A simple strategy that may effectively tackle the anode-electrolyte interface issues in solid-state lithium metal batteries
[Display omitted] •Contact issue of the anode-electrolyte interface was tackled by a Li-Mo composite.•Lower cohesive energy and higher binding energy are beneficial to better contact.•Symmetric cell shows a high critical current density and a stable 1200-h cycling.•A full cell with a LiFePO4 cathode...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 427; p. 131001 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1385-8947 1873-3212 |
DOI | 10.1016/j.cej.2021.131001 |
Cover
Loading…
Abstract | [Display omitted]
•Contact issue of the anode-electrolyte interface was tackled by a Li-Mo composite.•Lower cohesive energy and higher binding energy are beneficial to better contact.•Symmetric cell shows a high critical current density and a stable 1200-h cycling.•A full cell with a LiFePO4 cathode presented stable performance for 200 cycles.•The work provides a facile and feasible way to overcome interface problems.
Interface issues are the biggest challenges that hindering the commercialization of solid-state lithium metal batteries (SSLMBs). Here, we propose a novel strategy targeting for effectively resolving the tedious lithium-garnet solid electrolyte interface problem from the lithium side. We intentionally introduce α-MoO3 nanobelts into the molten metallic lithium, forming a Li-Mo composite. Compared to molten lithium, the composite improves wettability on the garnet electrolyte. As revealed by density functional theory calculations, such improvement could be ascribed to the reduced cohesive energy and the improved interface binding energy to the LLZTO. Intimate surface contact can be easily achieved without complicated surface treatment, which not only significantly reduces the interface resistance to ~ 1 Ω cm2, but could also effectively inhibits the generation of lithium dendrites. These features ensure a significant critical current density of 1700 µA cm−2 and a stable electrochemical Li plating/stripping process for more than 1200 h. A full cell with the Li-Mo composite anode and LiFePO4 cathode also presents a fairly stable cycling performance at room temperature. Different from most previous strategies that try to tackle the interface issues from the electrolyte side, our research results suggest that designing lithium composite anodes with low cohesive energy and high interface binding energy to the solid electrolyte is an attractive and feasible solution to overcome interface problems. |
---|---|
AbstractList | [Display omitted]
•Contact issue of the anode-electrolyte interface was tackled by a Li-Mo composite.•Lower cohesive energy and higher binding energy are beneficial to better contact.•Symmetric cell shows a high critical current density and a stable 1200-h cycling.•A full cell with a LiFePO4 cathode presented stable performance for 200 cycles.•The work provides a facile and feasible way to overcome interface problems.
Interface issues are the biggest challenges that hindering the commercialization of solid-state lithium metal batteries (SSLMBs). Here, we propose a novel strategy targeting for effectively resolving the tedious lithium-garnet solid electrolyte interface problem from the lithium side. We intentionally introduce α-MoO3 nanobelts into the molten metallic lithium, forming a Li-Mo composite. Compared to molten lithium, the composite improves wettability on the garnet electrolyte. As revealed by density functional theory calculations, such improvement could be ascribed to the reduced cohesive energy and the improved interface binding energy to the LLZTO. Intimate surface contact can be easily achieved without complicated surface treatment, which not only significantly reduces the interface resistance to ~ 1 Ω cm2, but could also effectively inhibits the generation of lithium dendrites. These features ensure a significant critical current density of 1700 µA cm−2 and a stable electrochemical Li plating/stripping process for more than 1200 h. A full cell with the Li-Mo composite anode and LiFePO4 cathode also presents a fairly stable cycling performance at room temperature. Different from most previous strategies that try to tackle the interface issues from the electrolyte side, our research results suggest that designing lithium composite anodes with low cohesive energy and high interface binding energy to the solid electrolyte is an attractive and feasible solution to overcome interface problems. |
ArticleNumber | 131001 |
Author | Cao, Chencheng Liu, Bo Cai, Rui Ye, Fei Liao, Kaiming Du, Mingjie Chen, Bingbing Zhou, Jianqiu Shao, Zongping Zhou, Wei Zhong, Yijun |
Author_xml | – sequence: 1 givenname: Bo surname: Liu fullname: Liu, Bo organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China – sequence: 2 givenname: Mingjie surname: Du fullname: Du, Mingjie organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China – sequence: 3 givenname: Bingbing surname: Chen fullname: Chen, Bingbing organization: School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China – sequence: 4 givenname: Yijun surname: Zhong fullname: Zhong, Yijun organization: WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6102, Australia – sequence: 5 givenname: Jianqiu surname: Zhou fullname: Zhou, Jianqiu email: zhouj@njtech.edu.cn organization: School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China – sequence: 6 givenname: Fei surname: Ye fullname: Ye, Fei organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China – sequence: 7 givenname: Kaiming surname: Liao fullname: Liao, Kaiming organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China – sequence: 8 givenname: Wei surname: Zhou fullname: Zhou, Wei organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China – sequence: 9 givenname: Chencheng surname: Cao fullname: Cao, Chencheng organization: WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6102, Australia – sequence: 10 givenname: Rui surname: Cai fullname: Cai, Rui email: cair@njtech.edu.cn organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China – sequence: 11 givenname: Zongping surname: Shao fullname: Shao, Zongping email: shaozp@njtech.edu.cn organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China |
BookMark | eNp9kM1OwzAMgCMEEtvgAbjlBTriljaNOE0Tf9IkLnCOktRhGWk7JdmkiZcn0zhx2MmW7c-yvym5HMYBCbkDNgcGzf1mbnAzL1kJc6iAMbggE2h5VVQllJc5r9q6aMUDvybTGDeMsUaAmJCfBY2u33qkMQWV8OtA01ol2qsDRWvRJLdHn4vKfOehtEaqhrHDAn3uhdEfElI3JAxWmZzFuMOYCzSO3nVFTHkn9S6t3a6nPSblqVYpjzuMN-TKKh_x9i_OyOfz08fytVi9v7wtF6vClIKnQldKsbIxurUaOLe8LlvUUGPdNRa5EKbFBrqK6VZbYTRrcgc7IUAD1ppXM8JPe00YYwxopXH5LjcO-WXnJTB5dCg3MjuUR4fy5DCT8I_cBtercDjLPJ4YzC_tHQYZjcPBYOdCVia70Z2hfwGFwo9m |
CitedBy_id | crossref_primary_10_1021_acsami_2c09801 crossref_primary_10_1002_adfm_202106608 crossref_primary_10_1016_j_pmatsci_2023_101182 crossref_primary_10_1002_cssc_202300504 crossref_primary_10_1016_j_enchem_2024_100122 crossref_primary_10_59761_RCR5126 crossref_primary_10_1002_sstr_202200374 crossref_primary_10_1021_acsami_4c13971 crossref_primary_10_1111_ijac_14523 crossref_primary_10_1063_5_0117248 crossref_primary_10_1016_j_ensm_2024_103401 crossref_primary_10_1149_1945_7111_ad7c82 crossref_primary_10_1021_acsami_4c10546 crossref_primary_10_1016_j_cej_2024_149433 crossref_primary_10_1002_smtd_202201140 crossref_primary_10_1016_j_cej_2024_153649 crossref_primary_10_1016_j_jallcom_2022_164925 crossref_primary_10_1016_j_jallcom_2024_174123 crossref_primary_10_1016_j_nanoen_2023_108573 crossref_primary_10_1002_cnl2_188 crossref_primary_10_1021_acs_energyfuels_3c01626 crossref_primary_10_1002_elt2_13 crossref_primary_10_1002_eom2_12338 crossref_primary_10_1021_acssuschemeng_4c00737 crossref_primary_10_1016_j_ensm_2022_07_037 crossref_primary_10_1002_adfm_202309751 crossref_primary_10_1016_j_cej_2023_142937 crossref_primary_10_1002_adfm_202211387 crossref_primary_10_1002_adfm_202213443 crossref_primary_10_1007_s41918_024_00212_1 crossref_primary_10_1016_j_cej_2024_158325 crossref_primary_10_1021_acs_energyfuels_1c03418 crossref_primary_10_1021_acsami_3c12414 crossref_primary_10_1016_j_greenca_2024_02_005 crossref_primary_10_1002_cssc_202201801 crossref_primary_10_1039_D3SE01730C crossref_primary_10_1021_acsaem_2c02441 crossref_primary_10_1038_s41467_023_37476_y crossref_primary_10_1002_cjoc_202200588 crossref_primary_10_1007_s11837_022_05512_9 crossref_primary_10_1039_D1TA07804F crossref_primary_10_1016_j_jallcom_2023_168774 crossref_primary_10_1002_smll_202106142 crossref_primary_10_1002_smll_202402035 crossref_primary_10_1002_adfm_202112113 crossref_primary_10_1039_D3NR02271D crossref_primary_10_1016_j_cej_2022_140761 crossref_primary_10_1016_j_mcat_2024_114053 crossref_primary_10_1016_j_jcis_2022_04_018 |
Cites_doi | 10.1016/j.ensm.2018.05.018 10.1021/jz501828v 10.1007/s41918-018-0011-2 10.1002/anie.201608924 10.1016/j.jallcom.2019.04.274 10.1021/acsnano.9b08803 10.1021/acs.chemmater.8b00486 10.1016/j.isci.2020.100943 10.1021/acsami.9b13190 10.1038/s41560-019-0338-x 10.1002/adma.202000575 10.1016/j.nanoen.2019.04.058 10.1016/j.jpowsour.2010.10.103 10.1002/aenm.202002992 10.1111/jace.14865 10.1016/0927-0256(96)00008-0 10.1038/nenergy.2016.141 10.1039/C8EE00540K 10.1038/nnano.2017.16 10.1039/C9TA13347J 10.1126/sciadv.1601659 10.1103/PhysRevB.54.11169 10.1149/2.0241414jes 10.1021/acsami.7b03887 10.1007/s11431-020-1562-3 10.1021/acs.energyfuels.0c02111 10.1002/aenm.201800035 10.1021/acs.nanolett.8b03902 10.1002/anie.201814294 10.1002/anie.201708637 10.1002/ange.202014265 10.1002/adma.202004798 10.1002/aenm.202002689 10.1038/natrevmats.2016.13 10.1002/adma.201802156 10.1002/adma.200700883 10.1038/nmat4821 10.1021/jacs.6b06777 10.1039/c3ta01285a 10.1016/j.memsci.2019.03.074 10.1021/acsami.0c08203 10.1002/aenm.201701963 10.1002/aenm.201902568 10.1002/adma.201807243 10.1002/anie.201914417 10.1021/acsaem.0c01430 10.1039/C5TA08574H 10.1002/adma.201606042 10.1073/pnas.1615912113 10.1021/acsenergylett.8b00948 10.1021/am508111r |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2021.131001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2021_131001 S1385894721025833 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-b3aa026cb8fb177f7528eb15e5d6fe799c8e61d30b8bf9cb06e5ded991b1e5b73 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 04:27:38 EDT 2025 Thu Apr 24 23:08:06 EDT 2025 Fri Feb 23 02:43:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Interface compatibility Wettability Solid-state battery α-MoO3 nanobelt Lithium metal anode |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-b3aa026cb8fb177f7528eb15e5d6fe799c8e61d30b8bf9cb06e5ded991b1e5b73 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2021_131001 crossref_primary_10_1016_j_cej_2021_131001 elsevier_sciencedirect_doi_10_1016_j_cej_2021_131001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Krauskopf, Mogwitz, Rosenbach, Zeier, Janek (b0185) 2019; 9 Xu, Li, Zhou, Wu, Xin, Li, Goodenough (b0095) 2018; 18 Jiang, Lu, Cao (b0270) 2020; 63 Duan, Wu, Luo (b0230) 2019; 257 Luo, Gong, Zhu, Li, Yao, Zhang, Fu, Pastel, Lin, Mo, Wachsman, Hu (b0130) 2017; 29 Tan, Zeng, Ma, Wu, Guo (b0055) 2018; 1 Kresse, Furthmüller (b0245) 1996; 54 Fu, Gong, Liu, Zhu, Xu, Yao, Luo, Wang, Lacey, Dai, Chen, Mo, Wachsman, Hu (b0145) 2017; 3 Fan, Tao, Gao, Deng, Yu, Chen, Lu, Huang (b0190) 2020; 32 Wen, Huang, Duan, Wu, Luo, Zhou, Hu, Huang, Zheng, Yang, Wen, Huang (b0195) 2019; 13 Li, Xu, Xu, Duan, Lü, Xin, Zhou, Xue, Fu, Manthiram, Goodenough (b0215) 2017; 56 Cheng, Chen, Kunz, Persson, Tamura, Chen, Doeff (b0075) 2015; 7 Lin, Liu, Cui (b0025) 2017; 12 Tang, Gao, Liu, Bo, Xie, Wei, Zhou (b0170) 2020; 8 Han, Gong, Fu, He, Hitz, Dai, Pearse, Liu, Wang, Rubloff, Mo, Thangadurai, Wachsman, Hu (b0110) 2017; 16 Zhou, Bag, Thangadurai (b0050) 2018; 3 Choi, Aurbach (b0005) 2016; 1 Liu, Bao, Cui, Dufek, Goodenough, Khalifah, Li, Liaw, Liu, Manthiram, Meng, Subramanian, Toney, Viswanathan, Whittingham, Xiao, Xu, Yang, Yang, Zhang (b0035) 2019; 4 Liu, Gong, Fu, Han, Yao, Pastel, Yang, Xie, Wachsman, Hu (b0105) 2017; 9 Cai, Lu, Su, Ruan, Chen, Chowdari, Wen (b0180) 2019; 11 Pinzaru, Thangadurai (b0125) 2014; 161 Lu, Huang, Song, Rui, Wang, Gu, Yang, Xiu, Badding, Wen (b0155) 2018; 15 Li, Liao, Zhou, Li, Meng, Cai, Shao (b0045) 2019; 582 Wu, Wang, Lochala, Desrochers, Liu, Zhang, Yang, Xiao (b0090) 2018; 11 Sun, Wang, Zhao, Cai, Ran, Shao (b0235) 2013; 1 Liu, Fu, Qin (b0165) 2004; 62 Zhong, Xu, Veder, Shao (b0015) 2020; 23 Li, Li, Chu, Liao, Cai, Zhou, Shao (b0070) 2019; 794 Luo, Gong, Zhu, Fu, Dai, Lacey, Wang, Liu, Han, Mo, Wachsman, Hu (b0140) 2016; 138 Alexander, Sreejith, Indu, Murugan (b0175) 2020; 3 Kresse, Furthmüller (b0240) 1996; 6 Thangadurai, Pinzaru, Narayanan, Baral (b0080) 2015; 6 Zhou, Liu, Jiang, Ji, Ji, Tang, Cheng (b0010) 2020; 59 Mai, Hu, Chen, Qi, Lao, Yang, Dai, Wang (b0250) 2007; 19 Park, Bai, Kim, Oh, Zhu, Mo, Jung (b0065) 2018; 8 Sakuda, Hayashi, Ohtomo, Hama, Tatsumisago (b0100) 2011; 196 Wang, Xie, Zhang, Gong, Pastel, Dai, Liu, Wachsman, Hu (b0135) 2018; 8 Brugge, Hekselman, Cavallaro, Pesci, Chater, Kilner, Aguadero (b0205) 2018; 30 Kim, Balaish, Wadaguchi, Kong, Rupp (b0265) 2020; 11 Chastain, King (b0255) 1992 Hafez, Jiao, Shi, Ma, Cao, Liu, Zhu (b0030) 2018; 30 Zhu, Li, Wu, Gao, Xu, Li, Guo, Li, Zhou (b0260) 2021; 133 Huo, Luo, Thangadurai, Guo, Sun (b0120) 2019; 5 Zhong, Xu, Liu, Ran, Jiang, Wu, Shao (b0020) 2020; 10 Fu, Wang, Shen, Jiang, Wang, Dai, Wang, Qiu, Zhang, Deng, Zeng, Zhao, Guo, Liu, Liu, Peng (b0225) 2020; 32 Ye, Liao, Ran, Shao (b0040) 2020; 34 Zhu, He, Mo (b0060) 2016; 4 Wen, Huang, Chen, Duan, Yang, Wang, Wang, Yang, Hu, Luo, Huang (b0200) 2020; 59 Janek, Zeier (b0085) 2016; 1 Li, Zhou, Chen, Lü, Cui, Xin, Xue, Jia, Goodenough (b0115) 2016; 113 Fu, Gong, Fu, Xie, Yao, Liu, Carter, Wachsman, Hu (b0150) 2017; 56 Xia, Xu, Duan, Tang, Guo, Kang, Li, Liu (b0210) 2017; 100 Huo, Chen, Zhao, Lin, Luo, Yang, Liu, Guo, Sun (b0220) 2019; 61 Zhang, Meng, Chen, Wu, Wu, Li (b0160) 2020; 12 Zhong (10.1016/j.cej.2021.131001_b0015) 2020; 23 Wen (10.1016/j.cej.2021.131001_b0200) 2020; 59 Sakuda (10.1016/j.cej.2021.131001_b0100) 2011; 196 Wen (10.1016/j.cej.2021.131001_b0195) 2019; 13 Fu (10.1016/j.cej.2021.131001_b0225) 2020; 32 Park (10.1016/j.cej.2021.131001_b0065) 2018; 8 Huo (10.1016/j.cej.2021.131001_b0120) 2019; 5 Xia (10.1016/j.cej.2021.131001_b0210) 2017; 100 Xu (10.1016/j.cej.2021.131001_b0095) 2018; 18 Kim (10.1016/j.cej.2021.131001_b0265) 2020; 11 Luo (10.1016/j.cej.2021.131001_b0140) 2016; 138 Li (10.1016/j.cej.2021.131001_b0045) 2019; 582 Jiang (10.1016/j.cej.2021.131001_b0270) 2020; 63 Ye (10.1016/j.cej.2021.131001_b0040) 2020; 34 Fu (10.1016/j.cej.2021.131001_b0145) 2017; 3 Liu (10.1016/j.cej.2021.131001_b0105) 2017; 9 Liu (10.1016/j.cej.2021.131001_b0165) 2004; 62 Brugge (10.1016/j.cej.2021.131001_b0205) 2018; 30 Thangadurai (10.1016/j.cej.2021.131001_b0080) 2015; 6 Duan (10.1016/j.cej.2021.131001_b0230) 2019; 257 Li (10.1016/j.cej.2021.131001_b0115) 2016; 113 Wang (10.1016/j.cej.2021.131001_b0135) 2018; 8 Kresse (10.1016/j.cej.2021.131001_b0245) 1996; 54 Janek (10.1016/j.cej.2021.131001_b0085) 2016; 1 Alexander (10.1016/j.cej.2021.131001_b0175) 2020; 3 Lin (10.1016/j.cej.2021.131001_b0025) 2017; 12 Tan (10.1016/j.cej.2021.131001_b0055) 2018; 1 Li (10.1016/j.cej.2021.131001_b0215) 2017; 56 Cai (10.1016/j.cej.2021.131001_b0180) 2019; 11 Liu (10.1016/j.cej.2021.131001_b0035) 2019; 4 Wu (10.1016/j.cej.2021.131001_b0090) 2018; 11 Zhong (10.1016/j.cej.2021.131001_b0020) 2020; 10 Krauskopf (10.1016/j.cej.2021.131001_b0185) 2019; 9 Huo (10.1016/j.cej.2021.131001_b0220) 2019; 61 Tang (10.1016/j.cej.2021.131001_b0170) 2020; 8 Fan (10.1016/j.cej.2021.131001_b0190) 2020; 32 Hafez (10.1016/j.cej.2021.131001_b0030) 2018; 30 Chastain (10.1016/j.cej.2021.131001_b0255) 1992 Lu (10.1016/j.cej.2021.131001_b0155) 2018; 15 Zhang (10.1016/j.cej.2021.131001_b0160) 2020; 12 Luo (10.1016/j.cej.2021.131001_b0130) 2017; 29 Cheng (10.1016/j.cej.2021.131001_b0075) 2015; 7 Choi (10.1016/j.cej.2021.131001_b0005) 2016; 1 Han (10.1016/j.cej.2021.131001_b0110) 2017; 16 Li (10.1016/j.cej.2021.131001_b0070) 2019; 794 Zhu (10.1016/j.cej.2021.131001_b0060) 2016; 4 Fu (10.1016/j.cej.2021.131001_b0150) 2017; 56 Mai (10.1016/j.cej.2021.131001_b0250) 2007; 19 Pinzaru (10.1016/j.cej.2021.131001_b0125) 2014; 161 Zhu (10.1016/j.cej.2021.131001_b0260) 2021; 133 Sun (10.1016/j.cej.2021.131001_b0235) 2013; 1 Zhou (10.1016/j.cej.2021.131001_b0010) 2020; 59 Kresse (10.1016/j.cej.2021.131001_b0240) 1996; 6 Zhou (10.1016/j.cej.2021.131001_b0050) 2018; 3 |
References_xml | – volume: 54 start-page: 11169 year: 1996 ident: b0245 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 61 start-page: 119 year: 2019 end-page: 125 ident: b0220 article-title: In-situ formed Li publication-title: Nano Energy – volume: 19 start-page: 3712 year: 2007 end-page: 3716 ident: b0250 article-title: Lithiated MoO publication-title: Adv. Mater. – volume: 794 start-page: 347 year: 2019 end-page: 357 ident: b0070 article-title: Rational design of strontium antimony co-doped Li publication-title: J. Alloys Compd. – volume: 1 start-page: 16141 year: 2016 ident: b0085 article-title: A solid future for battery development publication-title: Nat. Energy – volume: 100 start-page: 2832 year: 2017 end-page: 2839 ident: b0210 article-title: Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO publication-title: J. Am. Ceram. Soc. – volume: 32 start-page: 2000575 year: 2020 ident: b0225 article-title: A High-performance carbonate-free lithium|garnet interface enabled by a trace amount of sodium publication-title: Adv. Mater. – volume: 4 start-page: 3253 year: 2016 end-page: 3266 ident: b0060 article-title: First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries publication-title: J. Mater. Chem. A – volume: 18 start-page: 7414 year: 2018 end-page: 7418 ident: b0095 article-title: Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 °C publication-title: Nano Lett. – volume: 1 start-page: 113 year: 2018 end-page: 138 ident: b0055 article-title: Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries publication-title: Electrochem. Energy Rev. – volume: 59 start-page: 3802 year: 2020 end-page: 3832 ident: b0010 article-title: Strategies towards low-cost dual-ion batteries with high performance publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 2002992 year: 2020 ident: b0020 article-title: A function-separated design of electrode for realizing high-performance hybrid zinc battery publication-title: Adv. Energy Mater. – volume: 3 start-page: 9010 year: 2020 end-page: 9017 ident: b0175 article-title: Interface-compatible and high-cyclability lithiophilic lithium-zinc alloy anodes for garnet-structured solid electrolytes publication-title: ACS Appl. Energy Mater. – volume: 133 start-page: 3825 year: 2021 end-page: 3834 ident: b0260 article-title: A multilayer ceramic electrolyte for all-solid-state Li batteries publication-title: Angew. Chem. Int. Ed. – volume: 23 year: 2020 ident: b0015 article-title: Self-recovery chemistry and cobalt-catalyzed electrochemical deposition of cathode for boosting performance of aqueous zinc-ion batteries publication-title: iScience – volume: 113 start-page: 13313 year: 2016 end-page: 13317 ident: b0115 article-title: Mastering the interface for advanced all-solid-state lithium rechargeable batteries publication-title: PNAS – volume: 11 start-page: 2002689 year: 2020 ident: b0265 article-title: Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces publication-title: Adv. Energy Mater. – volume: 7 start-page: 2073 year: 2015 end-page: 2081 ident: b0075 article-title: Effect of surface microstructure on electrochemical performance of garnet solid electrolytes publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 18087 year: 2020 end-page: 18093 ident: b0170 article-title: Surface modification of garnet with amorphous SnO publication-title: J. Mater. Chem. A – volume: 34 start-page: 9189 year: 2020 end-page: 9207 ident: b0040 article-title: Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: a review publication-title: Energy Fuels – volume: 29 start-page: 1606042 year: 2017 ident: b0130 article-title: Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer publication-title: Adv. Mater – volume: 13 start-page: 14549 year: 2019 end-page: 14556 ident: b0195 article-title: Highly adhesive Li-BN nanosheet composite anode with excellent interfacial compatibility for solid-state Li metal batteries publication-title: ACS Nano – volume: 62 start-page: 2223 year: 2004 end-page: 2227 ident: b0165 article-title: Studies on lithium phosphorous oxynitride electrolyte thin films and a new all-solid-state thin film lithium battery publication-title: Acta Chim. Sinica – volume: 138 start-page: 12258 year: 2016 end-page: 12262 ident: b0140 article-title: Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 180 year: 2019 end-page: 186 ident: b0035 article-title: Pathways for practical high-energy long-cycling lithium metal batteries publication-title: Nat Energy – volume: 15 start-page: 282 year: 2018 end-page: 290 ident: b0155 article-title: Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces publication-title: Energy Storage Mater. – volume: 30 start-page: 1802156 year: 2018 ident: b0030 article-title: Stable metal anode enabled by porous lithium foam with superior ion accessibility publication-title: Adv. Mater. – volume: 257 start-page: 1807243 year: 2019 ident: b0230 article-title: Lithium-graphite paste: an interface compatible anode for solid-state batteries publication-title: Adv. Mater. – volume: 59 start-page: 3699 year: 2020 end-page: 3704 ident: b0200 article-title: Graphitic carbon nitride (g-C publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 1701963 year: 2018 ident: b0135 article-title: Universal soldering of lithium and sodium alloys on various substrates for batteries publication-title: Adv. Energy Mater. – volume: 16 start-page: 572 year: 2017 end-page: 579 ident: b0110 article-title: Negating interfacial impedance in garnet-based solid-state Li metal batteries publication-title: Nat. Mater. – volume: 9 start-page: 1902568 year: 2019 ident: b0185 article-title: Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure publication-title: Adv. Energy Mater. – volume: 11 start-page: 1803 year: 2018 end-page: 1810 ident: b0090 article-title: The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries publication-title: Energy Environ. Sci. – volume: 1 start-page: 4736 year: 2013 ident: b0235 article-title: Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector publication-title: J. Mater. Chem. A – volume: 161 start-page: A2060 year: 2014 end-page: A2067 ident: b0125 article-title: Synthesis, structure and Li ion conductivity of garnet-like Li publication-title: J. Electrochem. Soc. – volume: 1 start-page: 16013 year: 2016 ident: b0005 article-title: Promise and reality of post-lithium-ion batteries with high energy densities publication-title: Nat. Rev. Mater. – volume: 8 start-page: 1800035 year: 2018 ident: b0065 article-title: Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries publication-title: Adv. Energy Mater. – volume: 56 start-page: 753 year: 2017 end-page: 756 ident: b0215 article-title: Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries publication-title: Angew. Chem. Int. Ed. – year: 1992 ident: b0255 article-title: Handbook of X-ray photoelectron spectroscopy – volume: 12 start-page: 194 year: 2017 end-page: 206 ident: b0025 article-title: Reviving the lithium metal anode for high-energy batteries publication-title: Nat. Nanotechnol. – volume: 582 start-page: 194 year: 2019 end-page: 202 ident: b0045 article-title: Realizing fourfold enhancement in conductivity of perovskite Li publication-title: J. Membr. Sci. – volume: 196 start-page: 6735 year: 2011 end-page: 6741 ident: b0100 article-title: All-solid-state lithium secondary batteries using LiCoO publication-title: J. Power Sources – volume: 30 start-page: 3704 year: 2018 end-page: 3713 ident: b0205 article-title: Garnet electrolytes for solid state batteries: Visualization of moisture-induced chemical degradation and revealing its impact on the Li-ion dynamics publication-title: Chem. Mater. – volume: 56 start-page: 14942 year: 2017 end-page: 14947 ident: b0150 article-title: Transient behavior of the metal interface in lithium metal-garnet batteries publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: b0240 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci – volume: 5 start-page: 262 year: 2019 ident: b0120 article-title: Li publication-title: ACS Energy Lett. – volume: 32 start-page: 2004798 year: 2020 ident: b0190 article-title: A self-healing amalgam interface in metal batteries publication-title: Adv. Mater. – volume: 6 start-page: 292 year: 2015 end-page: 299 ident: b0080 article-title: Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage publication-title: J. Phys. Chem. Lett. – volume: 63 start-page: 193 year: 2020 end-page: 200 ident: b0270 article-title: First-principles insight into the entanglements between superionic diffusion and Li/Al antisite in Al-doped Li publication-title: Sci. China Technol. Sci. – volume: 12 start-page: 33729 year: 2020 end-page: 33739 ident: b0160 article-title: Behind the candelabra: a facile flame vapor deposition method for interfacial engineering of garnet electrolyte to enable ultralong cycling solid-state Li-FeF publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 2181 year: 2018 end-page: 2198 ident: b0050 article-title: Engineering materials for progressive all-solid-state Na batteries publication-title: ACS Energy Lett. – volume: 11 start-page: 35030 year: 2019 end-page: 35038 ident: b0180 article-title: In situ lithiophilic layer from H publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 18809 year: 2017 end-page: 18815 ident: b0105 article-title: Garnet solid electrolyte protected Li-metal batteries publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2017 ident: b0145 article-title: Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface publication-title: Sci. Adv. – volume: 15 start-page: 282 year: 2018 ident: 10.1016/j.cej.2021.131001_b0155 article-title: Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.05.018 – volume: 6 start-page: 292 issue: 2 year: 2015 ident: 10.1016/j.cej.2021.131001_b0080 article-title: Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501828v – volume: 1 start-page: 113 issue: 2 year: 2018 ident: 10.1016/j.cej.2021.131001_b0055 article-title: Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0011-2 – volume: 56 start-page: 753 issue: 3 year: 2017 ident: 10.1016/j.cej.2021.131001_b0215 article-title: Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608924 – volume: 794 start-page: 347 year: 2019 ident: 10.1016/j.cej.2021.131001_b0070 article-title: Rational design of strontium antimony co-doped Li7La3Zr2O12 electrolyte membrane for solid-state lithium batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.04.274 – volume: 13 start-page: 14549 issue: 12 year: 2019 ident: 10.1016/j.cej.2021.131001_b0195 article-title: Highly adhesive Li-BN nanosheet composite anode with excellent interfacial compatibility for solid-state Li metal batteries publication-title: ACS Nano doi: 10.1021/acsnano.9b08803 – volume: 30 start-page: 3704 year: 2018 ident: 10.1016/j.cej.2021.131001_b0205 article-title: Garnet electrolytes for solid state batteries: Visualization of moisture-induced chemical degradation and revealing its impact on the Li-ion dynamics publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00486 – volume: 23 year: 2020 ident: 10.1016/j.cej.2021.131001_b0015 article-title: Self-recovery chemistry and cobalt-catalyzed electrochemical deposition of cathode for boosting performance of aqueous zinc-ion batteries publication-title: iScience doi: 10.1016/j.isci.2020.100943 – volume: 11 start-page: 35030 issue: 38 year: 2019 ident: 10.1016/j.cej.2021.131001_b0180 article-title: In situ lithiophilic layer from H+/Li+ exchange on garnet surface for the stable lithium-solid electrolyte interface publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13190 – volume: 4 start-page: 180 issue: 3 year: 2019 ident: 10.1016/j.cej.2021.131001_b0035 article-title: Pathways for practical high-energy long-cycling lithium metal batteries publication-title: Nat Energy doi: 10.1038/s41560-019-0338-x – volume: 32 start-page: 2000575 year: 2020 ident: 10.1016/j.cej.2021.131001_b0225 article-title: A High-performance carbonate-free lithium|garnet interface enabled by a trace amount of sodium publication-title: Adv. Mater. doi: 10.1002/adma.202000575 – volume: 61 start-page: 119 year: 2019 ident: 10.1016/j.cej.2021.131001_b0220 article-title: In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.058 – volume: 196 start-page: 6735 issue: 16 year: 2011 ident: 10.1016/j.cej.2021.131001_b0100 article-title: All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S-P2S5 solid electrolytes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.10.103 – volume: 10 start-page: 2002992 year: 2020 ident: 10.1016/j.cej.2021.131001_b0020 article-title: A function-separated design of electrode for realizing high-performance hybrid zinc battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002992 – volume: 100 start-page: 2832 issue: 7 year: 2017 ident: 10.1016/j.cej.2021.131001_b0210 article-title: Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO2 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14865 – volume: 6 start-page: 15 issue: 1 year: 1996 ident: 10.1016/j.cej.2021.131001_b0240 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci doi: 10.1016/0927-0256(96)00008-0 – volume: 5 start-page: 262 year: 2019 ident: 10.1016/j.cej.2021.131001_b0120 article-title: Li2CO3: A critical issue for developing solid garnet batteries publication-title: ACS Energy Lett. – volume: 1 start-page: 16141 year: 2016 ident: 10.1016/j.cej.2021.131001_b0085 article-title: A solid future for battery development publication-title: Nat. Energy doi: 10.1038/nenergy.2016.141 – year: 1992 ident: 10.1016/j.cej.2021.131001_b0255 – volume: 11 start-page: 1803 issue: 7 year: 2018 ident: 10.1016/j.cej.2021.131001_b0090 article-title: The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00540K – volume: 12 start-page: 194 issue: 3 year: 2017 ident: 10.1016/j.cej.2021.131001_b0025 article-title: Reviving the lithium metal anode for high-energy batteries publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.16 – volume: 8 start-page: 18087 issue: 35 year: 2020 ident: 10.1016/j.cej.2021.131001_b0170 article-title: Surface modification of garnet with amorphous SnO2 via atomic layer deposition publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13347J – volume: 3 year: 2017 ident: 10.1016/j.cej.2021.131001_b0145 article-title: Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface publication-title: Sci. Adv. doi: 10.1126/sciadv.1601659 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.cej.2021.131001_b0245 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 161 start-page: A2060 issue: 14 year: 2014 ident: 10.1016/j.cej.2021.131001_b0125 article-title: Synthesis, structure and Li ion conductivity of garnet-like Li5+2xLa3Nb2-xSmxO12 (0 ≤ x ≤ 0.7) publication-title: J. Electrochem. Soc. doi: 10.1149/2.0241414jes – volume: 9 start-page: 18809 issue: 22 year: 2017 ident: 10.1016/j.cej.2021.131001_b0105 article-title: Garnet solid electrolyte protected Li-metal batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03887 – volume: 62 start-page: 2223 year: 2004 ident: 10.1016/j.cej.2021.131001_b0165 article-title: Studies on lithium phosphorous oxynitride electrolyte thin films and a new all-solid-state thin film lithium battery publication-title: Acta Chim. Sinica – volume: 63 start-page: 193 year: 2020 ident: 10.1016/j.cej.2021.131001_b0270 article-title: First-principles insight into the entanglements between superionic diffusion and Li/Al antisite in Al-doped Li1+xAlxGe2–x(PO4)3 (LAGP) publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-020-1562-3 – volume: 34 start-page: 9189 issue: 8 year: 2020 ident: 10.1016/j.cej.2021.131001_b0040 article-title: Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: a review publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c02111 – volume: 8 start-page: 1800035 year: 2018 ident: 10.1016/j.cej.2021.131001_b0065 article-title: Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800035 – volume: 18 start-page: 7414 issue: 11 year: 2018 ident: 10.1016/j.cej.2021.131001_b0095 article-title: Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 °C publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03902 – volume: 59 start-page: 3802 issue: 10 year: 2020 ident: 10.1016/j.cej.2021.131001_b0010 article-title: Strategies towards low-cost dual-ion batteries with high performance publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201814294 – volume: 56 start-page: 14942 issue: 47 year: 2017 ident: 10.1016/j.cej.2021.131001_b0150 article-title: Transient behavior of the metal interface in lithium metal-garnet batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708637 – volume: 133 start-page: 3825 issue: 7 year: 2021 ident: 10.1016/j.cej.2021.131001_b0260 article-title: A multilayer ceramic electrolyte for all-solid-state Li batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202014265 – volume: 32 start-page: 2004798 year: 2020 ident: 10.1016/j.cej.2021.131001_b0190 article-title: A self-healing amalgam interface in metal batteries publication-title: Adv. Mater. doi: 10.1002/adma.202004798 – volume: 11 start-page: 2002689 year: 2020 ident: 10.1016/j.cej.2021.131001_b0265 article-title: Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002689 – volume: 1 start-page: 16013 year: 2016 ident: 10.1016/j.cej.2021.131001_b0005 article-title: Promise and reality of post-lithium-ion batteries with high energy densities publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.13 – volume: 30 start-page: 1802156 year: 2018 ident: 10.1016/j.cej.2021.131001_b0030 article-title: Stable metal anode enabled by porous lithium foam with superior ion accessibility publication-title: Adv. Mater. doi: 10.1002/adma.201802156 – volume: 19 start-page: 3712 issue: 21 year: 2007 ident: 10.1016/j.cej.2021.131001_b0250 article-title: Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries publication-title: Adv. Mater. doi: 10.1002/adma.200700883 – volume: 16 start-page: 572 issue: 5 year: 2017 ident: 10.1016/j.cej.2021.131001_b0110 article-title: Negating interfacial impedance in garnet-based solid-state Li metal batteries publication-title: Nat. Mater. doi: 10.1038/nmat4821 – volume: 138 start-page: 12258 issue: 37 year: 2016 ident: 10.1016/j.cej.2021.131001_b0140 article-title: Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06777 – volume: 1 start-page: 4736 issue: 15 year: 2013 ident: 10.1016/j.cej.2021.131001_b0235 article-title: Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector publication-title: J. Mater. Chem. A doi: 10.1039/c3ta01285a – volume: 582 start-page: 194 year: 2019 ident: 10.1016/j.cej.2021.131001_b0045 article-title: Realizing fourfold enhancement in conductivity of perovskite Li0.33La0.557TiO3 electrolyte membrane via a Sr and Ta co-doping strategy publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.03.074 – volume: 12 start-page: 33729 year: 2020 ident: 10.1016/j.cej.2021.131001_b0160 article-title: Behind the candelabra: a facile flame vapor deposition method for interfacial engineering of garnet electrolyte to enable ultralong cycling solid-state Li-FeF3 conversion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08203 – volume: 8 start-page: 1701963 year: 2018 ident: 10.1016/j.cej.2021.131001_b0135 article-title: Universal soldering of lithium and sodium alloys on various substrates for batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701963 – volume: 9 start-page: 1902568 year: 2019 ident: 10.1016/j.cej.2021.131001_b0185 article-title: Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902568 – volume: 257 start-page: 1807243 year: 2019 ident: 10.1016/j.cej.2021.131001_b0230 article-title: Lithium-graphite paste: an interface compatible anode for solid-state batteries publication-title: Adv. Mater. doi: 10.1002/adma.201807243 – volume: 59 start-page: 3699 year: 2020 ident: 10.1016/j.cej.2021.131001_b0200 article-title: Graphitic carbon nitride (g-C3N4): An interface enabler for solid-state lithium metal batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201914417 – volume: 3 start-page: 9010 issue: 9 year: 2020 ident: 10.1016/j.cej.2021.131001_b0175 article-title: Interface-compatible and high-cyclability lithiophilic lithium-zinc alloy anodes for garnet-structured solid electrolytes publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01430 – volume: 4 start-page: 3253 issue: 9 year: 2016 ident: 10.1016/j.cej.2021.131001_b0060 article-title: First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08574H – volume: 29 start-page: 1606042 year: 2017 ident: 10.1016/j.cej.2021.131001_b0130 article-title: Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer publication-title: Adv. Mater doi: 10.1002/adma.201606042 – volume: 113 start-page: 13313 issue: 47 year: 2016 ident: 10.1016/j.cej.2021.131001_b0115 article-title: Mastering the interface for advanced all-solid-state lithium rechargeable batteries publication-title: PNAS doi: 10.1073/pnas.1615912113 – volume: 3 start-page: 2181 issue: 9 year: 2018 ident: 10.1016/j.cej.2021.131001_b0050 article-title: Engineering materials for progressive all-solid-state Na batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00948 – volume: 7 start-page: 2073 issue: 3 year: 2015 ident: 10.1016/j.cej.2021.131001_b0075 article-title: Effect of surface microstructure on electrochemical performance of garnet solid electrolytes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508111r |
SSID | ssj0006919 |
Score | 2.5566964 |
Snippet | [Display omitted]
•Contact issue of the anode-electrolyte interface was tackled by a Li-Mo composite.•Lower cohesive energy and higher binding energy are... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 131001 |
SubjectTerms | Interface compatibility Lithium metal anode Solid-state battery Wettability α-MoO3 nanobelt |
Title | A simple strategy that may effectively tackle the anode-electrolyte interface issues in solid-state lithium metal batteries |
URI | https://dx.doi.org/10.1016/j.cej.2021.131001 |
Volume | 427 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPvFNDp6E2N00u9kcS7FUiz34wN6WzWPplj5E10MR_O3O7MMHqAdPG_KAZRIm32RmviHk1BqlhJXo1eWKCS4V054QLBCJF1quo9CioXg9DPv34moUjBqkW-fCYFhlpftLnV5o66qnVUmz9ZhlrVsffVpKSDRaMHcIM9iFRP7887fPMI9QFcU9cDLD2bVns4jxMm4CJiL3z3185_Z_vpu-3De9DbJeAUXaKf9lkzTcfIusfaEP3CavHfqcIbsvfS45Zpc0Hyc5nSVLWsZpgCqbQmeC_lsYczSZL6xjVe2b6TJ3FPkintLEQKsoxAcdFM5jZlmRa0QBpo-zlxmdOYDpVBd0nGBd75D73sVdt8-qYgrMcCVzpttJAvaW0VGKjFOpDHgEejpwgQ1TJ5UykQt92_Z0pFNltBfCiLMAH7XvAi3bu6Q5X8zdHqE2BZwRcC1k2wjHPRVZ56UARYyysPd6n3i1GGNTMY1jwYtpXIeUTWKQfIySj0vJ75OzjyWPJc3GX5NFvTfxt7MSwzXw-7KD_y07JKscUx6KZ5cj0syfXtwxAJFcnxQn7YSsdC4H_SF-BzcPg3dYqOAX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58HNSD-MT63IMnYW2y2WSzRxGlautFBW8h-wimtLW08VAEf7szefgA9eAt7APC7DD7zc7MN4QcW6OUsBKjulwxwaVi2hOChSL1Ist1HFl0FHu3UedBXD-Gj3PkvKmFwbTK2vZXNr201vVIu5Zme5zn7TsfY1pKSHRasHZoniyKMJCo2qdvn3kekSq7e-Bqhsub0GaZ5GVcH3xE7p_6-NDt_3w5fblwLtfIao0U6Vn1M-tkzo02yMoX_sBN8npGpznS-9JpRTI7o8VTWtBhOqNVogbYsgEMphjAhTlH09GzdaxufjOYFY4iYcQkSw18lZ34YICCQuaWlcVGFHD6U_4ypEMHOJ3qko8T3Ost8nB5cX_eYXU3BWa4kgXTQZqCw2V0nCHlVCZDHoOhDl1oo8xJpUzsIt8Gno51poz2IphxFvCj9l2oZbBNFkbPI7dDqM0AaIRcCxkY4binYuu8DLCIURYOX7eI14gxMTXVOHa8GCRNTlk_AcknKPmkknyLnHxsGVc8G38tFs3ZJN-UJYF74Pdtu__bdkSWOve9btK9ur3ZI8sc6x_KN5h9slBMXtwBoJJCH5Za9w6ineAK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+strategy+that+may+effectively+tackle+the+anode-electrolyte+interface+issues+in+solid-state+lithium+metal+batteries&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Liu%2C+Bo&rft.au=Du%2C+Mingjie&rft.au=Chen%2C+Bingbing&rft.au=Zhong%2C+Yijun&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=427&rft_id=info:doi/10.1016%2Fj.cej.2021.131001&rft.externalDocID=S1385894721025833 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |