Dual self-healing composite coating on magnesium alloys for corrosion protection
A self-healing composite coating based on the dual-action of corrosion inhibitor M−16 embedded in micro-arc oxidation coating and self-healing polyurethanes is designed for corrosion protection of Mg alloy. [Display omitted] •1. A dual self-healing composite coating was prepared for Mg alloys.•2. Th...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 424; p. 130551 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A self-healing composite coating based on the dual-action of corrosion inhibitor M−16 embedded in micro-arc oxidation coating and self-healing polyurethanes is designed for corrosion protection of Mg alloy.
[Display omitted]
•1. A dual self-healing composite coating was prepared for Mg alloys.•2. The MAO coating was more suitable to carry the inhibitor than polymer coating.•3. The scratches of the composite coating were repaired by modified polyurethane.•4. MAO coating enhanced the self-healing performance of the polymer coating.
In this work, a new self-healing composite coating for corrosion protection of magnesium (Mg) alloy, which is based on the dual actions of the corrosion inhibitor M-16 embedded in the micro-arc oxidation (MAO) coating and self-healing polyurethane (PU) modified by disulfide bonds, is developed. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) are used to study the anti-corrosion performance of the scratched and healed composite coatings immersed in 3.5 wt% NaCl solution. Results show that the porous MAO coating is suitable to carry inhibitor M-16 and the anti-corrosion performance of the scratched coating is significantly improved by the inhibitor embedded in the MAO coating. The scratched coating exhibits an excellent recovery of the anti-corrosion performance after the heat treatment, which is attributed to the cooperation of dynamic disulfide bonds and shape-memory effect of the self-healing PU coating. Furthermore, it is found that the inhibitor M-16 embedded MAO coating can enhance the repair ability and anti-corrosion performance of the PU coating when the corrosion product was pre-formed inside the scratch of the composite coating. |
---|---|
AbstractList | A self-healing composite coating based on the dual-action of corrosion inhibitor M−16 embedded in micro-arc oxidation coating and self-healing polyurethanes is designed for corrosion protection of Mg alloy.
[Display omitted]
•1. A dual self-healing composite coating was prepared for Mg alloys.•2. The MAO coating was more suitable to carry the inhibitor than polymer coating.•3. The scratches of the composite coating were repaired by modified polyurethane.•4. MAO coating enhanced the self-healing performance of the polymer coating.
In this work, a new self-healing composite coating for corrosion protection of magnesium (Mg) alloy, which is based on the dual actions of the corrosion inhibitor M-16 embedded in the micro-arc oxidation (MAO) coating and self-healing polyurethane (PU) modified by disulfide bonds, is developed. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) are used to study the anti-corrosion performance of the scratched and healed composite coatings immersed in 3.5 wt% NaCl solution. Results show that the porous MAO coating is suitable to carry inhibitor M-16 and the anti-corrosion performance of the scratched coating is significantly improved by the inhibitor embedded in the MAO coating. The scratched coating exhibits an excellent recovery of the anti-corrosion performance after the heat treatment, which is attributed to the cooperation of dynamic disulfide bonds and shape-memory effect of the self-healing PU coating. Furthermore, it is found that the inhibitor M-16 embedded MAO coating can enhance the repair ability and anti-corrosion performance of the PU coating when the corrosion product was pre-formed inside the scratch of the composite coating. |
ArticleNumber | 130551 |
Author | Qi, Yuming Li, Zhaoxia Yu, Qiangliang Peng, Zhenjun Liu, Siqin Liang, Jun |
Author_xml | – sequence: 1 givenname: Siqin surname: Liu fullname: Liu, Siqin organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China – sequence: 2 givenname: Zhaoxia surname: Li fullname: Li, Zhaoxia organization: Key Laboratory of Environmental Friendly Composite Materials and Biomass in Universities of Gansu Province, Northwest Minzu University, Lanzhou, 730030, PR China – sequence: 3 givenname: Qiangliang surname: Yu fullname: Yu, Qiangliang organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China – sequence: 4 givenname: Yuming surname: Qi fullname: Qi, Yuming organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China – sequence: 5 givenname: Zhenjun surname: Peng fullname: Peng, Zhenjun organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China – sequence: 6 givenname: Jun surname: Liang fullname: Liang, Jun email: jliang@licp.cas.cn organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China |
BookMark | eNp9kE1OwzAQhS1UJNrCAdjlAgmeOLETsULlV6oEC1hbjjMujpK4slOk3h5HZcWiq3mamW_05q3IYnQjEnILNAMK_K7LNHZZTnPIgNGyhAuyhEqwlOWQL6JmVZlWdSGuyCqEjlLKa6iX5OPxoPokYG_Sb1S9HXeJdsPeBTthVGqaO25MBrUbMdjDkKi-d8eQGOfj3Pu4Gcd77ybUU5TX5NKoPuDNX12Tr-enz81run1_eds8bFOd12JKm6ZSNS2qUineGtGyomU51lrwUtGq1ZoWGoEXBUeDDeMghG6YMFBTRFYBWxNxuqujheDRSG0nNTuYvLK9BCrnYGQnYzByDkaegokk_CP33g7KH88y9ycG40s_Fr0M2uKosbU-_i1bZ8_Qv93HftE |
CitedBy_id | crossref_primary_10_1016_j_apsadv_2025_100700 crossref_primary_10_1016_j_cej_2024_149905 crossref_primary_10_3390_met12030471 crossref_primary_10_1016_j_porgcoat_2024_108674 crossref_primary_10_1039_D2GC02638D crossref_primary_10_1016_j_porgcoat_2023_108152 crossref_primary_10_1016_j_ijbiomac_2024_134349 crossref_primary_10_1016_j_surfcoat_2022_128768 crossref_primary_10_1002_adfm_202405737 crossref_primary_10_1016_j_coco_2022_101458 crossref_primary_10_1016_j_porgcoat_2024_108876 crossref_primary_10_1088_1361_6528_ad7e30 crossref_primary_10_1016_j_micromeso_2022_112418 crossref_primary_10_1002_pat_6428 crossref_primary_10_1016_j_cej_2024_149064 crossref_primary_10_3390_coatings12091286 crossref_primary_10_1021_acsapm_4c00346 crossref_primary_10_1016_j_surfcoat_2024_131146 crossref_primary_10_1016_j_coelec_2023_101324 crossref_primary_10_1016_j_ijbiomac_2024_138749 crossref_primary_10_1016_j_apsusc_2023_158849 crossref_primary_10_1016_j_molliq_2022_120091 crossref_primary_10_1016_j_jcis_2024_05_041 crossref_primary_10_1016_j_nanoms_2024_12_002 crossref_primary_10_1016_j_smmf_2023_100022 crossref_primary_10_1016_j_triboint_2023_109126 crossref_primary_10_1007_s10570_024_05848_2 crossref_primary_10_1016_j_porgcoat_2022_107053 crossref_primary_10_1016_j_porgcoat_2023_107876 crossref_primary_10_1016_j_surfcoat_2023_130281 crossref_primary_10_3390_coatings13071189 crossref_primary_10_1016_j_ces_2025_121498 crossref_primary_10_1016_j_porgcoat_2024_108500 crossref_primary_10_1016_j_cej_2024_155467 crossref_primary_10_1016_j_surfcoat_2023_130368 crossref_primary_10_1002_adfm_202412379 crossref_primary_10_3390_ma15113912 crossref_primary_10_1002_marc_202400354 crossref_primary_10_1016_j_cej_2022_140187 crossref_primary_10_1016_j_mtcomm_2024_108541 crossref_primary_10_1007_s42114_023_00822_1 crossref_primary_10_1016_j_colsurfa_2022_129056 crossref_primary_10_1016_j_colsurfa_2022_130879 crossref_primary_10_1016_j_mtcomm_2024_110814 crossref_primary_10_1002_adhm_202302519 crossref_primary_10_1016_j_cej_2023_143463 crossref_primary_10_1016_j_colsurfa_2022_128762 crossref_primary_10_1016_j_ceramint_2024_08_179 crossref_primary_10_3390_ma17215157 crossref_primary_10_3390_nano13010124 crossref_primary_10_1016_j_compositesb_2021_109574 crossref_primary_10_1016_j_porgcoat_2022_106790 crossref_primary_10_1016_j_porgcoat_2022_107362 crossref_primary_10_1177_08853282241246210 crossref_primary_10_1016_j_jallcom_2023_169316 crossref_primary_10_1016_j_surfcoat_2022_128824 crossref_primary_10_1021_acsami_4c13505 crossref_primary_10_1007_s11998_021_00599_2 crossref_primary_10_1021_acsapm_4c00087 crossref_primary_10_1016_j_jallcom_2023_170710 crossref_primary_10_1016_j_surfcoat_2022_128148 crossref_primary_10_1016_j_cej_2021_132776 crossref_primary_10_1016_j_cej_2024_154801 crossref_primary_10_1016_j_porgcoat_2024_109030 crossref_primary_10_1002_app_52931 crossref_primary_10_1016_j_porgcoat_2025_109070 crossref_primary_10_1007_s10570_023_05218_4 crossref_primary_10_1016_j_cej_2023_145164 crossref_primary_10_1016_j_mtcomm_2024_110151 crossref_primary_10_1016_j_actbio_2023_12_004 crossref_primary_10_1016_j_jallcom_2022_164710 crossref_primary_10_1016_j_porgcoat_2023_107891 crossref_primary_10_1016_j_cej_2022_139096 crossref_primary_10_1016_j_cej_2023_141397 crossref_primary_10_1007_s11998_023_00887_z crossref_primary_10_1016_j_electacta_2022_141471 crossref_primary_10_1016_j_jtice_2024_105703 crossref_primary_10_1016_j_ceramint_2025_03_048 crossref_primary_10_1016_j_eurpolymj_2024_113421 crossref_primary_10_1016_j_cej_2023_142887 crossref_primary_10_1080_01694243_2022_2158774 crossref_primary_10_1016_j_jcis_2024_11_082 crossref_primary_10_1016_j_porgcoat_2023_107454 crossref_primary_10_1016_j_molliq_2023_122796 crossref_primary_10_1016_j_porgcoat_2022_106940 crossref_primary_10_1016_j_porgcoat_2022_106820 crossref_primary_10_1016_j_surfcoat_2022_128692 crossref_primary_10_1016_j_apmt_2022_101665 crossref_primary_10_1016_j_biomaterials_2023_122237 crossref_primary_10_1016_j_ceramint_2021_11_198 crossref_primary_10_1016_j_matchemphys_2023_128163 crossref_primary_10_1016_j_porgcoat_2023_108193 crossref_primary_10_3390_met14020248 |
Cites_doi | 10.1016/j.porgcoat.2019.04.060 10.1038/ncomms4218 10.1016/j.apsusc.2019.04.107 10.1038/s41598-017-15845-0 10.1016/S1003-6326(18)64799-5 10.1039/C5RA22639B 10.1002/adma.201802556 10.1016/j.jmst.2020.01.022 10.1016/j.jma.2019.05.006 10.1016/j.apsusc.2020.147976 10.1149/2.0601510jes 10.1038/s41578-020-0202-4 10.1038/s41598-017-17942-6 10.3390/ma13184121 10.1016/j.surfcoat.2017.03.021 10.1039/C9NR10699E 10.1002/adma.201903762 10.1016/j.colsurfb.2016.02.004 10.1039/C6TA10903A 10.1002/adfm.201401502 10.1021/acsami.5b01167 10.1016/j.pmatsci.2017.04.011 10.1039/C9NJ06457E 10.1021/acssuschemeng.9b05196 10.1038/s41467-018-06433-5 10.1016/j.porgcoat.2020.106112 10.1080/09506608.2018.1466492 10.1021/acsami.9b19279 10.1021/acsmacrolett.8b00667 10.1002/macp.202000273 10.1016/j.cej.2020.126478 10.1021/ma2001492 10.1016/j.corsci.2016.06.016 10.1016/j.corsci.2017.08.017 10.1016/j.electacta.2010.05.087 10.1038/nmat4037 10.1016/j.corsci.2017.04.018 10.1039/C8RA05118F 10.1016/j.corsci.2014.04.035 10.1021/acsami.9b17221 10.1002/macp.201600011 10.1002/adma.201601613 10.1016/j.cej.2020.127118 10.1039/C5CP06660C 10.1021/ma00179a014 10.1038/asiamat.2010.136 10.1016/j.surfin.2019.01.004 10.1002/adma.200802008 10.1002/adma.201503661 10.1002/admi.201600318 10.1016/j.surfcoat.2019.03.023 10.1016/j.surfcoat.2018.10.054 10.1039/C4TA04791E 10.1016/j.apsusc.2019.05.049 10.1021/acs.langmuir.8b01637 10.1021/acs.iecr.8b04060 10.1016/j.surfcoat.2010.10.022 10.1016/j.corsci.2017.07.011 10.1016/j.porgcoat.2019.03.046 10.1016/j.ceramint.2020.09.084 10.1021/am507586u 10.1039/C5PY00936G 10.1039/C4CS00219A 10.1002/pola.27200 10.1021/ma00162a008 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2021.130551 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2021_130551 S1385894721021379 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-bb8a90485aa6df7d34d32e9c765a08dcc04ce16446efeb36177cb37f190ee3813 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 04:27:35 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Fri Feb 23 02:43:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dual self-healing Disulfide bond Polyurethane Micro-arc oxidation Corrosion inhibitor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-bb8a90485aa6df7d34d32e9c765a08dcc04ce16446efeb36177cb37f190ee3813 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2021_130551 crossref_primary_10_1016_j_cej_2021_130551 elsevier_sciencedirect_doi_10_1016_j_cej_2021_130551 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-15 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ahn, Lee, Israelachvili, Waite (b0160) 2014; 13 Y. Wang, B. Liu, X.a. Zhao, X. Zhang, Y. Miao, N. Yang, B. Yang, L. Zhang, W. Kuang, J. Li, E. Ma, Z. Shan, Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2, Nat. Commun. 9 (2018) 4058. Clyne, Troughton (b0045) 2019; 64 Sun, Yerokhin, Bychkova, Shtansky, Levashov, Matthews (b0170) 2016; 111 Jamali, Moulton, Tallman, Forsyth, Weber, Wallace (b0315) 2014; 86 Ji, Cao, Yu, Xu (b0165) 2015; 27 Dou, Wang, Lu, Chen, Yu, Ma (b0100) 2021; 152 Osada, Kamoda, Mitome, Hara, Abe, Tamagawa, Nakao, Ohmura (b0200) 2017; 7 Cho, White, Braun (b0145) 2009; 21 Saei, Ramezanzadeh, Amini, Kalajahi (b0035) 2017; 127 Hatai, Hirschhäuser, Niemeyer, Schmuck (b0225) 2020; 12 Tian, Xu, Liu (b0070) 2016; 141 Njoku, Cui, Xiao, Shang, Li (b0135) 2017; 7 Wang, Zhang, Yang, Wang, Sun (b0155) 2020; 44 Toorani, Aliofkhazraei (b0105) 2019; 14 Coleman, Skrovanek, Hu, Painter (b0280) 1988; 21 Wang, Urban (b0150) 2020; 5 Zhang, Yao, Li, Wang, Luo, Yang, Wang (b0325) 2019; 11 Xu, Tu, Xiang, Zhang, Guo (b0245) 2020; 221 Jiménez, Rossi, Fantauzzi, Espinosa, Arias-Pardilla, Martínez-Nicolás, Bermúdez (b0040) 2015; 7 Zhuang, Yuan, Hu, Li, Zhang, Zhang, Huang, Wang (b0250) 2021; 47 Taylor, in het Panhuis (b0205) 2016; 28 Zhao, Liu, Wu, Guan, Sun, Ren (b0240) 2019; 133 Grigoriev, Shchukina, Shchukin (b0180) 2017; 4 Canadell, Goossens, Klumperman (b0230) 2011; 44 Nardeli, Fugivara, Taryba, Montemor, Benedetti (b0130) 2021; 404 Li, Yu, Zhang, Liu, Liang, Wang, Zhou (b0190) 2019; 357 M. AbdolahZadeh, A.C. C. Esteves, S. van der Zwaag, S.J. Garcia, Healable dual organic–inorganic crosslinked sol–gel based polymers: Crosslinking density and tetrasulfide content effect, J. Polym. Sci., Part A: Polym. Chem. 52 (2014) 1953-1961. Li, Feng, Peng, Zeng (b0030) 2020; 12 Wang, Chen, Yan, Fu (b0270) 2010; 205 Mashtalyar, Nadaraia, Gnedenkov, Imshinetskiy, Piatkova, Pleshkova, Belov, Filonina, Suchkov, Sinebryukhov, Gnedenkov (b0060) 2020; 13 Bai, Bai, Zhang, Wang, Zhang (b0260) 2021; 151 Wei, Wang, Guo, Shen, Jiang, Zhang, Yan, Zhu, Wang, Shao, Lin, Wei, Guo (b0120) 2015; 3 Zheng, Hu, Pan, Zhang, Tang (b0080) 2019; 7 Esmaily, Svensson, Fajardo, Birbilis, Frankel, Virtanen, Arrabal, Thomas, Johansson (b0005) 2017; 89 Zheng, Li, Yuan, Liu, Tan, Zheng, Yeung, Wu (b0020) 2019; 7 Luo, Guo, Liu, Feng, Zhang, Li, Chou (b0015) 2020; 44 Liu, Chen, Kang (b0075) 2015; 7 Xu, Chen (b0310) 2016; 217 Tefashe, Dauphin-Ducharme, Danaie, Cano, Kish, Botton, Mauzeroll (b0320) 2015; 162 Wei, Yang, Zhou, Xu, Zrínyi, Dussault, Osada, Chen (b0115) 2014; 43 Li, Yang, Liu, Wang, Liang (b0285) 2017; 316 Ying, Zhang, Cheng (b0215) 2014; 5 Li, Zuo (b0220) 2019; 32 D.K. Ivanou, K.A. Yasakau, S. Kallip, A.D. Lisenkov, M. Starykevich, S.V. Lamaka, M.G.S. Ferreira, M.L. Zheludkevich, Active corrosion protection coating for a ZE41 magnesium alloy created by combining PEO and sol–gel techniques, RSC ADV 6 (2016) 12553-12560. Zheng, Liu, Wang, Li, Zhang (b0265) 2021; 151 Ma, Wang, Zhang, Huang, Huang, Wang, Qian, Li, Terryn, Mol (b0255) 2021; 404 Lamaka, Vaghefinazari, Mei, Petrauskas, Höche, Zheludkevich (b0010) 2017; 128 Pezzato, Rigon, Martucci, Brunelli, Dabalà (b0065) 2019; 366 Mashtalyar, Nadaraia, Imshinetskiy, Belov, Filonina, Suchkov, Sinebryukhov, Gnedenkov (b0095) 2021; 536 Zhu, Gao, Huang, Chang, Zhang, Zhang, Zhao, Zhang (b0055) 2019; 487 M. Daroonparvar, M.A. Mat Yajid, R. Kumar Gupta, N. Mohd Yusof, H.R. Bakhsheshi-Rad, H. Ghandvar, E. Ghasemi, Antibacterial activities and corrosion behavior of novel PEO/nanostructured ZrO2 coating on Mg alloy, T. NONFERR. METAL. SOC. 28 (2018) 1571-1581. Wei, Yang, Liu, Xu, Zhou, Zrínyi, Osada, Chen (b0210) 2015; 25 Yang, Tao, Zhao, Weng, Kang, Wang (b0235) 2015; 6 H. Qian, D. Xu, C. Du, D. Zhang, X. Li, L. Huang, L. Deng, Y. Tu, J.M.C. Mol, H.A. Terryn, Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties, J. Mater. Chem. A 5 (2017) 2355-2364. Gan, Wang, Xie, He (b0335) 2017; 123 Palaniappan, Cole, Caballero-Briones, K., Lal (b0175) 2018; 8 Li, Yang, Yu, Wu, Wang, Liang, Zhou (b0185) 2019; 35 Zhang, Wu, Tang, Ding, Jiang, Atrens, Pan (b0085) 2019; 132 Matxain, Asua, Ruipérez (b0290) 2016; 18 Hughes, Cole, Muster, Varley (b0140) 2010; 2 Fortman, Snyder, Sheppard, Dichtel (b0305) 2018; 7 Coleman, Lee, Skrovanek, Painter (b0275) 1986; 19 Lai, Kuang, Zhu, Huang, Dong, Wang (b0300) 2018; 30 Liu, Yang, Huang, Liu, Liang, Cui, Yang, Zhu, Li, Zheng, Yeung, Wu (b0330) 2019; 484 Jiang, Xia, Hou, Zhang, Dong (b0195) 2019; 58 Liang, Srinivasan, Blawert, Dietzel (b0110) 2010; 55 Ji (10.1016/j.cej.2021.130551_b0165) 2015; 27 Li (10.1016/j.cej.2021.130551_b0185) 2019; 35 Zheng (10.1016/j.cej.2021.130551_b0265) 2021; 151 Jamali (10.1016/j.cej.2021.130551_b0315) 2014; 86 Tefashe (10.1016/j.cej.2021.130551_b0320) 2015; 162 Li (10.1016/j.cej.2021.130551_b0030) 2020; 12 Jiménez (10.1016/j.cej.2021.130551_b0040) 2015; 7 Ying (10.1016/j.cej.2021.130551_b0215) 2014; 5 Wei (10.1016/j.cej.2021.130551_b0115) 2014; 43 Wang (10.1016/j.cej.2021.130551_b0270) 2010; 205 Zhang (10.1016/j.cej.2021.130551_b0085) 2019; 132 Zhang (10.1016/j.cej.2021.130551_b0325) 2019; 11 Luo (10.1016/j.cej.2021.130551_b0015) 2020; 44 Wei (10.1016/j.cej.2021.130551_b0120) 2015; 3 Sun (10.1016/j.cej.2021.130551_b0170) 2016; 111 Canadell (10.1016/j.cej.2021.130551_b0230) 2011; 44 Li (10.1016/j.cej.2021.130551_b0285) 2017; 316 Hatai (10.1016/j.cej.2021.130551_b0225) 2020; 12 Wang (10.1016/j.cej.2021.130551_b0155) 2020; 44 Mashtalyar (10.1016/j.cej.2021.130551_b0095) 2021; 536 Zhu (10.1016/j.cej.2021.130551_b0055) 2019; 487 Hughes (10.1016/j.cej.2021.130551_b0140) 2010; 2 Liu (10.1016/j.cej.2021.130551_b0075) 2015; 7 Matxain (10.1016/j.cej.2021.130551_b0290) 2016; 18 Saei (10.1016/j.cej.2021.130551_b0035) 2017; 127 Taylor (10.1016/j.cej.2021.130551_b0205) 2016; 28 Yang (10.1016/j.cej.2021.130551_b0235) 2015; 6 Liang (10.1016/j.cej.2021.130551_b0110) 2010; 55 Dou (10.1016/j.cej.2021.130551_b0100) 2021; 152 Zhuang (10.1016/j.cej.2021.130551_b0250) 2021; 47 Tian (10.1016/j.cej.2021.130551_b0070) 2016; 141 Cho (10.1016/j.cej.2021.130551_b0145) 2009; 21 Lai (10.1016/j.cej.2021.130551_b0300) 2018; 30 Esmaily (10.1016/j.cej.2021.130551_b0005) 2017; 89 10.1016/j.cej.2021.130551_b0125 Xu (10.1016/j.cej.2021.130551_b0310) 2016; 217 Lamaka (10.1016/j.cej.2021.130551_b0010) 2017; 128 10.1016/j.cej.2021.130551_b0295 10.1016/j.cej.2021.130551_b0050 Nardeli (10.1016/j.cej.2021.130551_b0130) 2021; 404 10.1016/j.cej.2021.130551_b0090 Grigoriev (10.1016/j.cej.2021.130551_b0180) 2017; 4 Jiang (10.1016/j.cej.2021.130551_b0195) 2019; 58 Toorani (10.1016/j.cej.2021.130551_b0105) 2019; 14 Fortman (10.1016/j.cej.2021.130551_b0305) 2018; 7 Coleman (10.1016/j.cej.2021.130551_b0275) 1986; 19 Liu (10.1016/j.cej.2021.130551_b0330) 2019; 484 Wang (10.1016/j.cej.2021.130551_b0150) 2020; 5 Mashtalyar (10.1016/j.cej.2021.130551_b0060) 2020; 13 Li (10.1016/j.cej.2021.130551_b0190) 2019; 357 Li (10.1016/j.cej.2021.130551_b0220) 2019; 32 Ma (10.1016/j.cej.2021.130551_b0255) 2021; 404 Gan (10.1016/j.cej.2021.130551_b0335) 2017; 123 Ahn (10.1016/j.cej.2021.130551_b0160) 2014; 13 Zheng (10.1016/j.cej.2021.130551_b0080) 2019; 7 Wei (10.1016/j.cej.2021.130551_b0210) 2015; 25 Zhao (10.1016/j.cej.2021.130551_b0240) 2019; 133 Xu (10.1016/j.cej.2021.130551_b0245) 2020; 221 Njoku (10.1016/j.cej.2021.130551_b0135) 2017; 7 Coleman (10.1016/j.cej.2021.130551_b0280) 1988; 21 Bai (10.1016/j.cej.2021.130551_b0260) 2021; 151 Pezzato (10.1016/j.cej.2021.130551_b0065) 2019; 366 Zheng (10.1016/j.cej.2021.130551_b0020) 2019; 7 10.1016/j.cej.2021.130551_b0025 Osada (10.1016/j.cej.2021.130551_b0200) 2017; 7 Clyne (10.1016/j.cej.2021.130551_b0045) 2019; 64 Palaniappan (10.1016/j.cej.2021.130551_b0175) 2018; 8 |
References_xml | – volume: 111 start-page: 753 year: 2016 end-page: 769 ident: b0170 article-title: Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy publication-title: Corros. Sci. – volume: 366 start-page: 114 year: 2019 end-page: 123 ident: b0065 article-title: Plasma Electrolytic Oxidation (PEO) as pre-treatment for sol-gel coating on aluminum and magnesium alloys publication-title: Surf. Coat. Technol. – volume: 58 start-page: 165 year: 2019 end-page: 178 ident: b0195 article-title: Enhanced corrosion barrier of microarc-oxidized mg alloy by self-healing superhydrophobic silica coating publication-title: Ind. Eng. Chem. Res. – volume: 86 start-page: 93 year: 2014 end-page: 100 ident: b0315 article-title: Applications of scanning electrochemical microscopy (SECM) for local characterization of AZ31 surface during corrosion in a buffered media publication-title: Corros. Sci. – volume: 7 start-page: 17853 year: 2017 ident: b0200 article-title: A Novel design approach for self-crack-healing structural ceramics with 3D networks of healing activator publication-title: Sci Rep – volume: 221 start-page: 2000273 year: 2020 ident: b0245 article-title: A thermosetting polyurethane with excellent self-healing properties and stability for metal surface coating publication-title: Macromol. Chem. Phys. – volume: 14 start-page: 262 year: 2019 end-page: 295 ident: b0105 article-title: Review of electrochemical properties of hybrid coating systems on Mg with plasma electrolytic oxidation process as pretreatment publication-title: Surf. Interfaces – volume: 30 start-page: 1802556 year: 2018 ident: b0300 article-title: Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design publication-title: Adv. Mater. – volume: 7 start-page: 193 year: 2019 end-page: 202 ident: b0080 article-title: Fabrication of corrosion-resistant superhydrophobic coating on magnesium alloy by one-step electrodeposition method publication-title: J. Magnes. Alloy – volume: 132 start-page: 144 year: 2019 end-page: 147 ident: b0085 article-title: Smart epoxy coating containing zeolites loaded with Ce on a plasma electrolytic oxidation coating on Mg alloy AZ31 for active corrosion protection publication-title: Prog. Org. Coat. – volume: 64 start-page: 127 year: 2019 end-page: 162 ident: b0045 article-title: A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals publication-title: Int. Mater. Rev. – volume: 4 start-page: 1600318 year: 2017 ident: b0180 article-title: Nanocontainers for self-healing coatings publication-title: Adv. Mater. Interfaces – volume: 133 start-page: 289 year: 2019 end-page: 298 ident: b0240 article-title: Self-healing UV light-curable resins containing disulfide group: Synthesis and application in UV coatings publication-title: Prog. Org. Coat. – volume: 13 start-page: 867 year: 2014 end-page: 872 ident: b0160 article-title: Surface-initiated self-healing of polymers in aqueous media publication-title: Nat Mater – volume: 35 start-page: 1134 year: 2019 end-page: 1145 ident: b0185 article-title: New method for the corrosion resistance of AZ31 Mg alloy with a porous micro-arc oxidation membrane as an ionic corrosion inhibitor container publication-title: Langmuir – volume: 404 year: 2021 ident: b0255 article-title: Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers publication-title: Chem. Eng. J. – volume: 13 start-page: 4121 year: 2020 ident: b0060 article-title: Bioactive Coatings formed on titanium by plasma electrolytic oxidation: Composition and properties publication-title: Materials (Basel) – volume: 141 start-page: 327 year: 2016 end-page: 337 ident: b0070 article-title: Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy publication-title: Colloids Surf. B – volume: 7 start-page: 1859 year: 2015 end-page: 1867 ident: b0075 article-title: One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 562 year: 2020 end-page: 583 ident: b0150 article-title: Self-healing polymers publication-title: Nat. Rev. Mater. – volume: 11 start-page: 41165 year: 2019 end-page: 41177 ident: b0325 article-title: Green tea polyphenol induced Mg2+-rich multilayer conversion coating: toward enhanced corrosion resistance and promoted in situ endothelialization of AZ31 for potential cardiovascular applications publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 18114 year: 2019 end-page: 18124 ident: b0020 article-title: Metal-organic frameworks incorporated polycaprolactone film for enhanced corrosion resistance and biocompatibility of mg alloy publication-title: ACS Sustain. Chem. Eng. – volume: 484 start-page: 511 year: 2019 end-page: 523 ident: b0330 article-title: The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium-strontium alloy publication-title: Appl. Surf. Sci. – volume: 8 start-page: 34275 year: 2018 end-page: 34286 ident: b0175 article-title: Praseodymium-decorated graphene oxide as a corrosion inhibitor in acidic media for the magnesium AZ31 alloy publication-title: RSC ADV – reference: H. Qian, D. Xu, C. Du, D. Zhang, X. Li, L. Huang, L. Deng, Y. Tu, J.M.C. Mol, H.A. Terryn, Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties, J. Mater. Chem. A 5 (2017) 2355-2364. – volume: 19 start-page: 2149 year: 1986 end-page: 2157 ident: b0275 article-title: Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane publication-title: Macromolecules – volume: 205 start-page: 1651 year: 2010 end-page: 1658 ident: b0270 article-title: Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes publication-title: Surf. Coat. Technol. – volume: 127 start-page: 186 year: 2017 end-page: 200 ident: b0035 article-title: Effects of combined organic and inorganic corrosion inhibitors on the nanostructure cerium based conversion coating performance on AZ31 magnesium alloy: Morphological and corrosion studies publication-title: Corros. Sci. – volume: 2 start-page: 143 year: 2010 end-page: 151 ident: b0140 article-title: Designing green, self-healing coatings for metal protection publication-title: NPG Asia Mater. – volume: 7 start-page: 10337 year: 2015 end-page: 10347 ident: b0040 article-title: Surface Coating from Phosphonate Ionic Liquid Electrolyte for the Enhancement of the Tribological Performance of Magnesium Alloy, ACS Appl publication-title: Mater. Interfaces – volume: 162 start-page: C536 year: 2015 end-page: C544 ident: b0320 article-title: Localized corrosion behavior of AZ31B magnesium alloy with an electrodeposited poly(3,4-Ethylenedioxythiophene) coating publication-title: J. Electrochem. Soc. – reference: Y. Wang, B. Liu, X.a. Zhao, X. Zhang, Y. Miao, N. Yang, B. Yang, L. Zhang, W. Kuang, J. Li, E. Ma, Z. Shan, Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2, Nat. Commun. 9 (2018) 4058. – volume: 44 start-page: 2536 year: 2011 end-page: 2541 ident: b0230 article-title: Self-healing materials based on disulfide links publication-title: Macromolecules – volume: 55 start-page: 6802 year: 2010 end-page: 6811 ident: b0110 article-title: Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy publication-title: Electrochim. Acta – volume: 27 start-page: 7740 year: 2015 end-page: 7745 ident: b0165 article-title: Visible-light-induced self-healing diselenide-containing polyurethane elastomer publication-title: Adv. Mater. – volume: 128 start-page: 224 year: 2017 end-page: 240 ident: b0010 article-title: Comprehensive screening of Mg corrosion inhibitors publication-title: Corros. Sci. – volume: 7 start-page: 15597 year: 2017 ident: b0135 article-title: Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques publication-title: Sci Rep – volume: 5 start-page: 3218 year: 2014 ident: b0215 article-title: Dynamic urea bond for the design of reversible and self-healing polymers publication-title: Nat Commun – volume: 12 start-page: 7700 year: 2020 end-page: 7711 ident: b0030 article-title: Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability publication-title: Nanoscale – volume: 44 start-page: 5746 year: 2020 end-page: 5754 ident: b0155 article-title: A colorless, transparent and self-healing polyurethane elastomer modulated by dynamic disulfide and hydrogen bonds publication-title: New J. Chem. – volume: 18 start-page: 1758 year: 2016 end-page: 1770 ident: b0290 article-title: Design of new disulfide-based organic compounds for the improvement of self-healing materials publication-title: PCCP – volume: 21 start-page: 645 year: 2009 end-page: 649 ident: b0145 article-title: Self-Healing Polymer coatings publication-title: Adv. Mater. – reference: D.K. Ivanou, K.A. Yasakau, S. Kallip, A.D. Lisenkov, M. Starykevich, S.V. Lamaka, M.G.S. Ferreira, M.L. Zheludkevich, Active corrosion protection coating for a ZE41 magnesium alloy created by combining PEO and sol–gel techniques, RSC ADV 6 (2016) 12553-12560. – volume: 89 start-page: 92 year: 2017 end-page: 193 ident: b0005 article-title: Fundamentals and advances in magnesium alloy corrosion publication-title: Prog. Mater Sci. – volume: 316 start-page: 162 year: 2017 end-page: 170 ident: b0285 article-title: Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes publication-title: Surf. Coat. Technol. – volume: 357 start-page: 515 year: 2019 end-page: 525 ident: b0190 article-title: Synergistic effect of hydrophobic film and porous MAO membrane containing alkynol inhibitor for enhanced corrosion resistance of magnesium alloy publication-title: Surf. Coat. Technol. – reference: M. Daroonparvar, M.A. Mat Yajid, R. Kumar Gupta, N. Mohd Yusof, H.R. Bakhsheshi-Rad, H. Ghandvar, E. Ghasemi, Antibacterial activities and corrosion behavior of novel PEO/nanostructured ZrO2 coating on Mg alloy, T. NONFERR. METAL. SOC. 28 (2018) 1571-1581. – volume: 43 start-page: 8114 year: 2014 end-page: 8131 ident: b0115 article-title: Self-healing gels based on constitutional dynamic chemistry and their potential applications publication-title: Chem. Soc. Rev. – volume: 6 start-page: 7027 year: 2015 end-page: 7035 ident: b0235 article-title: Antifouling and antibacterial hydrogel coatings with self-healing properties based on a dynamic disulfide exchange reaction publication-title: Polym Chem-UK – volume: 151 year: 2021 ident: b0260 article-title: A hydrogen bond based self-healing superhydrophobic octadecyltriethoxysilane−lignocellulose/silica coating publication-title: Prog. Org. Coat. – reference: M. AbdolahZadeh, A.C. C. Esteves, S. van der Zwaag, S.J. Garcia, Healable dual organic–inorganic crosslinked sol–gel based polymers: Crosslinking density and tetrasulfide content effect, J. Polym. Sci., Part A: Polym. Chem. 52 (2014) 1953-1961. – volume: 7 start-page: 1226 year: 2018 end-page: 1231 ident: b0305 article-title: Rapidly reprocessable cross-linked polyhydroxyurethanes based on disulfide exchange publication-title: ACS Macro Lett. – volume: 3 start-page: 469 year: 2015 end-page: 480 ident: b0120 article-title: Advanced micro/nanocapsules for self-healing smart anticorrosion coatings publication-title: J. Mater. Chem. A – volume: 151 year: 2021 ident: b0265 article-title: Preparation of chitosan-reduced graphene oxide (CS-RGO) microcapsules and its application in UV/moisture-induced self-healing coatings publication-title: Prog. Org. Coat. – volume: 536 year: 2021 ident: b0095 article-title: Composite coatings formed on Ti by PEO and fluoropolymer treatment publication-title: Appl. Surf. Sci. – volume: 404 year: 2021 ident: b0130 article-title: Biobased self-healing polyurethane coating with Zn micro-flakes for corrosion protection of AA7475 publication-title: Chem. Eng. J. – volume: 21 start-page: 59 year: 1988 end-page: 65 ident: b0280 article-title: Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends publication-title: Macromolecules – volume: 25 start-page: 1352 year: 2015 end-page: 1359 ident: b0210 article-title: Novel biocompatible polysaccharide-based self-healing hydrogel publication-title: Adv. Funct. Mater. – volume: 47 start-page: 2414 year: 2021 end-page: 2429 ident: b0250 article-title: Design and optimization of coating structure for plasma sprayed self-healing MgO coating via finite element method publication-title: Ceram. Int. – volume: 28 start-page: 9060 year: 2016 end-page: 9093 ident: b0205 article-title: In het panhuis, self-healing hydrogels publication-title: Adv. Mater. – volume: 32 start-page: 1903762 year: 2019 ident: b0220 article-title: Self-Healing Polymers Based on Coordination Bonds publication-title: Adv. Mater. – volume: 152 start-page: 106112 year: 2021 ident: b0100 article-title: Bioactive MAO/CS composite coatings on Mg-Zn-Ca alloy for orthopedic applications publication-title: Prog. Org. Coat. – volume: 44 start-page: 171 year: 2020 end-page: 190 ident: b0015 article-title: Thermodynamics and kinetics of phase transformation in rare earth–magnesium alloys: A critical review publication-title: J Mater Sci Technol – volume: 12 start-page: 2107 year: 2020 end-page: 2115 ident: b0225 article-title: Multi-stimuli-responsive supramolecular polymers based on noncovalent and dynamic covalent bonds publication-title: ACS Appl. Mater. Interfaces – volume: 217 start-page: 1191 year: 2016 end-page: 1196 ident: b0310 article-title: A novel self-healing polyurethane based on disulfide bonds publication-title: Macromol. Chem. Phys. – volume: 123 start-page: 147 year: 2017 end-page: 157 ident: b0335 article-title: Improving surface characteristic and corrosion inhibition of coating on Mg alloy by trace stannous (II) chloride publication-title: Corros. Sci. – volume: 487 start-page: 581 year: 2019 end-page: 592 ident: b0055 article-title: Investigation of corrosion resistance and formation mechanism of calcium-containing coatings on AZ31B magnesium alloy publication-title: Appl. Surf. Sci. – volume: 133 start-page: 289 year: 2019 ident: 10.1016/j.cej.2021.130551_b0240 article-title: Self-healing UV light-curable resins containing disulfide group: Synthesis and application in UV coatings publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.04.060 – volume: 5 start-page: 3218 year: 2014 ident: 10.1016/j.cej.2021.130551_b0215 article-title: Dynamic urea bond for the design of reversible and self-healing polymers publication-title: Nat Commun doi: 10.1038/ncomms4218 – volume: 484 start-page: 511 year: 2019 ident: 10.1016/j.cej.2021.130551_b0330 article-title: The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium-strontium alloy publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.04.107 – volume: 7 start-page: 15597 year: 2017 ident: 10.1016/j.cej.2021.130551_b0135 article-title: Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques publication-title: Sci Rep doi: 10.1038/s41598-017-15845-0 – ident: 10.1016/j.cej.2021.130551_b0050 doi: 10.1016/S1003-6326(18)64799-5 – ident: 10.1016/j.cej.2021.130551_b0090 doi: 10.1039/C5RA22639B – volume: 30 start-page: 1802556 year: 2018 ident: 10.1016/j.cej.2021.130551_b0300 article-title: Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design publication-title: Adv. Mater. doi: 10.1002/adma.201802556 – volume: 44 start-page: 171 year: 2020 ident: 10.1016/j.cej.2021.130551_b0015 article-title: Thermodynamics and kinetics of phase transformation in rare earth–magnesium alloys: A critical review publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2020.01.022 – volume: 7 start-page: 193 issue: 2 year: 2019 ident: 10.1016/j.cej.2021.130551_b0080 article-title: Fabrication of corrosion-resistant superhydrophobic coating on magnesium alloy by one-step electrodeposition method publication-title: J. Magnes. Alloy doi: 10.1016/j.jma.2019.05.006 – volume: 536 year: 2021 ident: 10.1016/j.cej.2021.130551_b0095 article-title: Composite coatings formed on Ti by PEO and fluoropolymer treatment publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147976 – volume: 162 start-page: C536 issue: 10 year: 2015 ident: 10.1016/j.cej.2021.130551_b0320 article-title: Localized corrosion behavior of AZ31B magnesium alloy with an electrodeposited poly(3,4-Ethylenedioxythiophene) coating publication-title: J. Electrochem. Soc. doi: 10.1149/2.0601510jes – volume: 5 start-page: 562 issue: 8 year: 2020 ident: 10.1016/j.cej.2021.130551_b0150 article-title: Self-healing polymers publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0202-4 – volume: 7 start-page: 17853 year: 2017 ident: 10.1016/j.cej.2021.130551_b0200 article-title: A Novel design approach for self-crack-healing structural ceramics with 3D networks of healing activator publication-title: Sci Rep doi: 10.1038/s41598-017-17942-6 – volume: 13 start-page: 4121 issue: 18 year: 2020 ident: 10.1016/j.cej.2021.130551_b0060 article-title: Bioactive Coatings formed on titanium by plasma electrolytic oxidation: Composition and properties publication-title: Materials (Basel) doi: 10.3390/ma13184121 – volume: 316 start-page: 162 year: 2017 ident: 10.1016/j.cej.2021.130551_b0285 article-title: Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2017.03.021 – volume: 12 start-page: 7700 issue: 14 year: 2020 ident: 10.1016/j.cej.2021.130551_b0030 article-title: Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability publication-title: Nanoscale doi: 10.1039/C9NR10699E – volume: 32 start-page: 1903762 year: 2019 ident: 10.1016/j.cej.2021.130551_b0220 article-title: Self-Healing Polymers Based on Coordination Bonds publication-title: Adv. Mater. doi: 10.1002/adma.201903762 – volume: 151 year: 2021 ident: 10.1016/j.cej.2021.130551_b0265 article-title: Preparation of chitosan-reduced graphene oxide (CS-RGO) microcapsules and its application in UV/moisture-induced self-healing coatings publication-title: Prog. Org. Coat. – volume: 141 start-page: 327 year: 2016 ident: 10.1016/j.cej.2021.130551_b0070 article-title: Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2016.02.004 – ident: 10.1016/j.cej.2021.130551_b0125 doi: 10.1039/C6TA10903A – volume: 25 start-page: 1352 issue: 9 year: 2015 ident: 10.1016/j.cej.2021.130551_b0210 article-title: Novel biocompatible polysaccharide-based self-healing hydrogel publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401502 – volume: 7 start-page: 10337 issue: 19 year: 2015 ident: 10.1016/j.cej.2021.130551_b0040 article-title: Surface Coating from Phosphonate Ionic Liquid Electrolyte for the Enhancement of the Tribological Performance of Magnesium Alloy, ACS Appl publication-title: Mater. Interfaces doi: 10.1021/acsami.5b01167 – volume: 89 start-page: 92 year: 2017 ident: 10.1016/j.cej.2021.130551_b0005 article-title: Fundamentals and advances in magnesium alloy corrosion publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2017.04.011 – volume: 44 start-page: 5746 issue: 15 year: 2020 ident: 10.1016/j.cej.2021.130551_b0155 article-title: A colorless, transparent and self-healing polyurethane elastomer modulated by dynamic disulfide and hydrogen bonds publication-title: New J. Chem. doi: 10.1039/C9NJ06457E – volume: 7 start-page: 18114 issue: 21 year: 2019 ident: 10.1016/j.cej.2021.130551_b0020 article-title: Metal-organic frameworks incorporated polycaprolactone film for enhanced corrosion resistance and biocompatibility of mg alloy publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05196 – ident: 10.1016/j.cej.2021.130551_b0025 doi: 10.1038/s41467-018-06433-5 – volume: 152 start-page: 106112 year: 2021 ident: 10.1016/j.cej.2021.130551_b0100 article-title: Bioactive MAO/CS composite coatings on Mg-Zn-Ca alloy for orthopedic applications publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2020.106112 – volume: 64 start-page: 127 issue: 3 year: 2019 ident: 10.1016/j.cej.2021.130551_b0045 article-title: A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2018.1466492 – volume: 12 start-page: 2107 issue: 2 year: 2020 ident: 10.1016/j.cej.2021.130551_b0225 article-title: Multi-stimuli-responsive supramolecular polymers based on noncovalent and dynamic covalent bonds publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b19279 – volume: 7 start-page: 1226 issue: 10 year: 2018 ident: 10.1016/j.cej.2021.130551_b0305 article-title: Rapidly reprocessable cross-linked polyhydroxyurethanes based on disulfide exchange publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.8b00667 – volume: 221 start-page: 2000273 year: 2020 ident: 10.1016/j.cej.2021.130551_b0245 article-title: A thermosetting polyurethane with excellent self-healing properties and stability for metal surface coating publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.202000273 – volume: 404 year: 2021 ident: 10.1016/j.cej.2021.130551_b0130 article-title: Biobased self-healing polyurethane coating with Zn micro-flakes for corrosion protection of AA7475 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126478 – volume: 44 start-page: 2536 issue: 8 year: 2011 ident: 10.1016/j.cej.2021.130551_b0230 article-title: Self-healing materials based on disulfide links publication-title: Macromolecules doi: 10.1021/ma2001492 – volume: 111 start-page: 753 year: 2016 ident: 10.1016/j.cej.2021.130551_b0170 article-title: Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy publication-title: Corros. Sci. doi: 10.1016/j.corsci.2016.06.016 – volume: 127 start-page: 186 year: 2017 ident: 10.1016/j.cej.2021.130551_b0035 article-title: Effects of combined organic and inorganic corrosion inhibitors on the nanostructure cerium based conversion coating performance on AZ31 magnesium alloy: Morphological and corrosion studies publication-title: Corros. Sci. doi: 10.1016/j.corsci.2017.08.017 – volume: 55 start-page: 6802 issue: 22 year: 2010 ident: 10.1016/j.cej.2021.130551_b0110 article-title: Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.05.087 – volume: 13 start-page: 867 issue: 9 year: 2014 ident: 10.1016/j.cej.2021.130551_b0160 article-title: Surface-initiated self-healing of polymers in aqueous media publication-title: Nat Mater doi: 10.1038/nmat4037 – volume: 123 start-page: 147 year: 2017 ident: 10.1016/j.cej.2021.130551_b0335 article-title: Improving surface characteristic and corrosion inhibition of coating on Mg alloy by trace stannous (II) chloride publication-title: Corros. Sci. doi: 10.1016/j.corsci.2017.04.018 – volume: 8 start-page: 34275 issue: 60 year: 2018 ident: 10.1016/j.cej.2021.130551_b0175 article-title: Praseodymium-decorated graphene oxide as a corrosion inhibitor in acidic media for the magnesium AZ31 alloy publication-title: RSC ADV doi: 10.1039/C8RA05118F – volume: 86 start-page: 93 year: 2014 ident: 10.1016/j.cej.2021.130551_b0315 article-title: Applications of scanning electrochemical microscopy (SECM) for local characterization of AZ31 surface during corrosion in a buffered media publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.04.035 – volume: 11 start-page: 41165 year: 2019 ident: 10.1016/j.cej.2021.130551_b0325 article-title: Green tea polyphenol induced Mg2+-rich multilayer conversion coating: toward enhanced corrosion resistance and promoted in situ endothelialization of AZ31 for potential cardiovascular applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b17221 – volume: 217 start-page: 1191 year: 2016 ident: 10.1016/j.cej.2021.130551_b0310 article-title: A novel self-healing polyurethane based on disulfide bonds publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201600011 – volume: 28 start-page: 9060 issue: 41 year: 2016 ident: 10.1016/j.cej.2021.130551_b0205 article-title: In het panhuis, self-healing hydrogels publication-title: Adv. Mater. doi: 10.1002/adma.201601613 – volume: 404 year: 2021 ident: 10.1016/j.cej.2021.130551_b0255 article-title: Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127118 – volume: 18 start-page: 1758 issue: 3 year: 2016 ident: 10.1016/j.cej.2021.130551_b0290 article-title: Design of new disulfide-based organic compounds for the improvement of self-healing materials publication-title: PCCP doi: 10.1039/C5CP06660C – volume: 21 start-page: 59 issue: 1 year: 1988 ident: 10.1016/j.cej.2021.130551_b0280 article-title: Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends publication-title: Macromolecules doi: 10.1021/ma00179a014 – volume: 2 start-page: 143 issue: 4 year: 2010 ident: 10.1016/j.cej.2021.130551_b0140 article-title: Designing green, self-healing coatings for metal protection publication-title: NPG Asia Mater. doi: 10.1038/asiamat.2010.136 – volume: 14 start-page: 262 year: 2019 ident: 10.1016/j.cej.2021.130551_b0105 article-title: Review of electrochemical properties of hybrid coating systems on Mg with plasma electrolytic oxidation process as pretreatment publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2019.01.004 – volume: 21 start-page: 645 issue: 6 year: 2009 ident: 10.1016/j.cej.2021.130551_b0145 article-title: Self-Healing Polymer coatings publication-title: Adv. Mater. doi: 10.1002/adma.200802008 – volume: 27 start-page: 7740 issue: 47 year: 2015 ident: 10.1016/j.cej.2021.130551_b0165 article-title: Visible-light-induced self-healing diselenide-containing polyurethane elastomer publication-title: Adv. Mater. doi: 10.1002/adma.201503661 – volume: 4 start-page: 1600318 year: 2017 ident: 10.1016/j.cej.2021.130551_b0180 article-title: Nanocontainers for self-healing coatings publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201600318 – volume: 366 start-page: 114 year: 2019 ident: 10.1016/j.cej.2021.130551_b0065 article-title: Plasma Electrolytic Oxidation (PEO) as pre-treatment for sol-gel coating on aluminum and magnesium alloys publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.03.023 – volume: 357 start-page: 515 year: 2019 ident: 10.1016/j.cej.2021.130551_b0190 article-title: Synergistic effect of hydrophobic film and porous MAO membrane containing alkynol inhibitor for enhanced corrosion resistance of magnesium alloy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.10.054 – volume: 3 start-page: 469 issue: 2 year: 2015 ident: 10.1016/j.cej.2021.130551_b0120 article-title: Advanced micro/nanocapsules for self-healing smart anticorrosion coatings publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04791E – volume: 487 start-page: 581 year: 2019 ident: 10.1016/j.cej.2021.130551_b0055 article-title: Investigation of corrosion resistance and formation mechanism of calcium-containing coatings on AZ31B magnesium alloy publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.05.049 – volume: 35 start-page: 1134 issue: 5 year: 2019 ident: 10.1016/j.cej.2021.130551_b0185 article-title: New method for the corrosion resistance of AZ31 Mg alloy with a porous micro-arc oxidation membrane as an ionic corrosion inhibitor container publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01637 – volume: 58 start-page: 165 issue: 1 year: 2019 ident: 10.1016/j.cej.2021.130551_b0195 article-title: Enhanced corrosion barrier of microarc-oxidized mg alloy by self-healing superhydrophobic silica coating publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b04060 – volume: 205 start-page: 1651 issue: 6 year: 2010 ident: 10.1016/j.cej.2021.130551_b0270 article-title: Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2010.10.022 – volume: 128 start-page: 224 year: 2017 ident: 10.1016/j.cej.2021.130551_b0010 article-title: Comprehensive screening of Mg corrosion inhibitors publication-title: Corros. Sci. doi: 10.1016/j.corsci.2017.07.011 – volume: 132 start-page: 144 year: 2019 ident: 10.1016/j.cej.2021.130551_b0085 article-title: Smart epoxy coating containing zeolites loaded with Ce on a plasma electrolytic oxidation coating on Mg alloy AZ31 for active corrosion protection publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.03.046 – volume: 47 start-page: 2414 issue: 2 year: 2021 ident: 10.1016/j.cej.2021.130551_b0250 article-title: Design and optimization of coating structure for plasma sprayed self-healing MgO coating via finite element method publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.09.084 – volume: 7 start-page: 1859 issue: 3 year: 2015 ident: 10.1016/j.cej.2021.130551_b0075 article-title: One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507586u – volume: 6 start-page: 7027 issue: 39 year: 2015 ident: 10.1016/j.cej.2021.130551_b0235 article-title: Antifouling and antibacterial hydrogel coatings with self-healing properties based on a dynamic disulfide exchange reaction publication-title: Polym Chem-UK doi: 10.1039/C5PY00936G – volume: 43 start-page: 8114 issue: 23 year: 2014 ident: 10.1016/j.cej.2021.130551_b0115 article-title: Self-healing gels based on constitutional dynamic chemistry and their potential applications publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00219A – volume: 151 year: 2021 ident: 10.1016/j.cej.2021.130551_b0260 article-title: A hydrogen bond based self-healing superhydrophobic octadecyltriethoxysilane−lignocellulose/silica coating publication-title: Prog. Org. Coat. – ident: 10.1016/j.cej.2021.130551_b0295 doi: 10.1002/pola.27200 – volume: 19 start-page: 2149 issue: 8 year: 1986 ident: 10.1016/j.cej.2021.130551_b0275 article-title: Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane publication-title: Macromolecules doi: 10.1021/ma00162a008 |
SSID | ssj0006919 |
Score | 2.6308806 |
Snippet | A self-healing composite coating based on the dual-action of corrosion inhibitor M−16 embedded in micro-arc oxidation coating and self-healing polyurethanes is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 130551 |
SubjectTerms | Corrosion inhibitor Disulfide bond Dual self-healing Micro-arc oxidation Polyurethane |
Title | Dual self-healing composite coating on magnesium alloys for corrosion protection |
URI | https://dx.doi.org/10.1016/j.cej.2021.130551 |
Volume | 424 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB6YkEKT2omTsSpUhYoKARXdItuxUas2rfoYWPjt3OUBRQIGpjjOWbIuzt138ec7Qi6YYOBYXemEkXUdbhP45hQzDjgLmbhMJUrh_477XtDp87uBP6iQVnkWBmmVhe3PbXpmrYueeqHN-mw4rD95uKcVcYFBi8cEHuLjXOAqv3r_onkEUVbcA4UdlC53NjOOlzYjCBEbHtZE9n3vZ9-05m_au2SnAIq0mc9lj1RMuk-219IHHpCH6xVILMzYOoj3oI8iQxxpWAZaEhnNdJrSiXwFgzZcTSjusr8tKABVeD6HScBboUWqBmgekn775rnVcYoKCY5uRGLpKBXKCL5BX8ogsSJhPGENE2kR-NINE61drg0ERDwwFqJmQCtCKyYsoABjwFezI7KRTlNzTChj2guM9hDAcS9U0tdRyJRMuGVCWFslbqmbWBfpw7GKxTgueWKjGNQZozrjXJ1Vcvk5ZJbnzvhLmJcKj78tgBhs--_DTv437JRs4R0eKvT8M7KxnK_MOaCLpaply6dGNpu33U4Pr93Hl-4HdwjP_g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhU7PsAFKTSJnTg5cEAsKksrJEDiFmzHRq3agmgrxIWf4geZaRMWCTggcYu8RM5kMm8mfp4B2OKSI7D6yktS53vC5fjNaW49BAuV-1znWtP_jlo9rl6L05voZgRey7MwRKssbP_Qpg-sddFSKaRZeWg0KpcB7WmlQlLQEnCZFszKM_v8hHFbd-_kEF_ydhgeH10dVL2itIBnwlT2PK0TlaLyRkrFuZM5FzkPbWpkHCk_yY3xhbEYSYjYOgw3Eeal0Vw6hE9rEeQ43ncUxgWaCyqbsPvywSuJ00E1EVqdR8srt1IHpDJjmxiThgEVYY6i4Hsw_ARwxzMwXXimbH_48LMwYjtzMPUpX-E8XBz2cUTXtpxHDia2MaKkE-_L4pUiCjW777C2ukML2ui3GW3rP3cZesbY_4iLQDVgRW4IvFyA63-R2yKMde47dgkY5yaIrQnIYxRBolVk0oRrlQvHpXRuGfxSNpkp8pVT2YxWVhLTmhmKMyNxZkNxLsPO-5SHYbKO3waLUuDZF43LEEx-nrbyt2mbMFG9qp1n5yf1s1WYpB460RhEazDWe-zbdXRtenpjoEoMbv9bd98APPwKpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+self-healing+composite+coating+on+magnesium+alloys+for+corrosion+protection&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Liu%2C+Siqin&rft.au=Li%2C+Zhaoxia&rft.au=Yu%2C+Qiangliang&rft.au=Qi%2C+Yuming&rft.date=2021-11-15&rft.issn=1385-8947&rft.volume=424&rft.spage=130551&rft_id=info:doi/10.1016%2Fj.cej.2021.130551&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2021_130551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |