A new high-order numerical method for solving singular two-point boundary value problems
Recently, Goh et al. (2012) [28] proposed a numerical technique based on quartic B-spline collocation for solving a class of singular boundary value problems (SBVP) with Neumann and Dirichlet boundary conditions (BC). This method is only fourth-order accurate. In this paper, we propose an optimal nu...
Saved in:
Published in | Journal of computational and applied mathematics Vol. 343; pp. 556 - 574 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, Goh et al. (2012) [28] proposed a numerical technique based on quartic B-spline collocation for solving a class of singular boundary value problems (SBVP) with Neumann and Dirichlet boundary conditions (BC). This method is only fourth-order accurate. In this paper, we propose an optimal numerical technique for solving a more general class of nonlinear SBVP subject to Neumann and Robin BC. The method is based on high order perturbation of the problem under consideration. The convergence of the proposed method is analyzed. To demonstrate the applicability and efficiency of the method, we consider four numerical examples, three of which arise in various physical models in applied science and engineering. A comparison with other available numerical solutions has been carried out to justify the advantage of the proposed technique. Numerical result reveals that the proposed method is sixth order convergent, which in turn is two orders of magnitude larger than in Goh et al. (2012) [28]. |
---|---|
AbstractList | Recently, Goh et al. (2012) [28] proposed a numerical technique based on quartic B-spline collocation for solving a class of singular boundary value problems (SBVP) with Neumann and Dirichlet boundary conditions (BC). This method is only fourth-order accurate. In this paper, we propose an optimal numerical technique for solving a more general class of nonlinear SBVP subject to Neumann and Robin BC. The method is based on high order perturbation of the problem under consideration. The convergence of the proposed method is analyzed. To demonstrate the applicability and efficiency of the method, we consider four numerical examples, three of which arise in various physical models in applied science and engineering. A comparison with other available numerical solutions has been carried out to justify the advantage of the proposed technique. Numerical result reveals that the proposed method is sixth order convergent, which in turn is two orders of magnitude larger than in Goh et al. (2012) [28]. |
Author | Roul, Pradip Thula, Kiran |
Author_xml | – sequence: 1 givenname: Pradip orcidid: 0000-0001-7929-3069 surname: Roul fullname: Roul, Pradip email: pradipvnit@yahoo.com – sequence: 2 givenname: Kiran surname: Thula fullname: Thula, Kiran email: tulakirankumar@students.vnit.ac.in |
BookMark | eNp9kL1qwzAYRUVJoUnaB-imF7ArybJk0ymE_kGgSwvdhCx9ThRsKUh2Qt--Du3UIcu907lwzwLNfPCA0D0lOSVUPOxzo_ucEVrlhOekFFdoTitZZ1TKaobmpJAyI5zJG7RIaU8IETXlc_S1wh5OeOe2uyxECxH7sYfojO5wD8MuWNyGiFPojs5vcZpi7HTEwylkh-D8gJsweqvjNz7qbgR8iKHpoE-36LrVXYK7v16iz-enj_Vrtnl_eVuvNplhtRyypqgrwWzVVpaWQlbM8rqkhZBFyxhvRSNqsFpoTWtGjKGUa0mhAkuFhrLlxRLJ310TQ0oRWmXcoAcX_BC16xQl6ixI7dUkSJ0FKcLVJGgi6T_yEF0_PbnIPP4yMF06OogqGQfegHURzKBscBfoH6RrgWs |
CitedBy_id | crossref_primary_10_1016_j_amc_2019_01_001 crossref_primary_10_1051_itmconf_20203401005 crossref_primary_10_1142_S179352452250019X crossref_primary_10_1016_j_apnum_2019_06_016 crossref_primary_10_1007_s10910_018_00995_x crossref_primary_10_1007_s40819_023_01563_x crossref_primary_10_1016_j_apnum_2019_11_004 crossref_primary_10_1016_j_cam_2021_113411 crossref_primary_10_1016_j_cam_2021_113774 crossref_primary_10_30526_36_4_3265 crossref_primary_10_1002_mma_5351 crossref_primary_10_1016_j_cam_2021_114047 crossref_primary_10_1109_ACCESS_2022_3152193 crossref_primary_10_1016_j_amc_2021_126615 crossref_primary_10_1007_s40314_020_01344_y crossref_primary_10_1109_TAC_2023_3328925 crossref_primary_10_1007_s10910_021_01316_5 crossref_primary_10_1007_s10910_020_01105_6 crossref_primary_10_3934_math_2022182 crossref_primary_10_1080_00207160_2021_1874943 crossref_primary_10_1016_j_cam_2022_114918 crossref_primary_10_1007_s10665_020_10077_0 crossref_primary_10_1007_s40314_020_01257_w crossref_primary_10_1140_epjp_s13360_022_02869_3 crossref_primary_10_1002_num_22790 crossref_primary_10_1007_s40819_020_0797_6 crossref_primary_10_1007_s10910_024_01685_7 crossref_primary_10_3390_math8071045 crossref_primary_10_1007_s10910_023_01475_7 crossref_primary_10_1002_mma_6760 crossref_primary_10_1007_s10910_023_01556_7 crossref_primary_10_1007_s00366_020_00972_6 crossref_primary_10_1002_num_22594 crossref_primary_10_1080_10236198_2024_2421774 crossref_primary_10_1016_j_amc_2019_124727 crossref_primary_10_1016_j_apnum_2020_03_018 crossref_primary_10_1007_s12190_020_01494_6 crossref_primary_10_1142_S0219876221500365 |
Cites_doi | 10.1142/S0219876213500527 10.1016/j.cam.2008.06.005 10.1090/qam/15914 10.1016/j.cpc.2014.01.002 10.1137/0712002 10.1090/qam/1012280 10.1016/j.camwa.2012.01.022 10.1016/j.cam.2003.09.053 10.1016/j.camwa.2010.05.029 10.1063/1.1700291 10.1007/BF01934697 10.1137/0711049 10.1016/j.cam.2015.10.020 10.1016/0022-5193(80)90250-7 10.1093/imamat/7.3.398 10.1016/S0022-5193(75)80131-7 10.1007/BF01395926 10.1016/0022-5193(76)90071-0 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cam.2018.04.056 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-1778 |
EndPage | 574 |
ExternalDocumentID | 10_1016_j_cam_2018_04_056 S0377042718302516 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABAOU ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSW SSZ T5K TN5 UPT XPP YQT ZMT ~02 ~G- 29K 5VS AAFWJ AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BNPGV CITATION D-I FGOYB G-2 HZ~ NHB R2- SEW SSH WUQ ZY4 |
ID | FETCH-LOGICAL-c297t-b39862d8f8d156782d49513673f224f6b69eda6aa1920cc114a71e8ed16ae5f43 |
IEDL.DBID | .~1 |
ISSN | 0377-0427 |
IngestDate | Thu Apr 24 23:11:12 EDT 2025 Tue Jul 01 04:27:06 EDT 2025 Fri Feb 23 02:31:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Equilibrium of the isothermal gas sphere 34B16 Optimal quartic B-spline collocation Error estimation 65L60 Thermal explosion Singular boundary value problems 65L10 Convergence analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-b39862d8f8d156782d49513673f224f6b69eda6aa1920cc114a71e8ed16ae5f43 |
ORCID | 0000-0001-7929-3069 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cam_2018_04_056 crossref_primary_10_1016_j_cam_2018_04_056 elsevier_sciencedirect_doi_10_1016_j_cam_2018_04_056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 2018-12-00 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Baxley, Gu (b4) 1999; 3 Dickey (b3) 1989; XLVII Roul, Ujwal (b25) 2016; 296 Abukhaled, Khuri, sayfy (b12) 2011; 8 Lin (b8) 1976; 60 Roul, Kiran (b13) 2017 Chambre (b1) 1952; 20 Russell, Shampine (b14) 1975; 12 Fyfe (b22) 1971; 7 Gray (b6) 1980; 82 Singh, Kumar (b27) 2014; 185 Burton (b7) 1966; 30 Ravi Kanth (b17) 2007; 189 Ravi Kanth, Aruna (b26) 2010; 60 Khuri, Sayfy (b16) 2014; 11 Lucas (b23) 1974; 11 Russell, Shampine (b24) 1971; 19 Keller (b2) 1956; 5 Bellman, Kalaba (b18) 1965 Fogler (b9) 1992 Flesch (b5) 1975; 54 Pandey, Singh (b11) 2009; 224 Prenter (b21) 1975 Pandey, Singh (b10) 2004; 166 Chawla, Subramanian, Sathi (b15) 1988; 28 Schoenberg (b19) 1946; 4 Deboor (b20) 1978 Goh, Majid, Izani Md. Ismail (b28) 2012; 64 Deboor (10.1016/j.cam.2018.04.056_b20) 1978 Burton (10.1016/j.cam.2018.04.056_b7) 1966; 30 Dickey (10.1016/j.cam.2018.04.056_b3) 1989; XLVII Abukhaled (10.1016/j.cam.2018.04.056_b12) 2011; 8 Gray (10.1016/j.cam.2018.04.056_b6) 1980; 82 Roul (10.1016/j.cam.2018.04.056_b25) 2016; 296 Fogler (10.1016/j.cam.2018.04.056_b9) 1992 Bellman (10.1016/j.cam.2018.04.056_b18) 1965 Schoenberg (10.1016/j.cam.2018.04.056_b19) 1946; 4 Singh (10.1016/j.cam.2018.04.056_b27) 2014; 185 Keller (10.1016/j.cam.2018.04.056_b2) 1956; 5 Flesch (10.1016/j.cam.2018.04.056_b5) 1975; 54 Russell (10.1016/j.cam.2018.04.056_b24) 1971; 19 Lin (10.1016/j.cam.2018.04.056_b8) 1976; 60 Ravi Kanth (10.1016/j.cam.2018.04.056_b17) 2007; 189 Prenter (10.1016/j.cam.2018.04.056_b21) 1975 Russell (10.1016/j.cam.2018.04.056_b14) 1975; 12 Chawla (10.1016/j.cam.2018.04.056_b15) 1988; 28 Fyfe (10.1016/j.cam.2018.04.056_b22) 1971; 7 Goh (10.1016/j.cam.2018.04.056_b28) 2012; 64 Pandey (10.1016/j.cam.2018.04.056_b11) 2009; 224 Roul (10.1016/j.cam.2018.04.056_b13) 2017 Chambre (10.1016/j.cam.2018.04.056_b1) 1952; 20 Ravi Kanth (10.1016/j.cam.2018.04.056_b26) 2010; 60 Pandey (10.1016/j.cam.2018.04.056_b10) 2004; 166 Baxley (10.1016/j.cam.2018.04.056_b4) 1999; 3 Khuri (10.1016/j.cam.2018.04.056_b16) 2014; 11 Lucas (10.1016/j.cam.2018.04.056_b23) 1974; 11 |
References_xml | – volume: 12 start-page: 13 year: 1975 end-page: 36 ident: b14 article-title: Numerical methods for singular boundary value problems publication-title: SIAM J. Numer. Anal. – volume: 4 start-page: 45 year: 1946 end-page: 99 ident: b19 article-title: Contribution to the problem of approximation of equidistant data by analytic functions publication-title: Quart. Appl. Math. – year: 1975 ident: b21 article-title: Splines and Variational Methods – volume: 296 start-page: 661 year: 2016 end-page: 676 ident: b25 article-title: A novel numerical approach and its convergence for numerical solution of nonlinear doubly singular boundary value problems publication-title: J. Comput. Appl. Math. – volume: 30 start-page: 157 year: 1966 end-page: 176 ident: b7 article-title: Rate of growth of solid tumor as a problem of diffusion publication-title: Growth – volume: 189 start-page: 2017 year: 2007 end-page: 2022 ident: b17 article-title: Cubic spline polynomial for non-linear singular two-point boundary value problems publication-title: Appl. Math. Comput. – volume: 64 start-page: 115 year: 2012 end-page: 120 ident: b28 article-title: A quartic B-spline for second-order singular boundary value problems publication-title: Comput. Math. Appl. – volume: 224 start-page: 734 year: 2009 end-page: 742 ident: b11 article-title: On the convergence of a fourth-order method for a class of singular boundary value problems publication-title: J. Comput. Appl. Math. – volume: 7 start-page: 398 year: 1971 end-page: 406 ident: b22 article-title: Linear dependence relations connecting equal interval Nth degree splines and their derivatives publication-title: J. Inst. Math. Appl. – volume: 8 start-page: 353 year: 2011 end-page: 363 ident: b12 article-title: A numerical approach for solving a class of singular boundary value problems arising in physiology publication-title: Int. J. Numer. Anal. Model. – year: 1978 ident: b20 article-title: A Practical Guide to Splines – volume: 60 start-page: 821 year: 2010 end-page: 829 ident: b26 article-title: Hes variational iteration method for treating nonlinear singular boundary value problems publication-title: Comput. Math. Appl. – year: 2017 ident: b13 article-title: A fourth order B-spline collocation method and its error analysis for Bratu-type and Lane-Emden problems publication-title: Int. J. Comput. Math. – volume: 3 start-page: 327 year: 1999 end-page: 344 ident: b4 article-title: Nonlinear boundary value problems for shallow membrane caps publication-title: Commun. Appl. Anal. – volume: 60 start-page: 449 year: 1976 end-page: 457 ident: b8 article-title: Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics publication-title: J. Theoret. Biol. – year: 1965 ident: b18 article-title: Quasilinearization and Nonlinear Boundary Value Problems – volume: 20 start-page: 1795 year: 1952 end-page: 1797 ident: b1 article-title: On the solution of the Poisson–Boltzmann equation with the application to the theory of thermal explosions publication-title: J. Chem. Phys. – year: 1992 ident: b9 article-title: Elements of Chemical Reaction Engineering – volume: XLVII start-page: 571 year: 1989 end-page: 581 ident: b3 article-title: Rotationally symmetric solutions for shallow membrane caps publication-title: Quart. Appl. Math. – volume: 54 start-page: 285 year: 1975 end-page: 287 ident: b5 article-title: The distribution of heat sources in the human head: a theoretical consideration publication-title: J. Theoret. Biol. – volume: 82 start-page: 473 year: 1980 end-page: 476 ident: b6 article-title: The distribution of heat sources in the human head-theoretical consideration publication-title: J. Theoret. Biol. – volume: 28 start-page: 88 year: 1988 end-page: 97 ident: b15 article-title: A fourth order method for a singular two point boundary value problem publication-title: BIT – volume: 19 start-page: 1 year: 1971 end-page: 28 ident: b24 article-title: A collocation method for boundary value problems publication-title: Numer. Math. – volume: 11 start-page: 1 year: 2014 end-page: 21 ident: b16 article-title: Numerical solution for the nonlinear Emden-Fowler type equations by a fourth-order adaptive method publication-title: Int. J. Comput. Methods – volume: 11 start-page: 569 year: 1974 end-page: 584 ident: b23 article-title: Error bound for interpolating cubic spline under various end conditions publication-title: SIAM J. Numer. Anal. – volume: 166 start-page: 553 year: 2004 end-page: 564 ident: b10 article-title: On the convergence of a finite difference method for a class of singular boundary value problems arising in physiology publication-title: J. Comput. Appl. Math. – volume: 5 start-page: 715 year: 1956 end-page: 724 ident: b2 article-title: Electrohydrodynamics I, The equilibrium of a charged gas in a container publication-title: J. Ration. Mech. Anal. – volume: 185 start-page: 1282 year: 2014 end-page: 1289 ident: b27 article-title: An efficient numerical technique for the solution of nonlinear singular boundary value problems publication-title: Comput. Phys. Commun. – volume: 11 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.cam.2018.04.056_b16 article-title: Numerical solution for the nonlinear Emden-Fowler type equations by a fourth-order adaptive method publication-title: Int. J. Comput. Methods doi: 10.1142/S0219876213500527 – year: 2017 ident: 10.1016/j.cam.2018.04.056_b13 article-title: A fourth order B-spline collocation method and its error analysis for Bratu-type and Lane-Emden problems publication-title: Int. J. Comput. Math. – volume: 224 start-page: 734 year: 2009 ident: 10.1016/j.cam.2018.04.056_b11 article-title: On the convergence of a fourth-order method for a class of singular boundary value problems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.06.005 – volume: 4 start-page: 45 year: 1946 ident: 10.1016/j.cam.2018.04.056_b19 article-title: Contribution to the problem of approximation of equidistant data by analytic functions publication-title: Quart. Appl. Math. doi: 10.1090/qam/15914 – volume: 3 start-page: 327 year: 1999 ident: 10.1016/j.cam.2018.04.056_b4 article-title: Nonlinear boundary value problems for shallow membrane caps publication-title: Commun. Appl. Anal. – volume: 8 start-page: 353 issue: 2 year: 2011 ident: 10.1016/j.cam.2018.04.056_b12 article-title: A numerical approach for solving a class of singular boundary value problems arising in physiology publication-title: Int. J. Numer. Anal. Model. – year: 1978 ident: 10.1016/j.cam.2018.04.056_b20 – volume: 185 start-page: 1282 year: 2014 ident: 10.1016/j.cam.2018.04.056_b27 article-title: An efficient numerical technique for the solution of nonlinear singular boundary value problems publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.01.002 – volume: 30 start-page: 157 year: 1966 ident: 10.1016/j.cam.2018.04.056_b7 article-title: Rate of growth of solid tumor as a problem of diffusion publication-title: Growth – volume: 12 start-page: 13 issue: 1 year: 1975 ident: 10.1016/j.cam.2018.04.056_b14 article-title: Numerical methods for singular boundary value problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/0712002 – volume: XLVII start-page: 571 year: 1989 ident: 10.1016/j.cam.2018.04.056_b3 article-title: Rotationally symmetric solutions for shallow membrane caps publication-title: Quart. Appl. Math. doi: 10.1090/qam/1012280 – volume: 64 start-page: 115 year: 2012 ident: 10.1016/j.cam.2018.04.056_b28 article-title: A quartic B-spline for second-order singular boundary value problems publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2012.01.022 – volume: 166 start-page: 553 year: 2004 ident: 10.1016/j.cam.2018.04.056_b10 article-title: On the convergence of a finite difference method for a class of singular boundary value problems arising in physiology publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2003.09.053 – volume: 60 start-page: 821 year: 2010 ident: 10.1016/j.cam.2018.04.056_b26 article-title: Hes variational iteration method for treating nonlinear singular boundary value problems publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.05.029 – volume: 20 start-page: 1795 year: 1952 ident: 10.1016/j.cam.2018.04.056_b1 article-title: On the solution of the Poisson–Boltzmann equation with the application to the theory of thermal explosions publication-title: J. Chem. Phys. doi: 10.1063/1.1700291 – volume: 5 start-page: 715 year: 1956 ident: 10.1016/j.cam.2018.04.056_b2 article-title: Electrohydrodynamics I, The equilibrium of a charged gas in a container publication-title: J. Ration. Mech. Anal. – year: 1975 ident: 10.1016/j.cam.2018.04.056_b21 – volume: 28 start-page: 88 year: 1988 ident: 10.1016/j.cam.2018.04.056_b15 article-title: A fourth order method for a singular two point boundary value problem publication-title: BIT doi: 10.1007/BF01934697 – volume: 11 start-page: 569 issue: 3 year: 1974 ident: 10.1016/j.cam.2018.04.056_b23 article-title: Error bound for interpolating cubic spline under various end conditions publication-title: SIAM J. Numer. Anal. doi: 10.1137/0711049 – volume: 296 start-page: 661 year: 2016 ident: 10.1016/j.cam.2018.04.056_b25 article-title: A novel numerical approach and its convergence for numerical solution of nonlinear doubly singular boundary value problems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.10.020 – volume: 82 start-page: 473 year: 1980 ident: 10.1016/j.cam.2018.04.056_b6 article-title: The distribution of heat sources in the human head-theoretical consideration publication-title: J. Theoret. Biol. doi: 10.1016/0022-5193(80)90250-7 – volume: 7 start-page: 398 year: 1971 ident: 10.1016/j.cam.2018.04.056_b22 article-title: Linear dependence relations connecting equal interval Nth degree splines and their derivatives publication-title: J. Inst. Math. Appl. doi: 10.1093/imamat/7.3.398 – volume: 54 start-page: 285 year: 1975 ident: 10.1016/j.cam.2018.04.056_b5 article-title: The distribution of heat sources in the human head: a theoretical consideration publication-title: J. Theoret. Biol. doi: 10.1016/S0022-5193(75)80131-7 – year: 1965 ident: 10.1016/j.cam.2018.04.056_b18 – volume: 189 start-page: 2017 year: 2007 ident: 10.1016/j.cam.2018.04.056_b17 article-title: Cubic spline polynomial for non-linear singular two-point boundary value problems publication-title: Appl. Math. Comput. – volume: 19 start-page: 1 year: 1971 ident: 10.1016/j.cam.2018.04.056_b24 article-title: A collocation method for boundary value problems publication-title: Numer. Math. doi: 10.1007/BF01395926 – volume: 60 start-page: 449 year: 1976 ident: 10.1016/j.cam.2018.04.056_b8 article-title: Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics publication-title: J. Theoret. Biol. doi: 10.1016/0022-5193(76)90071-0 – year: 1992 ident: 10.1016/j.cam.2018.04.056_b9 |
SSID | ssj0006914 |
Score | 2.4269443 |
Snippet | Recently, Goh et al. (2012) [28] proposed a numerical technique based on quartic B-spline collocation for solving a class of singular boundary value problems... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 556 |
SubjectTerms | Convergence analysis Equilibrium of the isothermal gas sphere Error estimation Optimal quartic B-spline collocation Singular boundary value problems Thermal explosion |
Title | A new high-order numerical method for solving singular two-point boundary value problems |
URI | https://dx.doi.org/10.1016/j.cam.2018.04.056 |
Volume | 343 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg6ehNh9ZLO7x1qUVm0RtbC3kM1moVK2pd0iXvztzuyjKqgHT0vCDCzDMI9k8n2EnAs71QryLNPajRnXTsIQ1QpvHx2lIMPFBbr-cCT6Y34beVGD9Oq3MDhWWcX-MqYX0bra6VTW7Mwnk86T5fo-MkXYCGHl2Qi7zbmPXn75_jnmIcIS3xuEGUrXN5vFjJdW-BjdDgq0U-Sw_ik3fck3NztkuyoUabf8l13SMNke2RquUVaX-yTqUiiKKSIOswJCk2ar8gJmSktmaAolKQXvwlMDiqcCOHRK89cZm88mWU7jglRp8UYR89vQil1meUDGN9fPvT6rmBKYdkI_Z7EbQmeSBGmQQD8GST-BvgfB2NwUUnQqYhGaRAmloJ6ztIYeSPm2CUxiC2W8lLuHpJnNMnNEqKMS7fNABDx0uaWgQnNU6DhWmNpebAVpi1i1jaSuYMSRzWIq63mxFwlmlWhWaXEJZm2Ri7XKvMTQ-EuY14aX3xxBQoz_Xe34f2onZBNX5XzKKWnmi5U5gyojj9uFG7XJRrf3eP-A38FdfwS7g-jqA5Aq0sY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB4Be4A9oF0e2sI-fIALkmniuE5y2APaXdRuKRdA6s04jiMVVWnVpqq48Kf4g8zkwUOCPazENYkjZzKab8Yefx_AgfIzaxBnubVBwqUVKSdWK9p9FMYgwiUlu_7gXHWv5N9hZ7gC981ZGGqrrGN_FdPLaF1fadfWbE9Ho_aFF4QhKUX4RGHV8VXdWdl3t0us2-Y_e7_xJx8Kcfrn8leX19IC3Io4LHgSxJjKp1EWpVjAIEqmWCgQe1mQIaZlKlGxS40yBhMgz1osGkzou8ilvjKuk8kA37sKHySGC5JNOL576itRcUUojrPjNL1mK7VsKrOGTr_7UUmvSqLZr4HhM4A7_QSbdWbKTqqP_wwrLt-Cj4NHWtf5NgxPGGbhjCiOecnZyfJFteMzZpUUNcMcmKE70zIFo2UI6nJlxXLCp5NRXrCkVHGa3TIiGXeslrOZ78DVu9hvF9bySe6-ABMmtaGMVCTjQHoGU0JhYiG8OPM7iRdlLfAaG2lb85aTfMZYNw1qNxrNqsms2pMazdqCo8ch04q0418Py8bw-oXnaQSVt4ft_d-wH7DevRyc6bPeeX8fNuhO1RzzFdaK2cJ9wxSnSL6XLsXg-r19-AGisQsK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+high-order+numerical+method+for+solving+singular+two-point+boundary+value+problems&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Roul%2C+Pradip&rft.au=Thula%2C+Kiran&rft.date=2018-12-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=343&rft.spage=556&rft.epage=574&rft_id=info:doi/10.1016%2Fj.cam.2018.04.056&rft.externalDocID=S0377042718302516 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |