Pattern formation of a biomass–water reaction–diffusion model

In this paper, we are concerned with a biomass–water reaction–diffusion model subject to the homogeneous Neumann boundary condition. We derive several sufficient conditions on the existence and non-existence of non-constant stationary solutions with respect to large or small diffusion rate, which gi...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics letters Vol. 123; p. 107605
Main Authors Lei, Chengxia, Zhang, Guanghui, Zhou, Jialin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we are concerned with a biomass–water reaction–diffusion model subject to the homogeneous Neumann boundary condition. We derive several sufficient conditions on the existence and non-existence of non-constant stationary solutions with respect to large or small diffusion rate, which give the criteria for the possibility of Turing patterns in this system. Our results confirm the numerical findings of Manor and Shnerb, (2006) and also complement the theoretical results of Wang et al., (2017) for the corresponding ODE model.
AbstractList In this paper, we are concerned with a biomass–water reaction–diffusion model subject to the homogeneous Neumann boundary condition. We derive several sufficient conditions on the existence and non-existence of non-constant stationary solutions with respect to large or small diffusion rate, which give the criteria for the possibility of Turing patterns in this system. Our results confirm the numerical findings of Manor and Shnerb, (2006) and also complement the theoretical results of Wang et al., (2017) for the corresponding ODE model.
ArticleNumber 107605
Author Zhou, Jialin
Zhang, Guanghui
Lei, Chengxia
Author_xml – sequence: 1
  givenname: Chengxia
  surname: Lei
  fullname: Lei, Chengxia
  email: leichengxia001@163.com
  organization: School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
– sequence: 2
  givenname: Guanghui
  orcidid: 0000-0003-0231-2297
  surname: Zhang
  fullname: Zhang, Guanghui
  email: guanghuizhang@hust.edu.cn
  organization: School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, China
– sequence: 3
  givenname: Jialin
  surname: Zhou
  fullname: Zhou, Jialin
  email: 1584479344@qq.com
  organization: School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
BookMark eNp9kEFOwzAQRS1UJNrCAdjlAil27NiJWFUVUKRKsIC15dhjyVUSI9uA2HEHbshJcCgrFl2NZv680fy_QLPRj4DQJcErggm_2q_U0K8qXJHcC47rEzQnjaBlzepqhua4aWnZ8ro9Q4sY9xhj2tJmjtaPKiUIY2F9GFRyfiy8LVTROT-oGL8_v95V1osASk9qHhhn7WucNgdvoD9Hp1b1ES7-6hI93948bbbl7uHufrPelbpqRSo7BQ3mDHfMUkYaC1i0RAkwhoESmttGEU0oJi2rmW7qCji3kD-2pOuAGLpE5HBXBx9jACtfghtU-JAEyykDuZc5AzllIA8ZZEb8Y7RLvy5TUK4_Sl4fSMiW3hwEGbWDUYNxAXSSxrsj9A9VMnsT
CitedBy_id crossref_primary_10_1371_journal_pone_0314910
crossref_primary_10_3390_math10091500
crossref_primary_10_1142_S0218127422500699
crossref_primary_10_1007_s10440_025_00708_y
crossref_primary_10_1017_S0956792523000323
Cites_doi 10.1016/j.nonrwa.2007.02.005
10.1016/j.jde.2015.03.017
10.1142/S0218202509004005
10.3934/cpaa.2012.11.261
10.1016/j.jtbi.2008.04.012
10.1088/0951-7715/29/12/3777
10.1016/j.mbs.2015.10.015
10.1209/epl/i2005-10580-5
10.1142/S0219199710003968
10.1016/j.nonrwa.2012.07.012
10.1006/jdeq.1996.0157
10.1016/0022-0396(88)90147-7
10.1016/j.na.2008.12.003
10.1088/0951-7715/21/7/006
10.1016/j.jmaa.2009.12.021
10.1016/j.jde.2008.11.007
10.1007/s11425-007-0001-z
10.1016/j.na.2003.09.020
10.1016/j.jmaa.2004.12.026
10.1016/j.nonrwa.2016.11.007
10.1016/j.jde.2016.09.040
10.1016/j.aml.2008.06.032
10.1016/S0022-0396(02)00100-6
10.1016/j.jde.2012.12.009
10.1016/j.jmaa.2020.124860
10.1017/S0308210500000275
10.1016/j.jde.2015.10.036
10.1016/j.aml.2008.02.003
10.1090/S0002-9947-05-04010-9
10.1016/j.mcm.2006.03.001
10.1016/j.jde.2007.06.005
10.1088/0951-7715/21/10/007
10.1137/S003614100343651X
10.1137/05064624X
10.1016/j.nonrwa.2018.06.002
10.1016/j.nonrwa.2014.08.003
10.1007/978-1-4471-5526-3
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.aml.2021.107605
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5452
ExternalDocumentID 10_1016_j_aml_2021_107605
S0893965921003220
GrantInformation_xml – fundername: NSF of Jiangsu Province, China
  grantid: BK20180999
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: NSF of China
  grantid: 11501225
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Jiangsu Normal University, China
  grantid: 17XLR008
  funderid: http://dx.doi.org/10.13039/501100004030
– fundername: Fundamental Research Funds for the Central Universities, China
  grantid: 5003011008)
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: NSF of China
  grantid: 11801232
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-bae80640b4f3418fe0791a7edd4ea7c6f8a1c13019454c852e66fe965f1bbe1d3
IEDL.DBID .~1
ISSN 0893-9659
IngestDate Tue Jul 01 00:38:26 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Fri Feb 23 02:42:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Small/large diffusion
Non-constant stationary solution
A biomass–water reaction–diffusion model
Turing pattern
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-bae80640b4f3418fe0791a7edd4ea7c6f8a1c13019454c852e66fe965f1bbe1d3
ORCID 0000-0003-0231-2297
ParticipantIDs crossref_primary_10_1016_j_aml_2021_107605
crossref_citationtrail_10_1016_j_aml_2021_107605
elsevier_sciencedirect_doi_10_1016_j_aml_2021_107605
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Applied mathematics letters
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang (b14) 2003; 190
Peng, Wang (b39) 2009; 22
Turing (b17) 1952; 237B
Peng, Yi, Zhao (b29) 2013; 254
Peng, Wang, Yang (b27) 2006; 44
Abdelmalek, Bendoukha (b31) 2017; 35
Du, Peng, Wang (b10) 2009; 246
Meron (b6) 2016; 271
Ko (b32) 2016; 29
Li, Wang, Zhang (b24) 2018; 44
Peng, Yang (b21) 2009; 71
Li, Peng, Song (b33) 2017; 262
Ni, Tang (b12) 2008; 357
Wang, Wei, Shi (b41) 2016; 260
Marinov, Wang, Yang (b5) 2013; 14
Peng, Yi (b40) 2011; 15
Wei, Winter (b34) 2014
Yi, Wei, Shi (b43) 2009; 22
Peng (b26) 2007; 241
Lieberman (b19) 2005; 36
Manor, Shnerb (b1) 2006; 74
Lin, Ni, Takagi (b9) 1998; 72
L. Nirenberg, Courant Institute of Mathematical Sciences, New York, pp.1973-1974.
Peng, Shi, Wang (b37) 2007; 67
Li, Wu, Dong (b28) 2015; 259
Peng, Wang (b38) 2007; 50
Zhou, Mu (b22) 2010; 366
Wei, Wu, Guo (b30) 2015; 22
Guo, Yuan (b35) 2009; 19
Wang, Shi, Zhang (b2) 2017; 22
Peng, Shi, Wang (b16) 2008; 21
Davidson, Rynne (b23) 2000; 130
Kletter, von Hardenberg, Meron (b3) 2012; 11
Peng, Wang (b13) 2004; 56
Wang, Shi, Zhang (b7) 2021; 497
Peng, Wang (b11) 2005; 309
Ni (b36) 1998; 45
Marius, Vicentiu (b20) 2010; 12
Ghergu (b18) 2008; 21
Manor, Shnerb (b4) 2008; 253
Li, Zhang (b25) 2017; 10
Lou, Ni (b8) 1996; 131
Yi, Wei, Shi (b42) 2008; 9
Du (10.1016/j.aml.2021.107605_b10) 2009; 246
Ghergu (10.1016/j.aml.2021.107605_b18) 2008; 21
Peng (10.1016/j.aml.2021.107605_b40) 2011; 15
Marinov (10.1016/j.aml.2021.107605_b5) 2013; 14
Ko (10.1016/j.aml.2021.107605_b32) 2016; 29
Peng (10.1016/j.aml.2021.107605_b37) 2007; 67
Turing (10.1016/j.aml.2021.107605_b17) 1952; 237B
Wang (10.1016/j.aml.2021.107605_b14) 2003; 190
Abdelmalek (10.1016/j.aml.2021.107605_b31) 2017; 35
Marius (10.1016/j.aml.2021.107605_b20) 2010; 12
Lin (10.1016/j.aml.2021.107605_b9) 1998; 72
Yi (10.1016/j.aml.2021.107605_b42) 2008; 9
Peng (10.1016/j.aml.2021.107605_b13) 2004; 56
Peng (10.1016/j.aml.2021.107605_b26) 2007; 241
Yi (10.1016/j.aml.2021.107605_b43) 2009; 22
Peng (10.1016/j.aml.2021.107605_b11) 2005; 309
Wei (10.1016/j.aml.2021.107605_b34) 2014
Lieberman (10.1016/j.aml.2021.107605_b19) 2005; 36
Wang (10.1016/j.aml.2021.107605_b7) 2021; 497
Wang (10.1016/j.aml.2021.107605_b2) 2017; 22
Ni (10.1016/j.aml.2021.107605_b36) 1998; 45
Manor (10.1016/j.aml.2021.107605_b1) 2006; 74
Peng (10.1016/j.aml.2021.107605_b39) 2009; 22
10.1016/j.aml.2021.107605_b15
Peng (10.1016/j.aml.2021.107605_b27) 2006; 44
Peng (10.1016/j.aml.2021.107605_b21) 2009; 71
Li (10.1016/j.aml.2021.107605_b33) 2017; 262
Wei (10.1016/j.aml.2021.107605_b30) 2015; 22
Li (10.1016/j.aml.2021.107605_b25) 2017; 10
Lou (10.1016/j.aml.2021.107605_b8) 1996; 131
Zhou (10.1016/j.aml.2021.107605_b22) 2010; 366
Ni (10.1016/j.aml.2021.107605_b12) 2008; 357
Peng (10.1016/j.aml.2021.107605_b29) 2013; 254
Li (10.1016/j.aml.2021.107605_b24) 2018; 44
Peng (10.1016/j.aml.2021.107605_b38) 2007; 50
Kletter (10.1016/j.aml.2021.107605_b3) 2012; 11
Wang (10.1016/j.aml.2021.107605_b41) 2016; 260
Peng (10.1016/j.aml.2021.107605_b16) 2008; 21
Davidson (10.1016/j.aml.2021.107605_b23) 2000; 130
Li (10.1016/j.aml.2021.107605_b28) 2015; 259
Manor (10.1016/j.aml.2021.107605_b4) 2008; 253
Meron (10.1016/j.aml.2021.107605_b6) 2016; 271
Guo (10.1016/j.aml.2021.107605_b35) 2009; 19
References_xml – volume: 21
  start-page: 1471
  year: 2008
  end-page: 1488
  ident: b16
  article-title: On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law
  publication-title: Nonlinearity
– volume: 45
  start-page: 9
  year: 1998
  end-page: 18
  ident: b36
  article-title: Diffusion, cross-diffusion, and their spike-layer steady states
  publication-title: Notices Amer. Math. Soc.
– volume: 22
  start-page: 155
  year: 2015
  end-page: 175
  ident: b30
  article-title: Steady state bifurcations for a glycolysis model in biochemical reaction
  publication-title: Nonlinear Anal. RWA
– volume: 271
  start-page: 1
  year: 2016
  end-page: 18
  ident: b6
  article-title: Pattern formation-a missing link in the study of ecosystem response to environmental changes
  publication-title: Math. Biosci.
– volume: 22
  start-page: 569
  year: 2009
  end-page: 573
  ident: b39
  article-title: Some non-existence results for stationary solutions to the Gray-Scott model in a bounded domain
  publication-title: Appl. Math. Lett.
– volume: 44
  start-page: 537
  year: 2018
  end-page: 558
  ident: b24
  article-title: Analysis on a generalized Sel’kov-Schnakenberg reaction–diffusion system
  publication-title: Nonlinear Anal. RWA
– year: 2014
  ident: b34
  article-title: Mathematical aspects of pattern formation in biological systems
  publication-title: Applied Mathematical Sciences, Vol.189
– volume: 11
  start-page: 261
  year: 2012
  end-page: 273
  ident: b3
  article-title: Ostwald ripening in dryland vegetation
  publication-title: Commun. Pure Appl. Anal.
– volume: 497
  year: 2021
  ident: b7
  article-title: Bifurcation and pattern formation in diffusive Klausmeier-Gray-Scott model of water-plant interaction
  publication-title: J. Math. Anal. Appl.
– volume: 262
  start-page: 559
  year: 2017
  end-page: 589
  ident: b33
  article-title: Global existence and finite time blow-up of solutions of a Gierer-Meinhardt system
  publication-title: J. Differential Equations
– volume: 9
  start-page: 1038
  year: 2008
  end-page: 1051
  ident: b42
  article-title: Diffusion-driven instability and bifurcation in the Lengyel–Epstein system
  publication-title: Nonlinear Anal. RWA
– volume: 67
  start-page: 1479
  year: 2007
  end-page: 1503
  ident: b37
  article-title: Stationary pattern of a ratio-dependent food chain model with diffusion
  publication-title: SIAM J. Appl. Math.
– volume: 21
  start-page: 2331
  year: 2008
  end-page: 2345
  ident: b18
  article-title: Non-constant steady states for the Brusselator type systems
  publication-title: Nonlinearity
– volume: 246
  start-page: 3932
  year: 2009
  end-page: 3956
  ident: b10
  article-title: Effect of a protection zone in the diffusive Leslie predator–prey model
  publication-title: J. Differential Equations
– volume: 56
  start-page: 451
  year: 2004
  end-page: 464
  ident: b13
  article-title: Positive steady-state solutions of the Noyes-Field model for Belousov–Zhabotinskii reaction
  publication-title: Nonlinear Anal.
– volume: 254
  start-page: 2465
  year: 2013
  end-page: 2498
  ident: b29
  article-title: Spatiotemporal patterns in a reaction–diffusion model with the Degn-Harrison reaction scheme
  publication-title: J. Differential Equations
– volume: 190
  start-page: 600
  year: 2003
  end-page: 620
  ident: b14
  article-title: Non-constant positive steady states of the Sel’kov model
  publication-title: J. Differential Equations
– volume: 366
  start-page: 679
  year: 2010
  end-page: 693
  ident: b22
  article-title: Pattern formation of a coupled two-cell Brusselator model
  publication-title: J. Math. Anal. Appl.
– volume: 72
  start-page: 1
  year: 1998
  end-page: 27
  ident: b9
  article-title: Large amplitude stationary solutions to a chemotaxis system
  publication-title: J. Differential Equations
– volume: 71
  start-page: 1389
  year: 2009
  end-page: 1394
  ident: b21
  article-title: On steady-state solutions of the Brusselator-type system
  publication-title: Nonlinear Anal.
– volume: 259
  start-page: 1990
  year: 2015
  end-page: 2029
  ident: b28
  article-title: Turing patterns in a reaction–diffusion model with the Degn-Harrison scheme
  publication-title: J. Differential Equations
– reference: L. Nirenberg, Courant Institute of Mathematical Sciences, New York, pp.1973-1974.
– volume: 260
  start-page: 3495
  year: 2016
  end-page: 3523
  ident: b41
  article-title: Global bifurcation analysis and pattern formation in homogeneous diffusive predator–prey systems
  publication-title: J. Differential Equations
– volume: 74
  start-page: 837
  year: 2006
  end-page: 843
  ident: b1
  article-title: Dynamical failure of Turing patterns
  publication-title: Europhys. Lett.
– volume: 22
  start-page: 2971
  year: 2017
  end-page: 3006
  ident: b2
  article-title: Interaction between water and plants: rich dynamics in a simple model
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 50
  start-page: 377
  year: 2007
  end-page: 386
  ident: b38
  article-title: On pattern formation in the Gray-Scott model
  publication-title: Science in China A: Mathematics
– volume: 36
  start-page: 1400
  year: 2005
  end-page: 1406
  ident: b19
  article-title: Bounds for the steady-state Sel’kov model for arbitrary
  publication-title: SIAM J. Math. Anal.
– volume: 131
  start-page: 79
  year: 1996
  end-page: 131
  ident: b8
  article-title: Self-diffusion and cross-diffusion
  publication-title: J. Differential Equations
– volume: 130
  start-page: 507
  year: 2000
  end-page: 516
  ident: b23
  article-title: A priori bounds and global existence of solutions of the steady-state Sel’kov model
  publication-title: Proc. Roy. Soc. Edinburgh, A
– volume: 35
  start-page: 397
  year: 2017
  end-page: 413
  ident: b31
  article-title: On the global asymptotic stability of solutions to a generalised Lengyel-epstein system
  publication-title: Nonlinear Anal. RWA
– volume: 309
  start-page: 151
  year: 2005
  end-page: 166
  ident: b11
  article-title: Pattern formation in the Brusselator type systems
  publication-title: J. Math. Anal. Appl.
– volume: 12
  start-page: 661
  year: 2010
  end-page: 679
  ident: b20
  article-title: Turing paterns in general reaction–diffusion systems of Brusselator type
  publication-title: Commun. Contemp. Math.
– volume: 29
  start-page: 3777
  year: 2016
  end-page: 3809
  ident: b32
  article-title: Bifurcations and asymptotic behavior of positive steady-states of an enzyme-catalyzed reaction–diffusion system
  publication-title: Nonlinearity
– volume: 357
  start-page: 3953
  year: 2008
  end-page: 3969
  ident: b12
  article-title: Turing patterns in the Lengyel–Epstein system for the CIMA reactions
  publication-title: Trans. Amer. Math. Soc.
– volume: 44
  start-page: 945
  year: 2006
  end-page: 951
  ident: b27
  article-title: Positive steady-state solutions of the Sel’kov model
  publication-title: Math. Comput. Model.
– volume: 241
  start-page: 386
  year: 2007
  end-page: 398
  ident: b26
  article-title: Qualitative analysis of steady states to the Sel’kov model
  publication-title: J. Differential Equations
– volume: 22
  start-page: 52
  year: 2009
  end-page: 55
  ident: b43
  article-title: Global asymptotical behavior of the Lengyel–Epstein reaction–diffusion system
  publication-title: Appl. Math. Lett.
– volume: 253
  start-page: 838
  year: 2008
  end-page: 842
  ident: b4
  article-title: Facilitation, competition, and vegetation patchiness: from scale free distribution to patterns
  publication-title: J. Theoret. Biol.
– volume: 10
  start-page: 1009
  year: 2017
  end-page: 1023
  ident: b25
  article-title: Steady states of a Sel’kov-Schnakenberg reaction–diffusion system
  publication-title: Discrete Contin. Dyn. Syst. Ser. S
– volume: 15
  start-page: 217
  year: 2011
  end-page: 230
  ident: b40
  article-title: On spatiotemporal pattern formation in a diffusive bimolecular model
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 19
  start-page: 1797
  year: 2009
  end-page: 1852
  ident: b35
  article-title: Pattern formation in a ring network with delay
  publication-title: Math. Models Methods Appl. Sci.
– volume: 14
  start-page: 507
  year: 2013
  end-page: 525
  ident: b5
  article-title: On a vegetation pattern formation model governed by a nonlinear parabolic system
  publication-title: Nonlinear Anal. RWA
– volume: 237B
  start-page: 37
  year: 1952
  end-page: 72
  ident: b17
  article-title: The chemical basis of morphogenesis
  publication-title: Philos. Trans. Royal Soc.
– volume: 9
  start-page: 1038
  year: 2008
  ident: 10.1016/j.aml.2021.107605_b42
  article-title: Diffusion-driven instability and bifurcation in the Lengyel–Epstein system
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2007.02.005
– volume: 259
  start-page: 1990
  year: 2015
  ident: 10.1016/j.aml.2021.107605_b28
  article-title: Turing patterns in a reaction–diffusion model with the Degn-Harrison scheme
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2015.03.017
– volume: 19
  start-page: 1797
  year: 2009
  ident: 10.1016/j.aml.2021.107605_b35
  article-title: Pattern formation in a ring network with delay
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202509004005
– volume: 11
  start-page: 261
  year: 2012
  ident: 10.1016/j.aml.2021.107605_b3
  article-title: Ostwald ripening in dryland vegetation
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2012.11.261
– volume: 253
  start-page: 838
  year: 2008
  ident: 10.1016/j.aml.2021.107605_b4
  article-title: Facilitation, competition, and vegetation patchiness: from scale free distribution to patterns
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2008.04.012
– volume: 29
  start-page: 3777
  year: 2016
  ident: 10.1016/j.aml.2021.107605_b32
  article-title: Bifurcations and asymptotic behavior of positive steady-states of an enzyme-catalyzed reaction–diffusion system
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/29/12/3777
– volume: 271
  start-page: 1
  year: 2016
  ident: 10.1016/j.aml.2021.107605_b6
  article-title: Pattern formation-a missing link in the study of ecosystem response to environmental changes
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2015.10.015
– volume: 74
  start-page: 837
  year: 2006
  ident: 10.1016/j.aml.2021.107605_b1
  article-title: Dynamical failure of Turing patterns
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2005-10580-5
– volume: 15
  start-page: 217
  year: 2011
  ident: 10.1016/j.aml.2021.107605_b40
  article-title: On spatiotemporal pattern formation in a diffusive bimolecular model
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– ident: 10.1016/j.aml.2021.107605_b15
– volume: 12
  start-page: 661
  year: 2010
  ident: 10.1016/j.aml.2021.107605_b20
  article-title: Turing paterns in general reaction–diffusion systems of Brusselator type
  publication-title: Commun. Contemp. Math.
  doi: 10.1142/S0219199710003968
– volume: 14
  start-page: 507
  year: 2013
  ident: 10.1016/j.aml.2021.107605_b5
  article-title: On a vegetation pattern formation model governed by a nonlinear parabolic system
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2012.07.012
– volume: 131
  start-page: 79
  year: 1996
  ident: 10.1016/j.aml.2021.107605_b8
  article-title: Self-diffusion and cross-diffusion
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1996.0157
– volume: 72
  start-page: 1
  year: 1998
  ident: 10.1016/j.aml.2021.107605_b9
  article-title: Large amplitude stationary solutions to a chemotaxis system
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(88)90147-7
– volume: 71
  start-page: 1389
  year: 2009
  ident: 10.1016/j.aml.2021.107605_b21
  article-title: On steady-state solutions of the Brusselator-type system
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2008.12.003
– volume: 21
  start-page: 1471
  year: 2008
  ident: 10.1016/j.aml.2021.107605_b16
  article-title: On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/21/7/006
– volume: 366
  start-page: 679
  year: 2010
  ident: 10.1016/j.aml.2021.107605_b22
  article-title: Pattern formation of a coupled two-cell Brusselator model
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2009.12.021
– volume: 246
  start-page: 3932
  year: 2009
  ident: 10.1016/j.aml.2021.107605_b10
  article-title: Effect of a protection zone in the diffusive Leslie predator–prey model
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2008.11.007
– volume: 50
  start-page: 377
  year: 2007
  ident: 10.1016/j.aml.2021.107605_b38
  article-title: On pattern formation in the Gray-Scott model
  publication-title: Science in China A: Mathematics
  doi: 10.1007/s11425-007-0001-z
– volume: 22
  start-page: 2971
  year: 2017
  ident: 10.1016/j.aml.2021.107605_b2
  article-title: Interaction between water and plants: rich dynamics in a simple model
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 56
  start-page: 451
  year: 2004
  ident: 10.1016/j.aml.2021.107605_b13
  article-title: Positive steady-state solutions of the Noyes-Field model for Belousov–Zhabotinskii reaction
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2003.09.020
– volume: 237B
  start-page: 37
  year: 1952
  ident: 10.1016/j.aml.2021.107605_b17
  article-title: The chemical basis of morphogenesis
  publication-title: Philos. Trans. Royal Soc.
– volume: 309
  start-page: 151
  year: 2005
  ident: 10.1016/j.aml.2021.107605_b11
  article-title: Pattern formation in the Brusselator type systems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.12.026
– volume: 35
  start-page: 397
  year: 2017
  ident: 10.1016/j.aml.2021.107605_b31
  article-title: On the global asymptotic stability of solutions to a generalised Lengyel-epstein system
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2016.11.007
– volume: 262
  start-page: 559
  year: 2017
  ident: 10.1016/j.aml.2021.107605_b33
  article-title: Global existence and finite time blow-up of solutions of a Gierer-Meinhardt system
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2016.09.040
– volume: 22
  start-page: 569
  year: 2009
  ident: 10.1016/j.aml.2021.107605_b39
  article-title: Some non-existence results for stationary solutions to the Gray-Scott model in a bounded domain
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2008.06.032
– volume: 190
  start-page: 600
  year: 2003
  ident: 10.1016/j.aml.2021.107605_b14
  article-title: Non-constant positive steady states of the Sel’kov model
  publication-title: J. Differential Equations
  doi: 10.1016/S0022-0396(02)00100-6
– volume: 254
  start-page: 2465
  year: 2013
  ident: 10.1016/j.aml.2021.107605_b29
  article-title: Spatiotemporal patterns in a reaction–diffusion model with the Degn-Harrison reaction scheme
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2012.12.009
– volume: 497
  issue: 1
  year: 2021
  ident: 10.1016/j.aml.2021.107605_b7
  article-title: Bifurcation and pattern formation in diffusive Klausmeier-Gray-Scott model of water-plant interaction
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2020.124860
– volume: 130
  start-page: 507
  year: 2000
  ident: 10.1016/j.aml.2021.107605_b23
  article-title: A priori bounds and global existence of solutions of the steady-state Sel’kov model
  publication-title: Proc. Roy. Soc. Edinburgh, A
  doi: 10.1017/S0308210500000275
– volume: 10
  start-page: 1009
  year: 2017
  ident: 10.1016/j.aml.2021.107605_b25
  article-title: Steady states of a Sel’kov-Schnakenberg reaction–diffusion system
  publication-title: Discrete Contin. Dyn. Syst. Ser. S
– volume: 260
  start-page: 3495
  year: 2016
  ident: 10.1016/j.aml.2021.107605_b41
  article-title: Global bifurcation analysis and pattern formation in homogeneous diffusive predator–prey systems
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2015.10.036
– volume: 22
  start-page: 52
  year: 2009
  ident: 10.1016/j.aml.2021.107605_b43
  article-title: Global asymptotical behavior of the Lengyel–Epstein reaction–diffusion system
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2008.02.003
– volume: 357
  start-page: 3953
  year: 2008
  ident: 10.1016/j.aml.2021.107605_b12
  article-title: Turing patterns in the Lengyel–Epstein system for the CIMA reactions
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-05-04010-9
– volume: 44
  start-page: 945
  year: 2006
  ident: 10.1016/j.aml.2021.107605_b27
  article-title: Positive steady-state solutions of the Sel’kov model
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2006.03.001
– volume: 241
  start-page: 386
  year: 2007
  ident: 10.1016/j.aml.2021.107605_b26
  article-title: Qualitative analysis of steady states to the Sel’kov model
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2007.06.005
– volume: 21
  start-page: 2331
  year: 2008
  ident: 10.1016/j.aml.2021.107605_b18
  article-title: Non-constant steady states for the Brusselator type systems
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/21/10/007
– volume: 36
  start-page: 1400
  year: 2005
  ident: 10.1016/j.aml.2021.107605_b19
  article-title: Bounds for the steady-state Sel’kov model for arbitrary p in any number of dimensions
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S003614100343651X
– volume: 67
  start-page: 1479
  year: 2007
  ident: 10.1016/j.aml.2021.107605_b37
  article-title: Stationary pattern of a ratio-dependent food chain model with diffusion
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/05064624X
– volume: 44
  start-page: 537
  year: 2018
  ident: 10.1016/j.aml.2021.107605_b24
  article-title: Analysis on a generalized Sel’kov-Schnakenberg reaction–diffusion system
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2018.06.002
– volume: 22
  start-page: 155
  year: 2015
  ident: 10.1016/j.aml.2021.107605_b30
  article-title: Steady state bifurcations for a glycolysis model in biochemical reaction
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2014.08.003
– year: 2014
  ident: 10.1016/j.aml.2021.107605_b34
  article-title: Mathematical aspects of pattern formation in biological systems
  doi: 10.1007/978-1-4471-5526-3
– volume: 45
  start-page: 9
  year: 1998
  ident: 10.1016/j.aml.2021.107605_b36
  article-title: Diffusion, cross-diffusion, and their spike-layer steady states
  publication-title: Notices Amer. Math. Soc.
SSID ssj0003938
Score 2.3543477
Snippet In this paper, we are concerned with a biomass–water reaction–diffusion model subject to the homogeneous Neumann boundary condition. We derive several...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107605
SubjectTerms A biomass–water reaction–diffusion model
Non-constant stationary solution
Small/large diffusion
Turing pattern
Title Pattern formation of a biomass–water reaction–diffusion model
URI https://dx.doi.org/10.1016/j.aml.2021.107605
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4EuLSLm2a4xiOqWwIOtitJGkCE-3G3PAm_g_-h_4lvqTtVFAPHhveo-0vj_eRvA-ETjnNMhZmijDGDWGSCiIzEZFQaEktNwn15WKDYdwfsatxNK6hblUL49IqS91f6HSvrcuVVolmazaZtG4pmFrXDg-CFgpi6eJ2eKGT8vOXzzSPtvDTrB0xcdTVzabP8ZKP7vYhDOCZx26C3U-26Yu96W2hzdJRxJ3iW7ZRzeQ7aGOw6rL6tIs6N745Zo5XFYh4arHErqQefOL317dn8CTnGPxCX70AC24eytIdkGE_AmcPjXoXd90-KUciEB0KviBKOvQYVcyC-UmsoVwEkhsA3EiuY5vIQINZCgSLmE6i0MSxNfDfNlDKBFl7H9XzaW4OEA6DOIHYTElp2qydUWWotkyLxDCZge5pIFqBkeqyX7gbW_GQVolh9ynglzr80gK_BjpbscyKZhl_EbMK4fTbjqegzH9nO_wf2xFaD13hgj88OUb1xXxpTsCdWKiml5cmWutcXveHH16YytM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5Ke1AP4hPrMwdPQugm2Tz2WIoltQ8EW-gtbDa7UNG01Bav_gf_ob_E2U1SFNSDxyw7kHxZvpndnZkP4DokWUbdLLUpDaVNOWE2z5hvu0xwokIZEVMuNhwF8YTeTf1pDTpVLYxOqyy5v-B0w9blSKtEs7WYzVoPBF2tboeHmxaCyxL37Q3dncqvQ6Pd68ejDSF7zAha6_m2NqguN02aF3_WFxCug89hoEXsfnJPX1xOdw92y1jRahevsw81mR_AznDTaPXlENr3pj9mbm2KEK25srilq-oxLP54e3_FYHJpYWhoChhwQEuirPUZmWVUcI5g0r0dd2K7VEWwhcvClZ1yDSAlKVXogSIlScgcHkrEXPJQBCrijkDP5DBEQ0S-K4NASfxu5aSpdDLvGOr5PJcnYLlOEOH2LOVcetTLSCqJUFSwSFKeIf00gVRgJKJsGa6VK56SKjfsMUH8Eo1fUuDXhJuNyaLol_HXZFohnHz76Qny-e9mp_8zu4KteDwcJIPeqH8G266uYzBnKedQXy3X8gKji1V6Wa6eT2NHzYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+formation+of+a+biomass%E2%80%93water+reaction%E2%80%93diffusion+model&rft.jtitle=Applied+mathematics+letters&rft.au=Lei%2C+Chengxia&rft.au=Zhang%2C+Guanghui&rft.au=Zhou%2C+Jialin&rft.date=2022-01-01&rft.issn=0893-9659&rft.volume=123&rft.spage=107605&rft_id=info:doi/10.1016%2Fj.aml.2021.107605&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aml_2021_107605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-9659&client=summon