A new high-order numerical method for solving singular two-point boundary value problems

Recently, Goh et al. (2012) [28] proposed a numerical technique based on quartic B-spline collocation for solving a class of singular boundary value problems (SBVP) with Neumann and Dirichlet boundary conditions (BC). This method is only fourth-order accurate. In this paper, we propose an optimal nu...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 343; pp. 556 - 574
Main Authors Roul, Pradip, Thula, Kiran
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, Goh et al. (2012) [28] proposed a numerical technique based on quartic B-spline collocation for solving a class of singular boundary value problems (SBVP) with Neumann and Dirichlet boundary conditions (BC). This method is only fourth-order accurate. In this paper, we propose an optimal numerical technique for solving a more general class of nonlinear SBVP subject to Neumann and Robin BC. The method is based on high order perturbation of the problem under consideration. The convergence of the proposed method is analyzed. To demonstrate the applicability and efficiency of the method, we consider four numerical examples, three of which arise in various physical models in applied science and engineering. A comparison with other available numerical solutions has been carried out to justify the advantage of the proposed technique. Numerical result reveals that the proposed method is sixth order convergent, which in turn is two orders of magnitude larger than in Goh et al. (2012) [28].
AbstractList Recently, Goh et al. (2012) [28] proposed a numerical technique based on quartic B-spline collocation for solving a class of singular boundary value problems (SBVP) with Neumann and Dirichlet boundary conditions (BC). This method is only fourth-order accurate. In this paper, we propose an optimal numerical technique for solving a more general class of nonlinear SBVP subject to Neumann and Robin BC. The method is based on high order perturbation of the problem under consideration. The convergence of the proposed method is analyzed. To demonstrate the applicability and efficiency of the method, we consider four numerical examples, three of which arise in various physical models in applied science and engineering. A comparison with other available numerical solutions has been carried out to justify the advantage of the proposed technique. Numerical result reveals that the proposed method is sixth order convergent, which in turn is two orders of magnitude larger than in Goh et al. (2012) [28].
Author Roul, Pradip
Thula, Kiran
Author_xml – sequence: 1
  givenname: Pradip
  orcidid: 0000-0001-7929-3069
  surname: Roul
  fullname: Roul, Pradip
  email: pradipvnit@yahoo.com
– sequence: 2
  givenname: Kiran
  surname: Thula
  fullname: Thula, Kiran
  email: tulakirankumar@students.vnit.ac.in
BookMark eNp9kL1qwzAYRUVJoUnaB-imF7ArybJk0ymE_kGgSwvdhCx9ThRsKUh2Qt--Du3UIcu907lwzwLNfPCA0D0lOSVUPOxzo_ucEVrlhOekFFdoTitZZ1TKaobmpJAyI5zJG7RIaU8IETXlc_S1wh5OeOe2uyxECxH7sYfojO5wD8MuWNyGiFPojs5vcZpi7HTEwylkh-D8gJsweqvjNz7qbgR8iKHpoE-36LrVXYK7v16iz-enj_Vrtnl_eVuvNplhtRyypqgrwWzVVpaWQlbM8rqkhZBFyxhvRSNqsFpoTWtGjKGUa0mhAkuFhrLlxRLJ310TQ0oRWmXcoAcX_BC16xQl6ixI7dUkSJ0FKcLVJGgi6T_yEF0_PbnIPP4yMF06OogqGQfegHURzKBscBfoH6RrgWs
CitedBy_id crossref_primary_10_1016_j_amc_2019_01_001
crossref_primary_10_1051_itmconf_20203401005
crossref_primary_10_1142_S179352452250019X
crossref_primary_10_1016_j_apnum_2019_06_016
crossref_primary_10_1007_s10910_018_00995_x
crossref_primary_10_1007_s40819_023_01563_x
crossref_primary_10_1016_j_apnum_2019_11_004
crossref_primary_10_1016_j_cam_2021_113411
crossref_primary_10_1016_j_cam_2021_113774
crossref_primary_10_30526_36_4_3265
crossref_primary_10_1002_mma_5351
crossref_primary_10_1016_j_cam_2021_114047
crossref_primary_10_1109_ACCESS_2022_3152193
crossref_primary_10_1016_j_amc_2021_126615
crossref_primary_10_1007_s40314_020_01344_y
crossref_primary_10_1109_TAC_2023_3328925
crossref_primary_10_1007_s10910_021_01316_5
crossref_primary_10_1007_s10910_020_01105_6
crossref_primary_10_3934_math_2022182
crossref_primary_10_1080_00207160_2021_1874943
crossref_primary_10_1016_j_cam_2022_114918
crossref_primary_10_1007_s10665_020_10077_0
crossref_primary_10_1007_s40314_020_01257_w
crossref_primary_10_1140_epjp_s13360_022_02869_3
crossref_primary_10_1002_num_22790
crossref_primary_10_1007_s40819_020_0797_6
crossref_primary_10_1007_s10910_024_01685_7
crossref_primary_10_3390_math8071045
crossref_primary_10_1007_s10910_023_01475_7
crossref_primary_10_1002_mma_6760
crossref_primary_10_1007_s10910_023_01556_7
crossref_primary_10_1007_s00366_020_00972_6
crossref_primary_10_1002_num_22594
crossref_primary_10_1080_10236198_2024_2421774
crossref_primary_10_1016_j_amc_2019_124727
crossref_primary_10_1016_j_apnum_2020_03_018
crossref_primary_10_1007_s12190_020_01494_6
crossref_primary_10_1142_S0219876221500365
Cites_doi 10.1142/S0219876213500527
10.1016/j.cam.2008.06.005
10.1090/qam/15914
10.1016/j.cpc.2014.01.002
10.1137/0712002
10.1090/qam/1012280
10.1016/j.camwa.2012.01.022
10.1016/j.cam.2003.09.053
10.1016/j.camwa.2010.05.029
10.1063/1.1700291
10.1007/BF01934697
10.1137/0711049
10.1016/j.cam.2015.10.020
10.1016/0022-5193(80)90250-7
10.1093/imamat/7.3.398
10.1016/S0022-5193(75)80131-7
10.1007/BF01395926
10.1016/0022-5193(76)90071-0
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2018.04.056
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 574
ExternalDocumentID 10_1016_j_cam_2018_04_056
S0377042718302516
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
AAFWJ
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BNPGV
CITATION
D-I
FGOYB
G-2
HZ~
NHB
R2-
SEW
SSH
WUQ
ZY4
ID FETCH-LOGICAL-c297t-b39862d8f8d156782d49513673f224f6b69eda6aa1920cc114a71e8ed16ae5f43
IEDL.DBID .~1
ISSN 0377-0427
IngestDate Thu Apr 24 23:11:12 EDT 2025
Tue Jul 01 04:27:06 EDT 2025
Fri Feb 23 02:31:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Equilibrium of the isothermal gas sphere
34B16
Optimal quartic B-spline collocation
Error estimation
65L60
Thermal explosion
Singular boundary value problems
65L10
Convergence analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-b39862d8f8d156782d49513673f224f6b69eda6aa1920cc114a71e8ed16ae5f43
ORCID 0000-0001-7929-3069
PageCount 19
ParticipantIDs crossref_citationtrail_10_1016_j_cam_2018_04_056
crossref_primary_10_1016_j_cam_2018_04_056
elsevier_sciencedirect_doi_10_1016_j_cam_2018_04_056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
2018-12-00
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Baxley, Gu (b4) 1999; 3
Dickey (b3) 1989; XLVII
Roul, Ujwal (b25) 2016; 296
Abukhaled, Khuri, sayfy (b12) 2011; 8
Lin (b8) 1976; 60
Roul, Kiran (b13) 2017
Chambre (b1) 1952; 20
Russell, Shampine (b14) 1975; 12
Fyfe (b22) 1971; 7
Gray (b6) 1980; 82
Singh, Kumar (b27) 2014; 185
Burton (b7) 1966; 30
Ravi Kanth (b17) 2007; 189
Ravi Kanth, Aruna (b26) 2010; 60
Khuri, Sayfy (b16) 2014; 11
Lucas (b23) 1974; 11
Russell, Shampine (b24) 1971; 19
Keller (b2) 1956; 5
Bellman, Kalaba (b18) 1965
Fogler (b9) 1992
Flesch (b5) 1975; 54
Pandey, Singh (b11) 2009; 224
Prenter (b21) 1975
Pandey, Singh (b10) 2004; 166
Chawla, Subramanian, Sathi (b15) 1988; 28
Schoenberg (b19) 1946; 4
Deboor (b20) 1978
Goh, Majid, Izani Md. Ismail (b28) 2012; 64
Deboor (10.1016/j.cam.2018.04.056_b20) 1978
Burton (10.1016/j.cam.2018.04.056_b7) 1966; 30
Dickey (10.1016/j.cam.2018.04.056_b3) 1989; XLVII
Abukhaled (10.1016/j.cam.2018.04.056_b12) 2011; 8
Gray (10.1016/j.cam.2018.04.056_b6) 1980; 82
Roul (10.1016/j.cam.2018.04.056_b25) 2016; 296
Fogler (10.1016/j.cam.2018.04.056_b9) 1992
Bellman (10.1016/j.cam.2018.04.056_b18) 1965
Schoenberg (10.1016/j.cam.2018.04.056_b19) 1946; 4
Singh (10.1016/j.cam.2018.04.056_b27) 2014; 185
Keller (10.1016/j.cam.2018.04.056_b2) 1956; 5
Flesch (10.1016/j.cam.2018.04.056_b5) 1975; 54
Russell (10.1016/j.cam.2018.04.056_b24) 1971; 19
Lin (10.1016/j.cam.2018.04.056_b8) 1976; 60
Ravi Kanth (10.1016/j.cam.2018.04.056_b17) 2007; 189
Prenter (10.1016/j.cam.2018.04.056_b21) 1975
Russell (10.1016/j.cam.2018.04.056_b14) 1975; 12
Chawla (10.1016/j.cam.2018.04.056_b15) 1988; 28
Fyfe (10.1016/j.cam.2018.04.056_b22) 1971; 7
Goh (10.1016/j.cam.2018.04.056_b28) 2012; 64
Pandey (10.1016/j.cam.2018.04.056_b11) 2009; 224
Roul (10.1016/j.cam.2018.04.056_b13) 2017
Chambre (10.1016/j.cam.2018.04.056_b1) 1952; 20
Ravi Kanth (10.1016/j.cam.2018.04.056_b26) 2010; 60
Pandey (10.1016/j.cam.2018.04.056_b10) 2004; 166
Baxley (10.1016/j.cam.2018.04.056_b4) 1999; 3
Khuri (10.1016/j.cam.2018.04.056_b16) 2014; 11
Lucas (10.1016/j.cam.2018.04.056_b23) 1974; 11
References_xml – volume: 12
  start-page: 13
  year: 1975
  end-page: 36
  ident: b14
  article-title: Numerical methods for singular boundary value problems
  publication-title: SIAM J. Numer. Anal.
– volume: 4
  start-page: 45
  year: 1946
  end-page: 99
  ident: b19
  article-title: Contribution to the problem of approximation of equidistant data by analytic functions
  publication-title: Quart. Appl. Math.
– year: 1975
  ident: b21
  article-title: Splines and Variational Methods
– volume: 296
  start-page: 661
  year: 2016
  end-page: 676
  ident: b25
  article-title: A novel numerical approach and its convergence for numerical solution of nonlinear doubly singular boundary value problems
  publication-title: J. Comput. Appl. Math.
– volume: 30
  start-page: 157
  year: 1966
  end-page: 176
  ident: b7
  article-title: Rate of growth of solid tumor as a problem of diffusion
  publication-title: Growth
– volume: 189
  start-page: 2017
  year: 2007
  end-page: 2022
  ident: b17
  article-title: Cubic spline polynomial for non-linear singular two-point boundary value problems
  publication-title: Appl. Math. Comput.
– volume: 64
  start-page: 115
  year: 2012
  end-page: 120
  ident: b28
  article-title: A quartic B-spline for second-order singular boundary value problems
  publication-title: Comput. Math. Appl.
– volume: 224
  start-page: 734
  year: 2009
  end-page: 742
  ident: b11
  article-title: On the convergence of a fourth-order method for a class of singular boundary value problems
  publication-title: J. Comput. Appl. Math.
– volume: 7
  start-page: 398
  year: 1971
  end-page: 406
  ident: b22
  article-title: Linear dependence relations connecting equal interval Nth degree splines and their derivatives
  publication-title: J. Inst. Math. Appl.
– volume: 8
  start-page: 353
  year: 2011
  end-page: 363
  ident: b12
  article-title: A numerical approach for solving a class of singular boundary value problems arising in physiology
  publication-title: Int. J. Numer. Anal. Model.
– year: 1978
  ident: b20
  article-title: A Practical Guide to Splines
– volume: 60
  start-page: 821
  year: 2010
  end-page: 829
  ident: b26
  article-title: Hes variational iteration method for treating nonlinear singular boundary value problems
  publication-title: Comput. Math. Appl.
– year: 2017
  ident: b13
  article-title: A fourth order B-spline collocation method and its error analysis for Bratu-type and Lane-Emden problems
  publication-title: Int. J. Comput. Math.
– volume: 3
  start-page: 327
  year: 1999
  end-page: 344
  ident: b4
  article-title: Nonlinear boundary value problems for shallow membrane caps
  publication-title: Commun. Appl. Anal.
– volume: 60
  start-page: 449
  year: 1976
  end-page: 457
  ident: b8
  article-title: Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics
  publication-title: J. Theoret. Biol.
– year: 1965
  ident: b18
  article-title: Quasilinearization and Nonlinear Boundary Value Problems
– volume: 20
  start-page: 1795
  year: 1952
  end-page: 1797
  ident: b1
  article-title: On the solution of the Poisson–Boltzmann equation with the application to the theory of thermal explosions
  publication-title: J. Chem. Phys.
– year: 1992
  ident: b9
  article-title: Elements of Chemical Reaction Engineering
– volume: XLVII
  start-page: 571
  year: 1989
  end-page: 581
  ident: b3
  article-title: Rotationally symmetric solutions for shallow membrane caps
  publication-title: Quart. Appl. Math.
– volume: 54
  start-page: 285
  year: 1975
  end-page: 287
  ident: b5
  article-title: The distribution of heat sources in the human head: a theoretical consideration
  publication-title: J. Theoret. Biol.
– volume: 82
  start-page: 473
  year: 1980
  end-page: 476
  ident: b6
  article-title: The distribution of heat sources in the human head-theoretical consideration
  publication-title: J. Theoret. Biol.
– volume: 28
  start-page: 88
  year: 1988
  end-page: 97
  ident: b15
  article-title: A fourth order method for a singular two point boundary value problem
  publication-title: BIT
– volume: 19
  start-page: 1
  year: 1971
  end-page: 28
  ident: b24
  article-title: A collocation method for boundary value problems
  publication-title: Numer. Math.
– volume: 11
  start-page: 1
  year: 2014
  end-page: 21
  ident: b16
  article-title: Numerical solution for the nonlinear Emden-Fowler type equations by a fourth-order adaptive method
  publication-title: Int. J. Comput. Methods
– volume: 11
  start-page: 569
  year: 1974
  end-page: 584
  ident: b23
  article-title: Error bound for interpolating cubic spline under various end conditions
  publication-title: SIAM J. Numer. Anal.
– volume: 166
  start-page: 553
  year: 2004
  end-page: 564
  ident: b10
  article-title: On the convergence of a finite difference method for a class of singular boundary value problems arising in physiology
  publication-title: J. Comput. Appl. Math.
– volume: 5
  start-page: 715
  year: 1956
  end-page: 724
  ident: b2
  article-title: Electrohydrodynamics I, The equilibrium of a charged gas in a container
  publication-title: J. Ration. Mech. Anal.
– volume: 185
  start-page: 1282
  year: 2014
  end-page: 1289
  ident: b27
  article-title: An efficient numerical technique for the solution of nonlinear singular boundary value problems
  publication-title: Comput. Phys. Commun.
– volume: 11
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.cam.2018.04.056_b16
  article-title: Numerical solution for the nonlinear Emden-Fowler type equations by a fourth-order adaptive method
  publication-title: Int. J. Comput. Methods
  doi: 10.1142/S0219876213500527
– year: 2017
  ident: 10.1016/j.cam.2018.04.056_b13
  article-title: A fourth order B-spline collocation method and its error analysis for Bratu-type and Lane-Emden problems
  publication-title: Int. J. Comput. Math.
– volume: 224
  start-page: 734
  year: 2009
  ident: 10.1016/j.cam.2018.04.056_b11
  article-title: On the convergence of a fourth-order method for a class of singular boundary value problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.06.005
– volume: 4
  start-page: 45
  year: 1946
  ident: 10.1016/j.cam.2018.04.056_b19
  article-title: Contribution to the problem of approximation of equidistant data by analytic functions
  publication-title: Quart. Appl. Math.
  doi: 10.1090/qam/15914
– volume: 3
  start-page: 327
  year: 1999
  ident: 10.1016/j.cam.2018.04.056_b4
  article-title: Nonlinear boundary value problems for shallow membrane caps
  publication-title: Commun. Appl. Anal.
– volume: 8
  start-page: 353
  issue: 2
  year: 2011
  ident: 10.1016/j.cam.2018.04.056_b12
  article-title: A numerical approach for solving a class of singular boundary value problems arising in physiology
  publication-title: Int. J. Numer. Anal. Model.
– year: 1978
  ident: 10.1016/j.cam.2018.04.056_b20
– volume: 185
  start-page: 1282
  year: 2014
  ident: 10.1016/j.cam.2018.04.056_b27
  article-title: An efficient numerical technique for the solution of nonlinear singular boundary value problems
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.01.002
– volume: 30
  start-page: 157
  year: 1966
  ident: 10.1016/j.cam.2018.04.056_b7
  article-title: Rate of growth of solid tumor as a problem of diffusion
  publication-title: Growth
– volume: 12
  start-page: 13
  issue: 1
  year: 1975
  ident: 10.1016/j.cam.2018.04.056_b14
  article-title: Numerical methods for singular boundary value problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0712002
– volume: XLVII
  start-page: 571
  year: 1989
  ident: 10.1016/j.cam.2018.04.056_b3
  article-title: Rotationally symmetric solutions for shallow membrane caps
  publication-title: Quart. Appl. Math.
  doi: 10.1090/qam/1012280
– volume: 64
  start-page: 115
  year: 2012
  ident: 10.1016/j.cam.2018.04.056_b28
  article-title: A quartic B-spline for second-order singular boundary value problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2012.01.022
– volume: 166
  start-page: 553
  year: 2004
  ident: 10.1016/j.cam.2018.04.056_b10
  article-title: On the convergence of a finite difference method for a class of singular boundary value problems arising in physiology
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2003.09.053
– volume: 60
  start-page: 821
  year: 2010
  ident: 10.1016/j.cam.2018.04.056_b26
  article-title: Hes variational iteration method for treating nonlinear singular boundary value problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.05.029
– volume: 20
  start-page: 1795
  year: 1952
  ident: 10.1016/j.cam.2018.04.056_b1
  article-title: On the solution of the Poisson–Boltzmann equation with the application to the theory of thermal explosions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1700291
– volume: 5
  start-page: 715
  year: 1956
  ident: 10.1016/j.cam.2018.04.056_b2
  article-title: Electrohydrodynamics I, The equilibrium of a charged gas in a container
  publication-title: J. Ration. Mech. Anal.
– year: 1975
  ident: 10.1016/j.cam.2018.04.056_b21
– volume: 28
  start-page: 88
  year: 1988
  ident: 10.1016/j.cam.2018.04.056_b15
  article-title: A fourth order method for a singular two point boundary value problem
  publication-title: BIT
  doi: 10.1007/BF01934697
– volume: 11
  start-page: 569
  issue: 3
  year: 1974
  ident: 10.1016/j.cam.2018.04.056_b23
  article-title: Error bound for interpolating cubic spline under various end conditions
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0711049
– volume: 296
  start-page: 661
  year: 2016
  ident: 10.1016/j.cam.2018.04.056_b25
  article-title: A novel numerical approach and its convergence for numerical solution of nonlinear doubly singular boundary value problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.10.020
– volume: 82
  start-page: 473
  year: 1980
  ident: 10.1016/j.cam.2018.04.056_b6
  article-title: The distribution of heat sources in the human head-theoretical consideration
  publication-title: J. Theoret. Biol.
  doi: 10.1016/0022-5193(80)90250-7
– volume: 7
  start-page: 398
  year: 1971
  ident: 10.1016/j.cam.2018.04.056_b22
  article-title: Linear dependence relations connecting equal interval Nth degree splines and their derivatives
  publication-title: J. Inst. Math. Appl.
  doi: 10.1093/imamat/7.3.398
– volume: 54
  start-page: 285
  year: 1975
  ident: 10.1016/j.cam.2018.04.056_b5
  article-title: The distribution of heat sources in the human head: a theoretical consideration
  publication-title: J. Theoret. Biol.
  doi: 10.1016/S0022-5193(75)80131-7
– year: 1965
  ident: 10.1016/j.cam.2018.04.056_b18
– volume: 189
  start-page: 2017
  year: 2007
  ident: 10.1016/j.cam.2018.04.056_b17
  article-title: Cubic spline polynomial for non-linear singular two-point boundary value problems
  publication-title: Appl. Math. Comput.
– volume: 19
  start-page: 1
  year: 1971
  ident: 10.1016/j.cam.2018.04.056_b24
  article-title: A collocation method for boundary value problems
  publication-title: Numer. Math.
  doi: 10.1007/BF01395926
– volume: 60
  start-page: 449
  year: 1976
  ident: 10.1016/j.cam.2018.04.056_b8
  article-title: Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics
  publication-title: J. Theoret. Biol.
  doi: 10.1016/0022-5193(76)90071-0
– year: 1992
  ident: 10.1016/j.cam.2018.04.056_b9
SSID ssj0006914
Score 2.4269443
Snippet Recently, Goh et al. (2012) [28] proposed a numerical technique based on quartic B-spline collocation for solving a class of singular boundary value problems...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 556
SubjectTerms Convergence analysis
Equilibrium of the isothermal gas sphere
Error estimation
Optimal quartic B-spline collocation
Singular boundary value problems
Thermal explosion
Title A new high-order numerical method for solving singular two-point boundary value problems
URI https://dx.doi.org/10.1016/j.cam.2018.04.056
Volume 343
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg6ehNh9ZLO7x1qUVm0RtbC3kM1moVK2pd0iXvztzuyjKqgHT0vCDCzDMI9k8n2EnAs71QryLNPajRnXTsIQ1QpvHx2lIMPFBbr-cCT6Y34beVGD9Oq3MDhWWcX-MqYX0bra6VTW7Mwnk86T5fo-MkXYCGHl2Qi7zbmPXn75_jnmIcIS3xuEGUrXN5vFjJdW-BjdDgq0U-Sw_ik3fck3NztkuyoUabf8l13SMNke2RquUVaX-yTqUiiKKSIOswJCk2ar8gJmSktmaAolKQXvwlMDiqcCOHRK89cZm88mWU7jglRp8UYR89vQil1meUDGN9fPvT6rmBKYdkI_Z7EbQmeSBGmQQD8GST-BvgfB2NwUUnQqYhGaRAmloJ6ztIYeSPm2CUxiC2W8lLuHpJnNMnNEqKMS7fNABDx0uaWgQnNU6DhWmNpebAVpi1i1jaSuYMSRzWIq63mxFwlmlWhWaXEJZm2Ri7XKvMTQ-EuY14aX3xxBQoz_Xe34f2onZBNX5XzKKWnmi5U5gyojj9uFG7XJRrf3eP-A38FdfwS7g-jqA5Aq0sY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB4Be4A9oF0e2sI-fIALkmniuE5y2APaXdRuKRdA6s04jiMVVWnVpqq48Kf4g8zkwUOCPazENYkjZzKab8Yefx_AgfIzaxBnubVBwqUVKSdWK9p9FMYgwiUlu_7gXHWv5N9hZ7gC981ZGGqrrGN_FdPLaF1fadfWbE9Ho_aFF4QhKUX4RGHV8VXdWdl3t0us2-Y_e7_xJx8Kcfrn8leX19IC3Io4LHgSxJjKp1EWpVjAIEqmWCgQe1mQIaZlKlGxS40yBhMgz1osGkzou8ilvjKuk8kA37sKHySGC5JNOL576itRcUUojrPjNL1mK7VsKrOGTr_7UUmvSqLZr4HhM4A7_QSbdWbKTqqP_wwrLt-Cj4NHWtf5NgxPGGbhjCiOecnZyfJFteMzZpUUNcMcmKE70zIFo2UI6nJlxXLCp5NRXrCkVHGa3TIiGXeslrOZ78DVu9hvF9bySe6-ABMmtaGMVCTjQHoGU0JhYiG8OPM7iRdlLfAaG2lb85aTfMZYNw1qNxrNqsms2pMazdqCo8ch04q0418Py8bw-oXnaQSVt4ft_d-wH7DevRyc6bPeeX8fNuhO1RzzFdaK2cJ9wxSnSL6XLsXg-r19-AGisQsK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+high-order+numerical+method+for+solving+singular+two-point+boundary+value+problems&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Roul%2C+Pradip&rft.au=Thula%2C+Kiran&rft.date=2018-12-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=343&rft.spage=556&rft.epage=574&rft_id=info:doi/10.1016%2Fj.cam.2018.04.056&rft.externalDocID=S0377042718302516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon