Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin
[Display omitted] •Conductive MXene coated cotton fabric is prepared for wearable pressure sensor.•The pressure sensor shows both high sensitivity and broad sensing range.•The porous and sandwiched architecture accounts for the good sensing property.•The pressure sensor has great potential for human...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 420; p. 127720 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Conductive MXene coated cotton fabric is prepared for wearable pressure sensor.•The pressure sensor shows both high sensitivity and broad sensing range.•The porous and sandwiched architecture accounts for the good sensing property.•The pressure sensor has great potential for human motion detection and E-skin.
Flexible wearable pressure sensors have attracted tremendous interest for applications in human health monitoring, electronic skin, artificial intelligence and so on. However, it is still a critical challenge for pressure sensors to simultaneously achieve high sensitivity and wide sensing range while performing well in response time, stability, reliability and wearing comfortability. Here, conductive MXene/cotton fabric was fabricated using the simple dip-coating technique and then sandwiched between polydimethylsiloxane film and an interdigitated electrode for flexible wearable piezoresistive pressure sensor. The abundant hydroxyl groups of cotton fabric and functional groups of MXene were beneficial for the good adhesion of conductive MXene nanosheets onto the entangled fiber networks, constructing effective conductive network. Taking advantage of the excellent flexibility and three-dimensional porous structure of cotton fabric and the special sandwich architecture of the sensor, the MXene/cotton fabric (MCF) based pressure sensor exhibited high sensitivity (5.30 kPa−1 in the pressure range of 0–1.30 kPa), broad sensing range (0–160 kPa), rapid response/recovery time (50 ms/20 ms), excellent stability and long-term durability. Moreover, the MCF based pressure sensor can be employed to detect and distinguish various human health signals, including finger motion, early stage Parkinson’s static tremor and wrist pulse. Importantly, E-skin was also designed based on the MCF based pressure sensor for the recognition of different tactile stimuli, exhibiting promising potential in next generation wearable electronics. |
---|---|
AbstractList | [Display omitted]
•Conductive MXene coated cotton fabric is prepared for wearable pressure sensor.•The pressure sensor shows both high sensitivity and broad sensing range.•The porous and sandwiched architecture accounts for the good sensing property.•The pressure sensor has great potential for human motion detection and E-skin.
Flexible wearable pressure sensors have attracted tremendous interest for applications in human health monitoring, electronic skin, artificial intelligence and so on. However, it is still a critical challenge for pressure sensors to simultaneously achieve high sensitivity and wide sensing range while performing well in response time, stability, reliability and wearing comfortability. Here, conductive MXene/cotton fabric was fabricated using the simple dip-coating technique and then sandwiched between polydimethylsiloxane film and an interdigitated electrode for flexible wearable piezoresistive pressure sensor. The abundant hydroxyl groups of cotton fabric and functional groups of MXene were beneficial for the good adhesion of conductive MXene nanosheets onto the entangled fiber networks, constructing effective conductive network. Taking advantage of the excellent flexibility and three-dimensional porous structure of cotton fabric and the special sandwich architecture of the sensor, the MXene/cotton fabric (MCF) based pressure sensor exhibited high sensitivity (5.30 kPa−1 in the pressure range of 0–1.30 kPa), broad sensing range (0–160 kPa), rapid response/recovery time (50 ms/20 ms), excellent stability and long-term durability. Moreover, the MCF based pressure sensor can be employed to detect and distinguish various human health signals, including finger motion, early stage Parkinson’s static tremor and wrist pulse. Importantly, E-skin was also designed based on the MCF based pressure sensor for the recognition of different tactile stimuli, exhibiting promising potential in next generation wearable electronics. |
ArticleNumber | 127720 |
Author | Shi, Xianzhang Liu, Hu Zheng, Yanjun Yin, Rui Liu, Chuntai Shen, Changyu Zhao, Ye Zhang, Bing Zhang, Dianbo |
Author_xml | – sequence: 1 givenname: Yanjun surname: Zheng fullname: Zheng, Yanjun email: yjzheng@zzu.edu.cn organization: Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China – sequence: 2 givenname: Rui surname: Yin fullname: Yin, Rui organization: Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China – sequence: 3 givenname: Ye surname: Zhao fullname: Zhao, Ye organization: Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China – sequence: 4 givenname: Hu surname: Liu fullname: Liu, Hu email: liuhu@zzu.edu.cn organization: Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China – sequence: 5 givenname: Dianbo surname: Zhang fullname: Zhang, Dianbo organization: Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China – sequence: 6 givenname: Xianzhang surname: Shi fullname: Shi, Xianzhang organization: Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China – sequence: 7 givenname: Bing surname: Zhang fullname: Zhang, Bing organization: School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China – sequence: 8 givenname: Chuntai surname: Liu fullname: Liu, Chuntai organization: Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China – sequence: 9 givenname: Changyu surname: Shen fullname: Shen, Changyu organization: Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China |
BookMark | eNp9kMtuWyEQhlGVSHUuD5AdL3BsLuccDuqqstImUqJsWqk7xGWwcW2wAKfKO-Shi-OsssiGGRi-X5rvAp3FFAGhG0rmlNBxsZlb2MwZYe3OhGDkC5rRSfCOM8rOWs-noZtkL76ii1I2hJBRUjlDr8sU3cHW8Az48Q9EWNhUa4rYa5ODxUYXcHifoZRDBlwglpTxv1DX2KR2rMNq_fYaWkSoL1hH18bu9DXEFc46rgD7Rq0POx3xLtXQ8h1UsG_dkbjtyt8Qr9C519sC1-_1Ev3-cftredc9PP28X35_6CyTonamp2LUkyHaM869pL1kIwiYzKi57x14QY3sPRUa2CDlMPlhotYZw_3AreSXiJ5ybU6lZPBqn8NO5xdFiTrqVBvVdKqjTnXS2RjxgbGh6uMCNeuw_ZT8diKhrfQcIKtiA0QLLuSmQLkUPqH_A22olKA |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2024_161626 crossref_primary_10_1016_j_compscitech_2022_109560 crossref_primary_10_1002_admt_202200609 crossref_primary_10_1016_j_apmt_2024_102484 crossref_primary_10_1016_j_compositesa_2022_107216 crossref_primary_10_1016_j_matchemphys_2022_126342 crossref_primary_10_1007_s40843_022_2307_6 crossref_primary_10_1002_admt_202200290 crossref_primary_10_1016_j_compstruct_2023_117329 crossref_primary_10_1016_j_polymer_2024_127297 crossref_primary_10_1016_j_ceramint_2022_09_351 crossref_primary_10_15541_jim20230397 crossref_primary_10_1016_j_cej_2022_138578 crossref_primary_10_1021_acsanm_3c01667 crossref_primary_10_1016_j_compscitech_2023_109953 crossref_primary_10_2139_ssrn_4016292 crossref_primary_10_1007_s42765_023_00348_7 crossref_primary_10_1177_09544062231199422 crossref_primary_10_1016_j_bioactmat_2022_10_014 crossref_primary_10_1016_j_polymer_2023_125844 crossref_primary_10_1021_acsami_2c23002 crossref_primary_10_1016_j_compositesb_2024_111840 crossref_primary_10_1016_j_bios_2023_115449 crossref_primary_10_1016_j_aej_2024_09_039 crossref_primary_10_1109_JSEN_2022_3211646 crossref_primary_10_1016_j_nanoms_2021_10_002 crossref_primary_10_1021_acsanm_2c02202 crossref_primary_10_1007_s00604_022_05162_3 crossref_primary_10_1002_aelm_202100368 crossref_primary_10_1016_j_mtchem_2024_101927 crossref_primary_10_1002_sus2_207 crossref_primary_10_1016_j_trac_2024_117662 crossref_primary_10_1002_adfm_202401311 crossref_primary_10_1016_j_apsusc_2023_157862 crossref_primary_10_1021_acsapm_1c00840 crossref_primary_10_1021_acsnano_1c08239 crossref_primary_10_1016_j_coco_2022_101351 crossref_primary_10_1039_D1TC05886J crossref_primary_10_1002_admi_202300030 crossref_primary_10_1021_acsami_4c10559 crossref_primary_10_1021_acs_iecr_3c00214 crossref_primary_10_1007_s12274_023_6150_8 crossref_primary_10_1063_5_0157827 crossref_primary_10_1007_s11431_022_2377_7 crossref_primary_10_3390_polym15092136 crossref_primary_10_1039_D3TC04143C crossref_primary_10_1002_admt_202201352 crossref_primary_10_1002_smll_202300283 crossref_primary_10_1007_s10854_024_13145_8 crossref_primary_10_1016_j_sna_2024_115572 crossref_primary_10_1039_D3TA03415A crossref_primary_10_1039_D3TA05561B crossref_primary_10_1007_s10570_022_04661_z crossref_primary_10_1039_D3NJ01106B crossref_primary_10_1016_j_cej_2023_146572 crossref_primary_10_18633_biotecnia_v26_2441 crossref_primary_10_20517_ss_2024_37 crossref_primary_10_1021_acssuschemeng_2c00463 crossref_primary_10_1016_j_sna_2023_114991 crossref_primary_10_1016_j_apsusc_2024_159554 crossref_primary_10_1021_acsaelm_2c00316 crossref_primary_10_1016_j_carbpol_2023_121742 crossref_primary_10_1016_j_orgel_2023_106958 crossref_primary_10_1016_j_engappai_2024_108954 crossref_primary_10_1007_s42114_024_00838_1 crossref_primary_10_1007_s12274_021_3967_x crossref_primary_10_1016_j_aej_2025_01_086 crossref_primary_10_1007_s10853_022_07943_w crossref_primary_10_1002_adma_202312761 crossref_primary_10_1002_admi_202101687 crossref_primary_10_1016_j_mtcomm_2024_108528 crossref_primary_10_1109_JFLEX_2023_3300997 crossref_primary_10_1016_j_carbon_2021_12_080 crossref_primary_10_1002_aelm_202400426 crossref_primary_10_1039_D4TC00467A crossref_primary_10_1016_j_nanoen_2023_108988 crossref_primary_10_1002_app_53711 crossref_primary_10_1016_j_jallcom_2025_178764 crossref_primary_10_1016_j_sna_2023_114998 crossref_primary_10_1016_j_matdes_2023_112210 crossref_primary_10_1016_j_mtphys_2024_101576 crossref_primary_10_3390_polym14050859 crossref_primary_10_1007_s40843_022_2397_y crossref_primary_10_1021_acsami_2c01914 crossref_primary_10_1002_adfm_202412065 crossref_primary_10_1002_adsr_202400082 crossref_primary_10_1039_D4TC01223B crossref_primary_10_1002_inf2_12376 crossref_primary_10_1016_j_jallcom_2025_178779 crossref_primary_10_34133_research_0157 crossref_primary_10_1016_j_sna_2024_116166 crossref_primary_10_1088_1361_6528_ad4158 crossref_primary_10_1016_j_nanoen_2025_110826 crossref_primary_10_1002_app_52755 crossref_primary_10_1039_D2TA03782C crossref_primary_10_1002_admt_202202029 crossref_primary_10_3390_batteries9070384 crossref_primary_10_1016_j_snb_2023_135255 crossref_primary_10_3390_nano13192630 crossref_primary_10_1088_1361_6463_ac0ca1 crossref_primary_10_1016_j_apsusc_2023_157176 crossref_primary_10_1039_D2NR05969J crossref_primary_10_1021_acsaelm_3c01854 crossref_primary_10_1002_adfm_202214880 crossref_primary_10_1021_acsanm_3c02155 crossref_primary_10_1038_s41467_023_42361_9 crossref_primary_10_3390_s22083028 crossref_primary_10_1016_j_nanoen_2022_107778 crossref_primary_10_1038_s41598_024_80655_0 crossref_primary_10_1016_j_cej_2022_140467 crossref_primary_10_1021_acsanm_3c00647 crossref_primary_10_54227_mlab_20220028 crossref_primary_10_1007_s42114_023_00650_3 crossref_primary_10_1016_j_compscitech_2022_109863 crossref_primary_10_1016_j_flatc_2023_100562 crossref_primary_10_1002_admt_202201503 crossref_primary_10_1039_D2TC02177C crossref_primary_10_3390_s24134321 crossref_primary_10_1002_mame_202200529 crossref_primary_10_1016_j_carbon_2022_08_040 crossref_primary_10_1016_j_sna_2024_115887 crossref_primary_10_1016_j_colsurfa_2021_127230 crossref_primary_10_1039_D1SM01622A crossref_primary_10_1109_JSEN_2022_3221181 crossref_primary_10_1016_j_compscitech_2023_110012 crossref_primary_10_1038_s41569_025_01127_0 crossref_primary_10_1016_j_jcis_2022_03_013 crossref_primary_10_1039_D3TA02617E crossref_primary_10_1002_admt_202101511 crossref_primary_10_1016_j_molliq_2022_120149 crossref_primary_10_1007_s42114_022_00531_1 crossref_primary_10_1016_j_cej_2023_141648 crossref_primary_10_3390_s23177473 crossref_primary_10_1016_j_sna_2024_116183 crossref_primary_10_1021_acsami_2c18425 crossref_primary_10_1016_j_cej_2024_156989 crossref_primary_10_1021_acsanm_2c03268 crossref_primary_10_1007_s10570_023_05695_7 crossref_primary_10_1016_j_snb_2022_131704 crossref_primary_10_1039_D1NH00317H crossref_primary_10_1039_D2AN01143C crossref_primary_10_1016_j_surfin_2025_106008 crossref_primary_10_1016_j_indcrop_2024_120096 crossref_primary_10_1002_adfm_202214503 crossref_primary_10_1021_acssuschemeng_1c02051 crossref_primary_10_1016_j_isci_2021_103728 crossref_primary_10_1007_s12221_022_4770_3 crossref_primary_10_1002_advs_202408313 crossref_primary_10_1016_j_mtnano_2023_100391 crossref_primary_10_3390_s24144698 crossref_primary_10_1002_pssa_202400334 crossref_primary_10_1007_s10570_024_06315_8 crossref_primary_10_1016_j_cej_2024_158359 crossref_primary_10_3390_polym16101337 crossref_primary_10_1007_s42765_021_00126_3 crossref_primary_10_1016_j_ijbiomac_2024_135493 crossref_primary_10_1021_acssensors_5c00187 crossref_primary_10_1016_j_sna_2025_116379 crossref_primary_10_1080_20550324_2023_2291626 crossref_primary_10_1021_acsami_2c15968 crossref_primary_10_1021_acsanm_3c01270 crossref_primary_10_1002_aisy_202200140 crossref_primary_10_1016_j_mtsust_2024_100880 crossref_primary_10_1016_j_nanoen_2025_110757 crossref_primary_10_1021_acsami_3c04526 crossref_primary_10_1016_j_compositesa_2022_107171 crossref_primary_10_1021_acs_langmuir_3c01826 crossref_primary_10_1016_j_cej_2022_135587 crossref_primary_10_1002_advs_202201912 crossref_primary_10_1007_s42114_021_00331_z crossref_primary_10_1002_adfm_202410762 crossref_primary_10_1007_s42242_024_00292_4 crossref_primary_10_3390_ma18010169 crossref_primary_10_1007_s10853_023_08220_0 crossref_primary_10_1016_j_cej_2022_139823 crossref_primary_10_1016_j_nanoen_2024_109801 crossref_primary_10_3390_s24113676 crossref_primary_10_1016_j_ijbiomac_2023_124731 crossref_primary_10_1088_1361_648X_ac8d40 crossref_primary_10_1039_D4MA00894D crossref_primary_10_1039_D3NR05372E crossref_primary_10_1186_s43074_023_00091_7 crossref_primary_10_1021_acsanm_4c00286 crossref_primary_10_1007_s10853_025_10728_6 crossref_primary_10_1002_adfm_202403788 crossref_primary_10_1002_smll_202309027 crossref_primary_10_1021_acsami_2c00980 crossref_primary_10_1016_j_sna_2024_115849 crossref_primary_10_1039_D2TA04862K crossref_primary_10_1515_polyeng_2024_0110 crossref_primary_10_1016_j_matdes_2022_111207 crossref_primary_10_1016_j_cej_2023_141853 crossref_primary_10_1016_j_jmat_2023_08_013 crossref_primary_10_1007_s12221_022_0049_y crossref_primary_10_1016_j_cej_2022_136446 crossref_primary_10_1016_j_jcis_2022_04_074 crossref_primary_10_1021_acsami_2c20930 crossref_primary_10_1038_s41598_024_77752_5 crossref_primary_10_1016_j_cej_2022_139716 crossref_primary_10_1002_admi_202200261 crossref_primary_10_1016_j_cej_2022_139832 crossref_primary_10_1002_adem_202301962 crossref_primary_10_1016_j_sna_2024_116011 crossref_primary_10_1007_s11431_023_2533_8 crossref_primary_10_3390_nano14050447 crossref_primary_10_1016_j_cej_2022_138193 crossref_primary_10_1016_j_nanoen_2024_109461 crossref_primary_10_1016_j_compositesa_2021_106700 crossref_primary_10_1016_j_carbpol_2025_123439 crossref_primary_10_1016_j_cej_2024_154083 crossref_primary_10_1016_j_cej_2024_150034 crossref_primary_10_1021_acsaelm_3c01346 crossref_primary_10_1021_acs_langmuir_4c02111 crossref_primary_10_1002_pat_6251 crossref_primary_10_1021_acsami_1c23567 crossref_primary_10_1002_admt_202001071 crossref_primary_10_1021_acsami_1c24655 crossref_primary_10_1109_JSEN_2024_3452498 crossref_primary_10_1016_j_cej_2022_135003 crossref_primary_10_1039_D3TA06779C crossref_primary_10_1002_adma_202110608 crossref_primary_10_1007_s12274_024_6551_3 crossref_primary_10_1016_j_colsurfa_2024_134722 crossref_primary_10_1039_D1TA08453D crossref_primary_10_1007_s00542_022_05269_w crossref_primary_10_1016_j_xinn_2022_100209 crossref_primary_10_1002_adem_202101388 crossref_primary_10_1080_00405000_2022_2061761 crossref_primary_10_3390_s23020817 crossref_primary_10_1002_adfm_202418706 crossref_primary_10_1016_j_susmat_2022_e00439 crossref_primary_10_1016_j_colsurfa_2022_130605 crossref_primary_10_1002_admt_202301615 crossref_primary_10_1021_acsanm_4c00063 crossref_primary_10_1016_j_cej_2023_148346 crossref_primary_10_2139_ssrn_4093867 crossref_primary_10_1016_j_mtla_2022_101474 crossref_primary_10_1021_acsami_3c07589 crossref_primary_10_1021_acs_iecr_4c04197 crossref_primary_10_1016_j_compositesa_2022_107144 crossref_primary_10_1039_D1TC04596B crossref_primary_10_1016_j_cej_2021_132362 crossref_primary_10_1007_s11431_022_2362_y crossref_primary_10_1039_D3MH00679D crossref_primary_10_1016_j_nanoms_2022_10_003 crossref_primary_10_1177_00405175211066621 crossref_primary_10_3390_coatings13061010 crossref_primary_10_3390_polym14214713 crossref_primary_10_1002_aisy_202400124 crossref_primary_10_3390_bios14120622 crossref_primary_10_1021_acs_energyfuels_2c01835 crossref_primary_10_1016_j_nanoen_2022_107513 crossref_primary_10_2139_ssrn_4110659 crossref_primary_10_1007_s11431_022_2190_y crossref_primary_10_1109_JSEN_2021_3124847 crossref_primary_10_1155_2022_1940218 crossref_primary_10_1021_acsnano_4c08258 crossref_primary_10_1080_09205063_2024_2334974 crossref_primary_10_1088_1361_6439_ad5cfd crossref_primary_10_1016_j_colsurfa_2022_129638 crossref_primary_10_1007_s10570_022_04704_5 crossref_primary_10_1021_acs_chemrev_3c00507 crossref_primary_10_1016_j_cej_2022_139869 crossref_primary_10_2139_ssrn_4158175 crossref_primary_10_1002_admi_202102588 crossref_primary_10_1002_pat_5856 crossref_primary_10_1016_j_cej_2024_154069 crossref_primary_10_1002_app_52915 crossref_primary_10_1002_aelm_202100578 crossref_primary_10_1016_j_cej_2024_153533 crossref_primary_10_1039_D4NR04063E crossref_primary_10_3390_s23094300 crossref_primary_10_3390_s24020449 crossref_primary_10_1039_D2TC00165A crossref_primary_10_1109_JFLEX_2023_3298593 crossref_primary_10_1016_j_talanta_2024_127085 crossref_primary_10_1016_j_scib_2024_04_060 crossref_primary_10_1088_1361_6528_ad93df crossref_primary_10_1016_j_cej_2024_158091 crossref_primary_10_1007_s40843_023_2758_7 crossref_primary_10_1016_j_colsurfa_2022_128676 crossref_primary_10_1021_acsami_4c15201 crossref_primary_10_1007_s42823_023_00619_8 crossref_primary_10_1007_s12221_023_00108_9 crossref_primary_10_1016_j_pmatsci_2024_101331 crossref_primary_10_1039_D3QM00076A crossref_primary_10_1007_s11664_022_09922_y crossref_primary_10_1021_acsami_3c09464 crossref_primary_10_1021_acsanm_3c04610 crossref_primary_10_1016_j_bioactmat_2024_06_015 crossref_primary_10_1016_j_cej_2024_151592 crossref_primary_10_1109_JSEN_2023_3302857 crossref_primary_10_1007_s40820_024_01488_0 crossref_primary_10_1016_j_ijbiomac_2024_138811 crossref_primary_10_1016_j_cej_2025_161328 crossref_primary_10_1021_acsmaterialsau_4c00033 crossref_primary_10_1109_JSEN_2022_3197182 crossref_primary_10_1002_adsr_202200049 crossref_primary_10_1016_j_cej_2023_145172 crossref_primary_10_1002_smtd_202400480 crossref_primary_10_1016_j_scib_2021_04_041 crossref_primary_10_1007_s40820_022_00911_8 crossref_primary_10_1007_s12274_022_5014_y crossref_primary_10_1021_acsnano_1c09925 crossref_primary_10_1002_app_55761 crossref_primary_10_20517_ss_2024_68 crossref_primary_10_1007_s10854_023_09950_2 crossref_primary_10_1021_acsami_3c05870 crossref_primary_10_1002_pen_27059 crossref_primary_10_1007_s42765_023_00331_2 crossref_primary_10_1080_14686996_2024_2311635 crossref_primary_10_1002_admi_202300350 crossref_primary_10_1016_j_cej_2023_146939 crossref_primary_10_1038_s41528_022_00191_7 crossref_primary_10_1002_mame_202100486 crossref_primary_10_1021_acsami_4c09896 crossref_primary_10_1007_s40820_024_01597_w crossref_primary_10_1016_j_cej_2021_133700 crossref_primary_10_1021_acsanm_5c00470 crossref_primary_10_1002_rpm_20240018 crossref_primary_10_1016_j_nanoen_2022_107600 crossref_primary_10_1016_j_sna_2022_113956 crossref_primary_10_1109_JSEN_2023_3281426 crossref_primary_10_1007_s00216_022_04157_6 crossref_primary_10_1021_acsapm_3c02175 crossref_primary_10_1016_j_cis_2024_103332 crossref_primary_10_1016_j_mtchem_2025_102569 crossref_primary_10_1109_TED_2022_3173916 crossref_primary_10_1021_acsami_2c03350 crossref_primary_10_1021_acsaelm_2c01205 crossref_primary_10_1016_j_ijbiomac_2024_133347 crossref_primary_10_1002_admi_202100706 crossref_primary_10_1021_acsami_1c15467 crossref_primary_10_1007_s12274_022_4107_y crossref_primary_10_1002_smll_202310038 crossref_primary_10_1002_smll_202305925 crossref_primary_10_1002_adsr_202300048 crossref_primary_10_1016_j_ijbiomac_2023_123936 crossref_primary_10_1002_admi_202101362 crossref_primary_10_1016_j_compscitech_2022_109803 crossref_primary_10_1039_D4TC01470G crossref_primary_10_1007_s10853_024_09366_1 crossref_primary_10_1016_j_cej_2021_131878 crossref_primary_10_1007_s42114_022_00610_3 crossref_primary_10_1021_acsami_2c10679 |
Cites_doi | 10.1021/acsami.9b03261 10.1016/j.cej.2019.04.142 10.1016/j.carbpol.2013.10.023 10.1002/smll.201803018 10.1021/acsnano.6b08027 10.1002/aelm.201901426 10.1016/j.jcis.2019.01.123 10.1021/acsami.8b13535 10.1021/acsnano.8b01805 10.1038/ncomms9356 10.1039/C8TC04079F 10.1016/j.nanoen.2019.104143 10.1021/acsami.9b14688 10.1021/acssuschemeng.0c01827 10.1002/smll.201805084 10.1002/smll.201703432 10.1021/acsami.9b09265 10.1021/acsami.9b12055 10.1002/adma.201702675 10.1021/acsami.9b02659 10.1016/j.nanoen.2018.05.020 10.1038/s41467-019-14054-9 10.1039/C7NR09149D 10.1021/acsami.8b03639 10.1021/acsami.9b03421 10.1021/acsami.7b15252 10.1016/j.cej.2020.124045 10.1002/smll.201800819 10.1002/adfm.201500801 10.1002/adma.201702367 10.1039/C8NR02813C 10.1016/j.scib.2020.02.020 10.1002/adfm.201909604 10.1038/s41467-018-04906-1 10.1021/acsnano.9b03454 10.1039/C8TA11435H 10.1021/acsami.7b10820 10.1039/C8TC04893B 10.1002/adfm.201910541 10.1039/C9TA00596J 10.1021/acsami.9b07465 10.1021/acsami.9b00900 10.1002/adfm.201601995 10.1016/j.cej.2017.05.091 10.1002/adfm.201808829 10.1021/nn500441k 10.1002/adfm.201701264 10.1002/adma.201405826 10.1021/acsnano.9b06576 10.1021/acsami.7b09617 10.1021/acsami.9b17173 10.1021/acs.nanolett.8b04514 10.1016/j.compscitech.2018.01.019 10.1021/acsnano.8b07805 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2020.127720 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2020_127720 S1385894720338419 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-b4176a8b0af233f914926e7e8b6a3f4def71b94f17ae259958f581cdbb3f53c93 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 22:54:57 EDT 2025 Tue Jul 01 04:27:11 EDT 2025 Fri Feb 23 02:39:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wearable pressure sensor Cotton fabric E-skin MXene Human health monitoring |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-b4176a8b0af233f914926e7e8b6a3f4def71b94f17ae259958f581cdbb3f53c93 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2020_127720 crossref_citationtrail_10_1016_j_cej_2020_127720 elsevier_sciencedirect_doi_10_1016_j_cej_2020_127720 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-15 |
PublicationDateYYYYMMDD | 2021-09-15 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, She, Xiao, Hu, Zhou, Zhang (b0220) 2014; 101 An, Heo, Ji, Bien, Park (b0040) 2018; 9 Chen, Song, Xu (b0230) 2018; 10 Jiang, Yu, Xiao, Zhu, Zhang (b0005) 2019; 11 Liu, Li, Bu, Zhang, Wang, Pan, Mi, Guo, Liu, Shen (b0155) 2019; 66 Shi, Wang, Dai, Zhao, Du, Li, Fang (b0240) 2018; 14 Li, Wu, Xu, Wang, Meng, Li (b0095) 2018; 10 Li, Chen, Yang, Chen, Zhang, Zhao, Li, Zhang (b0190) 2019; 7 Lee, Park, Cho, Shin, Lee, Kim, Myoung, Cho, Kang, Baig, Ko (b0115) 2018; 12 Shi, Wang, Xie, Xue, Zhang, Kang, Wang, Liang, Chen (b0205) 2019; 13 Zhuo, Hu, Chen, Peng, Liu, Luo, Yi, Liu, Zhong (b0215) 2019; 7 Guo, Guo, Zhong, Wan, Zhang, Zhang (b0010) 2018; 14 Zhan, Lin, Tran, An, Wei, Du, Tran, Lu (b0245) 2017; 9 Chen, Liu, Zheng, Zhai, Liu, Liu, Mi, Guo, Shen (b0025) 2019; 11 Park, Lee, Hong, Ha, Jung, Lim, Kim, Ko (b0100) 2014; 8 Ge, Cai, Dong, Zhang, Shao, Huang, Dong (b0135) 2018; 10 Guo, Zhong, Fang, Wan, Yu (b0195) 2019; 19 Yin, Yang, Li, Zhang, Liu, Han, Liu, Shen (b0185) 2020; 65 Luo, Huang, Liu, Chen, Wong, Zhao (b0055) 2017; 29 Cai, Yang, Xu, Liu, Tang, Wang (b0140) 2017; 325 Yue, Liu, Liu, Li, Ma, Luo, Wang, Rao, Hu, Su, Zhang, Huang, Gao (b0200) 2018; 50 Gao, Zhu, Li, Zhang, Liu, Yu, Huang (b0180) 2019; 11 Wang, Zhang, Yu, Dong, Peng, Zhang, Zhang, Liu, Pan, Wang (b0085) 2015; 27 Sun, Zhao, Zhou, Yeung, Wu, Venkatesh, Xu, Wylie, Li, Roy (b0035) 2019; 29 Hou, Xu, Qiu, Wu, Wang, Xu, Liu, Guo (b0060) 2019; 15 Tay, Li, Lin, Wang, Lim, Chen, Leong, Tsang, Teo (b0070) 2020; 30 Bao, Wang, Dong, Yu, Zhao, Wang, Pan (b0080) 2015; 25 Zhang, Liu, Yang, Shi, Zhang, Shan, Mi, Liu, Shen, Guo (b0125) 2019; 11 Zhang, Sun, Liu, Chen, Zheng, Shi, Zhang, Mi, Liu, Shen (b0050) 2020; 387 Zhang, Hu, Zhu, Han, Zhu, Sun, Wong (b0105) 2017; 9 Zheng, Li, Zhou, Dai, Zheng, Zhang, Liu, Shen (b0145) 2020; 12 Wang, Pan, Wang (b0030) 2019; 13 Zhao, Zhang, Tong, Zhao, Tang, Liu (b0260) 2020; 6 Yan, Ren, Maleski, Hatter, Anasori, Urbankowski, Sarycheva, Gogotsi (b0225) 2017; 27 Song, Xu, Rong, Zhang (b0175) 2019; 7 Liu, Zhang, Sun, Liu, Liu, Zhou, Yu (b0210) 2017; 29 Yang, Kim, Oh, Kwon, Sim, Kim, Choi, Park (b0090) 2019; 11 Zhang, Zhou, Zhang, Zhao, Dong, Wei, Zhao, Wang, Guo, Hu (b0235) 2018; 10 Zhang, Zang, Huang, Di, Zhu (b0015) 2015; 6 Huang, Wang, Hu, Shang, Chang, Xie, Yang, Lepró, Baughman, Zheng (b0150) 2020; 30 Kim, Kim, Kim, Lee, Kang, Hwang, Chae, Kang, Lee, Park, Shim (b0065) 2018; 14 Chen, Wang, Li, Lin, Luo, Long, Zhao, Xu (b0075) 2017; 11 Bai, Wang, Wang, Deng, Wang, Lu, Huang, Li, Zhang, Yang, Xie, Zhao, Guo (b0120) 2020; 11 Zheng, Li, Dai, Wang, Zheng, Liu, Shen (b0160) 2018; 156 Zhai, Xia, Zhou, Yue, Ren, Zheng, Dai, Liu, Shen (b0130) 2019; 372 Zhao, Li, Chen, Yuan, Li, Zhang (b0110) 2019; 11 Li, Li, Li, Song, Min, Hu, Zhang, Koratkar, Yu (b0265) 2019; 542 Tewari, Gandla, Bohm, McNeill, Gupta (b0250) 2018; 10 Wu, Han, Zhang, Zhou, Lu (b0045) 2016; 26 Wang, Lou, Wang, Zhao, Zhao, Wang, Han, Jiang, Shen (b0020) 2019; 13 Tannarana, Solanki, Bhakhar, Patel, Pathak, Pataniya (b0255) 2020; 8 Li, Liu, Zhang, Zhang, Liu, He, Mi, Zhang, Liu, Shen, Guo (b0165) 2019; 11 Yang, Liu, Liu, Su, Li, Xiong, Long, Zou, Gao (b0270) 2019; 11 Liu, Li, Zhang, Yin, Liu, He, Dai, Shan, Guo, Liu, Shen, Wang, Wang, Wang, Wei, Guo (b0170) 2018; 6 Li (10.1016/j.cej.2020.127720_b0165) 2019; 11 Tay (10.1016/j.cej.2020.127720_b0070) 2020; 30 Lee (10.1016/j.cej.2020.127720_b0115) 2018; 12 Chen (10.1016/j.cej.2020.127720_b0075) 2017; 11 Wu (10.1016/j.cej.2020.127720_b0045) 2016; 26 Liu (10.1016/j.cej.2020.127720_b0210) 2017; 29 Wang (10.1016/j.cej.2020.127720_b0020) 2019; 13 Tannarana (10.1016/j.cej.2020.127720_b0255) 2020; 8 Luo (10.1016/j.cej.2020.127720_b0055) 2017; 29 Li (10.1016/j.cej.2020.127720_b0190) 2019; 7 Yan (10.1016/j.cej.2020.127720_b0225) 2017; 27 Chen (10.1016/j.cej.2020.127720_b0230) 2018; 10 Guo (10.1016/j.cej.2020.127720_b0010) 2018; 14 Zhang (10.1016/j.cej.2020.127720_b0015) 2015; 6 Wang (10.1016/j.cej.2020.127720_b0220) 2014; 101 Zhang (10.1016/j.cej.2020.127720_b0050) 2020; 387 Yang (10.1016/j.cej.2020.127720_b0090) 2019; 11 Zhao (10.1016/j.cej.2020.127720_b0110) 2019; 11 Huang (10.1016/j.cej.2020.127720_b0150) 2020; 30 Zhang (10.1016/j.cej.2020.127720_b0125) 2019; 11 Yang (10.1016/j.cej.2020.127720_b0270) 2019; 11 Liu (10.1016/j.cej.2020.127720_b0170) 2018; 6 Zhan (10.1016/j.cej.2020.127720_b0245) 2017; 9 Bai (10.1016/j.cej.2020.127720_b0120) 2020; 11 Yue (10.1016/j.cej.2020.127720_b0200) 2018; 50 Ge (10.1016/j.cej.2020.127720_b0135) 2018; 10 Zheng (10.1016/j.cej.2020.127720_b0160) 2018; 156 Li (10.1016/j.cej.2020.127720_b0265) 2019; 542 Zhang (10.1016/j.cej.2020.127720_b0235) 2018; 10 Jiang (10.1016/j.cej.2020.127720_b0005) 2019; 11 Kim (10.1016/j.cej.2020.127720_b0065) 2018; 14 Cai (10.1016/j.cej.2020.127720_b0140) 2017; 325 Park (10.1016/j.cej.2020.127720_b0100) 2014; 8 Hou (10.1016/j.cej.2020.127720_b0060) 2019; 15 Bao (10.1016/j.cej.2020.127720_b0080) 2015; 25 An (10.1016/j.cej.2020.127720_b0040) 2018; 9 Wang (10.1016/j.cej.2020.127720_b0085) 2015; 27 Zhai (10.1016/j.cej.2020.127720_b0130) 2019; 372 Yin (10.1016/j.cej.2020.127720_b0185) 2020; 65 Sun (10.1016/j.cej.2020.127720_b0035) 2019; 29 Gao (10.1016/j.cej.2020.127720_b0180) 2019; 11 Song (10.1016/j.cej.2020.127720_b0175) 2019; 7 Tewari (10.1016/j.cej.2020.127720_b0250) 2018; 10 Wang (10.1016/j.cej.2020.127720_b0030) 2019; 13 Li (10.1016/j.cej.2020.127720_b0095) 2018; 10 Liu (10.1016/j.cej.2020.127720_b0155) 2019; 66 Shi (10.1016/j.cej.2020.127720_b0240) 2018; 14 Zhuo (10.1016/j.cej.2020.127720_b0215) 2019; 7 Guo (10.1016/j.cej.2020.127720_b0195) 2019; 19 Zhao (10.1016/j.cej.2020.127720_b0260) 2020; 6 Zheng (10.1016/j.cej.2020.127720_b0145) 2020; 12 Shi (10.1016/j.cej.2020.127720_b0205) 2019; 13 Chen (10.1016/j.cej.2020.127720_b0025) 2019; 11 Zhang (10.1016/j.cej.2020.127720_b0105) 2017; 9 |
References_xml | – volume: 27 start-page: 1701264 year: 2017 ident: b0225 article-title: Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1808829 year: 2019 ident: b0035 article-title: Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams publication-title: Adv. Funct. Mater. – volume: 13 start-page: 649 year: 2019 end-page: 659 ident: b0205 article-title: Bioinspired Ultrasensitive and Stretchable MXene-Based Strain Sensor via Nacre-Mimetic Microscale “Brick-and-Mortar” Architecture publication-title: ACS Nano – volume: 7 start-page: 8092 year: 2019 end-page: 8100 ident: b0215 article-title: A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors publication-title: J. Mater. Chem. A – volume: 325 start-page: 396 year: 2017 end-page: 403 ident: b0140 article-title: Flexible and wearable strain sensing fabrics publication-title: Chem. Eng. J. – volume: 13 start-page: 9139 year: 2019 end-page: 9147 ident: b0020 article-title: Bioinspired Interlocked Structure-Induced High Deformability for Two-Dimensional Titanium Carbide (MXene)/Natural Microcapsule-Based Flexible Pressure Sensors publication-title: ACS Nano – volume: 66 year: 2019 ident: b0155 article-title: Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor publication-title: Nano Energy – volume: 25 start-page: 2884 year: 2015 end-page: 2891 ident: b0080 article-title: Flexible and Controllable Piezo-Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p-Polymer LED Array publication-title: Adv. Funct. Mater. – volume: 27 start-page: 2324 year: 2015 end-page: 2331 ident: b0085 article-title: Dynamic Pressure Mapping of Personalized Handwriting by a Flexible Sensor Matrix Based on the Mechanoluminescence Process publication-title: Adv. Mater. – volume: 156 start-page: 276 year: 2018 end-page: 286 ident: b0160 article-title: A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring publication-title: Compos. Sci. Technol. – volume: 387 year: 2020 ident: b0050 article-title: Enhanced piezoresistive performance of conductive WPU/CNT composite foam through incorporating brittle cellulose nanocrystal publication-title: Chem. Eng. J. – volume: 29 start-page: 1702367 year: 2017 ident: b0210 article-title: Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding publication-title: Adv. Mater. – volume: 6 start-page: 1901426 year: 2020 ident: b0260 article-title: All-paper, all-organic, cuttable, and foldable pressure sensor with tuneable conductivity polypyrrole publication-title: Adv. Electron. Mater. – volume: 11 start-page: 19472 year: 2019 end-page: 19480 ident: b0090 article-title: Microstructured Porous Pyramid-Based Ultrahigh Sensitive Pressure Sensor Insensitive to Strain and Temperature publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 1703432 year: 2018 ident: b0065 article-title: Transparent, flexible, conformal capacitive pressure sensors with nanoparticles publication-title: Small – volume: 14 start-page: 1800819 year: 2018 ident: b0240 article-title: Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range publication-title: Small – volume: 9 start-page: 2458 year: 2018 ident: b0040 article-title: Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature publication-title: Nat. Commun. – volume: 101 start-page: 812 year: 2014 end-page: 818 ident: b0220 article-title: The green adsorption of chitosan tripolyphosphate nanoparticles on cotton fiber surfaces publication-title: Carbohydrate Polymers – volume: 11 start-page: 20500 year: 2019 end-page: 20508 ident: b0005 article-title: Ultrawide Sensing Range and Highly Sensitive Flexible Pressure Sensor Based on a Percolative Thin Film with a Knoll-like Microstructured Surface publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 6246 year: 2016 end-page: 6256 ident: b0045 article-title: Large-Area Compliant, Low-Cost, and Versatile Pressure-Sensing Platform Based on Microcrack-Designed Carbon Black@Polyurethane Sponge for Human-Machine Interfacing publication-title: Adv. Funct. Mater. – volume: 6 start-page: 8356 year: 2015 ident: b0015 article-title: Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure- frame-supported organic thermoelectric materials publication-title: Nat. Commun. – volume: 8 start-page: 4689 year: 2014 end-page: 4697 ident: b0100 article-title: Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins publication-title: ACS Nano – volume: 15 start-page: 1805084 year: 2019 ident: b0060 article-title: A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection publication-title: Small – volume: 6 start-page: 12121 year: 2018 end-page: 12141 ident: b0170 article-title: Electrically conductive polymer composites for smart flexible strain sensors: a critical review publication-title: J. Mater. Chem. C – volume: 10 start-page: 34646 year: 2018 end-page: 34654 ident: b0230 article-title: Flexible and Highly Sensitive Resistive Pressure Sensor Based on Carbonized Crepe Paper with Corrugated Structure publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 1143 year: 2019 end-page: 1150 ident: b0195 article-title: A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human–Machine Interfacing publication-title: Nano Lett. – volume: 10 start-page: 7387 year: 2018 end-page: 7395 ident: b0235 article-title: Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene publication-title: Nanoscale – volume: 10 start-page: 5185 year: 2018 end-page: 5195 ident: b0250 article-title: Highly Exfoliated MWNT–rGO Ink-Wrapped Polyurethane Foam for Piezoresistive Pressure Sensor Applications publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 1803018 year: 2018 ident: b0010 article-title: A flexible wearable pressure sensor with bioinspired microcrack and interlocking for full-range human-machine interfacing publication-title: Small – volume: 8 start-page: 7741 year: 2020 end-page: 7749 ident: b0255 article-title: 2D-SnSe 2 Nanosheet Functionalized Piezo-resistive Flexible Sensor for Pressure and Human Breath Monitoring publication-title: ACS Sustainable Chem. Eng. – volume: 11 start-page: 33165 year: 2019 end-page: 33172 ident: b0270 article-title: Graphene Aerogel Broken to Fragments for a Piezoresistive Pressure Sensor with a Higher Sensitivity publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 25034 year: 2019 end-page: 25042 ident: b0180 article-title: All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 4045 year: 2018 end-page: 4054 ident: b0115 article-title: Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range publication-title: ACS Nano – volume: 7 start-page: 2315 year: 2019 end-page: 2325 ident: b0175 article-title: A sunlight self-healable transparent strain sensor with high sensitivity and durability based on a silver nanowire/polyurethane composite film publication-title: J. Mater. Chem. A – volume: 11 start-page: 21904 year: 2019 end-page: 21914 ident: b0165 article-title: Superhydrophobic Electrically Conductive Paper for Ultrasensitive Strain Sensor with Excellent Anticorrosion and Self-Cleaning Property publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 12287 year: 2019 end-page: 12293 ident: b0030 article-title: Electronic Skin for Closed-Loop Systems publication-title: ACS Nano – volume: 11 start-page: 10922 year: 2019 end-page: 10932 ident: b0125 article-title: Ultrasensitive and Highly Compressible Piezoresistive Sensor Based on Polyurethane Sponge Coated with a Cracked Cellulose Nanofibril/Silver Nanowire Layer publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 35968 year: 2017 end-page: 35976 ident: b0105 article-title: Flexible and Highly Sensitive Pressure Sensor Based on Microdome-Patterned PDMS Forming with Assistance of Colloid Self-Assembly and Replica Technique for Wearable Electronics publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 1909604 year: 2020 ident: b0070 article-title: Lightweight, superelastic boron nitride/polydimethylsiloxane foam as air dielectric substitute for multifunctional capacitive sensor applications publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1702675 year: 2017 ident: b0055 article-title: Hollow-structured graphene-silicone-composite-based piezoresistive sensors: decoupled property tuning and bending reliability publication-title: Adv. Mater. – volume: 11 start-page: 29466 year: 2019 end-page: 29473 ident: b0110 article-title: Highly Sensitive Flexible Piezoresistive Pressure Sensor Developed Using Biomimetically Textured Porous Materials publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 10033 year: 2018 end-page: 10040 ident: b0135 article-title: A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection publication-title: Nanoscale – volume: 12 start-page: 1474 year: 2020 end-page: 1485 ident: b0145 article-title: High-Performance Wearable Strain Sensor Based on Graphene/Cotton Fabric with High Durability and Low Detection Limit publication-title: ACS Appl. Mater. Interfaces – volume: 372 start-page: 373 year: 2019 end-page: 382 ident: b0130 article-title: Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability publication-title: Chem. Eng. J. – volume: 7 start-page: 1022 year: 2019 end-page: 1027 ident: b0190 article-title: A flexible pressure sensor based on an MXene–textile network structure publication-title: J. Mater. Chem. C – volume: 10 start-page: 20826 year: 2018 end-page: 20834 ident: b0095 article-title: Ultrahigh-Sensitivity Piezoresistive Pressure Sensors for Detection of Tiny Pressure publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 37921 year: 2017 end-page: 37928 ident: b0245 article-title: Paper/Carbon Nanotube-Based Wearable Pressure Sensor for Physiological Signal Acquisition and Soft Robotic Skin publication-title: ACS Appl. Mater. Interfaces – volume: 65 start-page: 899 year: 2020 end-page: 908 ident: b0185 article-title: Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications publication-title: Sci. Bull. – volume: 30 start-page: 1910541 year: 2020 ident: b0150 article-title: Additive functionalization and embroidery for manufacturing wearable and washable textile supercapacitors publication-title: Adv. Funct. Mater. – volume: 11 start-page: 4507 year: 2017 end-page: 4513 ident: b0075 article-title: Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures publication-title: ACS Nano – volume: 50 start-page: 79 year: 2018 end-page: 87 ident: b0200 article-title: 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor publication-title: Nano Energy – volume: 542 start-page: 54 year: 2019 end-page: 62 ident: b0265 article-title: Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets publication-title: J. Colloid Interf. Sci. – volume: 11 start-page: 42594 year: 2019 end-page: 42606 ident: b0025 article-title: Highly Compressible and Robust Polyimide/Carbon Nanotube Composite Aerogel for High-Performance Wearable Pressure Sensor publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 209 year: 2020 ident: b0120 article-title: Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity publication-title: Nat. Commun. – volume: 11 start-page: 19472 issue: 21 year: 2019 ident: 10.1016/j.cej.2020.127720_b0090 article-title: Microstructured Porous Pyramid-Based Ultrahigh Sensitive Pressure Sensor Insensitive to Strain and Temperature publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b03261 – volume: 372 start-page: 373 year: 2019 ident: 10.1016/j.cej.2020.127720_b0130 article-title: Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.142 – volume: 101 start-page: 812 year: 2014 ident: 10.1016/j.cej.2020.127720_b0220 article-title: The green adsorption of chitosan tripolyphosphate nanoparticles on cotton fiber surfaces publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2013.10.023 – volume: 14 start-page: 1803018 year: 2018 ident: 10.1016/j.cej.2020.127720_b0010 article-title: A flexible wearable pressure sensor with bioinspired microcrack and interlocking for full-range human-machine interfacing publication-title: Small doi: 10.1002/smll.201803018 – volume: 11 start-page: 4507 issue: 5 year: 2017 ident: 10.1016/j.cej.2020.127720_b0075 article-title: Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures publication-title: ACS Nano doi: 10.1021/acsnano.6b08027 – volume: 6 start-page: 1901426 year: 2020 ident: 10.1016/j.cej.2020.127720_b0260 article-title: All-paper, all-organic, cuttable, and foldable pressure sensor with tuneable conductivity polypyrrole publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201901426 – volume: 542 start-page: 54 year: 2019 ident: 10.1016/j.cej.2020.127720_b0265 article-title: Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2019.01.123 – volume: 10 start-page: 34646 issue: 40 year: 2018 ident: 10.1016/j.cej.2020.127720_b0230 article-title: Flexible and Highly Sensitive Resistive Pressure Sensor Based on Carbonized Crepe Paper with Corrugated Structure publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13535 – volume: 12 start-page: 4045 issue: 4 year: 2018 ident: 10.1016/j.cej.2020.127720_b0115 article-title: Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range publication-title: ACS Nano doi: 10.1021/acsnano.8b01805 – volume: 6 start-page: 8356 year: 2015 ident: 10.1016/j.cej.2020.127720_b0015 article-title: Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure- frame-supported organic thermoelectric materials publication-title: Nat. Commun. doi: 10.1038/ncomms9356 – volume: 6 start-page: 12121 issue: 45 year: 2018 ident: 10.1016/j.cej.2020.127720_b0170 article-title: Electrically conductive polymer composites for smart flexible strain sensors: a critical review publication-title: J. Mater. Chem. C doi: 10.1039/C8TC04079F – volume: 66 year: 2019 ident: 10.1016/j.cej.2020.127720_b0155 article-title: Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104143 – volume: 11 start-page: 42594 issue: 45 year: 2019 ident: 10.1016/j.cej.2020.127720_b0025 article-title: Highly Compressible and Robust Polyimide/Carbon Nanotube Composite Aerogel for High-Performance Wearable Pressure Sensor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14688 – volume: 8 start-page: 7741 issue: 20 year: 2020 ident: 10.1016/j.cej.2020.127720_b0255 article-title: 2D-SnSe 2 Nanosheet Functionalized Piezo-resistive Flexible Sensor for Pressure and Human Breath Monitoring publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c01827 – volume: 15 start-page: 1805084 year: 2019 ident: 10.1016/j.cej.2020.127720_b0060 article-title: A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection publication-title: Small doi: 10.1002/smll.201805084 – volume: 14 start-page: 1703432 year: 2018 ident: 10.1016/j.cej.2020.127720_b0065 article-title: Transparent, flexible, conformal capacitive pressure sensors with nanoparticles publication-title: Small doi: 10.1002/smll.201703432 – volume: 11 start-page: 29466 issue: 32 year: 2019 ident: 10.1016/j.cej.2020.127720_b0110 article-title: Highly Sensitive Flexible Piezoresistive Pressure Sensor Developed Using Biomimetically Textured Porous Materials publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09265 – volume: 11 start-page: 33165 issue: 36 year: 2019 ident: 10.1016/j.cej.2020.127720_b0270 article-title: Graphene Aerogel Broken to Fragments for a Piezoresistive Pressure Sensor with a Higher Sensitivity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12055 – volume: 29 start-page: 1702675 year: 2017 ident: 10.1016/j.cej.2020.127720_b0055 article-title: Hollow-structured graphene-silicone-composite-based piezoresistive sensors: decoupled property tuning and bending reliability publication-title: Adv. Mater. doi: 10.1002/adma.201702675 – volume: 11 start-page: 20500 issue: 22 year: 2019 ident: 10.1016/j.cej.2020.127720_b0005 article-title: Ultrawide Sensing Range and Highly Sensitive Flexible Pressure Sensor Based on a Percolative Thin Film with a Knoll-like Microstructured Surface publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b02659 – volume: 50 start-page: 79 year: 2018 ident: 10.1016/j.cej.2020.127720_b0200 article-title: 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.05.020 – volume: 11 start-page: 209 year: 2020 ident: 10.1016/j.cej.2020.127720_b0120 article-title: Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity publication-title: Nat. Commun. doi: 10.1038/s41467-019-14054-9 – volume: 10 start-page: 7387 issue: 16 year: 2018 ident: 10.1016/j.cej.2020.127720_b0235 article-title: Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene publication-title: Nanoscale doi: 10.1039/C7NR09149D – volume: 10 start-page: 20826 issue: 24 year: 2018 ident: 10.1016/j.cej.2020.127720_b0095 article-title: Ultrahigh-Sensitivity Piezoresistive Pressure Sensors for Detection of Tiny Pressure publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03639 – volume: 11 start-page: 21904 issue: 24 year: 2019 ident: 10.1016/j.cej.2020.127720_b0165 article-title: Superhydrophobic Electrically Conductive Paper for Ultrasensitive Strain Sensor with Excellent Anticorrosion and Self-Cleaning Property publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b03421 – volume: 10 start-page: 5185 issue: 6 year: 2018 ident: 10.1016/j.cej.2020.127720_b0250 article-title: Highly Exfoliated MWNT–rGO Ink-Wrapped Polyurethane Foam for Piezoresistive Pressure Sensor Applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15252 – volume: 387 year: 2020 ident: 10.1016/j.cej.2020.127720_b0050 article-title: Enhanced piezoresistive performance of conductive WPU/CNT composite foam through incorporating brittle cellulose nanocrystal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124045 – volume: 14 start-page: 1800819 year: 2018 ident: 10.1016/j.cej.2020.127720_b0240 article-title: Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range publication-title: Small doi: 10.1002/smll.201800819 – volume: 25 start-page: 2884 issue: 19 year: 2015 ident: 10.1016/j.cej.2020.127720_b0080 article-title: Flexible and Controllable Piezo-Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p-Polymer LED Array publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500801 – volume: 29 start-page: 1702367 year: 2017 ident: 10.1016/j.cej.2020.127720_b0210 article-title: Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding publication-title: Adv. Mater. doi: 10.1002/adma.201702367 – volume: 10 start-page: 10033 issue: 21 year: 2018 ident: 10.1016/j.cej.2020.127720_b0135 article-title: A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection publication-title: Nanoscale doi: 10.1039/C8NR02813C – volume: 65 start-page: 899 issue: 11 year: 2020 ident: 10.1016/j.cej.2020.127720_b0185 article-title: Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.02.020 – volume: 30 start-page: 1909604 year: 2020 ident: 10.1016/j.cej.2020.127720_b0070 article-title: Lightweight, superelastic boron nitride/polydimethylsiloxane foam as air dielectric substitute for multifunctional capacitive sensor applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909604 – volume: 9 start-page: 2458 year: 2018 ident: 10.1016/j.cej.2020.127720_b0040 article-title: Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature publication-title: Nat. Commun. doi: 10.1038/s41467-018-04906-1 – volume: 13 start-page: 9139 issue: 8 year: 2019 ident: 10.1016/j.cej.2020.127720_b0020 article-title: Bioinspired Interlocked Structure-Induced High Deformability for Two-Dimensional Titanium Carbide (MXene)/Natural Microcapsule-Based Flexible Pressure Sensors publication-title: ACS Nano doi: 10.1021/acsnano.9b03454 – volume: 7 start-page: 2315 issue: 5 year: 2019 ident: 10.1016/j.cej.2020.127720_b0175 article-title: A sunlight self-healable transparent strain sensor with high sensitivity and durability based on a silver nanowire/polyurethane composite film publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11435H – volume: 9 start-page: 37921 issue: 43 year: 2017 ident: 10.1016/j.cej.2020.127720_b0245 article-title: Paper/Carbon Nanotube-Based Wearable Pressure Sensor for Physiological Signal Acquisition and Soft Robotic Skin publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10820 – volume: 7 start-page: 1022 issue: 4 year: 2019 ident: 10.1016/j.cej.2020.127720_b0190 article-title: A flexible pressure sensor based on an MXene–textile network structure publication-title: J. Mater. Chem. C doi: 10.1039/C8TC04893B – volume: 30 start-page: 1910541 year: 2020 ident: 10.1016/j.cej.2020.127720_b0150 article-title: Additive functionalization and embroidery for manufacturing wearable and washable textile supercapacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910541 – volume: 7 start-page: 8092 issue: 14 year: 2019 ident: 10.1016/j.cej.2020.127720_b0215 article-title: A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00596J – volume: 11 start-page: 25034 issue: 28 year: 2019 ident: 10.1016/j.cej.2020.127720_b0180 article-title: All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b07465 – volume: 11 start-page: 10922 issue: 11 year: 2019 ident: 10.1016/j.cej.2020.127720_b0125 article-title: Ultrasensitive and Highly Compressible Piezoresistive Sensor Based on Polyurethane Sponge Coated with a Cracked Cellulose Nanofibril/Silver Nanowire Layer publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00900 – volume: 26 start-page: 6246 issue: 34 year: 2016 ident: 10.1016/j.cej.2020.127720_b0045 article-title: Large-Area Compliant, Low-Cost, and Versatile Pressure-Sensing Platform Based on Microcrack-Designed Carbon Black@Polyurethane Sponge for Human-Machine Interfacing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601995 – volume: 325 start-page: 396 year: 2017 ident: 10.1016/j.cej.2020.127720_b0140 article-title: Flexible and wearable strain sensing fabrics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.05.091 – volume: 29 start-page: 1808829 year: 2019 ident: 10.1016/j.cej.2020.127720_b0035 article-title: Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808829 – volume: 8 start-page: 4689 issue: 5 year: 2014 ident: 10.1016/j.cej.2020.127720_b0100 article-title: Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins publication-title: ACS Nano doi: 10.1021/nn500441k – volume: 27 start-page: 1701264 year: 2017 ident: 10.1016/j.cej.2020.127720_b0225 article-title: Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701264 – volume: 27 start-page: 2324 issue: 14 year: 2015 ident: 10.1016/j.cej.2020.127720_b0085 article-title: Dynamic Pressure Mapping of Personalized Handwriting by a Flexible Sensor Matrix Based on the Mechanoluminescence Process publication-title: Adv. Mater. doi: 10.1002/adma.201405826 – volume: 13 start-page: 12287 issue: 11 year: 2019 ident: 10.1016/j.cej.2020.127720_b0030 article-title: Electronic Skin for Closed-Loop Systems publication-title: ACS Nano doi: 10.1021/acsnano.9b06576 – volume: 9 start-page: 35968 issue: 41 year: 2017 ident: 10.1016/j.cej.2020.127720_b0105 article-title: Flexible and Highly Sensitive Pressure Sensor Based on Microdome-Patterned PDMS Forming with Assistance of Colloid Self-Assembly and Replica Technique for Wearable Electronics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09617 – volume: 12 start-page: 1474 issue: 1 year: 2020 ident: 10.1016/j.cej.2020.127720_b0145 article-title: High-Performance Wearable Strain Sensor Based on Graphene/Cotton Fabric with High Durability and Low Detection Limit publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b17173 – volume: 19 start-page: 1143 issue: 2 year: 2019 ident: 10.1016/j.cej.2020.127720_b0195 article-title: A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human–Machine Interfacing publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04514 – volume: 156 start-page: 276 year: 2018 ident: 10.1016/j.cej.2020.127720_b0160 article-title: A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.01.019 – volume: 13 start-page: 649 issue: 1 year: 2019 ident: 10.1016/j.cej.2020.127720_b0205 article-title: Bioinspired Ultrasensitive and Stretchable MXene-Based Strain Sensor via Nacre-Mimetic Microscale “Brick-and-Mortar” Architecture publication-title: ACS Nano doi: 10.1021/acsnano.8b07805 |
SSID | ssj0006919 |
Score | 2.7081904 |
Snippet | [Display omitted]
•Conductive MXene coated cotton fabric is prepared for wearable pressure sensor.•The pressure sensor shows both high sensitivity and broad... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 127720 |
SubjectTerms | Cotton fabric E-skin Human health monitoring MXene Wearable pressure sensor |
Title | Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin |
URI | https://dx.doi.org/10.1016/j.cej.2020.127720 |
Volume | 420 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQucABsYqyyQdOSKFJ7MT2saqKChUcWERvkVepgNKqy5Uv4KPxOAmLBBw4RXJmlMjjzIwzz28QOo0lMy7nzn9IXEY0JyQSsWaREFpqqw1EcUBb3OSDB3o1ykYrqNechQFYZe37K58evHU90qlnszMdjzt3CdS0BIU6IuE0UH9SymCVn79-wjxyEZp7gHAE0k1lM2C8tH3yW8QUOBZ8lhn_HJu-xJuLTbRRJ4q4W73LFlqx5TZa_0IfuIPeepMS6Fq9w8LXI--0OkC0MCmxk8q7NwwRyuCAdF3OLJ77HetkhuHPK1beQBioisPouGohgWVp_G1TifpH4BkcPcA-r8Whlx-uev5gYxcBwVUGjX40fx6Xu-jhon_fG0R1d4VIp4ItIkUTlkuuYulSQpxIgDrQMstVLomjxjqWKEFdwqRNgZaMu4wn2ihFXEa0IHuoVU5Ku48wSVWmVMaI9MkJJ0a6WAmXx9YbiOvMtlHczGuha-px6IDxUjQYs6fCm6IAUxSVKdro7ENlWvFu_CVMG2MV3xZP4ePC72oH_1M7RGspAFugj0R2hFqL2dIe-8xkoU7C0jtBq93L4eAGrsPbx-E7G3Hl_g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhObQ9lK40XXXoqWBiW16kYwgJSbNcmkBuRiskLXbI8hf96Gq8hBTaHnqVNdhopJmR9fQeQs8uj5WJqLELiXIniAhxmCtjhzHJpZYKsjigLSZRfxa8zsN5DXWquzAAqyxjfxHT82hdtrTK0WytFovWmwdnWiyAc0RCA6D-bAA7VVhHjfZg2J_sA3LEcn0P6O-AQXW4mcO8pF7aXaIPNAu20HR_Tk8HKad3hk7LWhG3i885RzWdXqCTAwbBS_TZyVJgbLUxC4_nNm61gGshS7HhwkY4DElK4RzsultrvLGb1myN4ecrFtZHGNiK89ZFoSKBearsY1V0ta_Aa7h9gG1pi3M5P1zI_mCltzmIK80tus7mfZFeoVmvO-30nVJgwZE-i7eOCLw44lS43PiEGOYBe6CONRURJyZQ2sSeYIHxYq59YCajJqSeVEIQExLJyDWqp1mqbxAmvgiFCGPCbX1CieLGFcxErrY-ojLUTeRW45rIkn0cRDA-kgpmtkysKxJwRVK4oole9iargnrjr85B5azk2_xJbGr43ez2f2ZP6Kg_HY-S0WAyvEPHPuBcQFYivEf17XqnH2yhshWP5UT8AsoT5ww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conductive+MXene%2Fcotton+fabric+based+pressure+sensor+with+both+high+sensitivity+and+wide+sensing+range+for+human+motion+detection+and+E-skin&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zheng%2C+Yanjun&rft.au=Yin%2C+Rui&rft.au=Zhao%2C+Ye&rft.au=Liu%2C+Hu&rft.date=2021-09-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=420&rft_id=info:doi/10.1016%2Fj.cej.2020.127720&rft.externalDocID=S1385894720338419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |