A simple strategy that may effectively tackle the anode-electrolyte interface issues in solid-state lithium metal batteries

[Display omitted] •Contact issue of the anode-electrolyte interface was tackled by a Li-Mo composite.•Lower cohesive energy and higher binding energy are beneficial to better contact.•Symmetric cell shows a high critical current density and a stable 1200-h cycling.•A full cell with a LiFePO4 cathode...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 427; p. 131001
Main Authors Liu, Bo, Du, Mingjie, Chen, Bingbing, Zhong, Yijun, Zhou, Jianqiu, Ye, Fei, Liao, Kaiming, Zhou, Wei, Cao, Chencheng, Cai, Rui, Shao, Zongping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2022
Subjects
Online AccessGet full text
ISSN1385-8947
1873-3212
DOI10.1016/j.cej.2021.131001

Cover

Loading…
Abstract [Display omitted] •Contact issue of the anode-electrolyte interface was tackled by a Li-Mo composite.•Lower cohesive energy and higher binding energy are beneficial to better contact.•Symmetric cell shows a high critical current density and a stable 1200-h cycling.•A full cell with a LiFePO4 cathode presented stable performance for 200 cycles.•The work provides a facile and feasible way to overcome interface problems. Interface issues are the biggest challenges that hindering the commercialization of solid-state lithium metal batteries (SSLMBs). Here, we propose a novel strategy targeting for effectively resolving the tedious lithium-garnet solid electrolyte interface problem from the lithium side. We intentionally introduce α-MoO3 nanobelts into the molten metallic lithium, forming a Li-Mo composite. Compared to molten lithium, the composite improves wettability on the garnet electrolyte. As revealed by density functional theory calculations, such improvement could be ascribed to the reduced cohesive energy and the improved interface binding energy to the LLZTO. Intimate surface contact can be easily achieved without complicated surface treatment, which not only significantly reduces the interface resistance to ~ 1 Ω cm2, but could also effectively inhibits the generation of lithium dendrites. These features ensure a significant critical current density of 1700 µA cm−2 and a stable electrochemical Li plating/stripping process for more than 1200 h. A full cell with the Li-Mo composite anode and LiFePO4 cathode also presents a fairly stable cycling performance at room temperature. Different from most previous strategies that try to tackle the interface issues from the electrolyte side, our research results suggest that designing lithium composite anodes with low cohesive energy and high interface binding energy to the solid electrolyte is an attractive and feasible solution to overcome interface problems.
AbstractList [Display omitted] •Contact issue of the anode-electrolyte interface was tackled by a Li-Mo composite.•Lower cohesive energy and higher binding energy are beneficial to better contact.•Symmetric cell shows a high critical current density and a stable 1200-h cycling.•A full cell with a LiFePO4 cathode presented stable performance for 200 cycles.•The work provides a facile and feasible way to overcome interface problems. Interface issues are the biggest challenges that hindering the commercialization of solid-state lithium metal batteries (SSLMBs). Here, we propose a novel strategy targeting for effectively resolving the tedious lithium-garnet solid electrolyte interface problem from the lithium side. We intentionally introduce α-MoO3 nanobelts into the molten metallic lithium, forming a Li-Mo composite. Compared to molten lithium, the composite improves wettability on the garnet electrolyte. As revealed by density functional theory calculations, such improvement could be ascribed to the reduced cohesive energy and the improved interface binding energy to the LLZTO. Intimate surface contact can be easily achieved without complicated surface treatment, which not only significantly reduces the interface resistance to ~ 1 Ω cm2, but could also effectively inhibits the generation of lithium dendrites. These features ensure a significant critical current density of 1700 µA cm−2 and a stable electrochemical Li plating/stripping process for more than 1200 h. A full cell with the Li-Mo composite anode and LiFePO4 cathode also presents a fairly stable cycling performance at room temperature. Different from most previous strategies that try to tackle the interface issues from the electrolyte side, our research results suggest that designing lithium composite anodes with low cohesive energy and high interface binding energy to the solid electrolyte is an attractive and feasible solution to overcome interface problems.
ArticleNumber 131001
Author Cao, Chencheng
Liu, Bo
Cai, Rui
Ye, Fei
Liao, Kaiming
Du, Mingjie
Chen, Bingbing
Zhou, Jianqiu
Shao, Zongping
Zhou, Wei
Zhong, Yijun
Author_xml – sequence: 1
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
– sequence: 2
  givenname: Mingjie
  surname: Du
  fullname: Du, Mingjie
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
– sequence: 3
  givenname: Bingbing
  surname: Chen
  fullname: Chen, Bingbing
  organization: School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
– sequence: 4
  givenname: Yijun
  surname: Zhong
  fullname: Zhong, Yijun
  organization: WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6102, Australia
– sequence: 5
  givenname: Jianqiu
  surname: Zhou
  fullname: Zhou, Jianqiu
  email: zhouj@njtech.edu.cn
  organization: School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
– sequence: 6
  givenname: Fei
  surname: Ye
  fullname: Ye, Fei
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
– sequence: 7
  givenname: Kaiming
  surname: Liao
  fullname: Liao, Kaiming
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
– sequence: 8
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
– sequence: 9
  givenname: Chencheng
  surname: Cao
  fullname: Cao, Chencheng
  organization: WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6102, Australia
– sequence: 10
  givenname: Rui
  surname: Cai
  fullname: Cai, Rui
  email: cair@njtech.edu.cn
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
– sequence: 11
  givenname: Zongping
  surname: Shao
  fullname: Shao, Zongping
  email: shaozp@njtech.edu.cn
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
BookMark eNp9kM1OwzAMgCMEEtvgAbjlBTriljaNOE0Tf9IkLnCOktRhGWk7JdmkiZcn0zhx2MmW7c-yvym5HMYBCbkDNgcGzf1mbnAzL1kJc6iAMbggE2h5VVQllJc5r9q6aMUDvybTGDeMsUaAmJCfBY2u33qkMQWV8OtA01ol2qsDRWvRJLdHn4vKfOehtEaqhrHDAn3uhdEfElI3JAxWmZzFuMOYCzSO3nVFTHkn9S6t3a6nPSblqVYpjzuMN-TKKh_x9i_OyOfz08fytVi9v7wtF6vClIKnQldKsbIxurUaOLe8LlvUUGPdNRa5EKbFBrqK6VZbYTRrcgc7IUAD1ppXM8JPe00YYwxopXH5LjcO-WXnJTB5dCg3MjuUR4fy5DCT8I_cBtercDjLPJ4YzC_tHQYZjcPBYOdCVia70Z2hfwGFwo9m
CitedBy_id crossref_primary_10_1021_acsami_2c09801
crossref_primary_10_1002_adfm_202106608
crossref_primary_10_1016_j_pmatsci_2023_101182
crossref_primary_10_1002_cssc_202300504
crossref_primary_10_1016_j_enchem_2024_100122
crossref_primary_10_59761_RCR5126
crossref_primary_10_1002_sstr_202200374
crossref_primary_10_1021_acsami_4c13971
crossref_primary_10_1111_ijac_14523
crossref_primary_10_1063_5_0117248
crossref_primary_10_1016_j_ensm_2024_103401
crossref_primary_10_1149_1945_7111_ad7c82
crossref_primary_10_1021_acsami_4c10546
crossref_primary_10_1016_j_cej_2024_149433
crossref_primary_10_1002_smtd_202201140
crossref_primary_10_1016_j_cej_2024_153649
crossref_primary_10_1016_j_jallcom_2022_164925
crossref_primary_10_1016_j_jallcom_2024_174123
crossref_primary_10_1016_j_nanoen_2023_108573
crossref_primary_10_1002_cnl2_188
crossref_primary_10_1021_acs_energyfuels_3c01626
crossref_primary_10_1002_elt2_13
crossref_primary_10_1002_eom2_12338
crossref_primary_10_1021_acssuschemeng_4c00737
crossref_primary_10_1016_j_ensm_2022_07_037
crossref_primary_10_1002_adfm_202309751
crossref_primary_10_1016_j_cej_2023_142937
crossref_primary_10_1002_adfm_202211387
crossref_primary_10_1002_adfm_202213443
crossref_primary_10_1007_s41918_024_00212_1
crossref_primary_10_1016_j_cej_2024_158325
crossref_primary_10_1021_acs_energyfuels_1c03418
crossref_primary_10_1021_acsami_3c12414
crossref_primary_10_1016_j_greenca_2024_02_005
crossref_primary_10_1002_cssc_202201801
crossref_primary_10_1039_D3SE01730C
crossref_primary_10_1021_acsaem_2c02441
crossref_primary_10_1038_s41467_023_37476_y
crossref_primary_10_1002_cjoc_202200588
crossref_primary_10_1007_s11837_022_05512_9
crossref_primary_10_1039_D1TA07804F
crossref_primary_10_1016_j_jallcom_2023_168774
crossref_primary_10_1002_smll_202106142
crossref_primary_10_1002_smll_202402035
crossref_primary_10_1002_adfm_202112113
crossref_primary_10_1039_D3NR02271D
crossref_primary_10_1016_j_cej_2022_140761
crossref_primary_10_1016_j_mcat_2024_114053
crossref_primary_10_1016_j_jcis_2022_04_018
Cites_doi 10.1016/j.ensm.2018.05.018
10.1021/jz501828v
10.1007/s41918-018-0011-2
10.1002/anie.201608924
10.1016/j.jallcom.2019.04.274
10.1021/acsnano.9b08803
10.1021/acs.chemmater.8b00486
10.1016/j.isci.2020.100943
10.1021/acsami.9b13190
10.1038/s41560-019-0338-x
10.1002/adma.202000575
10.1016/j.nanoen.2019.04.058
10.1016/j.jpowsour.2010.10.103
10.1002/aenm.202002992
10.1111/jace.14865
10.1016/0927-0256(96)00008-0
10.1038/nenergy.2016.141
10.1039/C8EE00540K
10.1038/nnano.2017.16
10.1039/C9TA13347J
10.1126/sciadv.1601659
10.1103/PhysRevB.54.11169
10.1149/2.0241414jes
10.1021/acsami.7b03887
10.1007/s11431-020-1562-3
10.1021/acs.energyfuels.0c02111
10.1002/aenm.201800035
10.1021/acs.nanolett.8b03902
10.1002/anie.201814294
10.1002/anie.201708637
10.1002/ange.202014265
10.1002/adma.202004798
10.1002/aenm.202002689
10.1038/natrevmats.2016.13
10.1002/adma.201802156
10.1002/adma.200700883
10.1038/nmat4821
10.1021/jacs.6b06777
10.1039/c3ta01285a
10.1016/j.memsci.2019.03.074
10.1021/acsami.0c08203
10.1002/aenm.201701963
10.1002/aenm.201902568
10.1002/adma.201807243
10.1002/anie.201914417
10.1021/acsaem.0c01430
10.1039/C5TA08574H
10.1002/adma.201606042
10.1073/pnas.1615912113
10.1021/acsenergylett.8b00948
10.1021/am508111r
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2021.131001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2021_131001
S1385894721025833
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c297t-b3aa026cb8fb177f7528eb15e5d6fe799c8e61d30b8bf9cb06e5ded991b1e5b73
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 04:27:38 EDT 2025
Thu Apr 24 23:08:06 EDT 2025
Fri Feb 23 02:43:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Interface compatibility
Wettability
Solid-state battery
α-MoO3 nanobelt
Lithium metal anode
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-b3aa026cb8fb177f7528eb15e5d6fe799c8e61d30b8bf9cb06e5ded991b1e5b73
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2021_131001
crossref_primary_10_1016_j_cej_2021_131001
elsevier_sciencedirect_doi_10_1016_j_cej_2021_131001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Krauskopf, Mogwitz, Rosenbach, Zeier, Janek (b0185) 2019; 9
Xu, Li, Zhou, Wu, Xin, Li, Goodenough (b0095) 2018; 18
Jiang, Lu, Cao (b0270) 2020; 63
Duan, Wu, Luo (b0230) 2019; 257
Luo, Gong, Zhu, Li, Yao, Zhang, Fu, Pastel, Lin, Mo, Wachsman, Hu (b0130) 2017; 29
Tan, Zeng, Ma, Wu, Guo (b0055) 2018; 1
Kresse, Furthmüller (b0245) 1996; 54
Fu, Gong, Liu, Zhu, Xu, Yao, Luo, Wang, Lacey, Dai, Chen, Mo, Wachsman, Hu (b0145) 2017; 3
Fan, Tao, Gao, Deng, Yu, Chen, Lu, Huang (b0190) 2020; 32
Wen, Huang, Duan, Wu, Luo, Zhou, Hu, Huang, Zheng, Yang, Wen, Huang (b0195) 2019; 13
Li, Xu, Xu, Duan, Lü, Xin, Zhou, Xue, Fu, Manthiram, Goodenough (b0215) 2017; 56
Cheng, Chen, Kunz, Persson, Tamura, Chen, Doeff (b0075) 2015; 7
Lin, Liu, Cui (b0025) 2017; 12
Tang, Gao, Liu, Bo, Xie, Wei, Zhou (b0170) 2020; 8
Han, Gong, Fu, He, Hitz, Dai, Pearse, Liu, Wang, Rubloff, Mo, Thangadurai, Wachsman, Hu (b0110) 2017; 16
Zhou, Bag, Thangadurai (b0050) 2018; 3
Choi, Aurbach (b0005) 2016; 1
Liu, Bao, Cui, Dufek, Goodenough, Khalifah, Li, Liaw, Liu, Manthiram, Meng, Subramanian, Toney, Viswanathan, Whittingham, Xiao, Xu, Yang, Yang, Zhang (b0035) 2019; 4
Liu, Gong, Fu, Han, Yao, Pastel, Yang, Xie, Wachsman, Hu (b0105) 2017; 9
Cai, Lu, Su, Ruan, Chen, Chowdari, Wen (b0180) 2019; 11
Pinzaru, Thangadurai (b0125) 2014; 161
Lu, Huang, Song, Rui, Wang, Gu, Yang, Xiu, Badding, Wen (b0155) 2018; 15
Li, Liao, Zhou, Li, Meng, Cai, Shao (b0045) 2019; 582
Wu, Wang, Lochala, Desrochers, Liu, Zhang, Yang, Xiao (b0090) 2018; 11
Sun, Wang, Zhao, Cai, Ran, Shao (b0235) 2013; 1
Liu, Fu, Qin (b0165) 2004; 62
Zhong, Xu, Veder, Shao (b0015) 2020; 23
Li, Li, Chu, Liao, Cai, Zhou, Shao (b0070) 2019; 794
Luo, Gong, Zhu, Fu, Dai, Lacey, Wang, Liu, Han, Mo, Wachsman, Hu (b0140) 2016; 138
Alexander, Sreejith, Indu, Murugan (b0175) 2020; 3
Kresse, Furthmüller (b0240) 1996; 6
Thangadurai, Pinzaru, Narayanan, Baral (b0080) 2015; 6
Zhou, Liu, Jiang, Ji, Ji, Tang, Cheng (b0010) 2020; 59
Mai, Hu, Chen, Qi, Lao, Yang, Dai, Wang (b0250) 2007; 19
Park, Bai, Kim, Oh, Zhu, Mo, Jung (b0065) 2018; 8
Sakuda, Hayashi, Ohtomo, Hama, Tatsumisago (b0100) 2011; 196
Wang, Xie, Zhang, Gong, Pastel, Dai, Liu, Wachsman, Hu (b0135) 2018; 8
Brugge, Hekselman, Cavallaro, Pesci, Chater, Kilner, Aguadero (b0205) 2018; 30
Kim, Balaish, Wadaguchi, Kong, Rupp (b0265) 2020; 11
Chastain, King (b0255) 1992
Hafez, Jiao, Shi, Ma, Cao, Liu, Zhu (b0030) 2018; 30
Zhu, Li, Wu, Gao, Xu, Li, Guo, Li, Zhou (b0260) 2021; 133
Huo, Luo, Thangadurai, Guo, Sun (b0120) 2019; 5
Zhong, Xu, Liu, Ran, Jiang, Wu, Shao (b0020) 2020; 10
Fu, Wang, Shen, Jiang, Wang, Dai, Wang, Qiu, Zhang, Deng, Zeng, Zhao, Guo, Liu, Liu, Peng (b0225) 2020; 32
Ye, Liao, Ran, Shao (b0040) 2020; 34
Zhu, He, Mo (b0060) 2016; 4
Wen, Huang, Chen, Duan, Yang, Wang, Wang, Yang, Hu, Luo, Huang (b0200) 2020; 59
Janek, Zeier (b0085) 2016; 1
Li, Zhou, Chen, Lü, Cui, Xin, Xue, Jia, Goodenough (b0115) 2016; 113
Fu, Gong, Fu, Xie, Yao, Liu, Carter, Wachsman, Hu (b0150) 2017; 56
Xia, Xu, Duan, Tang, Guo, Kang, Li, Liu (b0210) 2017; 100
Huo, Chen, Zhao, Lin, Luo, Yang, Liu, Guo, Sun (b0220) 2019; 61
Zhang, Meng, Chen, Wu, Wu, Li (b0160) 2020; 12
Zhong (10.1016/j.cej.2021.131001_b0015) 2020; 23
Wen (10.1016/j.cej.2021.131001_b0200) 2020; 59
Sakuda (10.1016/j.cej.2021.131001_b0100) 2011; 196
Wen (10.1016/j.cej.2021.131001_b0195) 2019; 13
Fu (10.1016/j.cej.2021.131001_b0225) 2020; 32
Park (10.1016/j.cej.2021.131001_b0065) 2018; 8
Huo (10.1016/j.cej.2021.131001_b0120) 2019; 5
Xia (10.1016/j.cej.2021.131001_b0210) 2017; 100
Xu (10.1016/j.cej.2021.131001_b0095) 2018; 18
Kim (10.1016/j.cej.2021.131001_b0265) 2020; 11
Luo (10.1016/j.cej.2021.131001_b0140) 2016; 138
Li (10.1016/j.cej.2021.131001_b0045) 2019; 582
Jiang (10.1016/j.cej.2021.131001_b0270) 2020; 63
Ye (10.1016/j.cej.2021.131001_b0040) 2020; 34
Fu (10.1016/j.cej.2021.131001_b0145) 2017; 3
Liu (10.1016/j.cej.2021.131001_b0105) 2017; 9
Liu (10.1016/j.cej.2021.131001_b0165) 2004; 62
Brugge (10.1016/j.cej.2021.131001_b0205) 2018; 30
Thangadurai (10.1016/j.cej.2021.131001_b0080) 2015; 6
Duan (10.1016/j.cej.2021.131001_b0230) 2019; 257
Li (10.1016/j.cej.2021.131001_b0115) 2016; 113
Wang (10.1016/j.cej.2021.131001_b0135) 2018; 8
Kresse (10.1016/j.cej.2021.131001_b0245) 1996; 54
Janek (10.1016/j.cej.2021.131001_b0085) 2016; 1
Alexander (10.1016/j.cej.2021.131001_b0175) 2020; 3
Lin (10.1016/j.cej.2021.131001_b0025) 2017; 12
Tan (10.1016/j.cej.2021.131001_b0055) 2018; 1
Li (10.1016/j.cej.2021.131001_b0215) 2017; 56
Cai (10.1016/j.cej.2021.131001_b0180) 2019; 11
Liu (10.1016/j.cej.2021.131001_b0035) 2019; 4
Wu (10.1016/j.cej.2021.131001_b0090) 2018; 11
Zhong (10.1016/j.cej.2021.131001_b0020) 2020; 10
Krauskopf (10.1016/j.cej.2021.131001_b0185) 2019; 9
Huo (10.1016/j.cej.2021.131001_b0220) 2019; 61
Tang (10.1016/j.cej.2021.131001_b0170) 2020; 8
Fan (10.1016/j.cej.2021.131001_b0190) 2020; 32
Hafez (10.1016/j.cej.2021.131001_b0030) 2018; 30
Chastain (10.1016/j.cej.2021.131001_b0255) 1992
Lu (10.1016/j.cej.2021.131001_b0155) 2018; 15
Zhang (10.1016/j.cej.2021.131001_b0160) 2020; 12
Luo (10.1016/j.cej.2021.131001_b0130) 2017; 29
Cheng (10.1016/j.cej.2021.131001_b0075) 2015; 7
Choi (10.1016/j.cej.2021.131001_b0005) 2016; 1
Han (10.1016/j.cej.2021.131001_b0110) 2017; 16
Li (10.1016/j.cej.2021.131001_b0070) 2019; 794
Zhu (10.1016/j.cej.2021.131001_b0060) 2016; 4
Fu (10.1016/j.cej.2021.131001_b0150) 2017; 56
Mai (10.1016/j.cej.2021.131001_b0250) 2007; 19
Pinzaru (10.1016/j.cej.2021.131001_b0125) 2014; 161
Zhu (10.1016/j.cej.2021.131001_b0260) 2021; 133
Sun (10.1016/j.cej.2021.131001_b0235) 2013; 1
Zhou (10.1016/j.cej.2021.131001_b0010) 2020; 59
Kresse (10.1016/j.cej.2021.131001_b0240) 1996; 6
Zhou (10.1016/j.cej.2021.131001_b0050) 2018; 3
References_xml – volume: 54
  start-page: 11169
  year: 1996
  ident: b0245
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 61
  start-page: 119
  year: 2019
  end-page: 125
  ident: b0220
  article-title: In-situ formed Li
  publication-title: Nano Energy
– volume: 19
  start-page: 3712
  year: 2007
  end-page: 3716
  ident: b0250
  article-title: Lithiated MoO
  publication-title: Adv. Mater.
– volume: 794
  start-page: 347
  year: 2019
  end-page: 357
  ident: b0070
  article-title: Rational design of strontium antimony co-doped Li
  publication-title: J. Alloys Compd.
– volume: 1
  start-page: 16141
  year: 2016
  ident: b0085
  article-title: A solid future for battery development
  publication-title: Nat. Energy
– volume: 100
  start-page: 2832
  year: 2017
  end-page: 2839
  ident: b0210
  article-title: Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO
  publication-title: J. Am. Ceram. Soc.
– volume: 32
  start-page: 2000575
  year: 2020
  ident: b0225
  article-title: A High-performance carbonate-free lithium|garnet interface enabled by a trace amount of sodium
  publication-title: Adv. Mater.
– volume: 4
  start-page: 3253
  year: 2016
  end-page: 3266
  ident: b0060
  article-title: First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 7414
  year: 2018
  end-page: 7418
  ident: b0095
  article-title: Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 °C
  publication-title: Nano Lett.
– volume: 1
  start-page: 113
  year: 2018
  end-page: 138
  ident: b0055
  article-title: Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries
  publication-title: Electrochem. Energy Rev.
– volume: 59
  start-page: 3802
  year: 2020
  end-page: 3832
  ident: b0010
  article-title: Strategies towards low-cost dual-ion batteries with high performance
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 2002992
  year: 2020
  ident: b0020
  article-title: A function-separated design of electrode for realizing high-performance hybrid zinc battery
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 9010
  year: 2020
  end-page: 9017
  ident: b0175
  article-title: Interface-compatible and high-cyclability lithiophilic lithium-zinc alloy anodes for garnet-structured solid electrolytes
  publication-title: ACS Appl. Energy Mater.
– volume: 133
  start-page: 3825
  year: 2021
  end-page: 3834
  ident: b0260
  article-title: A multilayer ceramic electrolyte for all-solid-state Li batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 23
  year: 2020
  ident: b0015
  article-title: Self-recovery chemistry and cobalt-catalyzed electrochemical deposition of cathode for boosting performance of aqueous zinc-ion batteries
  publication-title: iScience
– volume: 113
  start-page: 13313
  year: 2016
  end-page: 13317
  ident: b0115
  article-title: Mastering the interface for advanced all-solid-state lithium rechargeable batteries
  publication-title: PNAS
– volume: 11
  start-page: 2002689
  year: 2020
  ident: b0265
  article-title: Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 2073
  year: 2015
  end-page: 2081
  ident: b0075
  article-title: Effect of surface microstructure on electrochemical performance of garnet solid electrolytes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 18087
  year: 2020
  end-page: 18093
  ident: b0170
  article-title: Surface modification of garnet with amorphous SnO
  publication-title: J. Mater. Chem. A
– volume: 34
  start-page: 9189
  year: 2020
  end-page: 9207
  ident: b0040
  article-title: Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: a review
  publication-title: Energy Fuels
– volume: 29
  start-page: 1606042
  year: 2017
  ident: b0130
  article-title: Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer
  publication-title: Adv. Mater
– volume: 13
  start-page: 14549
  year: 2019
  end-page: 14556
  ident: b0195
  article-title: Highly adhesive Li-BN nanosheet composite anode with excellent interfacial compatibility for solid-state Li metal batteries
  publication-title: ACS Nano
– volume: 62
  start-page: 2223
  year: 2004
  end-page: 2227
  ident: b0165
  article-title: Studies on lithium phosphorous oxynitride electrolyte thin films and a new all-solid-state thin film lithium battery
  publication-title: Acta Chim. Sinica
– volume: 138
  start-page: 12258
  year: 2016
  end-page: 12262
  ident: b0140
  article-title: Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 180
  year: 2019
  end-page: 186
  ident: b0035
  article-title: Pathways for practical high-energy long-cycling lithium metal batteries
  publication-title: Nat Energy
– volume: 15
  start-page: 282
  year: 2018
  end-page: 290
  ident: b0155
  article-title: Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces
  publication-title: Energy Storage Mater.
– volume: 30
  start-page: 1802156
  year: 2018
  ident: b0030
  article-title: Stable metal anode enabled by porous lithium foam with superior ion accessibility
  publication-title: Adv. Mater.
– volume: 257
  start-page: 1807243
  year: 2019
  ident: b0230
  article-title: Lithium-graphite paste: an interface compatible anode for solid-state batteries
  publication-title: Adv. Mater.
– volume: 59
  start-page: 3699
  year: 2020
  end-page: 3704
  ident: b0200
  article-title: Graphitic carbon nitride (g-C
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 1701963
  year: 2018
  ident: b0135
  article-title: Universal soldering of lithium and sodium alloys on various substrates for batteries
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 572
  year: 2017
  end-page: 579
  ident: b0110
  article-title: Negating interfacial impedance in garnet-based solid-state Li metal batteries
  publication-title: Nat. Mater.
– volume: 9
  start-page: 1902568
  year: 2019
  ident: b0185
  article-title: Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 1803
  year: 2018
  end-page: 1810
  ident: b0090
  article-title: The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 4736
  year: 2013
  ident: b0235
  article-title: Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector
  publication-title: J. Mater. Chem. A
– volume: 161
  start-page: A2060
  year: 2014
  end-page: A2067
  ident: b0125
  article-title: Synthesis, structure and Li ion conductivity of garnet-like Li
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 16013
  year: 2016
  ident: b0005
  article-title: Promise and reality of post-lithium-ion batteries with high energy densities
  publication-title: Nat. Rev. Mater.
– volume: 8
  start-page: 1800035
  year: 2018
  ident: b0065
  article-title: Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries
  publication-title: Adv. Energy Mater.
– volume: 56
  start-page: 753
  year: 2017
  end-page: 756
  ident: b0215
  article-title: Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
– year: 1992
  ident: b0255
  article-title: Handbook of X-ray photoelectron spectroscopy
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  ident: b0025
  article-title: Reviving the lithium metal anode for high-energy batteries
  publication-title: Nat. Nanotechnol.
– volume: 582
  start-page: 194
  year: 2019
  end-page: 202
  ident: b0045
  article-title: Realizing fourfold enhancement in conductivity of perovskite Li
  publication-title: J. Membr. Sci.
– volume: 196
  start-page: 6735
  year: 2011
  end-page: 6741
  ident: b0100
  article-title: All-solid-state lithium secondary batteries using LiCoO
  publication-title: J. Power Sources
– volume: 30
  start-page: 3704
  year: 2018
  end-page: 3713
  ident: b0205
  article-title: Garnet electrolytes for solid state batteries: Visualization of moisture-induced chemical degradation and revealing its impact on the Li-ion dynamics
  publication-title: Chem. Mater.
– volume: 56
  start-page: 14942
  year: 2017
  end-page: 14947
  ident: b0150
  article-title: Transient behavior of the metal interface in lithium metal-garnet batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: b0240
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci
– volume: 5
  start-page: 262
  year: 2019
  ident: b0120
  article-title: Li
  publication-title: ACS Energy Lett.
– volume: 32
  start-page: 2004798
  year: 2020
  ident: b0190
  article-title: A self-healing amalgam interface in metal batteries
  publication-title: Adv. Mater.
– volume: 6
  start-page: 292
  year: 2015
  end-page: 299
  ident: b0080
  article-title: Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage
  publication-title: J. Phys. Chem. Lett.
– volume: 63
  start-page: 193
  year: 2020
  end-page: 200
  ident: b0270
  article-title: First-principles insight into the entanglements between superionic diffusion and Li/Al antisite in Al-doped Li
  publication-title: Sci. China Technol. Sci.
– volume: 12
  start-page: 33729
  year: 2020
  end-page: 33739
  ident: b0160
  article-title: Behind the candelabra: a facile flame vapor deposition method for interfacial engineering of garnet electrolyte to enable ultralong cycling solid-state Li-FeF
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 2181
  year: 2018
  end-page: 2198
  ident: b0050
  article-title: Engineering materials for progressive all-solid-state Na batteries
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 35030
  year: 2019
  end-page: 35038
  ident: b0180
  article-title: In situ lithiophilic layer from H
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 18809
  year: 2017
  end-page: 18815
  ident: b0105
  article-title: Garnet solid electrolyte protected Li-metal batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2017
  ident: b0145
  article-title: Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface
  publication-title: Sci. Adv.
– volume: 15
  start-page: 282
  year: 2018
  ident: 10.1016/j.cej.2021.131001_b0155
  article-title: Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.05.018
– volume: 6
  start-page: 292
  issue: 2
  year: 2015
  ident: 10.1016/j.cej.2021.131001_b0080
  article-title: Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501828v
– volume: 1
  start-page: 113
  issue: 2
  year: 2018
  ident: 10.1016/j.cej.2021.131001_b0055
  article-title: Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0011-2
– volume: 56
  start-page: 753
  issue: 3
  year: 2017
  ident: 10.1016/j.cej.2021.131001_b0215
  article-title: Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608924
– volume: 794
  start-page: 347
  year: 2019
  ident: 10.1016/j.cej.2021.131001_b0070
  article-title: Rational design of strontium antimony co-doped Li7La3Zr2O12 electrolyte membrane for solid-state lithium batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.04.274
– volume: 13
  start-page: 14549
  issue: 12
  year: 2019
  ident: 10.1016/j.cej.2021.131001_b0195
  article-title: Highly adhesive Li-BN nanosheet composite anode with excellent interfacial compatibility for solid-state Li metal batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08803
– volume: 30
  start-page: 3704
  year: 2018
  ident: 10.1016/j.cej.2021.131001_b0205
  article-title: Garnet electrolytes for solid state batteries: Visualization of moisture-induced chemical degradation and revealing its impact on the Li-ion dynamics
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00486
– volume: 23
  year: 2020
  ident: 10.1016/j.cej.2021.131001_b0015
  article-title: Self-recovery chemistry and cobalt-catalyzed electrochemical deposition of cathode for boosting performance of aqueous zinc-ion batteries
  publication-title: iScience
  doi: 10.1016/j.isci.2020.100943
– volume: 11
  start-page: 35030
  issue: 38
  year: 2019
  ident: 10.1016/j.cej.2021.131001_b0180
  article-title: In situ lithiophilic layer from H+/Li+ exchange on garnet surface for the stable lithium-solid electrolyte interface
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13190
– volume: 4
  start-page: 180
  issue: 3
  year: 2019
  ident: 10.1016/j.cej.2021.131001_b0035
  article-title: Pathways for practical high-energy long-cycling lithium metal batteries
  publication-title: Nat Energy
  doi: 10.1038/s41560-019-0338-x
– volume: 32
  start-page: 2000575
  year: 2020
  ident: 10.1016/j.cej.2021.131001_b0225
  article-title: A High-performance carbonate-free lithium|garnet interface enabled by a trace amount of sodium
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000575
– volume: 61
  start-page: 119
  year: 2019
  ident: 10.1016/j.cej.2021.131001_b0220
  article-title: In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.058
– volume: 196
  start-page: 6735
  issue: 16
  year: 2011
  ident: 10.1016/j.cej.2021.131001_b0100
  article-title: All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S-P2S5 solid electrolytes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.10.103
– volume: 10
  start-page: 2002992
  year: 2020
  ident: 10.1016/j.cej.2021.131001_b0020
  article-title: A function-separated design of electrode for realizing high-performance hybrid zinc battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002992
– volume: 100
  start-page: 2832
  issue: 7
  year: 2017
  ident: 10.1016/j.cej.2021.131001_b0210
  article-title: Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO2
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.14865
– volume: 6
  start-page: 15
  issue: 1
  year: 1996
  ident: 10.1016/j.cej.2021.131001_b0240
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci
  doi: 10.1016/0927-0256(96)00008-0
– volume: 5
  start-page: 262
  year: 2019
  ident: 10.1016/j.cej.2021.131001_b0120
  article-title: Li2CO3: A critical issue for developing solid garnet batteries
  publication-title: ACS Energy Lett.
– volume: 1
  start-page: 16141
  year: 2016
  ident: 10.1016/j.cej.2021.131001_b0085
  article-title: A solid future for battery development
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.141
– year: 1992
  ident: 10.1016/j.cej.2021.131001_b0255
– volume: 11
  start-page: 1803
  issue: 7
  year: 2018
  ident: 10.1016/j.cej.2021.131001_b0090
  article-title: The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00540K
– volume: 12
  start-page: 194
  issue: 3
  year: 2017
  ident: 10.1016/j.cej.2021.131001_b0025
  article-title: Reviving the lithium metal anode for high-energy batteries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.16
– volume: 8
  start-page: 18087
  issue: 35
  year: 2020
  ident: 10.1016/j.cej.2021.131001_b0170
  article-title: Surface modification of garnet with amorphous SnO2 via atomic layer deposition
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13347J
– volume: 3
  year: 2017
  ident: 10.1016/j.cej.2021.131001_b0145
  article-title: Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601659
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.cej.2021.131001_b0245
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 161
  start-page: A2060
  issue: 14
  year: 2014
  ident: 10.1016/j.cej.2021.131001_b0125
  article-title: Synthesis, structure and Li ion conductivity of garnet-like Li5+2xLa3Nb2-xSmxO12 (0 ≤ x ≤ 0.7)
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0241414jes
– volume: 9
  start-page: 18809
  issue: 22
  year: 2017
  ident: 10.1016/j.cej.2021.131001_b0105
  article-title: Garnet solid electrolyte protected Li-metal batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03887
– volume: 62
  start-page: 2223
  year: 2004
  ident: 10.1016/j.cej.2021.131001_b0165
  article-title: Studies on lithium phosphorous oxynitride electrolyte thin films and a new all-solid-state thin film lithium battery
  publication-title: Acta Chim. Sinica
– volume: 63
  start-page: 193
  year: 2020
  ident: 10.1016/j.cej.2021.131001_b0270
  article-title: First-principles insight into the entanglements between superionic diffusion and Li/Al antisite in Al-doped Li1+xAlxGe2–x(PO4)3 (LAGP)
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-020-1562-3
– volume: 34
  start-page: 9189
  issue: 8
  year: 2020
  ident: 10.1016/j.cej.2021.131001_b0040
  article-title: Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: a review
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c02111
– volume: 8
  start-page: 1800035
  year: 2018
  ident: 10.1016/j.cej.2021.131001_b0065
  article-title: Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800035
– volume: 18
  start-page: 7414
  issue: 11
  year: 2018
  ident: 10.1016/j.cej.2021.131001_b0095
  article-title: Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 °C
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03902
– volume: 59
  start-page: 3802
  issue: 10
  year: 2020
  ident: 10.1016/j.cej.2021.131001_b0010
  article-title: Strategies towards low-cost dual-ion batteries with high performance
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201814294
– volume: 56
  start-page: 14942
  issue: 47
  year: 2017
  ident: 10.1016/j.cej.2021.131001_b0150
  article-title: Transient behavior of the metal interface in lithium metal-garnet batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708637
– volume: 133
  start-page: 3825
  issue: 7
  year: 2021
  ident: 10.1016/j.cej.2021.131001_b0260
  article-title: A multilayer ceramic electrolyte for all-solid-state Li batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202014265
– volume: 32
  start-page: 2004798
  year: 2020
  ident: 10.1016/j.cej.2021.131001_b0190
  article-title: A self-healing amalgam interface in metal batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004798
– volume: 11
  start-page: 2002689
  year: 2020
  ident: 10.1016/j.cej.2021.131001_b0265
  article-title: Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002689
– volume: 1
  start-page: 16013
  year: 2016
  ident: 10.1016/j.cej.2021.131001_b0005
  article-title: Promise and reality of post-lithium-ion batteries with high energy densities
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.13
– volume: 30
  start-page: 1802156
  year: 2018
  ident: 10.1016/j.cej.2021.131001_b0030
  article-title: Stable metal anode enabled by porous lithium foam with superior ion accessibility
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802156
– volume: 19
  start-page: 3712
  issue: 21
  year: 2007
  ident: 10.1016/j.cej.2021.131001_b0250
  article-title: Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700883
– volume: 16
  start-page: 572
  issue: 5
  year: 2017
  ident: 10.1016/j.cej.2021.131001_b0110
  article-title: Negating interfacial impedance in garnet-based solid-state Li metal batteries
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4821
– volume: 138
  start-page: 12258
  issue: 37
  year: 2016
  ident: 10.1016/j.cej.2021.131001_b0140
  article-title: Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06777
– volume: 1
  start-page: 4736
  issue: 15
  year: 2013
  ident: 10.1016/j.cej.2021.131001_b0235
  article-title: Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta01285a
– volume: 582
  start-page: 194
  year: 2019
  ident: 10.1016/j.cej.2021.131001_b0045
  article-title: Realizing fourfold enhancement in conductivity of perovskite Li0.33La0.557TiO3 electrolyte membrane via a Sr and Ta co-doping strategy
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.03.074
– volume: 12
  start-page: 33729
  year: 2020
  ident: 10.1016/j.cej.2021.131001_b0160
  article-title: Behind the candelabra: a facile flame vapor deposition method for interfacial engineering of garnet electrolyte to enable ultralong cycling solid-state Li-FeF3 conversion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08203
– volume: 8
  start-page: 1701963
  year: 2018
  ident: 10.1016/j.cej.2021.131001_b0135
  article-title: Universal soldering of lithium and sodium alloys on various substrates for batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701963
– volume: 9
  start-page: 1902568
  year: 2019
  ident: 10.1016/j.cej.2021.131001_b0185
  article-title: Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902568
– volume: 257
  start-page: 1807243
  year: 2019
  ident: 10.1016/j.cej.2021.131001_b0230
  article-title: Lithium-graphite paste: an interface compatible anode for solid-state batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807243
– volume: 59
  start-page: 3699
  year: 2020
  ident: 10.1016/j.cej.2021.131001_b0200
  article-title: Graphitic carbon nitride (g-C3N4): An interface enabler for solid-state lithium metal batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201914417
– volume: 3
  start-page: 9010
  issue: 9
  year: 2020
  ident: 10.1016/j.cej.2021.131001_b0175
  article-title: Interface-compatible and high-cyclability lithiophilic lithium-zinc alloy anodes for garnet-structured solid electrolytes
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01430
– volume: 4
  start-page: 3253
  issue: 9
  year: 2016
  ident: 10.1016/j.cej.2021.131001_b0060
  article-title: First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08574H
– volume: 29
  start-page: 1606042
  year: 2017
  ident: 10.1016/j.cej.2021.131001_b0130
  article-title: Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer
  publication-title: Adv. Mater
  doi: 10.1002/adma.201606042
– volume: 113
  start-page: 13313
  issue: 47
  year: 2016
  ident: 10.1016/j.cej.2021.131001_b0115
  article-title: Mastering the interface for advanced all-solid-state lithium rechargeable batteries
  publication-title: PNAS
  doi: 10.1073/pnas.1615912113
– volume: 3
  start-page: 2181
  issue: 9
  year: 2018
  ident: 10.1016/j.cej.2021.131001_b0050
  article-title: Engineering materials for progressive all-solid-state Na batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00948
– volume: 7
  start-page: 2073
  issue: 3
  year: 2015
  ident: 10.1016/j.cej.2021.131001_b0075
  article-title: Effect of surface microstructure on electrochemical performance of garnet solid electrolytes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am508111r
SSID ssj0006919
Score 2.5566964
Snippet [Display omitted] •Contact issue of the anode-electrolyte interface was tackled by a Li-Mo composite.•Lower cohesive energy and higher binding energy are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 131001
SubjectTerms Interface compatibility
Lithium metal anode
Solid-state battery
Wettability
α-MoO3 nanobelt
Title A simple strategy that may effectively tackle the anode-electrolyte interface issues in solid-state lithium metal batteries
URI https://dx.doi.org/10.1016/j.cej.2021.131001
Volume 427
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPvFNDp6E2N00u9kcS7FUiz34wN6WzWPplj5E10MR_O3O7MMHqAdPG_KAZRIm32RmviHk1BqlhJXo1eWKCS4V054QLBCJF1quo9CioXg9DPv34moUjBqkW-fCYFhlpftLnV5o66qnVUmz9ZhlrVsffVpKSDRaMHcIM9iFRP7887fPMI9QFcU9cDLD2bVns4jxMm4CJiL3z3185_Z_vpu-3De9DbJeAUXaKf9lkzTcfIusfaEP3CavHfqcIbsvfS45Zpc0Hyc5nSVLWsZpgCqbQmeC_lsYczSZL6xjVe2b6TJ3FPkintLEQKsoxAcdFM5jZlmRa0QBpo-zlxmdOYDpVBd0nGBd75D73sVdt8-qYgrMcCVzpttJAvaW0VGKjFOpDHgEejpwgQ1TJ5UykQt92_Z0pFNltBfCiLMAH7XvAi3bu6Q5X8zdHqE2BZwRcC1k2wjHPRVZ56UARYyysPd6n3i1GGNTMY1jwYtpXIeUTWKQfIySj0vJ75OzjyWPJc3GX5NFvTfxt7MSwzXw-7KD_y07JKscUx6KZ5cj0syfXtwxAJFcnxQn7YSsdC4H_SF-BzcPg3dYqOAX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58HNSD-MT63IMnYW2y2WSzRxGlautFBW8h-wimtLW08VAEf7szefgA9eAt7APC7DD7zc7MN4QcW6OUsBKjulwxwaVi2hOChSL1Ist1HFl0FHu3UedBXD-Gj3PkvKmFwbTK2vZXNr201vVIu5Zme5zn7TsfY1pKSHRasHZoniyKMJCo2qdvn3kekSq7e-Bqhsub0GaZ5GVcH3xE7p_6-NDt_3w5fblwLtfIao0U6Vn1M-tkzo02yMoX_sBN8npGpznS-9JpRTI7o8VTWtBhOqNVogbYsgEMphjAhTlH09GzdaxufjOYFY4iYcQkSw18lZ34YICCQuaWlcVGFHD6U_4ypEMHOJ3qko8T3Ost8nB5cX_eYXU3BWa4kgXTQZqCw2V0nCHlVCZDHoOhDl1oo8xJpUzsIt8Gno51poz2IphxFvCj9l2oZbBNFkbPI7dDqM0AaIRcCxkY4binYuu8DLCIURYOX7eI14gxMTXVOHa8GCRNTlk_AcknKPmkknyLnHxsGVc8G38tFs3ZJN-UJYF74Pdtu__bdkSWOve9btK9ur3ZI8sc6x_KN5h9slBMXtwBoJJCH5Za9w6ineAK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+strategy+that+may+effectively+tackle+the+anode-electrolyte+interface+issues+in+solid-state+lithium+metal+batteries&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Liu%2C+Bo&rft.au=Du%2C+Mingjie&rft.au=Chen%2C+Bingbing&rft.au=Zhong%2C+Yijun&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=427&rft_id=info:doi/10.1016%2Fj.cej.2021.131001&rft.externalDocID=S1385894721025833
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon