b26
  article-title: LSTM based trajectory prediction model for cyclist utilizing multiple interactions with environment
  publication-title: Pattern Recognit.
– volume: 62
  start-page: 5119
  year: 2015
  end-page: 5132
  ident: b28
  article-title: Development of autonomous car—Part II: A case study on the implementation of an autonomous driving system based on distributed architecture
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 2335
  year: 2013
  end-page: 2340
  ident: b10
  article-title: Predictive control of an autonomous ground vehicle using an iterative linearization approach
  publication-title: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)
– start-page: 4363
  year: 2013
  end-page: 4369
  ident: b24
  article-title: Vehicle trajectory prediction based on motion model and maneuver recognition
  publication-title: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
– year: 2021
  ident: b82
  article-title: System for predicting aggressive driving
– start-page: 1073
  year: 2021
  end-page: 1080
  ident: b74
  article-title: A survey of deep reinforcement learning algorithms for motion planning and control of autonomous vehicles
  publication-title: 2021 IEEE Intelligent Vehicles Symposium (IV)
– reference: Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S., 2016. Social lstm: Human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 961–971.
– volume: 9
  start-page: 90
  year: 2017
  end-page: 96
  ident: b32
  article-title: Autonomous vehicle safety: An interdisciplinary challenge
  publication-title: IEEE Intell. Transp. Syst. Mag.
– volume: 4
  start-page: 315
  year: 2021
  end-page: 333
  ident: b38
  article-title: Trajectory planning for connected and automated vehicles: Cruising, lane changing, and platooning
  publication-title: SAE Intl. J. CAV
– volume: 77
  start-page: 167
  year: 2015
  end-page: 181
  ident: b15
  article-title: Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations
  publication-title: Transp. Res. A
– volume: 43
  start-page: 1359
  year: 2011
  end-page: 1363
  ident: b5
  article-title: Jerky driving—an indicator of accident proneness?
  publication-title: Accid. Anal. Prev.
– start-page: 602
  year: 2018
  end-page: 607
  ident: b7
  article-title: Cooperative multiple vehicle trajectory planning using miqp
  publication-title: 2018 21st International Conference on Intelligent Transportation Systems (ITSC)
– year: 2020
  ident: b25
  article-title: One thousand and one hours: Self-driving motion prediction dataset
– volume: 81
  start-page: 41
  year: 2021
  end-page: 54
  ident: b12
  article-title: Autonomous vehicle safety: Understanding perceptions of pedestrians and bicyclists
  publication-title: Transp. Res. F
– volume: 171
  start-page: 158
  year: 2020
  end-page: 167
  ident: b48
  article-title: Clustering cloud workloads: K-means vs gaussian mixture model
  publication-title: Procedia Comput. Sci.
– year: 2022
  ident: b33
  article-title: Human vs. supervised machine learning: Who learns patterns faster?
  publication-title: Cogn. Syst. Res.
– volume: 14
  start-page: 1119
  year: 2017
  ident: b8
  article-title: Machine learning: a primer
  publication-title: Nature Methods
– volume: 99
  start-page: 82
  year: 2019
  end-page: 109
  ident: b70
  article-title: Tracking vehicle trajectories and fuel rates in phantom traffic jams: Methodology and data
  publication-title: Transp. Res. C
– volume: 151
  year: 2021
  ident: b2
  article-title: Traffic accident detection and condition analysis based on social networking data
  publication-title: Accid. Anal. Prev.
– volume: 20
  start-page: 3409
  year: 2018
  end-page: 3420
  ident: b86
  article-title: Optimal vehicle trajectory planning with control constraints and recursive implementation for automated on-ramp merging
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Wang, Y., Xu, W., Zhang, Y., Qin, Y., Zhang, W., Wu, X., 2017. Machine learning methods for driving risk prediction. In: Proceedings of the 3rd ACM SIGSPATIAL Workshop on Emergency Management using. pp. 1–6.
– year: 2022
  ident: b81
  article-title: Predicting risky driving in a connected vehicle environment
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 97
  start-page: 348
  year: 2018
  end-page: 368
  ident: b88
  article-title: Human-like autonomous car-following model with deep reinforcement learning
  publication-title: Transp. Res. C
– volume: 39
  start-page: 895
  year: 2020
  end-page: 935
  ident: b56
  article-title: Human motion trajectory prediction: A survey
  publication-title: Int. J. Robot. Res.
– volume: 16
  start-page: 1961
  year: 2015
  end-page: 1976
  ident: b39
  article-title: Efficient sampling-based motion planning for on-road autonomous driving
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 104
  start-page: 125
  year: 2017
  end-page: 136
  ident: b17
  article-title: Can vehicle longitudinal jerk be used to identify aggressive drivers? an examination using naturalistic driving data
  publication-title: Accid. Anal. Prev.
– start-page: 897
  year: 2022
  end-page: 904
  ident: b65
  article-title: Safetynet: Safe planning for real-world self-driving vehicles using machine-learned policies
  publication-title: 2022 International Conference on Robotics and Automation (ICRA)
– reference: Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A., 2018. Social gan: Socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2255–2264.
– volume: 2
  start-page: 253
  year: 2019
  end-page: 279
  ident: b55
  article-title: A tour of reinforcement learning: The view from continuous control
  publication-title: Ann. Rev. Control, Robot., Auton. Syst.
– volume: 78
  start-page: 433
  year: 2021
  end-page: 445
  ident: b52
  article-title: Sharing the road with autonomous vehicles: A qualitative analysis of the perceptions of pedestrians and bicyclists
  publication-title: Transp. Res. F
– volume: 124
  year: 2021
  ident: b22
  article-title: The benefits of autonomous vehicles for community-based trip sharing
  publication-title: Transp. Res. C
– volume: 5
  start-page: 6748
  year: 2020
  end-page: 6755
  ident: b29
  article-title: Deep reinforcement learning for safe local planning of a ground vehicle in unknown rough terrain
  publication-title: IEEE Robot. Autom. Lett.
– start-page: 833
  year: 2016
  end-page: 838
  ident: b76
  article-title: Trajectory prediction of cyclists using a physical model and an artificial neural network
  publication-title: 2016 IEEE Intelligent Vehicles Symposium (IV)
– start-page: 399
  year: 2017
  end-page: 404
  ident: b31
  article-title: Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network
  publication-title: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)
– volume: 22
  start-page: 2615
  year: 2020
  end-page: 2626
  ident: b79
  article-title: Increasing GPS localization accuracy with reinforcement learning
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
– volume: 6
  start-page: 439
  year: 2020
  end-page: 446
  ident: b87
  article-title: Autonomous driving trajectory optimization with dual-loop iterative anchoring path smoothing and piecewise-jerk speed optimization
  publication-title: IEEE Robot. Autom. Lett.
– year: 2020
  ident: b3
  article-title: Survey of deep reinforcement learning for motion planning of autonomous vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 3
  start-page: 5
  year: 2018
  end-page: 17
  ident: b27
  article-title: Automated driving in uncertain environments: Planning with interaction and uncertain maneuver prediction
  publication-title: IEEE Trans. Intell. Veh.
– volume: 21
  start-page: 900
  year: 2019
  end-page: 918
  ident: b54
  article-title: Autonomous vehicles that interact with pedestrians: A survey of theory and practice
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2022
  ident: b66
  article-title: Social interactions for autonomous driving: A review and perspectives
– volume: 71
  start-page: 464
  year: 2016
  end-page: 488
  ident: b45
  article-title: Optimal vehicle trajectory planning in the context of cooperative merging on highways
  publication-title: Transp. Res. C
– volume: 129
  start-page: 170
  year: 2019
  ident: 10.1016/j.trc.2023.104063_b58
  article-title: A feature learning approach based on XGBoost for driving assessment and risk prediction
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2019.05.005
– volume: 6
  start-page: 439
  issue: 2
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b87
  article-title: Autonomous driving trajectory optimization with dual-loop iterative anchoring path smoothing and piecewise-jerk speed optimization
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3045925
– start-page: 399
  year: 2017
  ident: 10.1016/j.trc.2023.104063_b31
  article-title: Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network
– year: 2020
  ident: 10.1016/j.trc.2023.104063_b3
  article-title: Survey of deep reinforcement learning for motion planning of autonomous vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 897
  year: 2022
  ident: 10.1016/j.trc.2023.104063_b65
  article-title: Safetynet: Safe planning for real-world self-driving vehicles using machine-learned policies
– volume: 108
  start-page: 179
  year: 2017
  ident: 10.1016/j.trc.2023.104063_b42
  article-title: Autonomous or driver-less vehicles: Implementation strategies and operational concerns
  publication-title: Transp. Res. E
  doi: 10.1016/j.tre.2017.10.011
– ident: 10.1016/j.trc.2023.104063_b23
  doi: 10.1109/CVPR.2016.90
– volume: 94
  start-page: 182
  year: 2016
  ident: 10.1016/j.trc.2023.104063_b30
  article-title: Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?
  publication-title: Transp. Res. A
– year: 2020
  ident: 10.1016/j.trc.2023.104063_b25
– volume: 171
  start-page: 158
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b48
  article-title: Clustering cloud workloads: K-means vs gaussian mixture model
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.04.017
– volume: 150
  year: 2021
  ident: 10.1016/j.trc.2023.104063_b85
  article-title: A comparative study of state-of-the-art driving strategies for autonomous vehicles
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2020.105937
– volume: 50
  start-page: 57
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b35
  article-title: Prescriptive analytics: Literature review and research challenges
  publication-title: Int. J. Inf. Manage.
  doi: 10.1016/j.ijinfomgt.2019.04.003
– start-page: 2335
  year: 2013
  ident: 10.1016/j.trc.2023.104063_b10
  article-title: Predictive control of an autonomous ground vehicle using an iterative linearization approach
– start-page: 289
  year: 2017
  ident: 10.1016/j.trc.2023.104063_b50
  article-title: Using road topology to improve cyclist path prediction
– start-page: 4363
  year: 2013
  ident: 10.1016/j.trc.2023.104063_b24
  article-title: Vehicle trajectory prediction based on motion model and maneuver recognition
– start-page: 1001
  year: 2021
  ident: 10.1016/j.trc.2023.104063_b62
  article-title: Exemplar trajectory generation for prior driving experience re-usage in autonomous driving
– start-page: 4161
  year: 2013
  ident: 10.1016/j.trc.2023.104063_b77
  article-title: Dynamic trajectory planning for vehicle autonomous driving
– volume: 78
  start-page: 246
  year: 2021
  ident: 10.1016/j.trc.2023.104063_b46
  article-title: “They have to be better than human drivers!” Motorcyclists’ and cyclists’ perceptions of autonomous vehicles
  publication-title: Transp. Res. F
  doi: 10.1016/j.trf.2021.02.009
– volume: 124
  year: 2021
  ident: 10.1016/j.trc.2023.104063_b22
  article-title: The benefits of autonomous vehicles for community-based trip sharing
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102929
– volume: 62
  start-page: 5119
  issue: 8
  year: 2015
  ident: 10.1016/j.trc.2023.104063_b28
  article-title: Development of autonomous car—Part II: A case study on the implementation of an autonomous driving system based on distributed architecture
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2410258
– volume: 5
  start-page: 6748
  issue: 4
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b29
  article-title: Deep reinforcement learning for safe local planning of a ground vehicle in unknown rough terrain
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3011912
– volume: 34
  start-page: 26
  issue: 6
  year: 2017
  ident: 10.1016/j.trc.2023.104063_b4
  article-title: Deep reinforcement learning: A brief survey
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2743240
– volume: 104
  start-page: 125
  year: 2017
  ident: 10.1016/j.trc.2023.104063_b17
  article-title: Can vehicle longitudinal jerk be used to identify aggressive drivers? an examination using naturalistic driving data
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2017.04.012
– year: 2022
  ident: 10.1016/j.trc.2023.104063_b66
– start-page: 9610
  year: 2019
  ident: 10.1016/j.trc.2023.104063_b14
  article-title: Online vehicle trajectory prediction using policy anticipation network and optimization-based context reasoning
– year: 2022
  ident: 10.1016/j.trc.2023.104063_b33
  article-title: Human vs. supervised machine learning: Who learns patterns faster?
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2022.09.002
– start-page: 4517
  year: 2021
  ident: 10.1016/j.trc.2023.104063_b61
  article-title: Cooperative autonomous vehicles that sympathize with human drivers
– volume: 21
  start-page: 900
  issue: 3
  year: 2019
  ident: 10.1016/j.trc.2023.104063_b54
  article-title: Autonomous vehicles that interact with pedestrians: A survey of theory and practice
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2901817
– start-page: 1073
  year: 2021
  ident: 10.1016/j.trc.2023.104063_b74
  article-title: A survey of deep reinforcement learning algorithms for motion planning and control of autonomous vehicles
– ident: 10.1016/j.trc.2023.104063_b71
  doi: 10.1109/CVPR.2018.00553
– volume: 77
  start-page: 167
  year: 2015
  ident: 10.1016/j.trc.2023.104063_b15
  article-title: Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations
  publication-title: Transp. Res. A
– volume: 2
  start-page: 253
  year: 2019
  ident: 10.1016/j.trc.2023.104063_b55
  article-title: A tour of reinforcement learning: The view from continuous control
  publication-title: Ann. Rev. Control, Robot., Auton. Syst.
  doi: 10.1146/annurev-control-053018-023825
– volume: 21
  start-page: 1826
  issue: 5
  year: 2019
  ident: 10.1016/j.trc.2023.104063_b11
  article-title: A review of motion planning for highway autonomous driving
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2913998
– start-page: 417
  year: 2019
  ident: 10.1016/j.trc.2023.104063_b16
  article-title: Graph neural networks for social recommendation
– ident: 10.1016/j.trc.2023.104063_b20
  doi: 10.1145/3306618.3314237
– start-page: 1137
  year: 2018
  ident: 10.1016/j.trc.2023.104063_b59
  article-title: Learning a deep motion planning model for autonomous driving
– volume: 23
  start-page: 1247
  issue: 8
  year: 2010
  ident: 10.1016/j.trc.2023.104063_b67
  article-title: Real-time driving danger-level prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.01.001
– start-page: 106
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b64
  article-title: A path towards understanding factors affecting crash severity in autonomous vehicles using current naturalistic driving data
– ident: 10.1016/j.trc.2023.104063_b34
  doi: 10.1109/CVPR.2017.233
– volume: 164
  year: 2022
  ident: 10.1016/j.trc.2023.104063_b72
  article-title: Aggressive driving behavior prediction considering driver’s intention based on multivariate-temporal feature data
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2021.106477
– year: 2022
  ident: 10.1016/j.trc.2023.104063_b80
  article-title: Step attention: Sequential pedestrian trajectory prediction
  publication-title: IEEE Sens. J.
– volume: 151
  year: 2021
  ident: 10.1016/j.trc.2023.104063_b2
  article-title: Traffic accident detection and condition analysis based on social networking data
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2021.105973
– start-page: 833
  year: 2016
  ident: 10.1016/j.trc.2023.104063_b76
  article-title: Trajectory prediction of cyclists using a physical model and an artificial neural network
– start-page: 602
  year: 2018
  ident: 10.1016/j.trc.2023.104063_b7
  article-title: Cooperative multiple vehicle trajectory planning using miqp
– volume: 71
  start-page: 464
  year: 2016
  ident: 10.1016/j.trc.2023.104063_b45
  article-title: Optimal vehicle trajectory planning in the context of cooperative merging on highways
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2016.08.007
– volume: 39
  start-page: 895
  issue: 8
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b56
  article-title: Human motion trajectory prediction: A survey
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364920917446
– start-page: 517
  year: 2018
  ident: 10.1016/j.trc.2023.104063_b60
  article-title: Safe stop trajectory planning for highly automated vehicles: An optimal control problem formulation
– volume: 43
  start-page: 1359
  issue: 4
  year: 2011
  ident: 10.1016/j.trc.2023.104063_b5
  article-title: Jerky driving—an indicator of accident proneness?
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2011.02.009
– start-page: 47
  year: 2016
  ident: 10.1016/j.trc.2023.104063_b41
  article-title: An experimental review of reinforcement learning algorithms for adaptive traffic signal control
  publication-title: Auton. Road Transp. Support Syst.
  doi: 10.1007/978-3-319-25808-9_4
– volume: 143
  start-page: 9
  year: 2019
  ident: 10.1016/j.trc.2023.104063_b49
  article-title: Perceptions and expectations of autonomous vehicles–A snapshot of vulnerable road user opinion
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2019.02.010
– volume: 99
  start-page: 82
  year: 2019
  ident: 10.1016/j.trc.2023.104063_b70
  article-title: Tracking vehicle trajectories and fuel rates in phantom traffic jams: Methodology and data
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2018.12.012
– volume: 141
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b84
  article-title: Modular transit: Using autonomy and modularity to improve performance in public transportation
  publication-title: Transp. Res. E
  doi: 10.1016/j.tre.2020.102033
– volume: 112
  year: 2021
  ident: 10.1016/j.trc.2023.104063_b26
  article-title: LSTM based trajectory prediction model for cyclist utilizing multiple interactions with environment
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107800
– volume: 16
  start-page: 1961
  issue: 4
  year: 2015
  ident: 10.1016/j.trc.2023.104063_b39
  article-title: Efficient sampling-based motion planning for on-road autonomous driving
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2389215
– volume: 2434
  start-page: 103
  issue: 1
  year: 2014
  ident: 10.1016/j.trc.2023.104063_b75
  article-title: Use of drivers’ jerk profiles in computer vision–based traffic safety evaluations
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2434-13
– volume: 10
  start-page: 92
  issue: 1
  year: 2009
  ident: 10.1016/j.trc.2023.104063_b51
  article-title: A predictive controller for autonomous vehicle path tracking
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2008.2011697
– volume: 20
  start-page: 3409
  issue: 9
  year: 2018
  ident: 10.1016/j.trc.2023.104063_b86
  article-title: Optimal vehicle trajectory planning with control constraints and recursive implementation for automated on-ramp merging
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2874234
– volume: 97
  start-page: 348
  year: 2018
  ident: 10.1016/j.trc.2023.104063_b88
  article-title: Human-like autonomous car-following model with deep reinforcement learning
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2018.10.024
– volume: 3
  start-page: 5
  issue: 1
  year: 2018
  ident: 10.1016/j.trc.2023.104063_b27
  article-title: Automated driving in uncertain environments: Planning with interaction and uncertain maneuver prediction
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2017.2788208
– ident: 10.1016/j.trc.2023.104063_b40
  doi: 10.1609/aaai.v33i01.33016120
– start-page: 1186
  year: 2018
  ident: 10.1016/j.trc.2023.104063_b73
  article-title: SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction
– year: 2021
  ident: 10.1016/j.trc.2023.104063_b82
– ident: 10.1016/j.trc.2023.104063_b68
  doi: 10.1145/3152465.3152476
– start-page: 2736
  year: 2019
  ident: 10.1016/j.trc.2023.104063_b9
  article-title: Vision-based trajectory planning via imitation learning for autonomous vehicles
– volume: 21
  start-page: 740
  issue: 2
  year: 2015
  ident: 10.1016/j.trc.2023.104063_b36
  article-title: Real-time trajectory planning for autonomous urban driving: Framework, algorithms, and verifications
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2015.2493980
– volume: 121
  start-page: 634
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b44
  article-title: Public perceptions of autonomous vehicle safety: An international comparison
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2019.07.022
– volume: 9
  start-page: 90
  issue: 1
  year: 2017
  ident: 10.1016/j.trc.2023.104063_b32
  article-title: Autonomous vehicle safety: An interdisciplinary challenge
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2016.2583491
– volume: 14
  start-page: 1119
  issue: 12
  year: 2017
  ident: 10.1016/j.trc.2023.104063_b8
  article-title: Machine learning: a primer
  publication-title: Nature Methods
  doi: 10.1038/nmeth.4526
– start-page: 414
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b57
  article-title: Perceive, predict, and plan: Safe motion planning through interpretable semantic representations
– ident: 10.1016/j.trc.2023.104063_b21
  doi: 10.1109/CVPR.2018.00240
– volume: 78
  start-page: 433
  year: 2021
  ident: 10.1016/j.trc.2023.104063_b52
  article-title: Sharing the road with autonomous vehicles: A qualitative analysis of the perceptions of pedestrians and bicyclists
  publication-title: Transp. Res. F
  doi: 10.1016/j.trf.2021.03.008
– volume: 4
  start-page: 315
  issue: 4
  year: 2021
  ident: 10.1016/j.trc.2023.104063_b38
  article-title: Trajectory planning for connected and automated vehicles: Cruising, lane changing, and platooning
  publication-title: SAE Intl. J. CAV
  doi: 10.4271/12-04-04-0025
– volume: 32
  start-page: 4
  issue: 1
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b69
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– year: 2022
  ident: 10.1016/j.trc.2023.104063_b81
  article-title: Predicting risky driving in a connected vehicle environment
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 66
  start-page: 1025
  issue: 3
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b6
  article-title: From predictive to prescriptive analytics
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.2018.3253
– ident: 10.1016/j.trc.2023.104063_b13
  doi: 10.1109/CVPRW.2018.00196
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.trc.2023.104063_b43
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 81
  start-page: 41
  year: 2021
  ident: 10.1016/j.trc.2023.104063_b12
  article-title: Autonomous vehicle safety: Understanding perceptions of pedestrians and bicyclists
  publication-title: Transp. Res. F
  doi: 10.1016/j.trf.2021.04.018
– volume: 114
  start-page: 517
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b63
  article-title: Optimal switching policy between driving entities in semi-autonomous vehicles
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.02.011
– volume: 22
  start-page: 2615
  issue: 5
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b79
  article-title: Increasing GPS localization accuracy with reinforcement learning
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2972409
– start-page: 907
  year: 2015
  ident: 10.1016/j.trc.2023.104063_b18
  article-title: Collision-free and kinematically feasible path planning along a reference path for autonomous vehicle
– start-page: 1
  year: 2019
  ident: 10.1016/j.trc.2023.104063_b53
  article-title: Performance of open autonomous vehicle platforms: Autoware and Apollo
– volume: 136
  year: 2022
  ident: 10.1016/j.trc.2023.104063_b37
  article-title: A markov decision process framework to incorporate network-level data in motion planning for connected and automated vehicles
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2021.103550
– ident: 10.1016/j.trc.2023.104063_b1
  doi: 10.1109/CVPR.2016.110
– volume: 22
  start-page: 6954
  issue: 11
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b78
  article-title: Virtual traffic signals: Safe, rapid, efficient and autonomous driving without traffic control
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2998907
– volume: 119
  year: 2020
  ident: 10.1016/j.trc.2023.104063_b47
  article-title: Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102715
– start-page: 1853
  year: 2021
  ident: 10.1016/j.trc.2023.104063_b83
  article-title: A learning-based method for predicting heterogeneous traffic agent trajectories: Implications for transfer learning
– volume: 53
  start-page: 234
  year: 2017
  ident: 10.1016/j.trc.2023.104063_b19
  article-title: Energy consumption effects of speed and acceleration in electric vehicles: Laboratory case studies and implications for drivers and policymakers
  publication-title: Transp. Res. D
  doi: 10.1016/j.trd.2017.04.020
SSID ssj0001957
Score 2.5415263
Snippet In this work we put forward a predictive trajectory planning framework to help autonomous vehicles plan future trajectories. We develop a partially observable...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104063
SubjectTerms Autonomous vehicles
Reinforcement learning
Trajectory planning
Trajectory prediction
Title Predictive trajectory planning for autonomous vehicles at intersections using reinforcement learning
URI https://dx.doi.org/10.1016/j.trc.2023.104063
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jHtSD6FScHyMHT0Jd2qRfxzEcU3EIOtitJGkzN6SOrhO8-Lebl6Y6QT14bMmD8hre5-_9HkLnTKRMBR6Hqo1yGGfMEa4A_BMVxOXCzzhMI9-NguGY3Uz8SQP161kYgFVa21_ZdGOt7Zuu1WZ3MZt1H3TwHZGYTHQQbfpVMMHOQuDPv3z_gnm4ccX2qQ9DTWJSdzYNxqssgMXQo9DpJAH92Tet-ZvBLtqxgSLuVd-yhxpZ3kKb9RzxsoW216gE91F6X0DLBYwXLgs-N8X4N7ywO4mwjk0xX5UgrXN9_Jo9GTwc5iUGxohiaSBZ-RIDEH6Ki8wwqkpTPMR2tcT0AI0HV4_9oWM3KDjSi8PSEdLVER5TilAWcW33gkwnLLD-XHipUL7yuScVpYpHgkgexiGPUjfSHosBjwyhh6iZv-TZEcIm8ZIyVZ6iTPpxnMZRKlgQCU-5TMk2IrXuEmnpxWHLxXNS48jmiVZ3AupOKnW30cWnyKLi1vjrMKt_SPLtgiTa9v8udvw_sRO0BU8VROcUNctilZ3p6KMUHXO9Omijd307HH0AsRza2Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qPVQPolWxfu7BkxCbZDdpcpSiVG2LYAu9hd1NtrZILWkqePG3u7NJtIJ68JrsQJgMM7Mzb94AnDMRM-W7HKs2ymKcMUs4AvFPVNgOF17CcRq51_c7Q3Y38kYVaJezMAirLHx_7tONty6eNAttNueTSfNRJ9-BHdojnUSbftUarDOPttC0L9-_cB5OmNN96tNYlBiVrU0D8spSpDF0KbY6bZ_-HJxWAs7NNmwVmSK5yj9mByrJrA61cpB4UYfNFS7BXYgfUuy5oPciWcqnphr_RubFUiKik1PClxlK68s-eU2eDCCO8IwgZUS6MJis2YIgEn5M0sRQqkpTPSTFbonxHgxvrgftjlWsULCkG7YyS0hHp3hMKZuygGvH5yf6xoL7z4UbC-Upj7tSUap4IGzJW2GLB7ET6JDFkEjGpvtQnb3MkgMg5uYlZaxcRZn0wjAOg1gwPxCucpiSDbBL3UWy4BfHNRfPUQkkm0Za3RGqO8rV3YCLT5F5Tq7x12FW_pDom4VE2vn_Lnb4P7EzqHUGvW7Uve3fH8EGvsnxOsdQzdJlcqJTkUycGlP7AOR73G8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+trajectory+planning+for+autonomous+vehicles+at+intersections+using+reinforcement+learning&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Zhang%2C+Ethan&rft.au=Zhang%2C+Ruixuan&rft.au=Masoud%2C+Neda&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=149&rft_id=info:doi/10.1016%2Fj.trc.2023.104063&rft.externalDocID=S0968090X23000529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon