Dual self-healing composite coating on magnesium alloys for corrosion protection

A self-healing composite coating based on the dual-action of corrosion inhibitor M−16 embedded in micro-arc oxidation coating and self-healing polyurethanes is designed for corrosion protection of Mg alloy. [Display omitted] •1. A dual self-healing composite coating was prepared for Mg alloys.•2. Th...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 424; p. 130551
Main Authors Liu, Siqin, Li, Zhaoxia, Yu, Qiangliang, Qi, Yuming, Peng, Zhenjun, Liang, Jun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A self-healing composite coating based on the dual-action of corrosion inhibitor M−16 embedded in micro-arc oxidation coating and self-healing polyurethanes is designed for corrosion protection of Mg alloy. [Display omitted] •1. A dual self-healing composite coating was prepared for Mg alloys.•2. The MAO coating was more suitable to carry the inhibitor than polymer coating.•3. The scratches of the composite coating were repaired by modified polyurethane.•4. MAO coating enhanced the self-healing performance of the polymer coating. In this work, a new self-healing composite coating for corrosion protection of magnesium (Mg) alloy, which is based on the dual actions of the corrosion inhibitor M-16 embedded in the micro-arc oxidation (MAO) coating and self-healing polyurethane (PU) modified by disulfide bonds, is developed. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) are used to study the anti-corrosion performance of the scratched and healed composite coatings immersed in 3.5 wt% NaCl solution. Results show that the porous MAO coating is suitable to carry inhibitor M-16 and the anti-corrosion performance of the scratched coating is significantly improved by the inhibitor embedded in the MAO coating. The scratched coating exhibits an excellent recovery of the anti-corrosion performance after the heat treatment, which is attributed to the cooperation of dynamic disulfide bonds and shape-memory effect of the self-healing PU coating. Furthermore, it is found that the inhibitor M-16 embedded MAO coating can enhance the repair ability and anti-corrosion performance of the PU coating when the corrosion product was pre-formed inside the scratch of the composite coating.
AbstractList A self-healing composite coating based on the dual-action of corrosion inhibitor M−16 embedded in micro-arc oxidation coating and self-healing polyurethanes is designed for corrosion protection of Mg alloy. [Display omitted] •1. A dual self-healing composite coating was prepared for Mg alloys.•2. The MAO coating was more suitable to carry the inhibitor than polymer coating.•3. The scratches of the composite coating were repaired by modified polyurethane.•4. MAO coating enhanced the self-healing performance of the polymer coating. In this work, a new self-healing composite coating for corrosion protection of magnesium (Mg) alloy, which is based on the dual actions of the corrosion inhibitor M-16 embedded in the micro-arc oxidation (MAO) coating and self-healing polyurethane (PU) modified by disulfide bonds, is developed. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) are used to study the anti-corrosion performance of the scratched and healed composite coatings immersed in 3.5 wt% NaCl solution. Results show that the porous MAO coating is suitable to carry inhibitor M-16 and the anti-corrosion performance of the scratched coating is significantly improved by the inhibitor embedded in the MAO coating. The scratched coating exhibits an excellent recovery of the anti-corrosion performance after the heat treatment, which is attributed to the cooperation of dynamic disulfide bonds and shape-memory effect of the self-healing PU coating. Furthermore, it is found that the inhibitor M-16 embedded MAO coating can enhance the repair ability and anti-corrosion performance of the PU coating when the corrosion product was pre-formed inside the scratch of the composite coating.
ArticleNumber 130551
Author Qi, Yuming
Li, Zhaoxia
Yu, Qiangliang
Peng, Zhenjun
Liu, Siqin
Liang, Jun
Author_xml – sequence: 1
  givenname: Siqin
  surname: Liu
  fullname: Liu, Siqin
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
– sequence: 2
  givenname: Zhaoxia
  surname: Li
  fullname: Li, Zhaoxia
  organization: Key Laboratory of Environmental Friendly Composite Materials and Biomass in Universities of Gansu Province, Northwest Minzu University, Lanzhou, 730030, PR China
– sequence: 3
  givenname: Qiangliang
  surname: Yu
  fullname: Yu, Qiangliang
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
– sequence: 4
  givenname: Yuming
  surname: Qi
  fullname: Qi, Yuming
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
– sequence: 5
  givenname: Zhenjun
  surname: Peng
  fullname: Peng, Zhenjun
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
– sequence: 6
  givenname: Jun
  surname: Liang
  fullname: Liang, Jun
  email: jliang@licp.cas.cn
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
BookMark eNp9kE1OwzAQhS1UJNrCAdjlAgmeOLETsULlV6oEC1hbjjMujpK4slOk3h5HZcWiq3mamW_05q3IYnQjEnILNAMK_K7LNHZZTnPIgNGyhAuyhEqwlOWQL6JmVZlWdSGuyCqEjlLKa6iX5OPxoPokYG_Sb1S9HXeJdsPeBTthVGqaO25MBrUbMdjDkKi-d8eQGOfj3Pu4Gcd77ybUU5TX5NKoPuDNX12Tr-enz81run1_eds8bFOd12JKm6ZSNS2qUineGtGyomU51lrwUtGq1ZoWGoEXBUeDDeMghG6YMFBTRFYBWxNxuqujheDRSG0nNTuYvLK9BCrnYGQnYzByDkaegokk_CP33g7KH88y9ycG40s_Fr0M2uKosbU-_i1bZ8_Qv93HftE
CitedBy_id crossref_primary_10_1016_j_apsadv_2025_100700
crossref_primary_10_1016_j_cej_2024_149905
crossref_primary_10_3390_met12030471
crossref_primary_10_1016_j_porgcoat_2024_108674
crossref_primary_10_1039_D2GC02638D
crossref_primary_10_1016_j_porgcoat_2023_108152
crossref_primary_10_1016_j_ijbiomac_2024_134349
crossref_primary_10_1016_j_surfcoat_2022_128768
crossref_primary_10_1002_adfm_202405737
crossref_primary_10_1016_j_coco_2022_101458
crossref_primary_10_1016_j_porgcoat_2024_108876
crossref_primary_10_1088_1361_6528_ad7e30
crossref_primary_10_1016_j_micromeso_2022_112418
crossref_primary_10_1002_pat_6428
crossref_primary_10_1016_j_cej_2024_149064
crossref_primary_10_3390_coatings12091286
crossref_primary_10_1021_acsapm_4c00346
crossref_primary_10_1016_j_surfcoat_2024_131146
crossref_primary_10_1016_j_coelec_2023_101324
crossref_primary_10_1016_j_ijbiomac_2024_138749
crossref_primary_10_1016_j_apsusc_2023_158849
crossref_primary_10_1016_j_molliq_2022_120091
crossref_primary_10_1016_j_jcis_2024_05_041
crossref_primary_10_1016_j_nanoms_2024_12_002
crossref_primary_10_1016_j_smmf_2023_100022
crossref_primary_10_1016_j_triboint_2023_109126
crossref_primary_10_1007_s10570_024_05848_2
crossref_primary_10_1016_j_porgcoat_2022_107053
crossref_primary_10_1016_j_porgcoat_2023_107876
crossref_primary_10_1016_j_surfcoat_2023_130281
crossref_primary_10_3390_coatings13071189
crossref_primary_10_1016_j_ces_2025_121498
crossref_primary_10_1016_j_porgcoat_2024_108500
crossref_primary_10_1016_j_cej_2024_155467
crossref_primary_10_1016_j_surfcoat_2023_130368
crossref_primary_10_1002_adfm_202412379
crossref_primary_10_3390_ma15113912
crossref_primary_10_1002_marc_202400354
crossref_primary_10_1016_j_cej_2022_140187
crossref_primary_10_1016_j_mtcomm_2024_108541
crossref_primary_10_1007_s42114_023_00822_1
crossref_primary_10_1016_j_colsurfa_2022_129056
crossref_primary_10_1016_j_colsurfa_2022_130879
crossref_primary_10_1016_j_mtcomm_2024_110814
crossref_primary_10_1002_adhm_202302519
crossref_primary_10_1016_j_cej_2023_143463
crossref_primary_10_1016_j_colsurfa_2022_128762
crossref_primary_10_1016_j_ceramint_2024_08_179
crossref_primary_10_3390_ma17215157
crossref_primary_10_3390_nano13010124
crossref_primary_10_1016_j_compositesb_2021_109574
crossref_primary_10_1016_j_porgcoat_2022_106790
crossref_primary_10_1016_j_porgcoat_2022_107362
crossref_primary_10_1177_08853282241246210
crossref_primary_10_1016_j_jallcom_2023_169316
crossref_primary_10_1016_j_surfcoat_2022_128824
crossref_primary_10_1021_acsami_4c13505
crossref_primary_10_1007_s11998_021_00599_2
crossref_primary_10_1021_acsapm_4c00087
crossref_primary_10_1016_j_jallcom_2023_170710
crossref_primary_10_1016_j_surfcoat_2022_128148
crossref_primary_10_1016_j_cej_2021_132776
crossref_primary_10_1016_j_cej_2024_154801
crossref_primary_10_1016_j_porgcoat_2024_109030
crossref_primary_10_1002_app_52931
crossref_primary_10_1016_j_porgcoat_2025_109070
crossref_primary_10_1007_s10570_023_05218_4
crossref_primary_10_1016_j_cej_2023_145164
crossref_primary_10_1016_j_mtcomm_2024_110151
crossref_primary_10_1016_j_actbio_2023_12_004
crossref_primary_10_1016_j_jallcom_2022_164710
crossref_primary_10_1016_j_porgcoat_2023_107891
crossref_primary_10_1016_j_cej_2022_139096
crossref_primary_10_1016_j_cej_2023_141397
crossref_primary_10_1007_s11998_023_00887_z
crossref_primary_10_1016_j_electacta_2022_141471
crossref_primary_10_1016_j_jtice_2024_105703
crossref_primary_10_1016_j_ceramint_2025_03_048
crossref_primary_10_1016_j_eurpolymj_2024_113421
crossref_primary_10_1016_j_cej_2023_142887
crossref_primary_10_1080_01694243_2022_2158774
crossref_primary_10_1016_j_jcis_2024_11_082
crossref_primary_10_1016_j_porgcoat_2023_107454
crossref_primary_10_1016_j_molliq_2023_122796
crossref_primary_10_1016_j_porgcoat_2022_106940
crossref_primary_10_1016_j_porgcoat_2022_106820
crossref_primary_10_1016_j_surfcoat_2022_128692
crossref_primary_10_1016_j_apmt_2022_101665
crossref_primary_10_1016_j_biomaterials_2023_122237
crossref_primary_10_1016_j_ceramint_2021_11_198
crossref_primary_10_1016_j_matchemphys_2023_128163
crossref_primary_10_1016_j_porgcoat_2023_108193
crossref_primary_10_3390_met14020248
Cites_doi 10.1016/j.porgcoat.2019.04.060
10.1038/ncomms4218
10.1016/j.apsusc.2019.04.107
10.1038/s41598-017-15845-0
10.1016/S1003-6326(18)64799-5
10.1039/C5RA22639B
10.1002/adma.201802556
10.1016/j.jmst.2020.01.022
10.1016/j.jma.2019.05.006
10.1016/j.apsusc.2020.147976
10.1149/2.0601510jes
10.1038/s41578-020-0202-4
10.1038/s41598-017-17942-6
10.3390/ma13184121
10.1016/j.surfcoat.2017.03.021
10.1039/C9NR10699E
10.1002/adma.201903762
10.1016/j.colsurfb.2016.02.004
10.1039/C6TA10903A
10.1002/adfm.201401502
10.1021/acsami.5b01167
10.1016/j.pmatsci.2017.04.011
10.1039/C9NJ06457E
10.1021/acssuschemeng.9b05196
10.1038/s41467-018-06433-5
10.1016/j.porgcoat.2020.106112
10.1080/09506608.2018.1466492
10.1021/acsami.9b19279
10.1021/acsmacrolett.8b00667
10.1002/macp.202000273
10.1016/j.cej.2020.126478
10.1021/ma2001492
10.1016/j.corsci.2016.06.016
10.1016/j.corsci.2017.08.017
10.1016/j.electacta.2010.05.087
10.1038/nmat4037
10.1016/j.corsci.2017.04.018
10.1039/C8RA05118F
10.1016/j.corsci.2014.04.035
10.1021/acsami.9b17221
10.1002/macp.201600011
10.1002/adma.201601613
10.1016/j.cej.2020.127118
10.1039/C5CP06660C
10.1021/ma00179a014
10.1038/asiamat.2010.136
10.1016/j.surfin.2019.01.004
10.1002/adma.200802008
10.1002/adma.201503661
10.1002/admi.201600318
10.1016/j.surfcoat.2019.03.023
10.1016/j.surfcoat.2018.10.054
10.1039/C4TA04791E
10.1016/j.apsusc.2019.05.049
10.1021/acs.langmuir.8b01637
10.1021/acs.iecr.8b04060
10.1016/j.surfcoat.2010.10.022
10.1016/j.corsci.2017.07.011
10.1016/j.porgcoat.2019.03.046
10.1016/j.ceramint.2020.09.084
10.1021/am507586u
10.1039/C5PY00936G
10.1039/C4CS00219A
10.1002/pola.27200
10.1021/ma00162a008
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2021.130551
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2021_130551
S1385894721021379
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c297t-bb8a90485aa6df7d34d32e9c765a08dcc04ce16446efeb36177cb37f190ee3813
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 04:27:35 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Fri Feb 23 02:43:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dual self-healing
Disulfide bond
Polyurethane
Micro-arc oxidation
Corrosion inhibitor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-bb8a90485aa6df7d34d32e9c765a08dcc04ce16446efeb36177cb37f190ee3813
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2021_130551
crossref_primary_10_1016_j_cej_2021_130551
elsevier_sciencedirect_doi_10_1016_j_cej_2021_130551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ahn, Lee, Israelachvili, Waite (b0160) 2014; 13
Y. Wang, B. Liu, X.a. Zhao, X. Zhang, Y. Miao, N. Yang, B. Yang, L. Zhang, W. Kuang, J. Li, E. Ma, Z. Shan, Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2, Nat. Commun. 9 (2018) 4058.
Clyne, Troughton (b0045) 2019; 64
Sun, Yerokhin, Bychkova, Shtansky, Levashov, Matthews (b0170) 2016; 111
Jamali, Moulton, Tallman, Forsyth, Weber, Wallace (b0315) 2014; 86
Ji, Cao, Yu, Xu (b0165) 2015; 27
Dou, Wang, Lu, Chen, Yu, Ma (b0100) 2021; 152
Osada, Kamoda, Mitome, Hara, Abe, Tamagawa, Nakao, Ohmura (b0200) 2017; 7
Cho, White, Braun (b0145) 2009; 21
Saei, Ramezanzadeh, Amini, Kalajahi (b0035) 2017; 127
Hatai, Hirschhäuser, Niemeyer, Schmuck (b0225) 2020; 12
Tian, Xu, Liu (b0070) 2016; 141
Njoku, Cui, Xiao, Shang, Li (b0135) 2017; 7
Wang, Zhang, Yang, Wang, Sun (b0155) 2020; 44
Toorani, Aliofkhazraei (b0105) 2019; 14
Coleman, Skrovanek, Hu, Painter (b0280) 1988; 21
Wang, Urban (b0150) 2020; 5
Zhang, Yao, Li, Wang, Luo, Yang, Wang (b0325) 2019; 11
Xu, Tu, Xiang, Zhang, Guo (b0245) 2020; 221
Jiménez, Rossi, Fantauzzi, Espinosa, Arias-Pardilla, Martínez-Nicolás, Bermúdez (b0040) 2015; 7
Zhuang, Yuan, Hu, Li, Zhang, Zhang, Huang, Wang (b0250) 2021; 47
Taylor, in het Panhuis (b0205) 2016; 28
Zhao, Liu, Wu, Guan, Sun, Ren (b0240) 2019; 133
Grigoriev, Shchukina, Shchukin (b0180) 2017; 4
Canadell, Goossens, Klumperman (b0230) 2011; 44
Nardeli, Fugivara, Taryba, Montemor, Benedetti (b0130) 2021; 404
Li, Yu, Zhang, Liu, Liang, Wang, Zhou (b0190) 2019; 357
M. AbdolahZadeh, A.C. C. Esteves, S. van der Zwaag, S.J. Garcia, Healable dual organic–inorganic crosslinked sol–gel based polymers: Crosslinking density and tetrasulfide content effect, J. Polym. Sci., Part A: Polym. Chem. 52 (2014) 1953-1961.
Li, Feng, Peng, Zeng (b0030) 2020; 12
Wang, Chen, Yan, Fu (b0270) 2010; 205
Mashtalyar, Nadaraia, Gnedenkov, Imshinetskiy, Piatkova, Pleshkova, Belov, Filonina, Suchkov, Sinebryukhov, Gnedenkov (b0060) 2020; 13
Bai, Bai, Zhang, Wang, Zhang (b0260) 2021; 151
Wei, Wang, Guo, Shen, Jiang, Zhang, Yan, Zhu, Wang, Shao, Lin, Wei, Guo (b0120) 2015; 3
Zheng, Hu, Pan, Zhang, Tang (b0080) 2019; 7
Esmaily, Svensson, Fajardo, Birbilis, Frankel, Virtanen, Arrabal, Thomas, Johansson (b0005) 2017; 89
Zheng, Li, Yuan, Liu, Tan, Zheng, Yeung, Wu (b0020) 2019; 7
Luo, Guo, Liu, Feng, Zhang, Li, Chou (b0015) 2020; 44
Liu, Chen, Kang (b0075) 2015; 7
Xu, Chen (b0310) 2016; 217
Tefashe, Dauphin-Ducharme, Danaie, Cano, Kish, Botton, Mauzeroll (b0320) 2015; 162
Wei, Yang, Zhou, Xu, Zrínyi, Dussault, Osada, Chen (b0115) 2014; 43
Li, Yang, Liu, Wang, Liang (b0285) 2017; 316
Ying, Zhang, Cheng (b0215) 2014; 5
Li, Zuo (b0220) 2019; 32
D.K. Ivanou, K.A. Yasakau, S. Kallip, A.D. Lisenkov, M. Starykevich, S.V. Lamaka, M.G.S. Ferreira, M.L. Zheludkevich, Active corrosion protection coating for a ZE41 magnesium alloy created by combining PEO and sol–gel techniques, RSC ADV 6 (2016) 12553-12560.
Zheng, Liu, Wang, Li, Zhang (b0265) 2021; 151
Ma, Wang, Zhang, Huang, Huang, Wang, Qian, Li, Terryn, Mol (b0255) 2021; 404
Lamaka, Vaghefinazari, Mei, Petrauskas, Höche, Zheludkevich (b0010) 2017; 128
Pezzato, Rigon, Martucci, Brunelli, Dabalà (b0065) 2019; 366
Mashtalyar, Nadaraia, Imshinetskiy, Belov, Filonina, Suchkov, Sinebryukhov, Gnedenkov (b0095) 2021; 536
Zhu, Gao, Huang, Chang, Zhang, Zhang, Zhao, Zhang (b0055) 2019; 487
M. Daroonparvar, M.A. Mat Yajid, R. Kumar Gupta, N. Mohd Yusof, H.R. Bakhsheshi-Rad, H. Ghandvar, E. Ghasemi, Antibacterial activities and corrosion behavior of novel PEO/nanostructured ZrO2 coating on Mg alloy, T. NONFERR. METAL. SOC. 28 (2018) 1571-1581.
Wei, Yang, Liu, Xu, Zhou, Zrínyi, Osada, Chen (b0210) 2015; 25
Yang, Tao, Zhao, Weng, Kang, Wang (b0235) 2015; 6
H. Qian, D. Xu, C. Du, D. Zhang, X. Li, L. Huang, L. Deng, Y. Tu, J.M.C. Mol, H.A. Terryn, Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties, J. Mater. Chem. A 5 (2017) 2355-2364.
Gan, Wang, Xie, He (b0335) 2017; 123
Palaniappan, Cole, Caballero-Briones, K., Lal (b0175) 2018; 8
Li, Yang, Yu, Wu, Wang, Liang, Zhou (b0185) 2019; 35
Zhang, Wu, Tang, Ding, Jiang, Atrens, Pan (b0085) 2019; 132
Matxain, Asua, Ruipérez (b0290) 2016; 18
Hughes, Cole, Muster, Varley (b0140) 2010; 2
Fortman, Snyder, Sheppard, Dichtel (b0305) 2018; 7
Coleman, Lee, Skrovanek, Painter (b0275) 1986; 19
Lai, Kuang, Zhu, Huang, Dong, Wang (b0300) 2018; 30
Liu, Yang, Huang, Liu, Liang, Cui, Yang, Zhu, Li, Zheng, Yeung, Wu (b0330) 2019; 484
Jiang, Xia, Hou, Zhang, Dong (b0195) 2019; 58
Liang, Srinivasan, Blawert, Dietzel (b0110) 2010; 55
Ji (10.1016/j.cej.2021.130551_b0165) 2015; 27
Li (10.1016/j.cej.2021.130551_b0185) 2019; 35
Zheng (10.1016/j.cej.2021.130551_b0265) 2021; 151
Jamali (10.1016/j.cej.2021.130551_b0315) 2014; 86
Tefashe (10.1016/j.cej.2021.130551_b0320) 2015; 162
Li (10.1016/j.cej.2021.130551_b0030) 2020; 12
Jiménez (10.1016/j.cej.2021.130551_b0040) 2015; 7
Ying (10.1016/j.cej.2021.130551_b0215) 2014; 5
Wei (10.1016/j.cej.2021.130551_b0115) 2014; 43
Wang (10.1016/j.cej.2021.130551_b0270) 2010; 205
Zhang (10.1016/j.cej.2021.130551_b0085) 2019; 132
Zhang (10.1016/j.cej.2021.130551_b0325) 2019; 11
Luo (10.1016/j.cej.2021.130551_b0015) 2020; 44
Wei (10.1016/j.cej.2021.130551_b0120) 2015; 3
Sun (10.1016/j.cej.2021.130551_b0170) 2016; 111
Canadell (10.1016/j.cej.2021.130551_b0230) 2011; 44
Li (10.1016/j.cej.2021.130551_b0285) 2017; 316
Hatai (10.1016/j.cej.2021.130551_b0225) 2020; 12
Wang (10.1016/j.cej.2021.130551_b0155) 2020; 44
Mashtalyar (10.1016/j.cej.2021.130551_b0095) 2021; 536
Zhu (10.1016/j.cej.2021.130551_b0055) 2019; 487
Hughes (10.1016/j.cej.2021.130551_b0140) 2010; 2
Liu (10.1016/j.cej.2021.130551_b0075) 2015; 7
Matxain (10.1016/j.cej.2021.130551_b0290) 2016; 18
Saei (10.1016/j.cej.2021.130551_b0035) 2017; 127
Taylor (10.1016/j.cej.2021.130551_b0205) 2016; 28
Yang (10.1016/j.cej.2021.130551_b0235) 2015; 6
Liang (10.1016/j.cej.2021.130551_b0110) 2010; 55
Dou (10.1016/j.cej.2021.130551_b0100) 2021; 152
Zhuang (10.1016/j.cej.2021.130551_b0250) 2021; 47
Tian (10.1016/j.cej.2021.130551_b0070) 2016; 141
Cho (10.1016/j.cej.2021.130551_b0145) 2009; 21
Lai (10.1016/j.cej.2021.130551_b0300) 2018; 30
Esmaily (10.1016/j.cej.2021.130551_b0005) 2017; 89
10.1016/j.cej.2021.130551_b0125
Xu (10.1016/j.cej.2021.130551_b0310) 2016; 217
Lamaka (10.1016/j.cej.2021.130551_b0010) 2017; 128
10.1016/j.cej.2021.130551_b0295
10.1016/j.cej.2021.130551_b0050
Nardeli (10.1016/j.cej.2021.130551_b0130) 2021; 404
10.1016/j.cej.2021.130551_b0090
Grigoriev (10.1016/j.cej.2021.130551_b0180) 2017; 4
Jiang (10.1016/j.cej.2021.130551_b0195) 2019; 58
Toorani (10.1016/j.cej.2021.130551_b0105) 2019; 14
Fortman (10.1016/j.cej.2021.130551_b0305) 2018; 7
Coleman (10.1016/j.cej.2021.130551_b0275) 1986; 19
Liu (10.1016/j.cej.2021.130551_b0330) 2019; 484
Wang (10.1016/j.cej.2021.130551_b0150) 2020; 5
Mashtalyar (10.1016/j.cej.2021.130551_b0060) 2020; 13
Li (10.1016/j.cej.2021.130551_b0190) 2019; 357
Li (10.1016/j.cej.2021.130551_b0220) 2019; 32
Ma (10.1016/j.cej.2021.130551_b0255) 2021; 404
Gan (10.1016/j.cej.2021.130551_b0335) 2017; 123
Ahn (10.1016/j.cej.2021.130551_b0160) 2014; 13
Zheng (10.1016/j.cej.2021.130551_b0080) 2019; 7
Wei (10.1016/j.cej.2021.130551_b0210) 2015; 25
Zhao (10.1016/j.cej.2021.130551_b0240) 2019; 133
Xu (10.1016/j.cej.2021.130551_b0245) 2020; 221
Njoku (10.1016/j.cej.2021.130551_b0135) 2017; 7
Coleman (10.1016/j.cej.2021.130551_b0280) 1988; 21
Bai (10.1016/j.cej.2021.130551_b0260) 2021; 151
Pezzato (10.1016/j.cej.2021.130551_b0065) 2019; 366
Zheng (10.1016/j.cej.2021.130551_b0020) 2019; 7
10.1016/j.cej.2021.130551_b0025
Osada (10.1016/j.cej.2021.130551_b0200) 2017; 7
Clyne (10.1016/j.cej.2021.130551_b0045) 2019; 64
Palaniappan (10.1016/j.cej.2021.130551_b0175) 2018; 8
References_xml – volume: 111
  start-page: 753
  year: 2016
  end-page: 769
  ident: b0170
  article-title: Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy
  publication-title: Corros. Sci.
– volume: 366
  start-page: 114
  year: 2019
  end-page: 123
  ident: b0065
  article-title: Plasma Electrolytic Oxidation (PEO) as pre-treatment for sol-gel coating on aluminum and magnesium alloys
  publication-title: Surf. Coat. Technol.
– volume: 58
  start-page: 165
  year: 2019
  end-page: 178
  ident: b0195
  article-title: Enhanced corrosion barrier of microarc-oxidized mg alloy by self-healing superhydrophobic silica coating
  publication-title: Ind. Eng. Chem. Res.
– volume: 86
  start-page: 93
  year: 2014
  end-page: 100
  ident: b0315
  article-title: Applications of scanning electrochemical microscopy (SECM) for local characterization of AZ31 surface during corrosion in a buffered media
  publication-title: Corros. Sci.
– volume: 7
  start-page: 17853
  year: 2017
  ident: b0200
  article-title: A Novel design approach for self-crack-healing structural ceramics with 3D networks of healing activator
  publication-title: Sci Rep
– volume: 221
  start-page: 2000273
  year: 2020
  ident: b0245
  article-title: A thermosetting polyurethane with excellent self-healing properties and stability for metal surface coating
  publication-title: Macromol. Chem. Phys.
– volume: 14
  start-page: 262
  year: 2019
  end-page: 295
  ident: b0105
  article-title: Review of electrochemical properties of hybrid coating systems on Mg with plasma electrolytic oxidation process as pretreatment
  publication-title: Surf. Interfaces
– volume: 30
  start-page: 1802556
  year: 2018
  ident: b0300
  article-title: Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design
  publication-title: Adv. Mater.
– volume: 7
  start-page: 193
  year: 2019
  end-page: 202
  ident: b0080
  article-title: Fabrication of corrosion-resistant superhydrophobic coating on magnesium alloy by one-step electrodeposition method
  publication-title: J. Magnes. Alloy
– volume: 132
  start-page: 144
  year: 2019
  end-page: 147
  ident: b0085
  article-title: Smart epoxy coating containing zeolites loaded with Ce on a plasma electrolytic oxidation coating on Mg alloy AZ31 for active corrosion protection
  publication-title: Prog. Org. Coat.
– volume: 64
  start-page: 127
  year: 2019
  end-page: 162
  ident: b0045
  article-title: A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals
  publication-title: Int. Mater. Rev.
– volume: 4
  start-page: 1600318
  year: 2017
  ident: b0180
  article-title: Nanocontainers for self-healing coatings
  publication-title: Adv. Mater. Interfaces
– volume: 133
  start-page: 289
  year: 2019
  end-page: 298
  ident: b0240
  article-title: Self-healing UV light-curable resins containing disulfide group: Synthesis and application in UV coatings
  publication-title: Prog. Org. Coat.
– volume: 13
  start-page: 867
  year: 2014
  end-page: 872
  ident: b0160
  article-title: Surface-initiated self-healing of polymers in aqueous media
  publication-title: Nat Mater
– volume: 35
  start-page: 1134
  year: 2019
  end-page: 1145
  ident: b0185
  article-title: New method for the corrosion resistance of AZ31 Mg alloy with a porous micro-arc oxidation membrane as an ionic corrosion inhibitor container
  publication-title: Langmuir
– volume: 404
  year: 2021
  ident: b0255
  article-title: Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 4121
  year: 2020
  ident: b0060
  article-title: Bioactive Coatings formed on titanium by plasma electrolytic oxidation: Composition and properties
  publication-title: Materials (Basel)
– volume: 141
  start-page: 327
  year: 2016
  end-page: 337
  ident: b0070
  article-title: Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy
  publication-title: Colloids Surf. B
– volume: 7
  start-page: 1859
  year: 2015
  end-page: 1867
  ident: b0075
  article-title: One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 562
  year: 2020
  end-page: 583
  ident: b0150
  article-title: Self-healing polymers
  publication-title: Nat. Rev. Mater.
– volume: 11
  start-page: 41165
  year: 2019
  end-page: 41177
  ident: b0325
  article-title: Green tea polyphenol induced Mg2+-rich multilayer conversion coating: toward enhanced corrosion resistance and promoted in situ endothelialization of AZ31 for potential cardiovascular applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 18114
  year: 2019
  end-page: 18124
  ident: b0020
  article-title: Metal-organic frameworks incorporated polycaprolactone film for enhanced corrosion resistance and biocompatibility of mg alloy
  publication-title: ACS Sustain. Chem. Eng.
– volume: 484
  start-page: 511
  year: 2019
  end-page: 523
  ident: b0330
  article-title: The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium-strontium alloy
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 34275
  year: 2018
  end-page: 34286
  ident: b0175
  article-title: Praseodymium-decorated graphene oxide as a corrosion inhibitor in acidic media for the magnesium AZ31 alloy
  publication-title: RSC ADV
– reference: H. Qian, D. Xu, C. Du, D. Zhang, X. Li, L. Huang, L. Deng, Y. Tu, J.M.C. Mol, H.A. Terryn, Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties, J. Mater. Chem. A 5 (2017) 2355-2364.
– volume: 19
  start-page: 2149
  year: 1986
  end-page: 2157
  ident: b0275
  article-title: Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane
  publication-title: Macromolecules
– volume: 205
  start-page: 1651
  year: 2010
  end-page: 1658
  ident: b0270
  article-title: Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes
  publication-title: Surf. Coat. Technol.
– volume: 127
  start-page: 186
  year: 2017
  end-page: 200
  ident: b0035
  article-title: Effects of combined organic and inorganic corrosion inhibitors on the nanostructure cerium based conversion coating performance on AZ31 magnesium alloy: Morphological and corrosion studies
  publication-title: Corros. Sci.
– volume: 2
  start-page: 143
  year: 2010
  end-page: 151
  ident: b0140
  article-title: Designing green, self-healing coatings for metal protection
  publication-title: NPG Asia Mater.
– volume: 7
  start-page: 10337
  year: 2015
  end-page: 10347
  ident: b0040
  article-title: Surface Coating from Phosphonate Ionic Liquid Electrolyte for the Enhancement of the Tribological Performance of Magnesium Alloy, ACS Appl
  publication-title: Mater. Interfaces
– volume: 162
  start-page: C536
  year: 2015
  end-page: C544
  ident: b0320
  article-title: Localized corrosion behavior of AZ31B magnesium alloy with an electrodeposited poly(3,4-Ethylenedioxythiophene) coating
  publication-title: J. Electrochem. Soc.
– reference: Y. Wang, B. Liu, X.a. Zhao, X. Zhang, Y. Miao, N. Yang, B. Yang, L. Zhang, W. Kuang, J. Li, E. Ma, Z. Shan, Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2, Nat. Commun. 9 (2018) 4058.
– volume: 44
  start-page: 2536
  year: 2011
  end-page: 2541
  ident: b0230
  article-title: Self-healing materials based on disulfide links
  publication-title: Macromolecules
– volume: 55
  start-page: 6802
  year: 2010
  end-page: 6811
  ident: b0110
  article-title: Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy
  publication-title: Electrochim. Acta
– volume: 27
  start-page: 7740
  year: 2015
  end-page: 7745
  ident: b0165
  article-title: Visible-light-induced self-healing diselenide-containing polyurethane elastomer
  publication-title: Adv. Mater.
– volume: 128
  start-page: 224
  year: 2017
  end-page: 240
  ident: b0010
  article-title: Comprehensive screening of Mg corrosion inhibitors
  publication-title: Corros. Sci.
– volume: 7
  start-page: 15597
  year: 2017
  ident: b0135
  article-title: Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques
  publication-title: Sci Rep
– volume: 5
  start-page: 3218
  year: 2014
  ident: b0215
  article-title: Dynamic urea bond for the design of reversible and self-healing polymers
  publication-title: Nat Commun
– volume: 12
  start-page: 7700
  year: 2020
  end-page: 7711
  ident: b0030
  article-title: Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability
  publication-title: Nanoscale
– volume: 44
  start-page: 5746
  year: 2020
  end-page: 5754
  ident: b0155
  article-title: A colorless, transparent and self-healing polyurethane elastomer modulated by dynamic disulfide and hydrogen bonds
  publication-title: New J. Chem.
– volume: 18
  start-page: 1758
  year: 2016
  end-page: 1770
  ident: b0290
  article-title: Design of new disulfide-based organic compounds for the improvement of self-healing materials
  publication-title: PCCP
– volume: 21
  start-page: 645
  year: 2009
  end-page: 649
  ident: b0145
  article-title: Self-Healing Polymer coatings
  publication-title: Adv. Mater.
– reference: D.K. Ivanou, K.A. Yasakau, S. Kallip, A.D. Lisenkov, M. Starykevich, S.V. Lamaka, M.G.S. Ferreira, M.L. Zheludkevich, Active corrosion protection coating for a ZE41 magnesium alloy created by combining PEO and sol–gel techniques, RSC ADV 6 (2016) 12553-12560.
– volume: 89
  start-page: 92
  year: 2017
  end-page: 193
  ident: b0005
  article-title: Fundamentals and advances in magnesium alloy corrosion
  publication-title: Prog. Mater Sci.
– volume: 316
  start-page: 162
  year: 2017
  end-page: 170
  ident: b0285
  article-title: Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes
  publication-title: Surf. Coat. Technol.
– volume: 357
  start-page: 515
  year: 2019
  end-page: 525
  ident: b0190
  article-title: Synergistic effect of hydrophobic film and porous MAO membrane containing alkynol inhibitor for enhanced corrosion resistance of magnesium alloy
  publication-title: Surf. Coat. Technol.
– reference: M. Daroonparvar, M.A. Mat Yajid, R. Kumar Gupta, N. Mohd Yusof, H.R. Bakhsheshi-Rad, H. Ghandvar, E. Ghasemi, Antibacterial activities and corrosion behavior of novel PEO/nanostructured ZrO2 coating on Mg alloy, T. NONFERR. METAL. SOC. 28 (2018) 1571-1581.
– volume: 43
  start-page: 8114
  year: 2014
  end-page: 8131
  ident: b0115
  article-title: Self-healing gels based on constitutional dynamic chemistry and their potential applications
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 7027
  year: 2015
  end-page: 7035
  ident: b0235
  article-title: Antifouling and antibacterial hydrogel coatings with self-healing properties based on a dynamic disulfide exchange reaction
  publication-title: Polym Chem-UK
– volume: 151
  year: 2021
  ident: b0260
  article-title: A hydrogen bond based self-healing superhydrophobic octadecyltriethoxysilane−lignocellulose/silica coating
  publication-title: Prog. Org. Coat.
– reference: M. AbdolahZadeh, A.C. C. Esteves, S. van der Zwaag, S.J. Garcia, Healable dual organic–inorganic crosslinked sol–gel based polymers: Crosslinking density and tetrasulfide content effect, J. Polym. Sci., Part A: Polym. Chem. 52 (2014) 1953-1961.
– volume: 7
  start-page: 1226
  year: 2018
  end-page: 1231
  ident: b0305
  article-title: Rapidly reprocessable cross-linked polyhydroxyurethanes based on disulfide exchange
  publication-title: ACS Macro Lett.
– volume: 3
  start-page: 469
  year: 2015
  end-page: 480
  ident: b0120
  article-title: Advanced micro/nanocapsules for self-healing smart anticorrosion coatings
  publication-title: J. Mater. Chem. A
– volume: 151
  year: 2021
  ident: b0265
  article-title: Preparation of chitosan-reduced graphene oxide (CS-RGO) microcapsules and its application in UV/moisture-induced self-healing coatings
  publication-title: Prog. Org. Coat.
– volume: 536
  year: 2021
  ident: b0095
  article-title: Composite coatings formed on Ti by PEO and fluoropolymer treatment
  publication-title: Appl. Surf. Sci.
– volume: 404
  year: 2021
  ident: b0130
  article-title: Biobased self-healing polyurethane coating with Zn micro-flakes for corrosion protection of AA7475
  publication-title: Chem. Eng. J.
– volume: 21
  start-page: 59
  year: 1988
  end-page: 65
  ident: b0280
  article-title: Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends
  publication-title: Macromolecules
– volume: 25
  start-page: 1352
  year: 2015
  end-page: 1359
  ident: b0210
  article-title: Novel biocompatible polysaccharide-based self-healing hydrogel
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 2414
  year: 2021
  end-page: 2429
  ident: b0250
  article-title: Design and optimization of coating structure for plasma sprayed self-healing MgO coating via finite element method
  publication-title: Ceram. Int.
– volume: 28
  start-page: 9060
  year: 2016
  end-page: 9093
  ident: b0205
  article-title: In het panhuis, self-healing hydrogels
  publication-title: Adv. Mater.
– volume: 32
  start-page: 1903762
  year: 2019
  ident: b0220
  article-title: Self-Healing Polymers Based on Coordination Bonds
  publication-title: Adv. Mater.
– volume: 152
  start-page: 106112
  year: 2021
  ident: b0100
  article-title: Bioactive MAO/CS composite coatings on Mg-Zn-Ca alloy for orthopedic applications
  publication-title: Prog. Org. Coat.
– volume: 44
  start-page: 171
  year: 2020
  end-page: 190
  ident: b0015
  article-title: Thermodynamics and kinetics of phase transformation in rare earth–magnesium alloys: A critical review
  publication-title: J Mater Sci Technol
– volume: 12
  start-page: 2107
  year: 2020
  end-page: 2115
  ident: b0225
  article-title: Multi-stimuli-responsive supramolecular polymers based on noncovalent and dynamic covalent bonds
  publication-title: ACS Appl. Mater. Interfaces
– volume: 217
  start-page: 1191
  year: 2016
  end-page: 1196
  ident: b0310
  article-title: A novel self-healing polyurethane based on disulfide bonds
  publication-title: Macromol. Chem. Phys.
– volume: 123
  start-page: 147
  year: 2017
  end-page: 157
  ident: b0335
  article-title: Improving surface characteristic and corrosion inhibition of coating on Mg alloy by trace stannous (II) chloride
  publication-title: Corros. Sci.
– volume: 487
  start-page: 581
  year: 2019
  end-page: 592
  ident: b0055
  article-title: Investigation of corrosion resistance and formation mechanism of calcium-containing coatings on AZ31B magnesium alloy
  publication-title: Appl. Surf. Sci.
– volume: 133
  start-page: 289
  year: 2019
  ident: 10.1016/j.cej.2021.130551_b0240
  article-title: Self-healing UV light-curable resins containing disulfide group: Synthesis and application in UV coatings
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.04.060
– volume: 5
  start-page: 3218
  year: 2014
  ident: 10.1016/j.cej.2021.130551_b0215
  article-title: Dynamic urea bond for the design of reversible and self-healing polymers
  publication-title: Nat Commun
  doi: 10.1038/ncomms4218
– volume: 484
  start-page: 511
  year: 2019
  ident: 10.1016/j.cej.2021.130551_b0330
  article-title: The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium-strontium alloy
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.04.107
– volume: 7
  start-page: 15597
  year: 2017
  ident: 10.1016/j.cej.2021.130551_b0135
  article-title: Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-15845-0
– ident: 10.1016/j.cej.2021.130551_b0050
  doi: 10.1016/S1003-6326(18)64799-5
– ident: 10.1016/j.cej.2021.130551_b0090
  doi: 10.1039/C5RA22639B
– volume: 30
  start-page: 1802556
  year: 2018
  ident: 10.1016/j.cej.2021.130551_b0300
  article-title: Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802556
– volume: 44
  start-page: 171
  year: 2020
  ident: 10.1016/j.cej.2021.130551_b0015
  article-title: Thermodynamics and kinetics of phase transformation in rare earth–magnesium alloys: A critical review
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2020.01.022
– volume: 7
  start-page: 193
  issue: 2
  year: 2019
  ident: 10.1016/j.cej.2021.130551_b0080
  article-title: Fabrication of corrosion-resistant superhydrophobic coating on magnesium alloy by one-step electrodeposition method
  publication-title: J. Magnes. Alloy
  doi: 10.1016/j.jma.2019.05.006
– volume: 536
  year: 2021
  ident: 10.1016/j.cej.2021.130551_b0095
  article-title: Composite coatings formed on Ti by PEO and fluoropolymer treatment
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147976
– volume: 162
  start-page: C536
  issue: 10
  year: 2015
  ident: 10.1016/j.cej.2021.130551_b0320
  article-title: Localized corrosion behavior of AZ31B magnesium alloy with an electrodeposited poly(3,4-Ethylenedioxythiophene) coating
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0601510jes
– volume: 5
  start-page: 562
  issue: 8
  year: 2020
  ident: 10.1016/j.cej.2021.130551_b0150
  article-title: Self-healing polymers
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0202-4
– volume: 7
  start-page: 17853
  year: 2017
  ident: 10.1016/j.cej.2021.130551_b0200
  article-title: A Novel design approach for self-crack-healing structural ceramics with 3D networks of healing activator
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-17942-6
– volume: 13
  start-page: 4121
  issue: 18
  year: 2020
  ident: 10.1016/j.cej.2021.130551_b0060
  article-title: Bioactive Coatings formed on titanium by plasma electrolytic oxidation: Composition and properties
  publication-title: Materials (Basel)
  doi: 10.3390/ma13184121
– volume: 316
  start-page: 162
  year: 2017
  ident: 10.1016/j.cej.2021.130551_b0285
  article-title: Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2017.03.021
– volume: 12
  start-page: 7700
  issue: 14
  year: 2020
  ident: 10.1016/j.cej.2021.130551_b0030
  article-title: Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability
  publication-title: Nanoscale
  doi: 10.1039/C9NR10699E
– volume: 32
  start-page: 1903762
  year: 2019
  ident: 10.1016/j.cej.2021.130551_b0220
  article-title: Self-Healing Polymers Based on Coordination Bonds
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903762
– volume: 151
  year: 2021
  ident: 10.1016/j.cej.2021.130551_b0265
  article-title: Preparation of chitosan-reduced graphene oxide (CS-RGO) microcapsules and its application in UV/moisture-induced self-healing coatings
  publication-title: Prog. Org. Coat.
– volume: 141
  start-page: 327
  year: 2016
  ident: 10.1016/j.cej.2021.130551_b0070
  article-title: Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2016.02.004
– ident: 10.1016/j.cej.2021.130551_b0125
  doi: 10.1039/C6TA10903A
– volume: 25
  start-page: 1352
  issue: 9
  year: 2015
  ident: 10.1016/j.cej.2021.130551_b0210
  article-title: Novel biocompatible polysaccharide-based self-healing hydrogel
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401502
– volume: 7
  start-page: 10337
  issue: 19
  year: 2015
  ident: 10.1016/j.cej.2021.130551_b0040
  article-title: Surface Coating from Phosphonate Ionic Liquid Electrolyte for the Enhancement of the Tribological Performance of Magnesium Alloy, ACS Appl
  publication-title: Mater. Interfaces
  doi: 10.1021/acsami.5b01167
– volume: 89
  start-page: 92
  year: 2017
  ident: 10.1016/j.cej.2021.130551_b0005
  article-title: Fundamentals and advances in magnesium alloy corrosion
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2017.04.011
– volume: 44
  start-page: 5746
  issue: 15
  year: 2020
  ident: 10.1016/j.cej.2021.130551_b0155
  article-title: A colorless, transparent and self-healing polyurethane elastomer modulated by dynamic disulfide and hydrogen bonds
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ06457E
– volume: 7
  start-page: 18114
  issue: 21
  year: 2019
  ident: 10.1016/j.cej.2021.130551_b0020
  article-title: Metal-organic frameworks incorporated polycaprolactone film for enhanced corrosion resistance and biocompatibility of mg alloy
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05196
– ident: 10.1016/j.cej.2021.130551_b0025
  doi: 10.1038/s41467-018-06433-5
– volume: 152
  start-page: 106112
  year: 2021
  ident: 10.1016/j.cej.2021.130551_b0100
  article-title: Bioactive MAO/CS composite coatings on Mg-Zn-Ca alloy for orthopedic applications
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2020.106112
– volume: 64
  start-page: 127
  issue: 3
  year: 2019
  ident: 10.1016/j.cej.2021.130551_b0045
  article-title: A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2018.1466492
– volume: 12
  start-page: 2107
  issue: 2
  year: 2020
  ident: 10.1016/j.cej.2021.130551_b0225
  article-title: Multi-stimuli-responsive supramolecular polymers based on noncovalent and dynamic covalent bonds
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b19279
– volume: 7
  start-page: 1226
  issue: 10
  year: 2018
  ident: 10.1016/j.cej.2021.130551_b0305
  article-title: Rapidly reprocessable cross-linked polyhydroxyurethanes based on disulfide exchange
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.8b00667
– volume: 221
  start-page: 2000273
  year: 2020
  ident: 10.1016/j.cej.2021.130551_b0245
  article-title: A thermosetting polyurethane with excellent self-healing properties and stability for metal surface coating
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.202000273
– volume: 404
  year: 2021
  ident: 10.1016/j.cej.2021.130551_b0130
  article-title: Biobased self-healing polyurethane coating with Zn micro-flakes for corrosion protection of AA7475
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126478
– volume: 44
  start-page: 2536
  issue: 8
  year: 2011
  ident: 10.1016/j.cej.2021.130551_b0230
  article-title: Self-healing materials based on disulfide links
  publication-title: Macromolecules
  doi: 10.1021/ma2001492
– volume: 111
  start-page: 753
  year: 2016
  ident: 10.1016/j.cej.2021.130551_b0170
  article-title: Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2016.06.016
– volume: 127
  start-page: 186
  year: 2017
  ident: 10.1016/j.cej.2021.130551_b0035
  article-title: Effects of combined organic and inorganic corrosion inhibitors on the nanostructure cerium based conversion coating performance on AZ31 magnesium alloy: Morphological and corrosion studies
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2017.08.017
– volume: 55
  start-page: 6802
  issue: 22
  year: 2010
  ident: 10.1016/j.cej.2021.130551_b0110
  article-title: Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.05.087
– volume: 13
  start-page: 867
  issue: 9
  year: 2014
  ident: 10.1016/j.cej.2021.130551_b0160
  article-title: Surface-initiated self-healing of polymers in aqueous media
  publication-title: Nat Mater
  doi: 10.1038/nmat4037
– volume: 123
  start-page: 147
  year: 2017
  ident: 10.1016/j.cej.2021.130551_b0335
  article-title: Improving surface characteristic and corrosion inhibition of coating on Mg alloy by trace stannous (II) chloride
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2017.04.018
– volume: 8
  start-page: 34275
  issue: 60
  year: 2018
  ident: 10.1016/j.cej.2021.130551_b0175
  article-title: Praseodymium-decorated graphene oxide as a corrosion inhibitor in acidic media for the magnesium AZ31 alloy
  publication-title: RSC ADV
  doi: 10.1039/C8RA05118F
– volume: 86
  start-page: 93
  year: 2014
  ident: 10.1016/j.cej.2021.130551_b0315
  article-title: Applications of scanning electrochemical microscopy (SECM) for local characterization of AZ31 surface during corrosion in a buffered media
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2014.04.035
– volume: 11
  start-page: 41165
  year: 2019
  ident: 10.1016/j.cej.2021.130551_b0325
  article-title: Green tea polyphenol induced Mg2+-rich multilayer conversion coating: toward enhanced corrosion resistance and promoted in situ endothelialization of AZ31 for potential cardiovascular applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b17221
– volume: 217
  start-page: 1191
  year: 2016
  ident: 10.1016/j.cej.2021.130551_b0310
  article-title: A novel self-healing polyurethane based on disulfide bonds
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201600011
– volume: 28
  start-page: 9060
  issue: 41
  year: 2016
  ident: 10.1016/j.cej.2021.130551_b0205
  article-title: In het panhuis, self-healing hydrogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601613
– volume: 404
  year: 2021
  ident: 10.1016/j.cej.2021.130551_b0255
  article-title: Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127118
– volume: 18
  start-page: 1758
  issue: 3
  year: 2016
  ident: 10.1016/j.cej.2021.130551_b0290
  article-title: Design of new disulfide-based organic compounds for the improvement of self-healing materials
  publication-title: PCCP
  doi: 10.1039/C5CP06660C
– volume: 21
  start-page: 59
  issue: 1
  year: 1988
  ident: 10.1016/j.cej.2021.130551_b0280
  article-title: Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends
  publication-title: Macromolecules
  doi: 10.1021/ma00179a014
– volume: 2
  start-page: 143
  issue: 4
  year: 2010
  ident: 10.1016/j.cej.2021.130551_b0140
  article-title: Designing green, self-healing coatings for metal protection
  publication-title: NPG Asia Mater.
  doi: 10.1038/asiamat.2010.136
– volume: 14
  start-page: 262
  year: 2019
  ident: 10.1016/j.cej.2021.130551_b0105
  article-title: Review of electrochemical properties of hybrid coating systems on Mg with plasma electrolytic oxidation process as pretreatment
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2019.01.004
– volume: 21
  start-page: 645
  issue: 6
  year: 2009
  ident: 10.1016/j.cej.2021.130551_b0145
  article-title: Self-Healing Polymer coatings
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802008
– volume: 27
  start-page: 7740
  issue: 47
  year: 2015
  ident: 10.1016/j.cej.2021.130551_b0165
  article-title: Visible-light-induced self-healing diselenide-containing polyurethane elastomer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503661
– volume: 4
  start-page: 1600318
  year: 2017
  ident: 10.1016/j.cej.2021.130551_b0180
  article-title: Nanocontainers for self-healing coatings
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201600318
– volume: 366
  start-page: 114
  year: 2019
  ident: 10.1016/j.cej.2021.130551_b0065
  article-title: Plasma Electrolytic Oxidation (PEO) as pre-treatment for sol-gel coating on aluminum and magnesium alloys
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2019.03.023
– volume: 357
  start-page: 515
  year: 2019
  ident: 10.1016/j.cej.2021.130551_b0190
  article-title: Synergistic effect of hydrophobic film and porous MAO membrane containing alkynol inhibitor for enhanced corrosion resistance of magnesium alloy
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.10.054
– volume: 3
  start-page: 469
  issue: 2
  year: 2015
  ident: 10.1016/j.cej.2021.130551_b0120
  article-title: Advanced micro/nanocapsules for self-healing smart anticorrosion coatings
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04791E
– volume: 487
  start-page: 581
  year: 2019
  ident: 10.1016/j.cej.2021.130551_b0055
  article-title: Investigation of corrosion resistance and formation mechanism of calcium-containing coatings on AZ31B magnesium alloy
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.05.049
– volume: 35
  start-page: 1134
  issue: 5
  year: 2019
  ident: 10.1016/j.cej.2021.130551_b0185
  article-title: New method for the corrosion resistance of AZ31 Mg alloy with a porous micro-arc oxidation membrane as an ionic corrosion inhibitor container
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01637
– volume: 58
  start-page: 165
  issue: 1
  year: 2019
  ident: 10.1016/j.cej.2021.130551_b0195
  article-title: Enhanced corrosion barrier of microarc-oxidized mg alloy by self-healing superhydrophobic silica coating
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b04060
– volume: 205
  start-page: 1651
  issue: 6
  year: 2010
  ident: 10.1016/j.cej.2021.130551_b0270
  article-title: Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2010.10.022
– volume: 128
  start-page: 224
  year: 2017
  ident: 10.1016/j.cej.2021.130551_b0010
  article-title: Comprehensive screening of Mg corrosion inhibitors
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2017.07.011
– volume: 132
  start-page: 144
  year: 2019
  ident: 10.1016/j.cej.2021.130551_b0085
  article-title: Smart epoxy coating containing zeolites loaded with Ce on a plasma electrolytic oxidation coating on Mg alloy AZ31 for active corrosion protection
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.03.046
– volume: 47
  start-page: 2414
  issue: 2
  year: 2021
  ident: 10.1016/j.cej.2021.130551_b0250
  article-title: Design and optimization of coating structure for plasma sprayed self-healing MgO coating via finite element method
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.09.084
– volume: 7
  start-page: 1859
  issue: 3
  year: 2015
  ident: 10.1016/j.cej.2021.130551_b0075
  article-title: One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507586u
– volume: 6
  start-page: 7027
  issue: 39
  year: 2015
  ident: 10.1016/j.cej.2021.130551_b0235
  article-title: Antifouling and antibacterial hydrogel coatings with self-healing properties based on a dynamic disulfide exchange reaction
  publication-title: Polym Chem-UK
  doi: 10.1039/C5PY00936G
– volume: 43
  start-page: 8114
  issue: 23
  year: 2014
  ident: 10.1016/j.cej.2021.130551_b0115
  article-title: Self-healing gels based on constitutional dynamic chemistry and their potential applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00219A
– volume: 151
  year: 2021
  ident: 10.1016/j.cej.2021.130551_b0260
  article-title: A hydrogen bond based self-healing superhydrophobic octadecyltriethoxysilane−lignocellulose/silica coating
  publication-title: Prog. Org. Coat.
– ident: 10.1016/j.cej.2021.130551_b0295
  doi: 10.1002/pola.27200
– volume: 19
  start-page: 2149
  issue: 8
  year: 1986
  ident: 10.1016/j.cej.2021.130551_b0275
  article-title: Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane
  publication-title: Macromolecules
  doi: 10.1021/ma00162a008
SSID ssj0006919
Score 2.6308806
Snippet A self-healing composite coating based on the dual-action of corrosion inhibitor M−16 embedded in micro-arc oxidation coating and self-healing polyurethanes is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 130551
SubjectTerms Corrosion inhibitor
Disulfide bond
Dual self-healing
Micro-arc oxidation
Polyurethane
Title Dual self-healing composite coating on magnesium alloys for corrosion protection
URI https://dx.doi.org/10.1016/j.cej.2021.130551
Volume 424
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB6YkEKT2omTsSpUhYoKARXdItuxUas2rfoYWPjt3OUBRQIGpjjOWbIuzt138ec7Qi6YYOBYXemEkXUdbhP45hQzDjgLmbhMJUrh_477XtDp87uBP6iQVnkWBmmVhe3PbXpmrYueeqHN-mw4rD95uKcVcYFBi8cEHuLjXOAqv3r_onkEUVbcA4UdlC53NjOOlzYjCBEbHtZE9n3vZ9-05m_au2SnAIq0mc9lj1RMuk-219IHHpCH6xVILMzYOoj3oI8iQxxpWAZaEhnNdJrSiXwFgzZcTSjusr8tKABVeD6HScBboUWqBmgekn775rnVcYoKCY5uRGLpKBXKCL5BX8ogsSJhPGENE2kR-NINE61drg0ERDwwFqJmQCtCKyYsoABjwFezI7KRTlNzTChj2guM9hDAcS9U0tdRyJRMuGVCWFslbqmbWBfpw7GKxTgueWKjGNQZozrjXJ1Vcvk5ZJbnzvhLmJcKj78tgBhs--_DTv437JRs4R0eKvT8M7KxnK_MOaCLpaply6dGNpu33U4Pr93Hl-4HdwjP_g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhU7PsAFKTSJnTg5cEAsKksrJEDiFmzHRq3agmgrxIWf4geZaRMWCTggcYu8RM5kMm8mfp4B2OKSI7D6yktS53vC5fjNaW49BAuV-1znWtP_jlo9rl6L05voZgRey7MwRKssbP_Qpg-sddFSKaRZeWg0KpcB7WmlQlLQEnCZFszKM_v8hHFbd-_kEF_ydhgeH10dVL2itIBnwlT2PK0TlaLyRkrFuZM5FzkPbWpkHCk_yY3xhbEYSYjYOgw3Eeal0Vw6hE9rEeQ43ncUxgWaCyqbsPvywSuJ00E1EVqdR8srt1IHpDJjmxiThgEVYY6i4Hsw_ARwxzMwXXimbH_48LMwYjtzMPUpX-E8XBz2cUTXtpxHDia2MaKkE-_L4pUiCjW777C2ukML2ui3GW3rP3cZesbY_4iLQDVgRW4IvFyA63-R2yKMde47dgkY5yaIrQnIYxRBolVk0oRrlQvHpXRuGfxSNpkp8pVT2YxWVhLTmhmKMyNxZkNxLsPO-5SHYbKO3waLUuDZF43LEEx-nrbyt2mbMFG9qp1n5yf1s1WYpB460RhEazDWe-zbdXRtenpjoEoMbv9bd98APPwKpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+self-healing+composite+coating+on+magnesium+alloys+for+corrosion+protection&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Liu%2C+Siqin&rft.au=Li%2C+Zhaoxia&rft.au=Yu%2C+Qiangliang&rft.au=Qi%2C+Yuming&rft.date=2021-11-15&rft.issn=1385-8947&rft.volume=424&rft.spage=130551&rft_id=info:doi/10.1016%2Fj.cej.2021.130551&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2021_130551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon