Subgeometries and linear sets on a projective line
We define the splash of a subgeometry on a projective line, extending the definition of [1] to general dimension and prove that a splash is always a linear set. We also prove the converse: each linear set on a projective line is the splash of some subgeometry. Therefore an alternative description of...
Saved in:
Published in | Finite fields and their applications Vol. 34; pp. 95 - 106 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.07.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1071-5797 1090-2465 |
DOI | 10.1016/j.ffa.2015.01.006 |
Cover
Abstract | We define the splash of a subgeometry on a projective line, extending the definition of [1] to general dimension and prove that a splash is always a linear set. We also prove the converse: each linear set on a projective line is the splash of some subgeometry. Therefore an alternative description of linear sets on a projective line is obtained. We introduce the notion of a club of rank r, generalizing the definition from [4], and show that clubs correspond to tangent splashes. We obtain a condition for a splash to be a scattered linear set and give a characterization of clubs, or equivalently of tangent splashes. We also investigate the equivalence problem for tangent splashes and determine a necessary and sufficient condition for two tangent splashes to be (projectively) equivalent. |
---|---|
AbstractList | We define the splash of a subgeometry on a projective line, extending the definition of [1] to general dimension and prove that a splash is always a linear set. We also prove the converse: each linear set on a projective line is the splash of some subgeometry. Therefore an alternative description of linear sets on a projective line is obtained. We introduce the notion of a club of rank r, generalizing the definition from [4], and show that clubs correspond to tangent splashes. We obtain a condition for a splash to be a scattered linear set and give a characterization of clubs, or equivalently of tangent splashes. We also investigate the equivalence problem for tangent splashes and determine a necessary and sufficient condition for two tangent splashes to be (projectively) equivalent. |
Author | Lavrauw, Michel Zanella, Corrado |
Author_xml | – sequence: 1 givenname: Michel surname: Lavrauw fullname: Lavrauw, Michel email: michel.lavrauw@unipd.it – sequence: 2 givenname: Corrado surname: Zanella fullname: Zanella, Corrado email: corrado.zanella@unipd.it |
BookMark | eNp9z8FKAzEQgOEgFWyrD-BtX2DXTHaTbPAkRa1Q8KCeQzaZSJZ2tySx4Nu7tZ489DQDwz_wLchsGAck5BZoBRTEXV95bypGgVcUKkrFBZkDVbRkjeCz4y6h5FLJK7JIqacUgNftnLC3r-4Txx3mGDAVZnDFNgxoYpEwp2IcClPs49ijzeGAv7drcunNNuHN31ySj6fH99W63Lw-v6weNqVlSuay61SDpmOoGGNWQiMEYgu8c0x65xhCXbuWGcV8o7yhvPXMCC8aJT3lpqmXRJ7-2jimFNFrG7LJYRxyNGGrgeojXfd6ousjXVPQE30q4V-5j2Fn4vfZ5v7U4EQ6BIw62YCDRRfihNduDGfqHyhQcvY |
CitedBy_id | crossref_primary_10_1007_s10623_015_0108_0 crossref_primary_10_1007_s10623_015_0141_z crossref_primary_10_1007_s10801_015_0661_7 crossref_primary_10_1016_j_disc_2017_07_001 crossref_primary_10_1016_j_ffa_2016_04_006 crossref_primary_10_1007_s10801_017_0753_7 crossref_primary_10_1016_j_disc_2015_12_018 crossref_primary_10_2140_iig_2019_17_1 |
Cites_doi | 10.1023/A:1005283806897 10.1007/s10623-010-9393-9 10.1016/j.disc.2009.04.007 10.1515/form.2004.029 10.1007/s10801-013-0468-3 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. |
Copyright_xml | – notice: 2015 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.ffa.2015.01.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1090-2465 |
EndPage | 106 |
ExternalDocumentID | 10_1016_j_ffa_2015_01_006 S1071579715000076 |
GrantInformation_xml | – fundername: Progetto di Ateneo from Università di Padova grantid: CPDA113797/11 – fundername: Ministry of Education, Research and Universities grantid: PRIN 2012 funderid: http://dx.doi.org/10.13039/501100003407 – fundername: Research Foundation Flanders-Belgium |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-bb94eab2e9222c71466ee815bd27fdd2e133d82a92f49fa058f2a6f6497f05a43 |
IEDL.DBID | AIKHN |
ISSN | 1071-5797 |
IngestDate | Thu Apr 24 22:59:25 EDT 2025 Tue Jul 01 03:35:28 EDT 2025 Fri Feb 23 02:30:20 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Subgeometry 51E20 Linear set Tangent splash Finite projective line |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-bb94eab2e9222c71466ee815bd27fdd2e133d82a92f49fa058f2a6f6497f05a43 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1071579715000076 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ffa_2015_01_006 crossref_primary_10_1016_j_ffa_2015_01_006 elsevier_sciencedirect_doi_10_1016_j_ffa_2015_01_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Finite fields and their applications |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Barwick, Jackson (br0020) Barwick, Jackson (br0010) Lunardon, Marino, Polverino, Trombetti (br0090) 2014; 39 Lunardon, Polverino (br0100) 2004; 16 Lavrauw, Van de Voorde (br0050) 2010; 56 Polverino (br0110) 2010; 310 Lavrauw, Van de Voorde (br0070) 2013; 20 Fancsali, Sziklai (br0040) 2006; 4 Blokhuis, Lavrauw (br0030) 2000; 81 Lidl, Niederreiter (br0080) 1997; vol. 20 Lavrauw, Van de Voorde (br0060) 2015; vol. 632 Lunardon (10.1016/j.ffa.2015.01.006_br0100) 2004; 16 Barwick (10.1016/j.ffa.2015.01.006_br0010) Polverino (10.1016/j.ffa.2015.01.006_br0110) 2010; 310 Barwick (10.1016/j.ffa.2015.01.006_br0020) Lunardon (10.1016/j.ffa.2015.01.006_br0090) 2014; 39 Fancsali (10.1016/j.ffa.2015.01.006_br0040) 2006; 4 Lavrauw (10.1016/j.ffa.2015.01.006_br0060) 2015; vol. 632 Lavrauw (10.1016/j.ffa.2015.01.006_br0070) 2013; 20 Lavrauw (10.1016/j.ffa.2015.01.006_br0050) 2010; 56 Lidl (10.1016/j.ffa.2015.01.006_br0080) 1997; vol. 20 Blokhuis (10.1016/j.ffa.2015.01.006_br0030) 2000; 81 |
References_xml | – volume: vol. 20 year: 1997 ident: br0080 article-title: Finite Fields publication-title: Encycl. Math. Appl. – volume: 20 year: 2013 ident: br0070 article-title: Scattered linear sets and pseudoreguli publication-title: Electron. J. Comb. – ident: br0020 article-title: An investigation of the tangent splash of a subplane of – volume: vol. 632 year: 2015 ident: br0060 article-title: Field reduction and linear sets in finite geometry publication-title: Finite Fields – volume: 81 start-page: 231 year: 2000 end-page: 243 ident: br0030 article-title: Scattered spaces with respect to a spread in publication-title: Geom. Dedic. – ident: br0010 article-title: The tangent splash in – volume: 4 start-page: 89 year: 2006 end-page: 102 ident: br0040 article-title: About maximal partial 2-spreads in publication-title: Innov. Incid. Geom. – volume: 16 start-page: 663 year: 2004 end-page: 669 ident: br0100 article-title: Translation ovoids of orthogonal polar spaces publication-title: Forum Math. – volume: 39 start-page: 807 year: 2014 end-page: 831 ident: br0090 article-title: Maximum scattered linear sets of pseudoregulus type and the Segre variety publication-title: J. Algebr. Comb. – volume: 310 start-page: 3096 year: 2010 end-page: 3107 ident: br0110 article-title: Linear sets in finite projective spaces publication-title: Discrete Math. – volume: 56 start-page: 89 year: 2010 end-page: 104 ident: br0050 article-title: On linear sets on a projective line publication-title: Des. Codes Cryptogr. – volume: vol. 20 year: 1997 ident: 10.1016/j.ffa.2015.01.006_br0080 article-title: Finite Fields – volume: 81 start-page: 231 year: 2000 ident: 10.1016/j.ffa.2015.01.006_br0030 article-title: Scattered spaces with respect to a spread in PG(n,q) publication-title: Geom. Dedic. doi: 10.1023/A:1005283806897 – volume: 56 start-page: 89 year: 2010 ident: 10.1016/j.ffa.2015.01.006_br0050 article-title: On linear sets on a projective line publication-title: Des. Codes Cryptogr. doi: 10.1007/s10623-010-9393-9 – volume: 4 start-page: 89 year: 2006 ident: 10.1016/j.ffa.2015.01.006_br0040 article-title: About maximal partial 2-spreads in PG(3m−1,q) publication-title: Innov. Incid. Geom. – volume: vol. 632 year: 2015 ident: 10.1016/j.ffa.2015.01.006_br0060 article-title: Field reduction and linear sets in finite geometry – volume: 20 year: 2013 ident: 10.1016/j.ffa.2015.01.006_br0070 article-title: Scattered linear sets and pseudoreguli publication-title: Electron. J. Comb. – volume: 310 start-page: 3096 year: 2010 ident: 10.1016/j.ffa.2015.01.006_br0110 article-title: Linear sets in finite projective spaces publication-title: Discrete Math. doi: 10.1016/j.disc.2009.04.007 – ident: 10.1016/j.ffa.2015.01.006_br0010 – ident: 10.1016/j.ffa.2015.01.006_br0020 – volume: 16 start-page: 663 year: 2004 ident: 10.1016/j.ffa.2015.01.006_br0100 article-title: Translation ovoids of orthogonal polar spaces publication-title: Forum Math. doi: 10.1515/form.2004.029 – volume: 39 start-page: 807 year: 2014 ident: 10.1016/j.ffa.2015.01.006_br0090 article-title: Maximum scattered linear sets of pseudoregulus type and the Segre variety Sn,n publication-title: J. Algebr. Comb. doi: 10.1007/s10801-013-0468-3 |
SSID | ssj0011538 |
Score | 2.0949328 |
Snippet | We define the splash of a subgeometry on a projective line, extending the definition of [1] to general dimension and prove that a splash is always a linear... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 95 |
SubjectTerms | Finite projective line Linear set Subgeometry Tangent splash |
Title | Subgeometries and linear sets on a projective line |
URI | https://dx.doi.org/10.1016/j.ffa.2015.01.006 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIryqDIwIYUmjp3YY6moWlC7QKVukZ-oCNKqKSu_HTuPCiRgYInkJCcll_i7O9_nO4CrgDIlI0F9Y6jyrYW2OBhL6WupBI1iyoV2geJkGo9m-H5O5g0Y1HthHK2ywv4S0wu0rs70Km32VotF79EGLiFJmD0U-bi4CW0UsZi0oN0fP4ym22SCm9Ql9TD0nUCd3CxoXsa46kNhWbzT9T36yTx9MTnDfdirfEWvXz7OATR0dgi7k22h1fwIkJ34z3r5VvTFyj2eKc_5jXzt5XqTe8vM41612GJhrbh2DLPh3dNg5FdtEHyJWLLxhWBYc4E0s7ZcJhbaYq1pSIRCiVEKaRtmKoo4QwYzwwNCDeKxiTFLTEA4jk6glS0zfQqeJJxIxhW3gQym1jcT0u2ExZHBKCGIdCCo3z6VVY1w16riNa3JYC-pVVjqFJYGYWoV1oHrrciqLJDx1824Vmn67SunFsB_Fzv7n9g57LhRSa69gNZm_a4vrQuxEV1o3nyE3epHsaPx_PYThsvEmg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YEJKWri2Ik9QgVqoe1CK3Wz_ERFkFZN-P_YeVQgAQNLhtinJJf4u7vc-TsArkPKtIolDaylOnAW2uFgolRglJY0TqiQxgeKo3HSn-LHGZm1QK_ZC-PLKmvsrzC9ROv6TLfWZnc5n3efXeASkZS5Q5mPSzbAprtW4gn0B7O7dSrBL-mq8DAK_PQmtVkWeVnruYeiirrTdz36yTh9MTgPe2C39hThbXUz-6BlsgOwM1rTrOaHALll_2IW72VXrByKTEPvNYoVzE2Rw0UGBax_tThQK8eOwPThftLrB3UThEAhlhaBlAwbIZFhzpKr1AFbYgyNiNQotVoj44JMTZFgyGJmRUioRSKxCWapDYnA8TFoZ4vMnACoiCCKCS1cGIOp88yk8vtgcWwxSgkiHRA2T89VzRDuG1W88aYU7JU7hXGvMB5G3CmsA27WIsuKHuOvybhRKf_2jrmD79_FTv8ndgW2-pPRkA8H46czsO1HqjLbc9AuVh_mwjkThbwsP5ZPmfLEbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subgeometries+and+linear+sets+on+a+projective+line&rft.jtitle=Finite+fields+and+their+applications&rft.au=Lavrauw%2C+Michel&rft.au=Zanella%2C+Corrado&rft.date=2015-07-01&rft.issn=1071-5797&rft.volume=34&rft.spage=95&rft.epage=106&rft_id=info:doi/10.1016%2Fj.ffa.2015.01.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ffa_2015_01_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-5797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-5797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-5797&client=summon |