Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor

[Display omitted] •Multifunctional elastomer foams were achieved by thermos-expandable microspheres.•Piezoresistivity of foams was improved by adding thermos-expandable microspheres.•The foams showed distinguishing signal response, reliability and stability.•The unfoamed composites showed NTC first...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 393; p. 124805
Main Authors Cai, Jie-Hua, Li, Jie, Chen, Xu-Dong, Wang, Ming
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Multifunctional elastomer foams were achieved by thermos-expandable microspheres.•Piezoresistivity of foams was improved by adding thermos-expandable microspheres.•The foams showed distinguishing signal response, reliability and stability.•The unfoamed composites showed NTC first and then PTC, finally NTC again.•Microwave shielding was greatly improved by adding thermos-expandable microspheres. In this work, the multifunctional elastomer foam with robust mechanical properties, highly piezoresistive sensitivity, special temperature-sensitive characteristic and excellent EMI shielding property was successfully fabricated by directly introducing thermo-expandable microspheres (EM) into polydimethylsiloxane/multi-walled carbon nanotube (PDMS/CNT). It was found that the addition of EM enhanced the piezoresistivity, integrating the properties of quick response (60 ms), excellent reliability and extraordinary stability. For example, the value of I/I0 in the PDMS/EM/CNT composites with 30 wt% EM and 1.0 wt% CNT achieved 1800% enhancement compared to the composites without EM. Besides, the self-reinforced PDMS/EM/CNT elastomer with unique softening behavior showed great potential in strain alerting device. Moreover, the special temperature-sensitive sensing in the unfoamed PDMS/EM/CNT sample was studied in detail, exhibiting the NTC effect first, and then PTC effect, finally NTC again. Furthermore, the EMI shielding performance got incredible improvement due to the introduction of multiple interfaces and the enhancement of conductivity. For example, by incorporating 10, 30 and 50 vol% EM into the PDMS/CNT composites, the improved EMI SE of ~32, ~36 and ~43 dB were gained, respectively.
AbstractList [Display omitted] •Multifunctional elastomer foams were achieved by thermos-expandable microspheres.•Piezoresistivity of foams was improved by adding thermos-expandable microspheres.•The foams showed distinguishing signal response, reliability and stability.•The unfoamed composites showed NTC first and then PTC, finally NTC again.•Microwave shielding was greatly improved by adding thermos-expandable microspheres. In this work, the multifunctional elastomer foam with robust mechanical properties, highly piezoresistive sensitivity, special temperature-sensitive characteristic and excellent EMI shielding property was successfully fabricated by directly introducing thermo-expandable microspheres (EM) into polydimethylsiloxane/multi-walled carbon nanotube (PDMS/CNT). It was found that the addition of EM enhanced the piezoresistivity, integrating the properties of quick response (60 ms), excellent reliability and extraordinary stability. For example, the value of I/I0 in the PDMS/EM/CNT composites with 30 wt% EM and 1.0 wt% CNT achieved 1800% enhancement compared to the composites without EM. Besides, the self-reinforced PDMS/EM/CNT elastomer with unique softening behavior showed great potential in strain alerting device. Moreover, the special temperature-sensitive sensing in the unfoamed PDMS/EM/CNT sample was studied in detail, exhibiting the NTC effect first, and then PTC effect, finally NTC again. Furthermore, the EMI shielding performance got incredible improvement due to the introduction of multiple interfaces and the enhancement of conductivity. For example, by incorporating 10, 30 and 50 vol% EM into the PDMS/CNT composites, the improved EMI SE of ~32, ~36 and ~43 dB were gained, respectively.
ArticleNumber 124805
Author Cai, Jie-Hua
Li, Jie
Chen, Xu-Dong
Wang, Ming
Author_xml – sequence: 1
  givenname: Jie-Hua
  surname: Cai
  fullname: Cai, Jie-Hua
  organization: Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
– sequence: 2
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  organization: Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
– sequence: 3
  givenname: Xu-Dong
  orcidid: 0000-0001-9499-5421
  surname: Chen
  fullname: Chen, Xu-Dong
  organization: Key Laboratory of Polymer Composite and Function Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
– sequence: 4
  givenname: Ming
  orcidid: 0000-0003-2903-8064
  surname: Wang
  fullname: Wang, Ming
  email: mwang@swu.edu.cn
  organization: Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
BookMark eNp9kM1u2zAQhIUiAZqkeYDc-ACVS1KyJKKnIugfkKCX9kysqFW8BkUKJG3Hea4-YKmqpx5yImcw3wA718WF8w6L4k7wjeCi-bDfGNxvJJdZy7rj2zfFlejaqqykkBf5X3XbslN1-7a4jnHPOW-UUFfF78eDTTQenEnkHVg2e3seaMK0O9tI1j-DQzZ6mNiJ0o5NS7w8gbU4MAOh9445cD4demTgBpZ2GCZf4vOcFfQW2UQm-DhnfykKLOE0Y4B0yDqii-Se3q-hExyztSO0Qzb_1s2ELz5gpJjouOZ9eFdcjmAj3v57b4pfXz7_vP9WPvz4-v3-00NppGpT2SujFEjZtFDJuleCK2Gapm5lb8C0lTKNkVvOhRI1H7bYVbURjQFo-dCoUVU3Rbv2LgfEgKM2lGAZKgUgqwXXy_h6r_P4ehlfr-NnUvxHzoEmCOdXmY8rg_mkI2HQ0RA6gwMFNEkPnl6h_wCicqVk
CitedBy_id crossref_primary_10_3390_mi15121513
crossref_primary_10_1016_j_compscitech_2022_109560
crossref_primary_10_20517_ss_2024_05
crossref_primary_10_1016_j_colsurfa_2023_131994
crossref_primary_10_1021_acssensors_4c00836
crossref_primary_10_1016_j_apmt_2024_102244
crossref_primary_10_1007_s10853_023_08737_4
crossref_primary_10_1021_acsaelm_3c00039
crossref_primary_10_1016_j_cej_2022_136270
crossref_primary_10_1007_s11706_022_0586_8
crossref_primary_10_1021_acs_energyfuels_0c03238
crossref_primary_10_1007_s40843_022_1986_5
crossref_primary_10_1016_j_compstruct_2022_115668
crossref_primary_10_1002_pat_6623
crossref_primary_10_1016_j_carbon_2021_02_047
crossref_primary_10_1016_j_synthmet_2021_116731
crossref_primary_10_1002_app_50255
crossref_primary_10_1016_j_compositesb_2024_111561
crossref_primary_10_1039_D1TC01923F
crossref_primary_10_1016_j_mtcomm_2022_104498
crossref_primary_10_1002_app_53487
crossref_primary_10_1002_pc_27773
crossref_primary_10_1039_D2TC04381E
crossref_primary_10_1016_j_cej_2021_129054
crossref_primary_10_1016_j_compositesa_2021_106373
crossref_primary_10_1016_j_matdes_2021_109783
crossref_primary_10_7734_COSEIK_2023_36_2_131
crossref_primary_10_1002_smm2_1118
crossref_primary_10_1021_acsaem_3c01984
crossref_primary_10_1021_acsami_0c05692
crossref_primary_10_3390_bios12111039
crossref_primary_10_1016_j_jmst_2022_06_031
crossref_primary_10_1021_acsapm_3c01626
crossref_primary_10_1016_j_polymer_2024_127565
crossref_primary_10_1021_acs_iecr_3c00543
crossref_primary_10_1016_j_apsusc_2020_148364
crossref_primary_10_1016_j_mtcomm_2023_106548
crossref_primary_10_1016_j_cej_2022_135118
crossref_primary_10_1002_pol_20220647
crossref_primary_10_1002_mame_202100437
crossref_primary_10_1016_j_apsusc_2020_147431
crossref_primary_10_1039_D2TC00918H
crossref_primary_10_1002_adma_202407859
crossref_primary_10_1016_j_cej_2024_149354
crossref_primary_10_1016_j_foodres_2025_116286
crossref_primary_10_1002_apj_2864
crossref_primary_10_1016_j_coco_2023_101557
crossref_primary_10_1021_acsabm_4c00299
crossref_primary_10_1016_j_compositesa_2022_107313
crossref_primary_10_1016_j_compositesb_2022_110402
crossref_primary_10_1016_j_eurpolymj_2025_113731
crossref_primary_10_1016_j_polymer_2022_125534
crossref_primary_10_1016_j_colsurfa_2021_126742
crossref_primary_10_1016_j_compositesb_2024_111412
crossref_primary_10_1016_j_compositesa_2021_106665
crossref_primary_10_1016_j_jcis_2020_08_037
crossref_primary_10_1007_s40820_021_00693_5
crossref_primary_10_1016_j_cej_2024_155174
crossref_primary_10_1021_acs_iecr_3c00214
crossref_primary_10_1109_JSEN_2024_3423023
crossref_primary_10_1002_vnl_21930
crossref_primary_10_1016_j_cej_2024_154929
crossref_primary_10_1002_admi_202201528
crossref_primary_10_1007_s10853_020_05099_z
crossref_primary_10_1016_j_compositesa_2022_107304
crossref_primary_10_1016_j_apsusc_2023_156661
crossref_primary_10_1021_acsami_1c15428
crossref_primary_10_1021_acsomega_0c03704
crossref_primary_10_1016_j_compositesa_2024_108317
crossref_primary_10_1002_admt_202302026
crossref_primary_10_1016_j_porgcoat_2024_108523
crossref_primary_10_1016_j_cej_2021_129083
crossref_primary_10_1016_j_compstruct_2024_118729
crossref_primary_10_1039_D3NJ04802K
crossref_primary_10_1021_acsami_3c13458
crossref_primary_10_1016_j_jcis_2021_02_120
crossref_primary_10_1007_s11664_020_08665_y
crossref_primary_10_1016_j_compositesb_2024_111794
crossref_primary_10_1016_j_cej_2022_135659
crossref_primary_10_1002_app_53711
crossref_primary_10_1016_j_sna_2024_115105
crossref_primary_10_1016_j_cej_2021_132949
crossref_primary_10_1007_s10853_021_06052_4
crossref_primary_10_1016_j_compositesa_2021_106280
crossref_primary_10_1016_j_polymertesting_2022_107687
crossref_primary_10_1016_j_jmst_2021_08_091
crossref_primary_10_1021_acsnano_4c08258
crossref_primary_10_1002_admt_202100248
crossref_primary_10_1007_s40820_023_01062_0
crossref_primary_10_1002_pen_26663
crossref_primary_10_1021_acsanm_3c04862
crossref_primary_10_1016_j_cej_2024_159114
crossref_primary_10_1016_j_cej_2021_132393
crossref_primary_10_1039_D4RA04618H
crossref_primary_10_1002_sus2_21
crossref_primary_10_1002_app_52113
crossref_primary_10_1002_pi_6528
crossref_primary_10_1021_acsami_0c22049
crossref_primary_10_3390_molecules28227647
crossref_primary_10_1002_mame_202200402
crossref_primary_10_1016_j_compositesb_2022_109944
crossref_primary_10_1007_s40843_023_2712_6
crossref_primary_10_1016_j_optlastec_2023_109820
crossref_primary_10_1021_acsami_4c21321
crossref_primary_10_1016_j_eurpolymj_2024_112958
crossref_primary_10_1016_j_compositesa_2021_106456
crossref_primary_10_1088_1742_6596_1677_1_012125
crossref_primary_10_3390_ma16041491
crossref_primary_10_1016_j_jcis_2022_06_150
crossref_primary_10_1002_aisy_202200233
crossref_primary_10_1002_macp_202400284
crossref_primary_10_1021_acsami_3c09104
crossref_primary_10_1039_D2NR00030J
crossref_primary_10_3390_ma14216499
crossref_primary_10_1016_j_cej_2021_134046
crossref_primary_10_1002_pat_5960
crossref_primary_10_1016_j_apsusc_2021_150255
crossref_primary_10_1016_j_polymertesting_2024_108411
crossref_primary_10_1016_j_porgcoat_2021_106509
crossref_primary_10_1002_mame_202100070
crossref_primary_10_1002_smll_202203193
crossref_primary_10_1016_j_cej_2022_140860
crossref_primary_10_1016_j_carbon_2023_118075
crossref_primary_10_1016_j_compositesb_2022_110286
crossref_primary_10_1021_acsami_1c25077
crossref_primary_10_1002_pc_26353
crossref_primary_10_1016_j_apmt_2023_101863
crossref_primary_10_1002_app_54548
crossref_primary_10_1109_JSEN_2020_3038086
crossref_primary_10_1002_adfm_202104686
crossref_primary_10_1016_j_compositesb_2021_109299
crossref_primary_10_1016_j_compositesa_2020_106060
crossref_primary_10_1002_agt2_319
crossref_primary_10_1002_app_51682
crossref_primary_10_1021_acsami_2c22762
crossref_primary_10_1080_09243046_2022_2076019
crossref_primary_10_1016_j_cej_2023_141648
crossref_primary_10_1016_j_compositesa_2020_106188
crossref_primary_10_1016_j_polymertesting_2021_107382
crossref_primary_10_1021_acsami_4c16505
crossref_primary_10_1109_JSEN_2022_3140934
crossref_primary_10_1515_ntrev_2023_0219
crossref_primary_10_1080_15583724_2024_2308889
crossref_primary_10_1109_JSEN_2022_3156286
crossref_primary_10_1016_j_jmst_2024_01_008
crossref_primary_10_1109_JSEN_2022_3178102
crossref_primary_10_1016_j_cej_2024_158525
crossref_primary_10_1002_adfm_202418988
crossref_primary_10_1021_acs_langmuir_1c00062
crossref_primary_10_1016_j_heliyon_2024_e31118
crossref_primary_10_1021_acsanm_0c03040
crossref_primary_10_1002_pat_5751
crossref_primary_10_1016_j_cej_2022_141206
crossref_primary_10_1002_app_52939
crossref_primary_10_1007_s42114_024_01066_3
crossref_primary_10_1002_pc_28286
crossref_primary_10_1002_pc_29412
crossref_primary_10_1002_marc_202200755
crossref_primary_10_1177_1045389X211064345
crossref_primary_10_1021_acssuschemeng_2c04229
crossref_primary_10_1021_acs_iecr_3c00089
crossref_primary_10_1002_adfm_202208362
crossref_primary_10_1016_j_cej_2024_149656
crossref_primary_10_1016_j_jmst_2021_06_039
crossref_primary_10_1021_acsaelm_1c00484
crossref_primary_10_1016_j_supflu_2023_106112
crossref_primary_10_1021_acssuschemeng_1c06374
crossref_primary_10_3390_nano14131099
crossref_primary_10_1007_s10854_022_08306_6
crossref_primary_10_1016_j_eurpolymj_2023_111825
crossref_primary_10_1021_acs_iecr_3c01852
crossref_primary_10_1016_j_jmst_2021_06_030
crossref_primary_10_1016_j_porgcoat_2022_106864
crossref_primary_10_1016_j_cej_2021_129282
crossref_primary_10_1002_adfm_202107570
crossref_primary_10_1016_j_plaphy_2024_108628
crossref_primary_10_1016_j_conbuildmat_2024_137203
crossref_primary_10_1016_j_materresbull_2024_113001
crossref_primary_10_1016_j_sna_2024_115782
crossref_primary_10_1021_acsaelm_2c00471
crossref_primary_10_1021_acsami_0c22554
crossref_primary_10_1002_adem_202100024
crossref_primary_10_1002_pc_27226
crossref_primary_10_1016_j_nanoen_2024_109895
Cites_doi 10.1002/adfm.201605657
10.1021/acsami.6b06012
10.1021/am900893d
10.1002/adfm.201800631
10.1016/j.compscitech.2018.11.033
10.1021/jp202166s
10.1021/acsami.9b03421
10.1021/nl802367t
10.1039/C8TA09322A
10.1021/acsami.8b00250
10.1016/j.nanoen.2016.02.053
10.1002/adfm.201400379
10.1021/acsami.7b03184
10.1038/s41467-019-09325-4
10.1039/C8TC02946F
10.1016/j.compositesb.2019.107378
10.1021/acsami.9b07520
10.1016/j.compscitech.2017.12.037
10.1039/C8TC00433A
10.1002/adfm.201404365
10.1039/C6TC03713E
10.1002/adma.201504441
10.1002/adma.201302240
10.1016/j.nanoen.2018.05.020
10.1142/S0219581X08005237
10.1016/j.mee.2019.111002
10.1038/ncomms4002
10.1016/j.compositesa.2018.10.025
10.1021/acsnano.9b03454
10.1016/j.compscitech.2019.04.017
10.1021/acsami.9b00900
10.1021/acsami.9b02591
10.1002/adma.201401364
10.1021/acsami.8b03639
10.1039/C8NR02514B
10.1002/adma.201303041
10.1021/acsami.6b13454
10.1039/C6CC01407K
10.1016/j.compositesb.2019.05.003
10.1039/C8TC01924J
10.1038/s41467-017-02685-9
10.1021/acsami.6b12415
10.1039/C7NR02322G
10.1002/adma.201600408
10.1016/j.cej.2019.03.223
10.1016/j.compscitech.2019.107732
10.1021/acsami.7b17018
10.1016/j.cej.2019.04.142
10.1126/science.aao0098
10.1021/acsami.8b15809
10.1021/nn403838y
10.1016/j.apsusc.2018.10.079
10.1002/admi.201500418
10.1016/j.cej.2019.01.014
10.1016/j.compscitech.2018.06.006
10.1021/acsami.8b11766
10.1021/acsami.9b03261
10.1039/C3NR04135B
10.1002/smll.201805363
10.1016/j.compscitech.2018.12.014
10.1021/acssuschemeng.8b05025
10.1039/C7TC04959E
10.1016/j.compositesa.2019.105608
10.1002/smll.201702091
10.1002/adma.201501408
10.1021/acsami.8b18212
10.1021/acsami.8b20929
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2020.124805
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2020_124805
S1385894720307968
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c297t-b9c99a2267a324b91091c66472bcac739c6c250019140d5e834c16caa70d69f93
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 04:26:47 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Fri Feb 23 02:48:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microwave shielding
Temperature sensing
Thermo-expandable microsphere
Multi-walled carbon nanotube
Polydimethylsiloxane
Piezoresistive sensing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-b9c99a2267a324b91091c66472bcac739c6c250019140d5e834c16caa70d69f93
ORCID 0000-0003-2903-8064
0000-0001-9499-5421
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2020_124805
crossref_primary_10_1016_j_cej_2020_124805
elsevier_sciencedirect_doi_10_1016_j_cej_2020_124805
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kim, Park, Park, Park, Jeong, Kim (b0175) 2015; 27
Huang, Wang, Yang, Yang (b0310) 2018; 10
Huang, Fan, Yin, Chen (b0270) 2019; 182
Zheng, Li, Xu, Xu, Chen, Han, Xie (b0025) 2014; 6
Huang, Li, Yu, Zhu, Nie, Zhang, Liu, Hu, Fu (b0255) 2018; 10
Pu, Zha, Tang, Bai, Bao, Liu, Yang, Yang (b0250) 2018; 10
Kim, Jang, Oh (b0180) 2019; 215
Farcau, Moreira, Viallet, Grisolia, Ciuculescu-Pradines, Amiens, Ressier (b0020) 2011; 115
Rangari, Jeelani, Zhou, Jeelani (b0290) 2008; 7
Wang, Chen, Lin, Wang, Huang, Xue, Gao (b0105) 2019; 362
Pan, Chortos, Yu, Wang, Isaacson, Allen, Shi, Dauskardt, Bao (b0215) 2014; 5
Li, Wu, Xu, Wang, Meng, Li (b0165) 2018; 10
Wu, Ladani, Zhang, Ghorbani, Zhang, Mouritz, Kinloch, Wang (b0140) 2016; 8
Sang, Wang, Liu, Bai, Jiang, Xuan, Gong (b0170) 2018; 165
Liu, Fu, Bouwman (b0315) 2016; 52
Wang, Wang, Yang, Li, Zang, Zhu, Wang, Wu, Zhu (b0070) 2014; 24
Zhai, Xia, Zhou, Yue, Ren, Zheng, Dai, Liu, Shen (b0085) 2019; 372
Hammock, Chortos, Tee, Tok, Bao (b0060) 2013; 25
Hua, Sun, Liu, Bao, Yu, Zhai, Pan, Wang (b0285) 2018; 9
Bae, Pak, Kim, Lee, Kim, Chung, Cho (b0130) 2016; 28
Li, Peng, Fu, Tang, Wu, Guo, Wang (b0300) 2019; 171
Yue, Liu, Liu, Li, Ma, Luo, Wang, Rao, Hu, Su, Zhang, Huang, Gao (b0145) 2018; 50
Zhou, Zhu, Fan, Deng, Fu (b0050) 2018; 10
Li, Dai, Ren, Wang, Zheng, Liu, Shen (b0045) 2018; 6
Wang, Zhang, Dai, Li, Guo, Liu, Li, Tan, Zeng, Guo (b0155) 2017; 9
Ke, Pötschke, Gao, Voit (b0160) 2017; 9
Zhang, Yu, Yu, Gao, Wang, Li, Guo (b0335) 2018; 156
Jung, Kim, Kim, Choi, Lee, Park, Hyeon, Kim (b0040) 2014; 26
Choi, Kim, Oh, Jung, Jung, Sung, Lee, Lee (b0080) 2017; 9
Shi, Li, Tan, Chen, Wang (b0325) 2019; 170
Trung, Ramasundaram, Hwang, Lee (b0010) 2016; 28
Zhang, Liu, Yang, Shi, Zhang, Shan, Mi, Liu, Shen, Guo (b0125) 2019; 11
Tang, Guo, Chen, Zhang, Lu (b0240) 2019; 116
Ding, Xu, Onyilagha, Fong, Zhu (b0225) 2019; 11
He, Liu, Zhong, Chen, Sun, Jiang, Liu, Wang, Wang, Lu, Li, Liu, Wang, Sun, Wang (b0135) 2019; 11
Cao, Zhang, Zhao, Gong, Gao, Jiang, Tang, Mai (b0230) 2019; 171
Song, Chen, Su, Chen, Miao, Zhang, Cheng, Zhang (b0075) 2017; 13
Cai, Chen, Li, Tan, Liu, Tang, Chen, Wang (b0100) 2019; 370
Li, Zhou, Zheng, Liu, Li, Yan, Cheng, Dai, Liu, Shen, Guo (b0110) 2018; 6
Wang, Xiao, Liang, Zhang, Huang, Wu, Kuo, Chen (b0195) 2018; 6
Liu, Dong, Huang, Gao, Dai, Guo, Zheng, Liu, Shen, Guo (b0220) 2017; 5
Yao, Yang, Poblete, Hu, Zhu (b0120) 2019; 11
Ohlan, Singth, Chandra, Dhawan (b0295) 2010; 2
Zhang, Chen, Bin, Zheng, San, Hofmann (b0320) 2018; 29
Zhou, Gu, Fei, Mai, Gao, Yang, Bao, Wang (b0015) 2008; 8
Chen, Li, Cai, Tan, Tang, Liu, Wang (b0275) 2019; 126
Yang, Zhang, Lin, Zhou, Jing, Su, Yang, Chen, Hu, Wang (b0185) 2013; 7
Yun, Tang, Sun, Yuan, Zhao, Deng, Yan, Du, Dickey, Li (b0150) 2019; 10
Huang, Cao, Yuan, Chen (b0260) 2019; 2
Huang, Cao, Yuan, Chen (b0265) 2018; 48
Yao, Ge, Wang, Wang, Hu, Zheng, Ni, Yu (b0245) 2013; 25
Wang, Pan, Lv, Liu, Wei, Lv, Luo, Nishihara, Yang (b0095) 2019; 15
Kim, Chortos, Xu, Liu, Oh, Son, Kang, Foudeh, Zhu, Lee, Niu, Liu, Pfattner, Bao, Lee (b0035) 2018; 360
Li, Liu, Zhang, Zhang, Liu, He, Mi, Zhang, Liu, Shen, Guo (b0280) 2019; 11
Tan, Li, Cai, Tang, Liu, Hu, Wang (b0330) 2019; 177
Gerratt, Michaud, Lacour (b0030) 2015; 25
Yang, Kim, Oh, Kwon, Sim, Kim, Choi, Park (b0205) 2019; 11
Peng, Wu, Hu, Zhuo, Chen, Jing, Liu, Liu, Zhong (b0115) 2018; 6
Chen, Cao, Advincula (b0235) 2018; 28
Wang, Jian, Wang, Zhang (b0055) 2017; 27
Lou, Chen, Wang, Jiang, Shen (b0065) 2016; 23
Han, Liu, Zhang, Han, Wang, Song, Wang, Jiao, Niu, Ren (b0200) 2018; 10
Chen, Li, Tan, Cai, Tang, Liu, Wang (b0305) 2019; 177
Li, Tan, Chen, Wu, Guo, Wang (b0340) 2019; 466
Li, Bao, Tao, Peng, Pan (b0005) 2018; 6
Zha, Huang, Wang, Zhang, Li, Dang (b0190) 2016; 3
Lee, Lim, Yoon, Kim, Choi, Kim, Kim, Park, Choi (b0090) 2017; 9
Wang, Lou, Wang, Zhao, Zhao, Wang, Han, Jiang, Shen (b0210) 2019; 13
Li (10.1016/j.cej.2020.124805_b0165) 2018; 10
Li (10.1016/j.cej.2020.124805_b0280) 2019; 11
Zhou (10.1016/j.cej.2020.124805_b0050) 2018; 10
Li (10.1016/j.cej.2020.124805_b0110) 2018; 6
Zha (10.1016/j.cej.2020.124805_b0190) 2016; 3
Zheng (10.1016/j.cej.2020.124805_b0025) 2014; 6
Yue (10.1016/j.cej.2020.124805_b0145) 2018; 50
Huang (10.1016/j.cej.2020.124805_b0260) 2019; 2
Zhang (10.1016/j.cej.2020.124805_b0125) 2019; 11
Chen (10.1016/j.cej.2020.124805_b0275) 2019; 126
Ke (10.1016/j.cej.2020.124805_b0160) 2017; 9
Zhang (10.1016/j.cej.2020.124805_b0335) 2018; 156
Lee (10.1016/j.cej.2020.124805_b0090) 2017; 9
Sang (10.1016/j.cej.2020.124805_b0170) 2018; 165
Li (10.1016/j.cej.2020.124805_b0005) 2018; 6
Ding (10.1016/j.cej.2020.124805_b0225) 2019; 11
He (10.1016/j.cej.2020.124805_b0135) 2019; 11
Cai (10.1016/j.cej.2020.124805_b0100) 2019; 370
Li (10.1016/j.cej.2020.124805_b0300) 2019; 171
Rangari (10.1016/j.cej.2020.124805_b0290) 2008; 7
Kim (10.1016/j.cej.2020.124805_b0035) 2018; 360
Zhai (10.1016/j.cej.2020.124805_b0085) 2019; 372
Ohlan (10.1016/j.cej.2020.124805_b0295) 2010; 2
Wang (10.1016/j.cej.2020.124805_b0105) 2019; 362
Huang (10.1016/j.cej.2020.124805_b0270) 2019; 182
Wang (10.1016/j.cej.2020.124805_b0195) 2018; 6
Wang (10.1016/j.cej.2020.124805_b0055) 2017; 27
Liu (10.1016/j.cej.2020.124805_b0315) 2016; 52
Yao (10.1016/j.cej.2020.124805_b0245) 2013; 25
Wang (10.1016/j.cej.2020.124805_b0210) 2019; 13
Wang (10.1016/j.cej.2020.124805_b0155) 2017; 9
Tan (10.1016/j.cej.2020.124805_b0330) 2019; 177
Farcau (10.1016/j.cej.2020.124805_b0020) 2011; 115
Huang (10.1016/j.cej.2020.124805_b0265) 2018; 48
Huang (10.1016/j.cej.2020.124805_b0255) 2018; 10
Wu (10.1016/j.cej.2020.124805_b0140) 2016; 8
Yang (10.1016/j.cej.2020.124805_b0185) 2013; 7
Yao (10.1016/j.cej.2020.124805_b0120) 2019; 11
Shi (10.1016/j.cej.2020.124805_b0325) 2019; 170
Trung (10.1016/j.cej.2020.124805_b0010) 2016; 28
Kim (10.1016/j.cej.2020.124805_b0175) 2015; 27
Huang (10.1016/j.cej.2020.124805_b0310) 2018; 10
Hua (10.1016/j.cej.2020.124805_b0285) 2018; 9
Bae (10.1016/j.cej.2020.124805_b0130) 2016; 28
Peng (10.1016/j.cej.2020.124805_b0115) 2018; 6
Kim (10.1016/j.cej.2020.124805_b0180) 2019; 215
Pan (10.1016/j.cej.2020.124805_b0215) 2014; 5
Yang (10.1016/j.cej.2020.124805_b0205) 2019; 11
Yun (10.1016/j.cej.2020.124805_b0150) 2019; 10
Han (10.1016/j.cej.2020.124805_b0200) 2018; 10
Tang (10.1016/j.cej.2020.124805_b0240) 2019; 116
Chen (10.1016/j.cej.2020.124805_b0305) 2019; 177
Wang (10.1016/j.cej.2020.124805_b0070) 2014; 24
Cao (10.1016/j.cej.2020.124805_b0230) 2019; 171
Zhang (10.1016/j.cej.2020.124805_b0320) 2018; 29
Gerratt (10.1016/j.cej.2020.124805_b0030) 2015; 25
Li (10.1016/j.cej.2020.124805_b0045) 2018; 6
Pu (10.1016/j.cej.2020.124805_b0250) 2018; 10
Liu (10.1016/j.cej.2020.124805_b0220) 2017; 5
Choi (10.1016/j.cej.2020.124805_b0080) 2017; 9
Chen (10.1016/j.cej.2020.124805_b0235) 2018; 28
Wang (10.1016/j.cej.2020.124805_b0095) 2019; 15
Zhou (10.1016/j.cej.2020.124805_b0015) 2008; 8
Song (10.1016/j.cej.2020.124805_b0075) 2017; 13
Jung (10.1016/j.cej.2020.124805_b0040) 2014; 26
Hammock (10.1016/j.cej.2020.124805_b0060) 2013; 25
Lou (10.1016/j.cej.2020.124805_b0065) 2016; 23
Li (10.1016/j.cej.2020.124805_b0340) 2019; 466
References_xml – volume: 7
  start-page: 161
  year: 2008
  end-page: 169
  ident: b0290
  article-title: Fabrication and characterization of MWCNT/thermoplastic microsphere nanocomposite foams
  publication-title: Int. J. Nanosci.
– volume: 156
  start-page: 136
  year: 2018
  end-page: 143
  ident: b0335
  article-title: A facile approach to constructing efficiently segregated conductive networks in poly(lactic acid)/silver nanocomposites via silver plating on microfibers for electromagnetic interference shielding
  publication-title: Compos. Sci. Technol.
– volume: 8
  start-page: 24853
  year: 2016
  end-page: 24861
  ident: b0140
  article-title: Strain sensors with adjustable sensitivity by tailoring the microstructure of graphene aerogel/PDMS nanocomposites
  publication-title: ACS Appl. Mater. Interfaces
– volume: 24
  start-page: 4666
  year: 2014
  end-page: 4670
  ident: b0070
  article-title: Wearable and highly sensitive graphene strain sensors for human motion monitoring
  publication-title: Adv. Funct. Mater.
– volume: 171
  start-page: 162
  year: 2019
  end-page: 170
  ident: b0230
  article-title: Design of mechanically stable, electrically conductive and highly hydrophobic three-dimensional graphene nanoribbon composites by modulating the interconnected network on polymer foam skeleton
  publication-title: Compos. Sci. Technol.
– volume: 13
  start-page: 9139
  year: 2019
  end-page: 9147
  ident: b0210
  article-title: Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors
  publication-title: ACS Nano
– volume: 11
  start-page: 21904
  year: 2019
  end-page: 21914
  ident: b0280
  article-title: Superhydrophobic electrically conductive paper for ultrasensitive strain sensor with excellent anticorrosion and self-cleaning property
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 20826
  year: 2018
  end-page: 20834
  ident: b0165
  article-title: Ultrahigh-sensitivity piezoresistive pressure sensors for detection of tiny pressure
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 11017
  year: 2017
  end-page: 11026
  ident: b0155
  article-title: Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure
  publication-title: Nanoscale
– volume: 10
  start-page: 1300
  year: 2019
  ident: b0150
  article-title: Liquid metal-filled magnetorheological elastomer with positive piezoconductivity
  publication-title: Nat. Commun.
– volume: 10
  start-page: 31655
  year: 2018
  end-page: 31663
  ident: b0050
  article-title: Fabrication of highly stretchable, washable, wearable, water-repellent strain sensors with multi-stimuli sensing ability
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 9213
  year: 2013
  end-page: 9222
  ident: b0185
  article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
  publication-title: ACS Nano
– volume: 10
  start-page: 15178
  year: 2018
  end-page: 15186
  ident: b0200
  article-title: High-performance flexible strain sensor with bio-inspired crack arrays
  publication-title: Nanoscale
– volume: 48
  start-page: 40996
  year: 2018
  end-page: 41002
  ident: b0265
  article-title: Design of novel self-healing thermoplastic vulcanizates utilizing thermal/magnetic/light-triggered shape memory effects
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 1500418
  year: 2016
  ident: b0190
  article-title: Difunctional graphene-Fe
  publication-title: Adv. Mater. Interfaces
– volume: 116
  start-page: 106
  year: 2019
  end-page: 113
  ident: b0240
  article-title: In-situ reduction of graphene oxide-wrapped porous polyurethane scaffolds: synergistic enhancement of mechanical properties and piezoresistivity
  publication-title: Composites A
– volume: 10
  start-page: 11197
  year: 2018
  end-page: 11203
  ident: b0255
  article-title: Bioinspired flexible and highly responsive dual-mode strain/magnetism composite sensor
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 31028
  year: 2019
  end-page: 31037
  ident: b0120
  article-title: Multifunctional electronic textiles using silver nanowire composites
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 2258
  year: 2018
  end-page: 2269
  ident: b0110
  article-title: Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing
  publication-title: J. Mater. Chem. C
– volume: 360
  start-page: 998
  year: 2018
  end-page: 1003
  ident: b0035
  article-title: A bioinspired flexible organic artificial afferent nerve
  publication-title: Science
– volume: 5
  start-page: 4496
  year: 2014
  ident: b0215
  article-title: An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film
  publication-title: Nat. Commun.
– volume: 2
  start-page: 927
  year: 2010
  end-page: 933
  ident: b0295
  article-title: Microwave absorption behavior of core-shell structured poly (3,4-ethylenedioxy thiophene)-barium ferrite nanocomposites
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 23550
  year: 2018
  end-page: 23559
  ident: b0115
  article-title: A mechanically strong and sensitive CNT/rGO-CNF carbon aerogel for piezoresistive sensors
  publication-title: J. Mater. Chem. A
– volume: 177
  year: 2019
  ident: b0330
  article-title: Comparative study on solid and hollow glass microspheres for enhanced electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube
  publication-title: Composites B
– volume: 177
  start-page: 41
  year: 2019
  end-page: 48
  ident: b0305
  article-title: Achieving highly electrical conductivity and piezoresistive sensitivity in polydimethylsiloxane/multi-walled carbon nanotube composites via the incorporation of silicon dioxide micro-particles
  publication-title: Compos. Sci. Technol.
– volume: 27
  start-page: 1605657
  year: 2017
  ident: b0055
  article-title: Carbonized silk nanofiber membrane for transparent and sensitive electronic skin
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 2287
  year: 2015
  end-page: 2295
  ident: b0030
  article-title: Elastomeric electronic skin for prosthetic tactile sensation
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 244
  year: 2018
  ident: b0285
  article-title: Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing
  publication-title: Nat. Commun.
– volume: 8
  start-page: 3035
  year: 2008
  end-page: 3040
  ident: b0015
  article-title: Flexible piezotronic strain sensor
  publication-title: Nano Lett.
– volume: 50
  start-page: 79
  year: 2018
  end-page: 87
  ident: b0145
  article-title: 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor
  publication-title: Nano Energy
– volume: 9
  start-page: 1770
  year: 2017
  end-page: 1780
  ident: b0080
  article-title: Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring
  publication-title: ACS Appl. Mater. Interfaces
– volume: 126
  year: 2019
  ident: b0275
  article-title: Negative liquid sensing effect and tunable piezoresistive sensitivity in polydimethylsiloxane/carbon nanotubes/water-absorbing-expansion particles nanocomposites
  publication-title: Composites A
– volume: 11
  start-page: 19350
  year: 2019
  end-page: 19362
  ident: b0135
  article-title: Strategy of constructing light-weight and highly compressible graphene-based aerogels with an ordered unique configuration for wearable piezoresistive sensors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 4825
  year: 2014
  end-page: 4830
  ident: b0040
  article-title: Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces
  publication-title: Adv. Mater.
– volume: 11
  start-page: 19472
  year: 2019
  end-page: 19480
  ident: b0205
  article-title: Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 393
  year: 2014
  end-page: 3933
  ident: b0025
  article-title: Strain sensors based on chromium nanoparticle arrays
  publication-title: Nanoscale
– volume: 23
  start-page: 7
  year: 2016
  end-page: 14
  ident: b0065
  article-title: An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring
  publication-title: Nano Energy
– volume: 2
  start-page: 2304
  year: 2019
  end-page: 2315
  ident: b0260
  article-title: Design of multi-stimuli-responsive shape memory biobased PLA/ENR/Fe
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10
  start-page: 8180
  year: 2018
  end-page: 8189
  ident: b0310
  article-title: High-performance graphene sponges reinforced with polyimide for room-temperature piezoresistive sensing
  publication-title: ACS Appl. Mater Interfaces
– volume: 9
  start-page: 26279
  year: 2017
  end-page: 26285
  ident: b0090
  article-title: Transparent, flexible strain sensor based on a solution-processed carbon nanotube network
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 11878
  year: 2018
  end-page: 11892
  ident: b0005
  article-title: Recent progress in flexible pressure sensor arrays: from design to applications
  publication-title: J. Mater. Chem. C
– volume: 11
  start-page: 10922
  year: 2019
  end-page: 10932
  ident: b0125
  article-title: Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 4178
  year: 2015
  end-page: 4185
  ident: b0175
  article-title: Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli
  publication-title: Adv. Mater.
– volume: 11
  start-page: 6685
  year: 2019
  end-page: 6704
  ident: b0225
  article-title: Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 6692
  year: 2013
  end-page: 6698
  ident: b0245
  article-title: A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design
  publication-title: Adv. Mater.
– volume: 29
  start-page: 18997
  year: 2018
  end-page: 19004
  ident: b0320
  article-title: Dual-axis thermal convective inclinometer based on CNT/PDMS composite
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 9
  start-page: 5437
  year: 2017
  end-page: 5446
  ident: b0160
  article-title: An ionic liquid as interface linker for tuning piezoresistive sensitivity and toughness in poly(vinylidene fluoride)/carbon nanotube composites
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 5997
  year: 2013
  end-page: 6038
  ident: b0060
  article-title: 25th anniversary article: the evolution of electronic skin (E-Skin): a brief history, design considerations, and recent progress
  publication-title: Adv. Mater.
– volume: 28
  start-page: 502
  year: 2016
  end-page: 509
  ident: b0010
  article-title: An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics
  publication-title: Adv. Mater.
– volume: 182
  year: 2019
  ident: b0270
  article-title: Design of remotely, locally triggered shape-memory materials based on bicontinuous polylactide/epoxidized natural rubber thermoplastic vulcanizates via regulating the distribution of ferroferric oxide
  publication-title: Compos. Sci. Technol.
– volume: 52
  start-page: 6926
  year: 2016
  end-page: 6929
  ident: b0315
  article-title: One-step growth of lanthanoid metal–organic framework (MOF) films under solvothermal conditions for temperature sensing
  publication-title: Chem. Commun.
– volume: 6
  start-page: 6575
  year: 2018
  end-page: 6583
  ident: b0045
  article-title: Aligned flexible conductive fibrous networks for highly sensitive, ultrastretchable and wearable strain sensors
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 5140
  year: 2018
  end-page: 5147
  ident: b0195
  article-title: Network cracks-based wearable strain sensors for subtle and large strain detection of human motions
  publication-title: J. Mater. Chem. C
– volume: 466
  start-page: 657
  year: 2019
  end-page: 665
  ident: b0340
  article-title: Constructing multiple interfaces in polydimethylsiloxane/multi-walled carbon nanotubes nanocomposites by the incorporation of cotton fibers for high-performance electromagnetic interference shielding and mechanical enhancement
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 73
  year: 2017
  end-page: 83
  ident: b0220
  article-title: Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing
  publication-title: J. Mater. Chem. C
– volume: 165
  start-page: 31
  year: 2018
  end-page: 38
  ident: b0170
  article-title: Fabrication of a piezoelectric polyvinylidene fluoride/carbonyl iron (PVDF/CI) magnetic composite film towards the magnetic field and deformation bi-sensor
  publication-title: Compos. Sci. Technol.
– volume: 28
  start-page: 5300
  year: 2016
  end-page: 5306
  ident: b0130
  article-title: Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1800631
  year: 2018
  ident: b0235
  article-title: Mechanically robust, ultraelastic hierarchical foam with tunable properties via 3D printing
  publication-title: Adv. Funct. Mater.
– volume: 215
  year: 2019
  ident: b0180
  article-title: Fabrication of highly sensitive capacitive pressure sensors with porous PDMS dielectric layer via microwave treatment
  publication-title: Microelectron. Eng.
– volume: 15
  start-page: 1805363
  year: 2019
  ident: b0095
  article-title: A directional strain sensor based on anisotropic microhoneycomb cellulose nanofiber-carbon nanotube hybrid aerogels prepared by unidirectional freeze drying
  publication-title: Small
– volume: 170
  start-page: 70
  year: 2019
  end-page: 76
  ident: b0325
  article-title: Percolation behavior of electromagnetic interference shielding in polymer/multi-walled carbon nanotube nanocomposites
  publication-title: Compos. Sci. Technol.
– volume: 171
  start-page: 204
  year: 2019
  end-page: 213
  ident: b0300
  article-title: Achieving high electrical conductivity and excellent electromagnetic interference shielding in poly(lactic acid)/silver nanocomposites by constructing large-area silver nanoplates in polymer matrix
  publication-title: Composites B
– volume: 13
  start-page: 1702091
  year: 2017
  ident: b0075
  article-title: Highly compressible integrated supercapacitor-piezoresistance-sensor system with CNT-PDMS sponge for health monitoring
  publication-title: Small
– volume: 10
  start-page: 40880
  year: 2018
  end-page: 40889
  ident: b0250
  article-title: Human skin-inspired electronic sensor skin with electromagnetic interference shielding for the sensation and protection of wearable electronics
  publication-title: ACS Appl. Mater. Interfaces
– volume: 115
  start-page: 14494
  year: 2011
  end-page: 14499
  ident: b0020
  article-title: Monolayered wires of gold colloidal nanoparticles for high-sensitivity strain sensing
  publication-title: J. Phys. Chem. C
– volume: 362
  start-page: 89
  year: 2019
  end-page: 98
  ident: b0105
  article-title: Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite
  publication-title: Chem. Eng. J.
– volume: 372
  start-page: 373
  year: 2019
  end-page: 382
  ident: b0085
  article-title: Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability
  publication-title: Chem. Eng. J.
– volume: 370
  start-page: 176
  year: 2019
  end-page: 184
  ident: b0100
  article-title: Asymmetric deformation in poly(ethylene-co-1-octene)/multi-walled carbon nanotube composites with glass micro-beads for highly piezoresistive sensitivity
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 1605657
  year: 2017
  ident: 10.1016/j.cej.2020.124805_b0055
  article-title: Carbonized silk nanofiber membrane for transparent and sensitive electronic skin
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605657
– volume: 8
  start-page: 24853
  year: 2016
  ident: 10.1016/j.cej.2020.124805_b0140
  article-title: Strain sensors with adjustable sensitivity by tailoring the microstructure of graphene aerogel/PDMS nanocomposites
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b06012
– volume: 2
  start-page: 927
  year: 2010
  ident: 10.1016/j.cej.2020.124805_b0295
  article-title: Microwave absorption behavior of core-shell structured poly (3,4-ethylenedioxy thiophene)-barium ferrite nanocomposites
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am900893d
– volume: 28
  start-page: 1800631
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0235
  article-title: Mechanically robust, ultraelastic hierarchical foam with tunable properties via 3D printing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800631
– volume: 170
  start-page: 70
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0325
  article-title: Percolation behavior of electromagnetic interference shielding in polymer/multi-walled carbon nanotube nanocomposites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.11.033
– volume: 115
  start-page: 14494
  year: 2011
  ident: 10.1016/j.cej.2020.124805_b0020
  article-title: Monolayered wires of gold colloidal nanoparticles for high-sensitivity strain sensing
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp202166s
– volume: 11
  start-page: 21904
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0280
  article-title: Superhydrophobic electrically conductive paper for ultrasensitive strain sensor with excellent anticorrosion and self-cleaning property
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b03421
– volume: 8
  start-page: 3035
  year: 2008
  ident: 10.1016/j.cej.2020.124805_b0015
  article-title: Flexible piezotronic strain sensor
  publication-title: Nano Lett.
  doi: 10.1021/nl802367t
– volume: 6
  start-page: 23550
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0115
  article-title: A mechanically strong and sensitive CNT/rGO-CNF carbon aerogel for piezoresistive sensors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09322A
– volume: 10
  start-page: 11197
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0255
  article-title: Bioinspired flexible and highly responsive dual-mode strain/magnetism composite sensor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00250
– volume: 23
  start-page: 7
  year: 2016
  ident: 10.1016/j.cej.2020.124805_b0065
  article-title: An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.053
– volume: 24
  start-page: 4666
  year: 2014
  ident: 10.1016/j.cej.2020.124805_b0070
  article-title: Wearable and highly sensitive graphene strain sensors for human motion monitoring
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400379
– volume: 9
  start-page: 26279
  year: 2017
  ident: 10.1016/j.cej.2020.124805_b0090
  article-title: Transparent, flexible strain sensor based on a solution-processed carbon nanotube network
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03184
– volume: 10
  start-page: 1300
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0150
  article-title: Liquid metal-filled magnetorheological elastomer with positive piezoconductivity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09325-4
– volume: 6
  start-page: 11878
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0005
  article-title: Recent progress in flexible pressure sensor arrays: from design to applications
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02946F
– volume: 29
  start-page: 18997
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0320
  article-title: Dual-axis thermal convective inclinometer based on CNT/PDMS composite
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 177
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0330
  article-title: Comparative study on solid and hollow glass microspheres for enhanced electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2019.107378
– volume: 11
  start-page: 31028
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0120
  article-title: Multifunctional electronic textiles using silver nanowire composites
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07520
– volume: 156
  start-page: 136
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0335
  article-title: A facile approach to constructing efficiently segregated conductive networks in poly(lactic acid)/silver nanocomposites via silver plating on microfibers for electromagnetic interference shielding
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.12.037
– volume: 6
  start-page: 5140
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0195
  article-title: Network cracks-based wearable strain sensors for subtle and large strain detection of human motions
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC00433A
– volume: 25
  start-page: 2287
  year: 2015
  ident: 10.1016/j.cej.2020.124805_b0030
  article-title: Elastomeric electronic skin for prosthetic tactile sensation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201404365
– volume: 5
  start-page: 73
  year: 2017
  ident: 10.1016/j.cej.2020.124805_b0220
  article-title: Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC03713E
– volume: 28
  start-page: 502
  year: 2016
  ident: 10.1016/j.cej.2020.124805_b0010
  article-title: An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504441
– volume: 25
  start-page: 5997
  year: 2013
  ident: 10.1016/j.cej.2020.124805_b0060
  article-title: 25th anniversary article: the evolution of electronic skin (E-Skin): a brief history, design considerations, and recent progress
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302240
– volume: 50
  start-page: 79
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0145
  article-title: 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.05.020
– volume: 7
  start-page: 161
  year: 2008
  ident: 10.1016/j.cej.2020.124805_b0290
  article-title: Fabrication and characterization of MWCNT/thermoplastic microsphere nanocomposite foams
  publication-title: Int. J. Nanosci.
  doi: 10.1142/S0219581X08005237
– volume: 215
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0180
  article-title: Fabrication of highly sensitive capacitive pressure sensors with porous PDMS dielectric layer via microwave treatment
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2019.111002
– volume: 5
  start-page: 4496
  year: 2014
  ident: 10.1016/j.cej.2020.124805_b0215
  article-title: An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4002
– volume: 116
  start-page: 106
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0240
  article-title: In-situ reduction of graphene oxide-wrapped porous polyurethane scaffolds: synergistic enhancement of mechanical properties and piezoresistivity
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2018.10.025
– volume: 13
  start-page: 9139
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0210
  article-title: Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03454
– volume: 177
  start-page: 41
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0305
  article-title: Achieving highly electrical conductivity and piezoresistive sensitivity in polydimethylsiloxane/multi-walled carbon nanotube composites via the incorporation of silicon dioxide micro-particles
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.04.017
– volume: 11
  start-page: 10922
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0125
  article-title: Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00900
– volume: 11
  start-page: 19350
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0135
  article-title: Strategy of constructing light-weight and highly compressible graphene-based aerogels with an ordered unique configuration for wearable piezoresistive sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b02591
– volume: 26
  start-page: 4825
  year: 2014
  ident: 10.1016/j.cej.2020.124805_b0040
  article-title: Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401364
– volume: 10
  start-page: 20826
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0165
  article-title: Ultrahigh-sensitivity piezoresistive pressure sensors for detection of tiny pressure
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03639
– volume: 10
  start-page: 15178
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0200
  article-title: High-performance flexible strain sensor with bio-inspired crack arrays
  publication-title: Nanoscale
  doi: 10.1039/C8NR02514B
– volume: 25
  start-page: 6692
  year: 2013
  ident: 10.1016/j.cej.2020.124805_b0245
  article-title: A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303041
– volume: 9
  start-page: 5437
  year: 2017
  ident: 10.1016/j.cej.2020.124805_b0160
  article-title: An ionic liquid as interface linker for tuning piezoresistive sensitivity and toughness in poly(vinylidene fluoride)/carbon nanotube composites
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13454
– volume: 52
  start-page: 6926
  year: 2016
  ident: 10.1016/j.cej.2020.124805_b0315
  article-title: One-step growth of lanthanoid metal–organic framework (MOF) films under solvothermal conditions for temperature sensing
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC01407K
– volume: 171
  start-page: 204
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0300
  article-title: Achieving high electrical conductivity and excellent electromagnetic interference shielding in poly(lactic acid)/silver nanocomposites by constructing large-area silver nanoplates in polymer matrix
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2019.05.003
– volume: 6
  start-page: 6575
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0045
  article-title: Aligned flexible conductive fibrous networks for highly sensitive, ultrastretchable and wearable strain sensors
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC01924J
– volume: 9
  start-page: 244
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0285
  article-title: Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02685-9
– volume: 9
  start-page: 1770
  year: 2017
  ident: 10.1016/j.cej.2020.124805_b0080
  article-title: Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12415
– volume: 9
  start-page: 11017
  year: 2017
  ident: 10.1016/j.cej.2020.124805_b0155
  article-title: Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure
  publication-title: Nanoscale
  doi: 10.1039/C7NR02322G
– volume: 28
  start-page: 5300
  year: 2016
  ident: 10.1016/j.cej.2020.124805_b0130
  article-title: Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600408
– volume: 370
  start-page: 176
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0100
  article-title: Asymmetric deformation in poly(ethylene-co-1-octene)/multi-walled carbon nanotube composites with glass micro-beads for highly piezoresistive sensitivity
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.223
– volume: 182
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0270
  article-title: Design of remotely, locally triggered shape-memory materials based on bicontinuous polylactide/epoxidized natural rubber thermoplastic vulcanizates via regulating the distribution of ferroferric oxide
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.107732
– volume: 10
  start-page: 8180
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0310
  article-title: High-performance graphene sponges reinforced with polyimide for room-temperature piezoresistive sensing
  publication-title: ACS Appl. Mater Interfaces
  doi: 10.1021/acsami.7b17018
– volume: 372
  start-page: 373
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0085
  article-title: Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.142
– volume: 360
  start-page: 998
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0035
  article-title: A bioinspired flexible organic artificial afferent nerve
  publication-title: Science
  doi: 10.1126/science.aao0098
– volume: 10
  start-page: 40880
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0250
  article-title: Human skin-inspired electronic sensor skin with electromagnetic interference shielding for the sensation and protection of wearable electronics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b15809
– volume: 7
  start-page: 9213
  year: 2013
  ident: 10.1016/j.cej.2020.124805_b0185
  article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn403838y
– volume: 466
  start-page: 657
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0340
  article-title: Constructing multiple interfaces in polydimethylsiloxane/multi-walled carbon nanotubes nanocomposites by the incorporation of cotton fibers for high-performance electromagnetic interference shielding and mechanical enhancement
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.10.079
– volume: 3
  start-page: 1500418
  year: 2016
  ident: 10.1016/j.cej.2020.124805_b0190
  article-title: Difunctional graphene-Fe3O4 hybrid nanosheet/polydimethylsiloxane nanocomposites with high positive piezoresistive and superparamagnetism properties as flexible touch sensors
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500418
– volume: 362
  start-page: 89
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0105
  article-title: Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.014
– volume: 165
  start-page: 31
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0170
  article-title: Fabrication of a piezoelectric polyvinylidene fluoride/carbonyl iron (PVDF/CI) magnetic composite film towards the magnetic field and deformation bi-sensor
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.06.006
– volume: 10
  start-page: 31655
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0050
  article-title: Fabrication of highly stretchable, washable, wearable, water-repellent strain sensors with multi-stimuli sensing ability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11766
– volume: 11
  start-page: 19472
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0205
  article-title: Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b03261
– volume: 6
  start-page: 393
  year: 2014
  ident: 10.1016/j.cej.2020.124805_b0025
  article-title: Strain sensors based on chromium nanoparticle arrays
  publication-title: Nanoscale
  doi: 10.1039/C3NR04135B
– volume: 15
  start-page: 1805363
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0095
  article-title: A directional strain sensor based on anisotropic microhoneycomb cellulose nanofiber-carbon nanotube hybrid aerogels prepared by unidirectional freeze drying
  publication-title: Small
  doi: 10.1002/smll.201805363
– volume: 171
  start-page: 162
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0230
  article-title: Design of mechanically stable, electrically conductive and highly hydrophobic three-dimensional graphene nanoribbon composites by modulating the interconnected network on polymer foam skeleton
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.12.014
– volume: 2
  start-page: 2304
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0260
  article-title: Design of multi-stimuli-responsive shape memory biobased PLA/ENR/Fe3O4 TPVs with balanced stiffness-toughness based on selective distribution of Fe3O4
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05025
– volume: 6
  start-page: 2258
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0110
  article-title: Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC04959E
– volume: 126
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0275
  article-title: Negative liquid sensing effect and tunable piezoresistive sensitivity in polydimethylsiloxane/carbon nanotubes/water-absorbing-expansion particles nanocomposites
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2019.105608
– volume: 13
  start-page: 1702091
  year: 2017
  ident: 10.1016/j.cej.2020.124805_b0075
  article-title: Highly compressible integrated supercapacitor-piezoresistance-sensor system with CNT-PDMS sponge for health monitoring
  publication-title: Small
  doi: 10.1002/smll.201702091
– volume: 27
  start-page: 4178
  year: 2015
  ident: 10.1016/j.cej.2020.124805_b0175
  article-title: Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501408
– volume: 48
  start-page: 40996
  year: 2018
  ident: 10.1016/j.cej.2020.124805_b0265
  article-title: Design of novel self-healing thermoplastic vulcanizates utilizing thermal/magnetic/light-triggered shape memory effects
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b18212
– volume: 11
  start-page: 6685
  year: 2019
  ident: 10.1016/j.cej.2020.124805_b0225
  article-title: Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20929
SSID ssj0006919
Score 2.6581135
Snippet [Display omitted] •Multifunctional elastomer foams were achieved by thermos-expandable microspheres.•Piezoresistivity of foams was improved by adding...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124805
SubjectTerms Microwave shielding
Multi-walled carbon nanotube
Piezoresistive sensing
Polydimethylsiloxane
Temperature sensing
Thermo-expandable microsphere
Title Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor
URI https://dx.doi.org/10.1016/j.cej.2020.124805
Volume 393
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXOCAaAHxKvKhJ0TY7Max4yNCRduuxAGK4BaNHQeCsna0uzwP_Cp-IJ48WpBKD5yiWGMr8jgzY8_nbwj5LiLDIwEQiHggA5Yw_89p7jcrKmQQMz7IoUZbnPDhOft1GV_OkaPuLgzCKlvb39j02lq3Lb12NntVUfTO-pjTkgzziKGQHC_8MiZwlR88_4V5cFkX90DhAKW7zGaN8dLmxm8RB8ixwBKsYPcv3_TG3xyvkOU2UKSHzbd8IXPGfiVLb-gDV8lLfXsWPVNzoEcrVz5mBRaFfiynRekewBqaOxhTPG6lNXgwuMfqKRnVMFHOUgvWzW6VoWAzisHg2AXmocLzBVUaOka83hSpB3CgCUUmq5aGmU4R-26v9huhe7jzTdcIiPON9XBVYZ6c386jGblr5N1kjZwf__h9NAzaKgyBHkgxC5TUUoKP0gT44EtJZBLVHFnnlQYtIqm59nFUiERxYRabJGK6zzWACDMucxmtk3nrrNkg1NuynGUqVmHiAxdlVBLnIHLFBFM5sP4mCbv5T3VLUY6VMsq0w6LdpF5lKaosbVS2Sfb-dKkafo7_CbNOqem7RZZ6__Fxt63Pddsmi_jWoAV3yPxscmu--QhmpnbrJbpLFg5_joYn-BydXoxeAWQF9lc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHCgHVFoq6AN84IQaNrtx7PiIUNHyvAASt2jsOBCUtaPd5Xnor-oPxJNHAQl64OqMrchjz4w9n78hZENEhkcCIBDxQAYsYX7Pae4PKypkEDM-yKFGWxzz4RnbP4_PZ8hO9xYGYZWt7W9sem2t25ZeO5u9qih6J33MaUmGecRQSJ58IHPMb18sY7D15wnnwWVd3QOlAxTvUps1yEubK39GHCDJAkuwhN1rzumZw9n9RBbbSJFuNz-zRGaM_UwWnvEHfiF_6-ez6JqaGz1aufI-K7Aq9H05KUp3B9bQ3MGI4n0rrdGDwS2WT8mohrFyllqwbnqtDAWbUYwGRy4wdxVeMKjS0BEC9ibIPYADjSlSWbU8zHSC4Hd78asRuoUb33SJiDjfWA9XFebB-fM82pGbRt6Nl8nZ7u_TnWHQlmEI9ECKaaCklhJ8mCbAR19KIpWo5kg7rzRoEUnNtQ-kQmSKC7PYJBHTfa4BRJhxmcvoK5m1zpoVQr0xy1mmYhUmPnJRRiVxDiJXTDCVA-uvkrCb_1S3HOVYKqNMOzDaVepVlqLK0kZlq2TzX5eqIej4nzDrlJq-WGWpdyBvd_v2vm7rZH54enSYHu4dH3wnH_FLAx38QWan42vz04czU7VWL9dHS_z2Qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+polydimethylsiloxane+foam+with+multi-walled+carbon+nanotube+and+thermo-expandable+microsphere+for+temperature+sensing%2C+microwave+shielding+and+piezoresistive+sensor&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Cai%2C+Jie-Hua&rft.au=Li%2C+Jie&rft.au=Chen%2C+Xu-Dong&rft.au=Wang%2C+Ming&rft.date=2020-08-01&rft.issn=1385-8947&rft.volume=393&rft.spage=124805&rft_id=info:doi/10.1016%2Fj.cej.2020.124805&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2020_124805
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon