Subgeometries and linear sets on a projective line

We define the splash of a subgeometry on a projective line, extending the definition of [1] to general dimension and prove that a splash is always a linear set. We also prove the converse: each linear set on a projective line is the splash of some subgeometry. Therefore an alternative description of...

Full description

Saved in:
Bibliographic Details
Published inFinite fields and their applications Vol. 34; pp. 95 - 106
Main Authors Lavrauw, Michel, Zanella, Corrado
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.07.2015
Subjects
Online AccessGet full text
ISSN1071-5797
1090-2465
DOI10.1016/j.ffa.2015.01.006

Cover

Abstract We define the splash of a subgeometry on a projective line, extending the definition of [1] to general dimension and prove that a splash is always a linear set. We also prove the converse: each linear set on a projective line is the splash of some subgeometry. Therefore an alternative description of linear sets on a projective line is obtained. We introduce the notion of a club of rank r, generalizing the definition from [4], and show that clubs correspond to tangent splashes. We obtain a condition for a splash to be a scattered linear set and give a characterization of clubs, or equivalently of tangent splashes. We also investigate the equivalence problem for tangent splashes and determine a necessary and sufficient condition for two tangent splashes to be (projectively) equivalent.
AbstractList We define the splash of a subgeometry on a projective line, extending the definition of [1] to general dimension and prove that a splash is always a linear set. We also prove the converse: each linear set on a projective line is the splash of some subgeometry. Therefore an alternative description of linear sets on a projective line is obtained. We introduce the notion of a club of rank r, generalizing the definition from [4], and show that clubs correspond to tangent splashes. We obtain a condition for a splash to be a scattered linear set and give a characterization of clubs, or equivalently of tangent splashes. We also investigate the equivalence problem for tangent splashes and determine a necessary and sufficient condition for two tangent splashes to be (projectively) equivalent.
Author Lavrauw, Michel
Zanella, Corrado
Author_xml – sequence: 1
  givenname: Michel
  surname: Lavrauw
  fullname: Lavrauw, Michel
  email: michel.lavrauw@unipd.it
– sequence: 2
  givenname: Corrado
  surname: Zanella
  fullname: Zanella, Corrado
  email: corrado.zanella@unipd.it
BookMark eNp9z8FKAzEQgOEgFWyrD-BtX2DXTHaTbPAkRa1Q8KCeQzaZSJZ2tySx4Nu7tZ489DQDwz_wLchsGAck5BZoBRTEXV95bypGgVcUKkrFBZkDVbRkjeCz4y6h5FLJK7JIqacUgNftnLC3r-4Txx3mGDAVZnDFNgxoYpEwp2IcClPs49ijzeGAv7drcunNNuHN31ySj6fH99W63Lw-v6weNqVlSuay61SDpmOoGGNWQiMEYgu8c0x65xhCXbuWGcV8o7yhvPXMCC8aJT3lpqmXRJ7-2jimFNFrG7LJYRxyNGGrgeojXfd6ousjXVPQE30q4V-5j2Fn4vfZ5v7U4EQ6BIw62YCDRRfihNduDGfqHyhQcvY
CitedBy_id crossref_primary_10_1007_s10623_015_0108_0
crossref_primary_10_1007_s10623_015_0141_z
crossref_primary_10_1007_s10801_015_0661_7
crossref_primary_10_1016_j_disc_2017_07_001
crossref_primary_10_1016_j_ffa_2016_04_006
crossref_primary_10_1007_s10801_017_0753_7
crossref_primary_10_1016_j_disc_2015_12_018
crossref_primary_10_2140_iig_2019_17_1
Cites_doi 10.1023/A:1005283806897
10.1007/s10623-010-9393-9
10.1016/j.disc.2009.04.007
10.1515/form.2004.029
10.1007/s10801-013-0468-3
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ffa.2015.01.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1090-2465
EndPage 106
ExternalDocumentID 10_1016_j_ffa_2015_01_006
S1071579715000076
GrantInformation_xml – fundername: Progetto di Ateneo from Università di Padova
  grantid: CPDA113797/11
– fundername: Ministry of Education, Research and Universities
  grantid: PRIN 2012
  funderid: http://dx.doi.org/10.13039/501100003407
– fundername: Research Foundation Flanders-Belgium
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-bb94eab2e9222c71466ee815bd27fdd2e133d82a92f49fa058f2a6f6497f05a43
IEDL.DBID AIKHN
ISSN 1071-5797
IngestDate Thu Apr 24 22:59:25 EDT 2025
Tue Jul 01 03:35:28 EDT 2025
Fri Feb 23 02:30:20 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Subgeometry
51E20
Linear set
Tangent splash
Finite projective line
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-bb94eab2e9222c71466ee815bd27fdd2e133d82a92f49fa058f2a6f6497f05a43
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1071579715000076
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_ffa_2015_01_006
crossref_primary_10_1016_j_ffa_2015_01_006
elsevier_sciencedirect_doi_10_1016_j_ffa_2015_01_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Finite fields and their applications
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Barwick, Jackson (br0020)
Barwick, Jackson (br0010)
Lunardon, Marino, Polverino, Trombetti (br0090) 2014; 39
Lunardon, Polverino (br0100) 2004; 16
Lavrauw, Van de Voorde (br0050) 2010; 56
Polverino (br0110) 2010; 310
Lavrauw, Van de Voorde (br0070) 2013; 20
Fancsali, Sziklai (br0040) 2006; 4
Blokhuis, Lavrauw (br0030) 2000; 81
Lidl, Niederreiter (br0080) 1997; vol. 20
Lavrauw, Van de Voorde (br0060) 2015; vol. 632
Lunardon (10.1016/j.ffa.2015.01.006_br0100) 2004; 16
Barwick (10.1016/j.ffa.2015.01.006_br0010)
Polverino (10.1016/j.ffa.2015.01.006_br0110) 2010; 310
Barwick (10.1016/j.ffa.2015.01.006_br0020)
Lunardon (10.1016/j.ffa.2015.01.006_br0090) 2014; 39
Fancsali (10.1016/j.ffa.2015.01.006_br0040) 2006; 4
Lavrauw (10.1016/j.ffa.2015.01.006_br0060) 2015; vol. 632
Lavrauw (10.1016/j.ffa.2015.01.006_br0070) 2013; 20
Lavrauw (10.1016/j.ffa.2015.01.006_br0050) 2010; 56
Lidl (10.1016/j.ffa.2015.01.006_br0080) 1997; vol. 20
Blokhuis (10.1016/j.ffa.2015.01.006_br0030) 2000; 81
References_xml – volume: vol. 20
  year: 1997
  ident: br0080
  article-title: Finite Fields
  publication-title: Encycl. Math. Appl.
– volume: 20
  year: 2013
  ident: br0070
  article-title: Scattered linear sets and pseudoreguli
  publication-title: Electron. J. Comb.
– ident: br0020
  article-title: An investigation of the tangent splash of a subplane of
– volume: vol. 632
  year: 2015
  ident: br0060
  article-title: Field reduction and linear sets in finite geometry
  publication-title: Finite Fields
– volume: 81
  start-page: 231
  year: 2000
  end-page: 243
  ident: br0030
  article-title: Scattered spaces with respect to a spread in
  publication-title: Geom. Dedic.
– ident: br0010
  article-title: The tangent splash in
– volume: 4
  start-page: 89
  year: 2006
  end-page: 102
  ident: br0040
  article-title: About maximal partial 2-spreads in
  publication-title: Innov. Incid. Geom.
– volume: 16
  start-page: 663
  year: 2004
  end-page: 669
  ident: br0100
  article-title: Translation ovoids of orthogonal polar spaces
  publication-title: Forum Math.
– volume: 39
  start-page: 807
  year: 2014
  end-page: 831
  ident: br0090
  article-title: Maximum scattered linear sets of pseudoregulus type and the Segre variety
  publication-title: J. Algebr. Comb.
– volume: 310
  start-page: 3096
  year: 2010
  end-page: 3107
  ident: br0110
  article-title: Linear sets in finite projective spaces
  publication-title: Discrete Math.
– volume: 56
  start-page: 89
  year: 2010
  end-page: 104
  ident: br0050
  article-title: On linear sets on a projective line
  publication-title: Des. Codes Cryptogr.
– volume: vol. 20
  year: 1997
  ident: 10.1016/j.ffa.2015.01.006_br0080
  article-title: Finite Fields
– volume: 81
  start-page: 231
  year: 2000
  ident: 10.1016/j.ffa.2015.01.006_br0030
  article-title: Scattered spaces with respect to a spread in PG(n,q)
  publication-title: Geom. Dedic.
  doi: 10.1023/A:1005283806897
– volume: 56
  start-page: 89
  year: 2010
  ident: 10.1016/j.ffa.2015.01.006_br0050
  article-title: On linear sets on a projective line
  publication-title: Des. Codes Cryptogr.
  doi: 10.1007/s10623-010-9393-9
– volume: 4
  start-page: 89
  year: 2006
  ident: 10.1016/j.ffa.2015.01.006_br0040
  article-title: About maximal partial 2-spreads in PG(3m−1,q)
  publication-title: Innov. Incid. Geom.
– volume: vol. 632
  year: 2015
  ident: 10.1016/j.ffa.2015.01.006_br0060
  article-title: Field reduction and linear sets in finite geometry
– volume: 20
  year: 2013
  ident: 10.1016/j.ffa.2015.01.006_br0070
  article-title: Scattered linear sets and pseudoreguli
  publication-title: Electron. J. Comb.
– volume: 310
  start-page: 3096
  year: 2010
  ident: 10.1016/j.ffa.2015.01.006_br0110
  article-title: Linear sets in finite projective spaces
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2009.04.007
– ident: 10.1016/j.ffa.2015.01.006_br0010
– ident: 10.1016/j.ffa.2015.01.006_br0020
– volume: 16
  start-page: 663
  year: 2004
  ident: 10.1016/j.ffa.2015.01.006_br0100
  article-title: Translation ovoids of orthogonal polar spaces
  publication-title: Forum Math.
  doi: 10.1515/form.2004.029
– volume: 39
  start-page: 807
  year: 2014
  ident: 10.1016/j.ffa.2015.01.006_br0090
  article-title: Maximum scattered linear sets of pseudoregulus type and the Segre variety Sn,n
  publication-title: J. Algebr. Comb.
  doi: 10.1007/s10801-013-0468-3
SSID ssj0011538
Score 2.0949328
Snippet We define the splash of a subgeometry on a projective line, extending the definition of [1] to general dimension and prove that a splash is always a linear...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 95
SubjectTerms Finite projective line
Linear set
Subgeometry
Tangent splash
Title Subgeometries and linear sets on a projective line
URI https://dx.doi.org/10.1016/j.ffa.2015.01.006
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIryqDIwIYUmjp3YY6moWlC7QKVukZ-oCNKqKSu_HTuPCiRgYInkJCcll_i7O9_nO4CrgDIlI0F9Y6jyrYW2OBhL6WupBI1iyoV2geJkGo9m-H5O5g0Y1HthHK2ywv4S0wu0rs70Km32VotF79EGLiFJmD0U-bi4CW0UsZi0oN0fP4ym22SCm9Ql9TD0nUCd3CxoXsa46kNhWbzT9T36yTx9MTnDfdirfEWvXz7OATR0dgi7k22h1fwIkJ34z3r5VvTFyj2eKc_5jXzt5XqTe8vM41612GJhrbh2DLPh3dNg5FdtEHyJWLLxhWBYc4E0s7ZcJhbaYq1pSIRCiVEKaRtmKoo4QwYzwwNCDeKxiTFLTEA4jk6glS0zfQqeJJxIxhW3gQym1jcT0u2ExZHBKCGIdCCo3z6VVY1w16riNa3JYC-pVVjqFJYGYWoV1oHrrciqLJDx1824Vmn67SunFsB_Fzv7n9g57LhRSa69gNZm_a4vrQuxEV1o3nyE3epHsaPx_PYThsvEmg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YEJKWri2Ik9QgVqoe1CK3Wz_ERFkFZN-P_YeVQgAQNLhtinJJf4u7vc-TsArkPKtIolDaylOnAW2uFgolRglJY0TqiQxgeKo3HSn-LHGZm1QK_ZC-PLKmvsrzC9ROv6TLfWZnc5n3efXeASkZS5Q5mPSzbAprtW4gn0B7O7dSrBL-mq8DAK_PQmtVkWeVnruYeiirrTdz36yTh9MTgPe2C39hThbXUz-6BlsgOwM1rTrOaHALll_2IW72VXrByKTEPvNYoVzE2Rw0UGBax_tThQK8eOwPThftLrB3UThEAhlhaBlAwbIZFhzpKr1AFbYgyNiNQotVoj44JMTZFgyGJmRUioRSKxCWapDYnA8TFoZ4vMnACoiCCKCS1cGIOp88yk8vtgcWwxSgkiHRA2T89VzRDuG1W88aYU7JU7hXGvMB5G3CmsA27WIsuKHuOvybhRKf_2jrmD79_FTv8ndgW2-pPRkA8H46czsO1HqjLbc9AuVh_mwjkThbwsP5ZPmfLEbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subgeometries+and+linear+sets+on+a+projective+line&rft.jtitle=Finite+fields+and+their+applications&rft.au=Lavrauw%2C+Michel&rft.au=Zanella%2C+Corrado&rft.date=2015-07-01&rft.issn=1071-5797&rft.volume=34&rft.spage=95&rft.epage=106&rft_id=info:doi/10.1016%2Fj.ffa.2015.01.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ffa_2015_01_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-5797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-5797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-5797&client=summon