Predictive trajectory planning for autonomous vehicles at intersections using reinforcement learning
In this work we put forward a predictive trajectory planning framework to help autonomous vehicles plan future trajectories. We develop a partially observable Markov decision process (POMDP) to model this sequential decision making problem, and a deep reinforcement learning solution methodology to l...
Saved in:
Published in | Transportation research. Part C, Emerging technologies Vol. 149; p. 104063 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0968-090X 1879-2359 |
DOI | 10.1016/j.trc.2023.104063 |
Cover
Loading…
Abstract | In this work we put forward a predictive trajectory planning framework to help autonomous vehicles plan future trajectories. We develop a partially observable Markov decision process (POMDP) to model this sequential decision making problem, and a deep reinforcement learning solution methodology to learn high-quality policies. The POMDP model utilizes driving scenarios, condensed into graphs, as inputs. More specifically, an input graph contains information on the history trajectory of the subject vehicle, predicted trajectories of other agents in the scene (e.g., other vehicles, pedestrians, and cyclists), as well as predicted risk levels posed by surrounding vehicles to devise safe, comfortable, and energy-efficient trajectories for the subject vehicle to follow. In order to obtain sufficient driving scenarios to use as training data, we propose a simulation framework to generate socially acceptable driving scenarios using a real world autonomous vehicle dataset. The simulation framework utilizes Bayesian Gaussian mixture models to learn trajectory patterns of different agent types, and Gibbs sampling to ensure that the distribution of simulated scenarios matches that of the real-world dataset collected by an autonomous fleet. We evaluate the proposed work in two complex urban driving environments: a non-signalized T-junction and a non-signalized lane merge intersection. Both environments provide vastly more complex driving scenarios compared to a highway driving environment, which has been mostly the focus of previous studies. The framework demonstrates promising performance for planning horizons as long as five seconds. We compare safety, comfort, and energy efficiency of the planned trajectories against human-driven trajectories in both experimental driving environments, and demonstrate that it outperforms human-driven trajectories in a statistically significant fashion in all aspects.
•A predictive–prescriptive trajectory planning framework.•Planned trajectories account for safety, comfort, and fuel efficiency.•Graph-based reinforcement learning is used to obtain a policy.•Planned trajectories outperform human-driven trajectories. |
---|---|
AbstractList | In this work we put forward a predictive trajectory planning framework to help autonomous vehicles plan future trajectories. We develop a partially observable Markov decision process (POMDP) to model this sequential decision making problem, and a deep reinforcement learning solution methodology to learn high-quality policies. The POMDP model utilizes driving scenarios, condensed into graphs, as inputs. More specifically, an input graph contains information on the history trajectory of the subject vehicle, predicted trajectories of other agents in the scene (e.g., other vehicles, pedestrians, and cyclists), as well as predicted risk levels posed by surrounding vehicles to devise safe, comfortable, and energy-efficient trajectories for the subject vehicle to follow. In order to obtain sufficient driving scenarios to use as training data, we propose a simulation framework to generate socially acceptable driving scenarios using a real world autonomous vehicle dataset. The simulation framework utilizes Bayesian Gaussian mixture models to learn trajectory patterns of different agent types, and Gibbs sampling to ensure that the distribution of simulated scenarios matches that of the real-world dataset collected by an autonomous fleet. We evaluate the proposed work in two complex urban driving environments: a non-signalized T-junction and a non-signalized lane merge intersection. Both environments provide vastly more complex driving scenarios compared to a highway driving environment, which has been mostly the focus of previous studies. The framework demonstrates promising performance for planning horizons as long as five seconds. We compare safety, comfort, and energy efficiency of the planned trajectories against human-driven trajectories in both experimental driving environments, and demonstrate that it outperforms human-driven trajectories in a statistically significant fashion in all aspects.
•A predictive–prescriptive trajectory planning framework.•Planned trajectories account for safety, comfort, and fuel efficiency.•Graph-based reinforcement learning is used to obtain a policy.•Planned trajectories outperform human-driven trajectories. |
ArticleNumber | 104063 |
Author | Masoud, Neda Zhang, Ruixuan Zhang, Ethan |
Author_xml | – sequence: 1 givenname: Ethan orcidid: 0000-0003-3249-0617 surname: Zhang fullname: Zhang, Ethan – sequence: 2 givenname: Ruixuan orcidid: 0000-0002-9638-4883 surname: Zhang fullname: Zhang, Ruixuan – sequence: 3 givenname: Neda orcidid: 0000-0002-6526-3317 surname: Masoud fullname: Masoud, Neda email: nmasoud@umich.edu |
BookMark | eNp9kM1KAzEURoNUsK0-gLu8wNRkMpOZ4EqKf1DQhYK7kMncaIZpUpK00Lc3Q1256Opy4Z6P-50FmjnvAKFbSlaUUH43rFLQq5KULO8V4ewCzWnbiKJktZihORG8LYggX1doEeNACKGibuaofw_QW53sAXAKagCdfDji3aics-4bGx-w2ifv_NbvIz7Aj9UjRKwSti5BiBmw3kW8j9N5AOsyomELLuERVJhSrtGlUWOEm7-5RJ9Pjx_rl2Lz9vy6ftgUuhRNKjpNKROVMYRVrWp4yYETXvGadmXfmdrUqtSGMaPajmjViEa1PW3bqqlI1VLClqg55ergYwxgpLZJTf_lanaUlMhJlhxkliUnWfIkK5P0H7kLdqvC8Sxzf2IgVzpYCDJqC05nnyFbkb23Z-hf4GKG7A |
CitedBy_id | crossref_primary_10_1177_09544070241287240 crossref_primary_10_1109_TITS_2024_3462495 crossref_primary_10_1016_j_trc_2024_104606 crossref_primary_10_1109_TITS_2024_3450471 crossref_primary_10_3390_app14104181 crossref_primary_10_1002_aisy_202401040 crossref_primary_10_1016_j_trc_2023_104441 crossref_primary_10_1145_3714478 crossref_primary_10_1016_j_jestch_2025_101950 crossref_primary_10_1177_03611981241235229 crossref_primary_10_3389_fnbot_2025_1451923 crossref_primary_10_1109_OJITS_2024_3515270 crossref_primary_10_1080_23249935_2024_2374523 crossref_primary_10_1109_ACCESS_2025_3546325 crossref_primary_10_1016_j_aei_2024_102941 crossref_primary_10_1109_TITS_2024_3513436 crossref_primary_10_1016_j_aej_2024_10_039 crossref_primary_10_1016_j_trc_2024_104555 crossref_primary_10_1016_j_trc_2024_104797 crossref_primary_10_1016_j_trc_2024_104974 crossref_primary_10_1109_TITS_2024_3443397 crossref_primary_10_1109_ACCESS_2024_3513700 crossref_primary_10_1016_j_rser_2024_114381 crossref_primary_10_1007_s13177_024_00407_2 crossref_primary_10_1155_2024_5948944 crossref_primary_10_1016_j_simpat_2024_103003 crossref_primary_10_3390_vehicles6010007 crossref_primary_10_1016_j_eswa_2024_124496 crossref_primary_10_1061_JTEPBS_TEENG_8557 |
Cites_doi | 10.1016/j.aap.2019.05.005 10.1109/LRA.2020.3045925 10.1016/j.tre.2017.10.011 10.1109/CVPR.2016.90 10.1016/j.procs.2020.04.017 10.1016/j.aap.2020.105937 10.1016/j.ijinfomgt.2019.04.003 10.1016/j.trf.2021.02.009 10.1016/j.trc.2020.102929 10.1109/TIE.2015.2410258 10.1109/LRA.2020.3011912 10.1109/MSP.2017.2743240 10.1016/j.aap.2017.04.012 10.1016/j.cogsys.2022.09.002 10.1109/TITS.2019.2901817 10.1109/CVPR.2018.00553 10.1146/annurev-control-053018-023825 10.1109/TITS.2019.2913998 10.1145/3306618.3314237 10.1016/j.engappai.2010.01.001 10.1109/CVPR.2017.233 10.1016/j.aap.2021.106477 10.1016/j.aap.2021.105973 10.1016/j.trc.2016.08.007 10.1177/0278364920917446 10.1016/j.aap.2011.02.009 10.1007/978-3-319-25808-9_4 10.1016/j.techfore.2019.02.010 10.1016/j.trc.2018.12.012 10.1016/j.tre.2020.102033 10.1016/j.patcog.2020.107800 10.1109/TITS.2015.2389215 10.3141/2434-13 10.1109/TITS.2008.2011697 10.1109/TITS.2018.2874234 10.1016/j.trc.2018.10.024 10.1109/TIV.2017.2788208 10.1609/aaai.v33i01.33016120 10.1145/3152465.3152476 10.1109/TMECH.2015.2493980 10.1016/j.ssci.2019.07.022 10.1109/MITS.2016.2583491 10.1038/nmeth.4526 10.1109/CVPR.2018.00240 10.1016/j.trf.2021.03.008 10.4271/12-04-04-0025 10.1109/TNNLS.2020.2978386 10.1287/mnsc.2018.3253 10.1109/CVPRW.2018.00196 10.1038/nature14236 10.1016/j.trf.2021.04.018 10.1016/j.trc.2020.02.011 10.1109/TITS.2020.2972409 10.1016/j.trc.2021.103550 10.1109/CVPR.2016.110 10.1109/TITS.2020.2998907 10.1016/j.trc.2020.102715 10.1016/j.trd.2017.04.020 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.trc.2023.104063 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-2359 |
ExternalDocumentID | 10_1016_j_trc_2023_104063 S0968090X23000529 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-bc11394ff0348a7626e6064651b2dbf5f5a2cf33fa8b0ca797a8d188474048103 |
IEDL.DBID | .~1 |
ISSN | 0968-090X |
IngestDate | Tue Jul 01 01:45:17 EDT 2025 Thu Apr 24 23:10:54 EDT 2025 Fri Feb 23 02:38:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Trajectory prediction Trajectory planning Autonomous vehicles Reinforcement learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-bc11394ff0348a7626e6064651b2dbf5f5a2cf33fa8b0ca797a8d188474048103 |
ORCID | 0000-0002-9638-4883 0000-0002-6526-3317 0000-0003-3249-0617 |
ParticipantIDs | crossref_citationtrail_10_1016_j_trc_2023_104063 crossref_primary_10_1016_j_trc_2023_104063 elsevier_sciencedirect_doi_10_1016_j_trc_2023_104063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationTitle | Transportation research. Part C, Emerging technologies |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Houston, Zuidhof, Bergamini, Ye, Chen, Jain, Omari, Iglovikov, Ondruska (b25) 2020 Svensson, Masson, Mohan, Ward, Brenden, Feng, Törngren (b60) 2018 Zhang, Liu, Wolshon, Sheng (b78) 2020; 22 Ali, Ali, Imran, Naqvi, Siddiqi, Kwak (b2) 2021; 151 Ye, Zhang, Wang, Chan (b74) 2021 Josef, Degani (b29) 2020; 5 Liu, Masoud, Zhu, Khojandi (b37) 2022; 136 Zhang, Pizzi, Masoud (b83) 2021 Feng, Bao, Sayer, Flannagan, Manser, Wunderlich (b17) 2017; 104 Fu, Zhang, Yang, Zhu, Wang (b18) 2015 Geary, T., Danks, D., 2019. Balancing the benefits of autonomous vehicles. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. pp. 181–186. Hasan, Van Hentenryck (b22) 2021; 124 Moody, Bailey, Zhao (b44) 2020; 121 Kim, Kang, Kim, Lee, Chung, Choi (b31) 2017 Kühl, Goutier, Baier, Wolff, Martin (b33) 2022 He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. Wang, Wang, Zhang, Liu, Sun (b66) 2022 Arulkumaran, Deisenroth, Brundage, Bharath (b4) 2017; 34 Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D., 2019. Trafficpredict: Trajectory prediction for heterogeneous traffic-agents. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. pp. 6120–6127. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A., 2018. Social gan: Socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2255–2264. Sadat, Casas, Ren, Wu, Dhawan, Urtasun (b57) 2020 Rasouli, Tsotsos (b54) 2019; 21 Cai, Sun, Chen, Liu (b9) 2019 Deo, N., Trivedi, M.M., 2018. Convolutional social pooling for vehicle trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 1468–1476. Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (b43) 2015; 518 Wang, Xu, Gong (b67) 2010; 23 Zhu, Wang, Wang (b88) 2018; 97 Bzdok, Krzywinski, Altman (b8) 2017; 14 Zhang, Tafreshian, Masoud (b84) 2020; 141 Huang, Wang, Pi, Song, Yang (b26) 2021; 112 Zhang, Masoud (b79) 2020; 22 Houenou, Bonnifait, Cherfaoui, Yao (b24) 2013 Xu, Y., Piao, Z., Gao, S., 2018. Encoding crowd interaction with deep neural network for pedestrian trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5275–5284. Carvalho, Gao, Gray, Tseng, Borrelli (b10) 2013 Patel, Kushwaha (b48) 2020; 171 Das (b12) 2021; 81 Masoud, Jayakrishnan (b42) 2017; 108 Wang, Y., Xu, W., Zhang, Y., Qin, Y., Zhang, W., Wu, X., 2017. Machine learning methods for driving risk prediction. In: Proceedings of the 3rd ACM SIGSPATIAL Workshop on Emergency Management using. pp. 1–6. Recht (b55) 2019; 2 Raffo, Gomes, Normey-Rico, Kelber, Becker (b51) 2009; 10 Wu, Pan, Chen, Long, Zhang, Philip (b69) 2020; 32 Rahman, Dey, Das, Sherfinski (b52) 2021; 78 Xu, Wang, Fu, Gong, Sobhani (b72) 2022; 164 Galvin (b19) 2017; 53 Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S., 2016. Social lstm: Human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 961–971. Ma, Xue, Kawabata, Zhu, Ma, Zheng (b39) 2015; 16 Pool, Kooij, Gavrila (b50) 2017 Raju, Gupta, Lomate (b53) 2019 Ntousakis, Nikolos, Papageorgiou (b45) 2016; 71 Ding, Shen (b14) 2019 Mannion, Duggan, Howley (b41) 2016 van Wyk, Khojandi, Masoud (b63) 2020; 114 Claussmann, Revilloud, Gruyer, Glaser (b11) 2019; 21 Burger, Lauer (b7) 2018 Lepenioti, Bousdekis, Apostolou, Mentzas (b35) 2020; 50 Liu, Zhao, Masoud, Zhu (b38) 2021; 4 Zhou, He, Wang, Jiang, Zhu, Hu, Miao, Luo (b87) 2020; 6 Hubmann, Schulz, Becker, Althoff, Stiller (b27) 2018; 3 Zhao, Li, Pei, Li, Wang, Wu (b85) 2021; 150 Zhou, Cholette, Bhaskar, Chung (b86) 2018; 20 Song, Hu, Yu, Bai, Chen (b59) 2018 Xue, Huynh, Reynolds (b73) 2018 Zhang, Masoud, Bandegi, Lull, Malhan (b80) 2022 Pandey, Wang, Boyles (b47) 2020; 119 Fan, Ma, Li, He, Zhao, Tang, Yin (b16) 2019 Zhang, Masoud, Bandegi, Malhan (b81) 2022 Koopman, Wagner (b32) 2017; 9 van Wyk, Khojandi, Masoud (b64) 2020 Vitelli, Chang, Ye, Ferreira, Wołczyk, Osiński, Niendorf, Grimmett, Huang, Jain (b65) 2022 Wu, Stern, Cui, Delle Monache, Bhadani, Bunting, Churchill, Hamilton, Piccoli, Seibold (b70) 2019; 99 Zaki, Sayed, Shaaban (b75) 2014; 2434 Fagnant, Kockelman (b15) 2015; 77 Shi, Wong, Li, Palanisamy, Chai (b58) 2019; 129 Zhang, Masoud, Zhang, Malhan (b82) 2021 Bertsimas, Kallus (b6) 2020; 66 Rudenko, Palmieri, Herman, Kitani, Gavrila, Arras (b56) 2020; 39 Pammer, Gauld, McKerral, Reeves (b46) 2021; 78 Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M., 2017. Desire: Distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 336–345. Kalra, Paddock (b30) 2016; 94 Aradi (b3) 2020 Li, Sun, Cao, He, Zhu (b36) 2015; 21 Jo, Kim, Kim, Jang, Sunwoo (b28) 2015; 62 Toghi, Valiente, Sadigh, Pedarsani, Fallah (b61) 2021 Bagdadi, Várhelyi (b5) 2011; 43 Zernetsch, Kohnen, Goldhammer, Doll, Sick (b76) 2016 Zhang, Deng, Zhao, Sun, Litkouhi (b77) 2013 Penmetsa, Adanu, Wood, Wang, Jones (b49) 2019; 143 Tsuchiya, Takei, Sakai, Khiat (b62) 2021 Fan (10.1016/j.trc.2023.104063_b16) 2019 10.1016/j.trc.2023.104063_b1 Wang (10.1016/j.trc.2023.104063_b66) 2022 Fagnant (10.1016/j.trc.2023.104063_b15) 2015; 77 Wu (10.1016/j.trc.2023.104063_b70) 2019; 99 Bertsimas (10.1016/j.trc.2023.104063_b6) 2020; 66 Jo (10.1016/j.trc.2023.104063_b28) 2015; 62 Song (10.1016/j.trc.2023.104063_b59) 2018 Bagdadi (10.1016/j.trc.2023.104063_b5) 2011; 43 Hasan (10.1016/j.trc.2023.104063_b22) 2021; 124 Zhang (10.1016/j.trc.2023.104063_b77) 2013 Raffo (10.1016/j.trc.2023.104063_b51) 2009; 10 Liu (10.1016/j.trc.2023.104063_b37) 2022; 136 Aradi (10.1016/j.trc.2023.104063_b3) 2020 Zernetsch (10.1016/j.trc.2023.104063_b76) 2016 Ding (10.1016/j.trc.2023.104063_b14) 2019 Zhang (10.1016/j.trc.2023.104063_b79) 2020; 22 Claussmann (10.1016/j.trc.2023.104063_b11) 2019; 21 Svensson (10.1016/j.trc.2023.104063_b60) 2018 Hubmann (10.1016/j.trc.2023.104063_b27) 2018; 3 Zaki (10.1016/j.trc.2023.104063_b75) 2014; 2434 Zhang (10.1016/j.trc.2023.104063_b80) 2022 Arulkumaran (10.1016/j.trc.2023.104063_b4) 2017; 34 Houston (10.1016/j.trc.2023.104063_b25) 2020 Li (10.1016/j.trc.2023.104063_b36) 2015; 21 Rahman (10.1016/j.trc.2023.104063_b52) 2021; 78 Toghi (10.1016/j.trc.2023.104063_b61) 2021 Mnih (10.1016/j.trc.2023.104063_b43) 2015; 518 10.1016/j.trc.2023.104063_b40 Ali (10.1016/j.trc.2023.104063_b2) 2021; 151 Liu (10.1016/j.trc.2023.104063_b38) 2021; 4 Tsuchiya (10.1016/j.trc.2023.104063_b62) 2021 Zhang (10.1016/j.trc.2023.104063_b81) 2022 10.1016/j.trc.2023.104063_b34 Cai (10.1016/j.trc.2023.104063_b9) 2019 Rasouli (10.1016/j.trc.2023.104063_b54) 2019; 21 Zhao (10.1016/j.trc.2023.104063_b85) 2021; 150 Houenou (10.1016/j.trc.2023.104063_b24) 2013 Xu (10.1016/j.trc.2023.104063_b72) 2022; 164 Wang (10.1016/j.trc.2023.104063_b67) 2010; 23 Huang (10.1016/j.trc.2023.104063_b26) 2021; 112 Sadat (10.1016/j.trc.2023.104063_b57) 2020 Kalra (10.1016/j.trc.2023.104063_b30) 2016; 94 Zhang (10.1016/j.trc.2023.104063_b84) 2020; 141 Fu (10.1016/j.trc.2023.104063_b18) 2015 Shi (10.1016/j.trc.2023.104063_b58) 2019; 129 Burger (10.1016/j.trc.2023.104063_b7) 2018 Feng (10.1016/j.trc.2023.104063_b17) 2017; 104 Wu (10.1016/j.trc.2023.104063_b69) 2020; 32 Xue (10.1016/j.trc.2023.104063_b73) 2018 Ma (10.1016/j.trc.2023.104063_b39) 2015; 16 10.1016/j.trc.2023.104063_b71 Zhang (10.1016/j.trc.2023.104063_b82) 2021 Masoud (10.1016/j.trc.2023.104063_b42) 2017; 108 Recht (10.1016/j.trc.2023.104063_b55) 2019; 2 10.1016/j.trc.2023.104063_b21 10.1016/j.trc.2023.104063_b23 10.1016/j.trc.2023.104063_b68 Carvalho (10.1016/j.trc.2023.104063_b10) 2013 Mannion (10.1016/j.trc.2023.104063_b41) 2016 Das (10.1016/j.trc.2023.104063_b12) 2021; 81 Kim (10.1016/j.trc.2023.104063_b31) 2017 Kühl (10.1016/j.trc.2023.104063_b33) 2022 Zhou (10.1016/j.trc.2023.104063_b87) 2020; 6 Ntousakis (10.1016/j.trc.2023.104063_b45) 2016; 71 van Wyk (10.1016/j.trc.2023.104063_b64) 2020 Ye (10.1016/j.trc.2023.104063_b74) 2021 Patel (10.1016/j.trc.2023.104063_b48) 2020; 171 Raju (10.1016/j.trc.2023.104063_b53) 2019 Lepenioti (10.1016/j.trc.2023.104063_b35) 2020; 50 Pammer (10.1016/j.trc.2023.104063_b46) 2021; 78 Zhou (10.1016/j.trc.2023.104063_b86) 2018; 20 van Wyk (10.1016/j.trc.2023.104063_b63) 2020; 114 Rudenko (10.1016/j.trc.2023.104063_b56) 2020; 39 Zhang (10.1016/j.trc.2023.104063_b78) 2020; 22 Zhang (10.1016/j.trc.2023.104063_b83) 2021 Bzdok (10.1016/j.trc.2023.104063_b8) 2017; 14 Koopman (10.1016/j.trc.2023.104063_b32) 2017; 9 10.1016/j.trc.2023.104063_b20 10.1016/j.trc.2023.104063_b13 Moody (10.1016/j.trc.2023.104063_b44) 2020; 121 Pandey (10.1016/j.trc.2023.104063_b47) 2020; 119 Josef (10.1016/j.trc.2023.104063_b29) 2020; 5 Penmetsa (10.1016/j.trc.2023.104063_b49) 2019; 143 Galvin (10.1016/j.trc.2023.104063_b19) 2017; 53 Pool (10.1016/j.trc.2023.104063_b50) 2017 Vitelli (10.1016/j.trc.2023.104063_b65) 2022 Zhu (10.1016/j.trc.2023.104063_b88) 2018; 97 |
References_xml | – volume: 108 start-page: 179 year: 2017 end-page: 194 ident: b42 article-title: Autonomous or driver-less vehicles: Implementation strategies and operational concerns publication-title: Transp. Res. E – volume: 2434 start-page: 103 year: 2014 end-page: 112 ident: b75 article-title: Use of drivers’ jerk profiles in computer vision–based traffic safety evaluations publication-title: Transp. Res. Rec. – start-page: 907 year: 2015 end-page: 912 ident: b18 article-title: Collision-free and kinematically feasible path planning along a reference path for autonomous vehicle publication-title: 2015 IEEE Intelligent Vehicles Symposium (IV) – volume: 114 start-page: 517 year: 2020 end-page: 531 ident: b63 article-title: Optimal switching policy between driving entities in semi-autonomous vehicles publication-title: Transp. Res. C – volume: 66 start-page: 1025 year: 2020 end-page: 1044 ident: b6 article-title: From predictive to prescriptive analytics publication-title: Manage. Sci. – start-page: 414 year: 2020 end-page: 430 ident: b57 article-title: Perceive, predict, and plan: Safe motion planning through interpretable semantic representations publication-title: European Conference on Computer Vision – start-page: 1001 year: 2021 end-page: 1007 ident: b62 article-title: Exemplar trajectory generation for prior driving experience re-usage in autonomous driving publication-title: 2021 IEEE Intelligent Vehicles Symposium (IV) – start-page: 1853 year: 2021 end-page: 1858 ident: b83 article-title: A learning-based method for predicting heterogeneous traffic agent trajectories: Implications for transfer learning publication-title: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) – volume: 53 start-page: 234 year: 2017 end-page: 248 ident: b19 article-title: Energy consumption effects of speed and acceleration in electric vehicles: Laboratory case studies and implications for drivers and policymakers publication-title: Transp. Res. D – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: b43 article-title: Human-level control through deep reinforcement learning publication-title: Nature – start-page: 4161 year: 2013 end-page: 4166 ident: b77 article-title: Dynamic trajectory planning for vehicle autonomous driving publication-title: 2013 IEEE International Conference on Systems, Man, and Cybernetics – volume: 119 year: 2020 ident: b47 article-title: Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations publication-title: Transp. Res. C – start-page: 47 year: 2016 end-page: 66 ident: b41 article-title: An experimental review of reinforcement learning algorithms for adaptive traffic signal control publication-title: Auton. Road Transp. Support Syst. – start-page: 2736 year: 2019 end-page: 2742 ident: b9 article-title: Vision-based trajectory planning via imitation learning for autonomous vehicles publication-title: 2019 IEEE Intelligent Transportation Systems Conference (ITSC) – volume: 136 year: 2022 ident: b37 article-title: A markov decision process framework to incorporate network-level data in motion planning for connected and automated vehicles publication-title: Transp. Res. C – volume: 22 start-page: 6954 year: 2020 end-page: 6966 ident: b78 article-title: Virtual traffic signals: Safe, rapid, efficient and autonomous driving without traffic control publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 106 year: 2020 end-page: 120 ident: b64 article-title: A path towards understanding factors affecting crash severity in autonomous vehicles using current naturalistic driving data publication-title: Intelligent Systems and Applications: Proceedings of the 2019 Intelligent Systems Conference (IntelliSys) Volume 2 – volume: 164 year: 2022 ident: b72 article-title: Aggressive driving behavior prediction considering driver’s intention based on multivariate-temporal feature data publication-title: Accid. Anal. Prev. – reference: Geary, T., Danks, D., 2019. Balancing the benefits of autonomous vehicles. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. pp. 181–186. – reference: Xu, Y., Piao, Z., Gao, S., 2018. Encoding crowd interaction with deep neural network for pedestrian trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5275–5284. – volume: 10 start-page: 92 year: 2009 end-page: 102 ident: b51 article-title: A predictive controller for autonomous vehicle path tracking publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 94 start-page: 182 year: 2016 end-page: 193 ident: b30 article-title: Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability? publication-title: Transp. Res. A – start-page: 9610 year: 2019 end-page: 9616 ident: b14 article-title: Online vehicle trajectory prediction using policy anticipation network and optimization-based context reasoning publication-title: 2019 International Conference on Robotics and Automation (ICRA) – volume: 150 year: 2021 ident: b85 article-title: A comparative study of state-of-the-art driving strategies for autonomous vehicles publication-title: Accid. Anal. Prev. – start-page: 289 year: 2017 end-page: 296 ident: b50 article-title: Using road topology to improve cyclist path prediction publication-title: 2017 IEEE Intelligent Vehicles Symposium (IV) – volume: 23 start-page: 1247 year: 2010 end-page: 1254 ident: b67 article-title: Real-time driving danger-level prediction publication-title: Eng. Appl. Artif. Intell. – start-page: 417 year: 2019 end-page: 426 ident: b16 article-title: Graph neural networks for social recommendation publication-title: The World Wide Web Conference – reference: Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M., 2017. Desire: Distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 336–345. – start-page: 1137 year: 2018 end-page: 1142 ident: b59 article-title: Learning a deep motion planning model for autonomous driving publication-title: 2018 Ieee Intelligent Vehicles Symposium (IV) – start-page: 4517 year: 2021 end-page: 4524 ident: b61 article-title: Cooperative autonomous vehicles that sympathize with human drivers publication-title: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – volume: 32 start-page: 4 year: 2020 end-page: 24 ident: b69 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1 year: 2019 end-page: 5 ident: b53 article-title: Performance of open autonomous vehicle platforms: Autoware and Apollo publication-title: 2019 IEEE 5th International Conference for Convergence in Technology (I2CT) – volume: 129 start-page: 170 year: 2019 end-page: 179 ident: b58 article-title: A feature learning approach based on XGBoost for driving assessment and risk prediction publication-title: Accid. Anal. Prev. – reference: Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D., 2019. Trafficpredict: Trajectory prediction for heterogeneous traffic-agents. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. pp. 6120–6127. – volume: 141 year: 2020 ident: b84 article-title: Modular transit: Using autonomy and modularity to improve performance in public transportation publication-title: Transp. Res. E – volume: 143 start-page: 9 year: 2019 end-page: 13 ident: b49 article-title: Perceptions and expectations of autonomous vehicles–A snapshot of vulnerable road user opinion publication-title: Technol. Forecast. Soc. Change – volume: 121 start-page: 634 year: 2020 end-page: 650 ident: b44 article-title: Public perceptions of autonomous vehicle safety: An international comparison publication-title: Saf. Sci. – volume: 78 start-page: 246 year: 2021 end-page: 258 ident: b46 article-title: “They have to be better than human drivers!” Motorcyclists’ and cyclists’ perceptions of autonomous vehicles publication-title: Transp. Res. F – start-page: 1186 year: 2018 end-page: 1194 ident: b73 article-title: SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) – volume: 50 start-page: 57 year: 2020 end-page: 70 ident: b35 article-title: Prescriptive analytics: Literature review and research challenges publication-title: Int. J. Inf. Manage. – start-page: 517 year: 2018 end-page: 522 ident: b60 article-title: Safe stop trajectory planning for highly automated vehicles: An optimal control problem formulation publication-title: 2018 IEEE Intelligent Vehicles Symposium (IV) – volume: 21 start-page: 1826 year: 2019 end-page: 1848 ident: b11 article-title: A review of motion planning for highway autonomous driving publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 21 start-page: 740 year: 2015 end-page: 753 ident: b36 article-title: Real-time trajectory planning for autonomous urban driving: Framework, algorithms, and verifications publication-title: IEEE/ASME Trans. Mechatronics – year: 2022 ident: b80 article-title: Step attention: Sequential pedestrian trajectory prediction publication-title: IEEE Sens. J. – reference: Deo, N., Trivedi, M.M., 2018. Convolutional social pooling for vehicle trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 1468–1476. – volume: 34 start-page: 26 year: 2017 end-page: 38 ident: b4 article-title: Deep reinforcement learning: A brief survey publication-title: IEEE Signal Process. Mag. – volume: 112 year: 2021 ident: b26 article-title: LSTM based trajectory prediction model for cyclist utilizing multiple interactions with environment publication-title: Pattern Recognit. – volume: 62 start-page: 5119 year: 2015 end-page: 5132 ident: b28 article-title: Development of autonomous car—Part II: A case study on the implementation of an autonomous driving system based on distributed architecture publication-title: IEEE Trans. Ind. Electron. – start-page: 2335 year: 2013 end-page: 2340 ident: b10 article-title: Predictive control of an autonomous ground vehicle using an iterative linearization approach publication-title: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013) – start-page: 4363 year: 2013 end-page: 4369 ident: b24 article-title: Vehicle trajectory prediction based on motion model and maneuver recognition publication-title: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems – year: 2021 ident: b82 article-title: System for predicting aggressive driving – start-page: 1073 year: 2021 end-page: 1080 ident: b74 article-title: A survey of deep reinforcement learning algorithms for motion planning and control of autonomous vehicles publication-title: 2021 IEEE Intelligent Vehicles Symposium (IV) – reference: Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S., 2016. Social lstm: Human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 961–971. – volume: 9 start-page: 90 year: 2017 end-page: 96 ident: b32 article-title: Autonomous vehicle safety: An interdisciplinary challenge publication-title: IEEE Intell. Transp. Syst. Mag. – volume: 4 start-page: 315 year: 2021 end-page: 333 ident: b38 article-title: Trajectory planning for connected and automated vehicles: Cruising, lane changing, and platooning publication-title: SAE Intl. J. CAV – volume: 77 start-page: 167 year: 2015 end-page: 181 ident: b15 article-title: Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations publication-title: Transp. Res. A – volume: 43 start-page: 1359 year: 2011 end-page: 1363 ident: b5 article-title: Jerky driving—an indicator of accident proneness? publication-title: Accid. Anal. Prev. – start-page: 602 year: 2018 end-page: 607 ident: b7 article-title: Cooperative multiple vehicle trajectory planning using miqp publication-title: 2018 21st International Conference on Intelligent Transportation Systems (ITSC) – year: 2020 ident: b25 article-title: One thousand and one hours: Self-driving motion prediction dataset – volume: 81 start-page: 41 year: 2021 end-page: 54 ident: b12 article-title: Autonomous vehicle safety: Understanding perceptions of pedestrians and bicyclists publication-title: Transp. Res. F – volume: 171 start-page: 158 year: 2020 end-page: 167 ident: b48 article-title: Clustering cloud workloads: K-means vs gaussian mixture model publication-title: Procedia Comput. Sci. – year: 2022 ident: b33 article-title: Human vs. supervised machine learning: Who learns patterns faster? publication-title: Cogn. Syst. Res. – volume: 14 start-page: 1119 year: 2017 ident: b8 article-title: Machine learning: a primer publication-title: Nature Methods – volume: 99 start-page: 82 year: 2019 end-page: 109 ident: b70 article-title: Tracking vehicle trajectories and fuel rates in phantom traffic jams: Methodology and data publication-title: Transp. Res. C – volume: 151 year: 2021 ident: b2 article-title: Traffic accident detection and condition analysis based on social networking data publication-title: Accid. Anal. Prev. – volume: 20 start-page: 3409 year: 2018 end-page: 3420 ident: b86 article-title: Optimal vehicle trajectory planning with control constraints and recursive implementation for automated on-ramp merging publication-title: IEEE Trans. Intell. Transp. Syst. – reference: Wang, Y., Xu, W., Zhang, Y., Qin, Y., Zhang, W., Wu, X., 2017. Machine learning methods for driving risk prediction. In: Proceedings of the 3rd ACM SIGSPATIAL Workshop on Emergency Management using. pp. 1–6. – year: 2022 ident: b81 article-title: Predicting risky driving in a connected vehicle environment publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 97 start-page: 348 year: 2018 end-page: 368 ident: b88 article-title: Human-like autonomous car-following model with deep reinforcement learning publication-title: Transp. Res. C – volume: 39 start-page: 895 year: 2020 end-page: 935 ident: b56 article-title: Human motion trajectory prediction: A survey publication-title: Int. J. Robot. Res. – volume: 16 start-page: 1961 year: 2015 end-page: 1976 ident: b39 article-title: Efficient sampling-based motion planning for on-road autonomous driving publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 104 start-page: 125 year: 2017 end-page: 136 ident: b17 article-title: Can vehicle longitudinal jerk be used to identify aggressive drivers? an examination using naturalistic driving data publication-title: Accid. Anal. Prev. – start-page: 897 year: 2022 end-page: 904 ident: b65 article-title: Safetynet: Safe planning for real-world self-driving vehicles using machine-learned policies publication-title: 2022 International Conference on Robotics and Automation (ICRA) – reference: Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A., 2018. Social gan: Socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2255–2264. – volume: 2 start-page: 253 year: 2019 end-page: 279 ident: b55 article-title: A tour of reinforcement learning: The view from continuous control publication-title: Ann. Rev. Control, Robot., Auton. Syst. – volume: 78 start-page: 433 year: 2021 end-page: 445 ident: b52 article-title: Sharing the road with autonomous vehicles: A qualitative analysis of the perceptions of pedestrians and bicyclists publication-title: Transp. Res. F – volume: 124 year: 2021 ident: b22 article-title: The benefits of autonomous vehicles for community-based trip sharing publication-title: Transp. Res. C – volume: 5 start-page: 6748 year: 2020 end-page: 6755 ident: b29 article-title: Deep reinforcement learning for safe local planning of a ground vehicle in unknown rough terrain publication-title: IEEE Robot. Autom. Lett. – start-page: 833 year: 2016 end-page: 838 ident: b76 article-title: Trajectory prediction of cyclists using a physical model and an artificial neural network publication-title: 2016 IEEE Intelligent Vehicles Symposium (IV) – start-page: 399 year: 2017 end-page: 404 ident: b31 article-title: Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network publication-title: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) – volume: 22 start-page: 2615 year: 2020 end-page: 2626 ident: b79 article-title: Increasing GPS localization accuracy with reinforcement learning publication-title: IEEE Trans. Intell. Transp. Syst. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. – volume: 6 start-page: 439 year: 2020 end-page: 446 ident: b87 article-title: Autonomous driving trajectory optimization with dual-loop iterative anchoring path smoothing and piecewise-jerk speed optimization publication-title: IEEE Robot. Autom. Lett. – year: 2020 ident: b3 article-title: Survey of deep reinforcement learning for motion planning of autonomous vehicles publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 3 start-page: 5 year: 2018 end-page: 17 ident: b27 article-title: Automated driving in uncertain environments: Planning with interaction and uncertain maneuver prediction publication-title: IEEE Trans. Intell. Veh. – volume: 21 start-page: 900 year: 2019 end-page: 918 ident: b54 article-title: Autonomous vehicles that interact with pedestrians: A survey of theory and practice publication-title: IEEE Trans. Intell. Transp. Syst. – year: 2022 ident: b66 article-title: Social interactions for autonomous driving: A review and perspectives – volume: 71 start-page: 464 year: 2016 end-page: 488 ident: b45 article-title: Optimal vehicle trajectory planning in the context of cooperative merging on highways publication-title: Transp. Res. C – volume: 129 start-page: 170 year: 2019 ident: 10.1016/j.trc.2023.104063_b58 article-title: A feature learning approach based on XGBoost for driving assessment and risk prediction publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2019.05.005 – volume: 6 start-page: 439 issue: 2 year: 2020 ident: 10.1016/j.trc.2023.104063_b87 article-title: Autonomous driving trajectory optimization with dual-loop iterative anchoring path smoothing and piecewise-jerk speed optimization publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.3045925 – start-page: 399 year: 2017 ident: 10.1016/j.trc.2023.104063_b31 article-title: Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network – year: 2020 ident: 10.1016/j.trc.2023.104063_b3 article-title: Survey of deep reinforcement learning for motion planning of autonomous vehicles publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 897 year: 2022 ident: 10.1016/j.trc.2023.104063_b65 article-title: Safetynet: Safe planning for real-world self-driving vehicles using machine-learned policies – volume: 108 start-page: 179 year: 2017 ident: 10.1016/j.trc.2023.104063_b42 article-title: Autonomous or driver-less vehicles: Implementation strategies and operational concerns publication-title: Transp. Res. E doi: 10.1016/j.tre.2017.10.011 – ident: 10.1016/j.trc.2023.104063_b23 doi: 10.1109/CVPR.2016.90 – volume: 94 start-page: 182 year: 2016 ident: 10.1016/j.trc.2023.104063_b30 article-title: Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability? publication-title: Transp. Res. A – year: 2020 ident: 10.1016/j.trc.2023.104063_b25 – volume: 171 start-page: 158 year: 2020 ident: 10.1016/j.trc.2023.104063_b48 article-title: Clustering cloud workloads: K-means vs gaussian mixture model publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.04.017 – volume: 150 year: 2021 ident: 10.1016/j.trc.2023.104063_b85 article-title: A comparative study of state-of-the-art driving strategies for autonomous vehicles publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2020.105937 – volume: 50 start-page: 57 year: 2020 ident: 10.1016/j.trc.2023.104063_b35 article-title: Prescriptive analytics: Literature review and research challenges publication-title: Int. J. Inf. Manage. doi: 10.1016/j.ijinfomgt.2019.04.003 – start-page: 2335 year: 2013 ident: 10.1016/j.trc.2023.104063_b10 article-title: Predictive control of an autonomous ground vehicle using an iterative linearization approach – start-page: 289 year: 2017 ident: 10.1016/j.trc.2023.104063_b50 article-title: Using road topology to improve cyclist path prediction – start-page: 4363 year: 2013 ident: 10.1016/j.trc.2023.104063_b24 article-title: Vehicle trajectory prediction based on motion model and maneuver recognition – start-page: 1001 year: 2021 ident: 10.1016/j.trc.2023.104063_b62 article-title: Exemplar trajectory generation for prior driving experience re-usage in autonomous driving – start-page: 4161 year: 2013 ident: 10.1016/j.trc.2023.104063_b77 article-title: Dynamic trajectory planning for vehicle autonomous driving – volume: 78 start-page: 246 year: 2021 ident: 10.1016/j.trc.2023.104063_b46 article-title: “They have to be better than human drivers!” Motorcyclists’ and cyclists’ perceptions of autonomous vehicles publication-title: Transp. Res. F doi: 10.1016/j.trf.2021.02.009 – volume: 124 year: 2021 ident: 10.1016/j.trc.2023.104063_b22 article-title: The benefits of autonomous vehicles for community-based trip sharing publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102929 – volume: 62 start-page: 5119 issue: 8 year: 2015 ident: 10.1016/j.trc.2023.104063_b28 article-title: Development of autonomous car—Part II: A case study on the implementation of an autonomous driving system based on distributed architecture publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2410258 – volume: 5 start-page: 6748 issue: 4 year: 2020 ident: 10.1016/j.trc.2023.104063_b29 article-title: Deep reinforcement learning for safe local planning of a ground vehicle in unknown rough terrain publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.3011912 – volume: 34 start-page: 26 issue: 6 year: 2017 ident: 10.1016/j.trc.2023.104063_b4 article-title: Deep reinforcement learning: A brief survey publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2743240 – volume: 104 start-page: 125 year: 2017 ident: 10.1016/j.trc.2023.104063_b17 article-title: Can vehicle longitudinal jerk be used to identify aggressive drivers? an examination using naturalistic driving data publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2017.04.012 – year: 2022 ident: 10.1016/j.trc.2023.104063_b66 – start-page: 9610 year: 2019 ident: 10.1016/j.trc.2023.104063_b14 article-title: Online vehicle trajectory prediction using policy anticipation network and optimization-based context reasoning – year: 2022 ident: 10.1016/j.trc.2023.104063_b33 article-title: Human vs. supervised machine learning: Who learns patterns faster? publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2022.09.002 – start-page: 4517 year: 2021 ident: 10.1016/j.trc.2023.104063_b61 article-title: Cooperative autonomous vehicles that sympathize with human drivers – volume: 21 start-page: 900 issue: 3 year: 2019 ident: 10.1016/j.trc.2023.104063_b54 article-title: Autonomous vehicles that interact with pedestrians: A survey of theory and practice publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2901817 – start-page: 1073 year: 2021 ident: 10.1016/j.trc.2023.104063_b74 article-title: A survey of deep reinforcement learning algorithms for motion planning and control of autonomous vehicles – ident: 10.1016/j.trc.2023.104063_b71 doi: 10.1109/CVPR.2018.00553 – volume: 77 start-page: 167 year: 2015 ident: 10.1016/j.trc.2023.104063_b15 article-title: Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations publication-title: Transp. Res. A – volume: 2 start-page: 253 year: 2019 ident: 10.1016/j.trc.2023.104063_b55 article-title: A tour of reinforcement learning: The view from continuous control publication-title: Ann. Rev. Control, Robot., Auton. Syst. doi: 10.1146/annurev-control-053018-023825 – volume: 21 start-page: 1826 issue: 5 year: 2019 ident: 10.1016/j.trc.2023.104063_b11 article-title: A review of motion planning for highway autonomous driving publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2913998 – start-page: 417 year: 2019 ident: 10.1016/j.trc.2023.104063_b16 article-title: Graph neural networks for social recommendation – ident: 10.1016/j.trc.2023.104063_b20 doi: 10.1145/3306618.3314237 – start-page: 1137 year: 2018 ident: 10.1016/j.trc.2023.104063_b59 article-title: Learning a deep motion planning model for autonomous driving – volume: 23 start-page: 1247 issue: 8 year: 2010 ident: 10.1016/j.trc.2023.104063_b67 article-title: Real-time driving danger-level prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.01.001 – start-page: 106 year: 2020 ident: 10.1016/j.trc.2023.104063_b64 article-title: A path towards understanding factors affecting crash severity in autonomous vehicles using current naturalistic driving data – ident: 10.1016/j.trc.2023.104063_b34 doi: 10.1109/CVPR.2017.233 – volume: 164 year: 2022 ident: 10.1016/j.trc.2023.104063_b72 article-title: Aggressive driving behavior prediction considering driver’s intention based on multivariate-temporal feature data publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2021.106477 – year: 2022 ident: 10.1016/j.trc.2023.104063_b80 article-title: Step attention: Sequential pedestrian trajectory prediction publication-title: IEEE Sens. J. – volume: 151 year: 2021 ident: 10.1016/j.trc.2023.104063_b2 article-title: Traffic accident detection and condition analysis based on social networking data publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2021.105973 – start-page: 833 year: 2016 ident: 10.1016/j.trc.2023.104063_b76 article-title: Trajectory prediction of cyclists using a physical model and an artificial neural network – start-page: 602 year: 2018 ident: 10.1016/j.trc.2023.104063_b7 article-title: Cooperative multiple vehicle trajectory planning using miqp – volume: 71 start-page: 464 year: 2016 ident: 10.1016/j.trc.2023.104063_b45 article-title: Optimal vehicle trajectory planning in the context of cooperative merging on highways publication-title: Transp. Res. C doi: 10.1016/j.trc.2016.08.007 – volume: 39 start-page: 895 issue: 8 year: 2020 ident: 10.1016/j.trc.2023.104063_b56 article-title: Human motion trajectory prediction: A survey publication-title: Int. J. Robot. Res. doi: 10.1177/0278364920917446 – start-page: 517 year: 2018 ident: 10.1016/j.trc.2023.104063_b60 article-title: Safe stop trajectory planning for highly automated vehicles: An optimal control problem formulation – volume: 43 start-page: 1359 issue: 4 year: 2011 ident: 10.1016/j.trc.2023.104063_b5 article-title: Jerky driving—an indicator of accident proneness? publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2011.02.009 – start-page: 47 year: 2016 ident: 10.1016/j.trc.2023.104063_b41 article-title: An experimental review of reinforcement learning algorithms for adaptive traffic signal control publication-title: Auton. Road Transp. Support Syst. doi: 10.1007/978-3-319-25808-9_4 – volume: 143 start-page: 9 year: 2019 ident: 10.1016/j.trc.2023.104063_b49 article-title: Perceptions and expectations of autonomous vehicles–A snapshot of vulnerable road user opinion publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2019.02.010 – volume: 99 start-page: 82 year: 2019 ident: 10.1016/j.trc.2023.104063_b70 article-title: Tracking vehicle trajectories and fuel rates in phantom traffic jams: Methodology and data publication-title: Transp. Res. C doi: 10.1016/j.trc.2018.12.012 – volume: 141 year: 2020 ident: 10.1016/j.trc.2023.104063_b84 article-title: Modular transit: Using autonomy and modularity to improve performance in public transportation publication-title: Transp. Res. E doi: 10.1016/j.tre.2020.102033 – volume: 112 year: 2021 ident: 10.1016/j.trc.2023.104063_b26 article-title: LSTM based trajectory prediction model for cyclist utilizing multiple interactions with environment publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107800 – volume: 16 start-page: 1961 issue: 4 year: 2015 ident: 10.1016/j.trc.2023.104063_b39 article-title: Efficient sampling-based motion planning for on-road autonomous driving publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2389215 – volume: 2434 start-page: 103 issue: 1 year: 2014 ident: 10.1016/j.trc.2023.104063_b75 article-title: Use of drivers’ jerk profiles in computer vision–based traffic safety evaluations publication-title: Transp. Res. Rec. doi: 10.3141/2434-13 – volume: 10 start-page: 92 issue: 1 year: 2009 ident: 10.1016/j.trc.2023.104063_b51 article-title: A predictive controller for autonomous vehicle path tracking publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2008.2011697 – volume: 20 start-page: 3409 issue: 9 year: 2018 ident: 10.1016/j.trc.2023.104063_b86 article-title: Optimal vehicle trajectory planning with control constraints and recursive implementation for automated on-ramp merging publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2874234 – volume: 97 start-page: 348 year: 2018 ident: 10.1016/j.trc.2023.104063_b88 article-title: Human-like autonomous car-following model with deep reinforcement learning publication-title: Transp. Res. C doi: 10.1016/j.trc.2018.10.024 – volume: 3 start-page: 5 issue: 1 year: 2018 ident: 10.1016/j.trc.2023.104063_b27 article-title: Automated driving in uncertain environments: Planning with interaction and uncertain maneuver prediction publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2017.2788208 – ident: 10.1016/j.trc.2023.104063_b40 doi: 10.1609/aaai.v33i01.33016120 – start-page: 1186 year: 2018 ident: 10.1016/j.trc.2023.104063_b73 article-title: SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction – year: 2021 ident: 10.1016/j.trc.2023.104063_b82 – ident: 10.1016/j.trc.2023.104063_b68 doi: 10.1145/3152465.3152476 – start-page: 2736 year: 2019 ident: 10.1016/j.trc.2023.104063_b9 article-title: Vision-based trajectory planning via imitation learning for autonomous vehicles – volume: 21 start-page: 740 issue: 2 year: 2015 ident: 10.1016/j.trc.2023.104063_b36 article-title: Real-time trajectory planning for autonomous urban driving: Framework, algorithms, and verifications publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2015.2493980 – volume: 121 start-page: 634 year: 2020 ident: 10.1016/j.trc.2023.104063_b44 article-title: Public perceptions of autonomous vehicle safety: An international comparison publication-title: Saf. Sci. doi: 10.1016/j.ssci.2019.07.022 – volume: 9 start-page: 90 issue: 1 year: 2017 ident: 10.1016/j.trc.2023.104063_b32 article-title: Autonomous vehicle safety: An interdisciplinary challenge publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2016.2583491 – volume: 14 start-page: 1119 issue: 12 year: 2017 ident: 10.1016/j.trc.2023.104063_b8 article-title: Machine learning: a primer publication-title: Nature Methods doi: 10.1038/nmeth.4526 – start-page: 414 year: 2020 ident: 10.1016/j.trc.2023.104063_b57 article-title: Perceive, predict, and plan: Safe motion planning through interpretable semantic representations – ident: 10.1016/j.trc.2023.104063_b21 doi: 10.1109/CVPR.2018.00240 – volume: 78 start-page: 433 year: 2021 ident: 10.1016/j.trc.2023.104063_b52 article-title: Sharing the road with autonomous vehicles: A qualitative analysis of the perceptions of pedestrians and bicyclists publication-title: Transp. Res. F doi: 10.1016/j.trf.2021.03.008 – volume: 4 start-page: 315 issue: 4 year: 2021 ident: 10.1016/j.trc.2023.104063_b38 article-title: Trajectory planning for connected and automated vehicles: Cruising, lane changing, and platooning publication-title: SAE Intl. J. CAV doi: 10.4271/12-04-04-0025 – volume: 32 start-page: 4 issue: 1 year: 2020 ident: 10.1016/j.trc.2023.104063_b69 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2978386 – year: 2022 ident: 10.1016/j.trc.2023.104063_b81 article-title: Predicting risky driving in a connected vehicle environment publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 66 start-page: 1025 issue: 3 year: 2020 ident: 10.1016/j.trc.2023.104063_b6 article-title: From predictive to prescriptive analytics publication-title: Manage. Sci. doi: 10.1287/mnsc.2018.3253 – ident: 10.1016/j.trc.2023.104063_b13 doi: 10.1109/CVPRW.2018.00196 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.trc.2023.104063_b43 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 81 start-page: 41 year: 2021 ident: 10.1016/j.trc.2023.104063_b12 article-title: Autonomous vehicle safety: Understanding perceptions of pedestrians and bicyclists publication-title: Transp. Res. F doi: 10.1016/j.trf.2021.04.018 – volume: 114 start-page: 517 year: 2020 ident: 10.1016/j.trc.2023.104063_b63 article-title: Optimal switching policy between driving entities in semi-autonomous vehicles publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.02.011 – volume: 22 start-page: 2615 issue: 5 year: 2020 ident: 10.1016/j.trc.2023.104063_b79 article-title: Increasing GPS localization accuracy with reinforcement learning publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2972409 – start-page: 907 year: 2015 ident: 10.1016/j.trc.2023.104063_b18 article-title: Collision-free and kinematically feasible path planning along a reference path for autonomous vehicle – start-page: 1 year: 2019 ident: 10.1016/j.trc.2023.104063_b53 article-title: Performance of open autonomous vehicle platforms: Autoware and Apollo – volume: 136 year: 2022 ident: 10.1016/j.trc.2023.104063_b37 article-title: A markov decision process framework to incorporate network-level data in motion planning for connected and automated vehicles publication-title: Transp. Res. C doi: 10.1016/j.trc.2021.103550 – ident: 10.1016/j.trc.2023.104063_b1 doi: 10.1109/CVPR.2016.110 – volume: 22 start-page: 6954 issue: 11 year: 2020 ident: 10.1016/j.trc.2023.104063_b78 article-title: Virtual traffic signals: Safe, rapid, efficient and autonomous driving without traffic control publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2998907 – volume: 119 year: 2020 ident: 10.1016/j.trc.2023.104063_b47 article-title: Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102715 – start-page: 1853 year: 2021 ident: 10.1016/j.trc.2023.104063_b83 article-title: A learning-based method for predicting heterogeneous traffic agent trajectories: Implications for transfer learning – volume: 53 start-page: 234 year: 2017 ident: 10.1016/j.trc.2023.104063_b19 article-title: Energy consumption effects of speed and acceleration in electric vehicles: Laboratory case studies and implications for drivers and policymakers publication-title: Transp. Res. D doi: 10.1016/j.trd.2017.04.020 |
SSID | ssj0001957 |
Score | 2.5415263 |
Snippet | In this work we put forward a predictive trajectory planning framework to help autonomous vehicles plan future trajectories. We develop a partially observable... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104063 |
SubjectTerms | Autonomous vehicles Reinforcement learning Trajectory planning Trajectory prediction |
Title | Predictive trajectory planning for autonomous vehicles at intersections using reinforcement learning |
URI | https://dx.doi.org/10.1016/j.trc.2023.104063 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jHtSD6FScHyMHT0Jd2qRfxzEcU3EIOtitJGkzN6SOrhO8-Lebl6Y6QT14bMmD8hre5-_9HkLnTKRMBR6Hqo1yGGfMEa4A_BMVxOXCzzhMI9-NguGY3Uz8SQP161kYgFVa21_ZdGOt7Zuu1WZ3MZt1H3TwHZGYTHQQbfpVMMHOQuDPv3z_gnm4ccX2qQ9DTWJSdzYNxqssgMXQo9DpJAH92Tet-ZvBLtqxgSLuVd-yhxpZ3kKb9RzxsoW216gE91F6X0DLBYwXLgs-N8X4N7ywO4mwjk0xX5UgrXN9_Jo9GTwc5iUGxohiaSBZ-RIDEH6Ki8wwqkpTPMR2tcT0AI0HV4_9oWM3KDjSi8PSEdLVER5TilAWcW33gkwnLLD-XHipUL7yuScVpYpHgkgexiGPUjfSHosBjwyhh6iZv-TZEcIm8ZIyVZ6iTPpxnMZRKlgQCU-5TMk2IrXuEmnpxWHLxXNS48jmiVZ3AupOKnW30cWnyKLi1vjrMKt_SPLtgiTa9v8udvw_sRO0BU8VROcUNctilZ3p6KMUHXO9Omijd307HH0AsRza2Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qPVQPolWxfu7BkxCbZDdpcpSiVG2LYAu9hd1NtrZILWkqePG3u7NJtIJ68JrsQJgMM7Mzb94AnDMRM-W7HKs2ymKcMUs4AvFPVNgOF17CcRq51_c7Q3Y38kYVaJezMAirLHx_7tONty6eNAttNueTSfNRJ9-BHdojnUSbftUarDOPttC0L9-_cB5OmNN96tNYlBiVrU0D8spSpDF0KbY6bZ_-HJxWAs7NNmwVmSK5yj9mByrJrA61cpB4UYfNFS7BXYgfUuy5oPciWcqnphr_RubFUiKik1PClxlK68s-eU2eDCCO8IwgZUS6MJis2YIgEn5M0sRQqkpTPSTFbonxHgxvrgftjlWsULCkG7YyS0hHp3hMKZuygGvH5yf6xoL7z4UbC-Upj7tSUap4IGzJW2GLB7ET6JDFkEjGpvtQnb3MkgMg5uYlZaxcRZn0wjAOg1gwPxCucpiSDbBL3UWy4BfHNRfPUQkkm0Za3RGqO8rV3YCLT5F5Tq7x12FW_pDom4VE2vn_Lnb4P7EzqHUGvW7Uve3fH8EGvsnxOsdQzdJlcqJTkUycGlP7AOR73G8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+trajectory+planning+for+autonomous+vehicles+at+intersections+using+reinforcement+learning&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Zhang%2C+Ethan&rft.au=Zhang%2C+Ruixuan&rft.au=Masoud%2C+Neda&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=149&rft_id=info:doi/10.1016%2Fj.trc.2023.104063&rft.externalDocID=S0968090X23000529 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |