Self-assembled ZnO-carbon dots anode materials for high performance nickel-zinc alkaline batteries
After incorporation of a few Carbon Dots (CDs), ZnO anodes process thin carbon shells, refined microstructures and special univalent zinc sites, which result in better reactivity, higher corrosion resistance, more effective electron paths to enhance electrochemical performance in high capacity, exce...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 425; p. 130660 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | After incorporation of a few Carbon Dots (CDs), ZnO anodes process thin carbon shells, refined microstructures and special univalent zinc sites, which result in better reactivity, higher corrosion resistance, more effective electron paths to enhance electrochemical performance in high capacity, excellent rate capability and long cycling stability in the Ni-Zn alkaline battery.
[Display omitted]
•1. CDs efficiently control morphology of ZnO for sufficient electrochemical reactions.•2. With the assistance of CDs, ZnO will process conformal carbon shells with few layers.•3. Univalent zinc sites constructed by CDs play a key role during charging process.
The development of high-performance nickel-zinc (Ni-Zn) alkaline batteries is mainly plagued by short life span and poor rate performance of ZnO anode materials. To improve the cycling stability and rate capability of Ni-Zn batteries, carbon dots (CDs) are employed to construct clustered ZnO-CDs nanocomposites, coating ZnO with protective shells of carbon layers and providing electron paths to enhance conductivity of the nanocomposites. Univalent zinc species are found at the interfaces between CDs derivatives and ZnO, which are embedded in the nanoclusters and protected well by carbon coating. Theoretical calculations show univalent zinc species change the electronic structures of ZnO surface, so as to accelerate the charging process of ZnO anode materials. Such ZnO-CDs derived nanocomposites exhibit excellent rate capability (95.3%, 84.7% and 75.0% of capacity retention rate at 2, 5 and 10 A g−1, respectively) and outstanding cycling stability with 92.0% of capacity retention rate after 5000 cycles, which is far better than ZnO based anodes without the protection of CDs (39.1% retention rate from 1 to 10 A g−1 and 71.6% of capacity retention rate after 500 cycles). |
---|---|
AbstractList | After incorporation of a few Carbon Dots (CDs), ZnO anodes process thin carbon shells, refined microstructures and special univalent zinc sites, which result in better reactivity, higher corrosion resistance, more effective electron paths to enhance electrochemical performance in high capacity, excellent rate capability and long cycling stability in the Ni-Zn alkaline battery.
[Display omitted]
•1. CDs efficiently control morphology of ZnO for sufficient electrochemical reactions.•2. With the assistance of CDs, ZnO will process conformal carbon shells with few layers.•3. Univalent zinc sites constructed by CDs play a key role during charging process.
The development of high-performance nickel-zinc (Ni-Zn) alkaline batteries is mainly plagued by short life span and poor rate performance of ZnO anode materials. To improve the cycling stability and rate capability of Ni-Zn batteries, carbon dots (CDs) are employed to construct clustered ZnO-CDs nanocomposites, coating ZnO with protective shells of carbon layers and providing electron paths to enhance conductivity of the nanocomposites. Univalent zinc species are found at the interfaces between CDs derivatives and ZnO, which are embedded in the nanoclusters and protected well by carbon coating. Theoretical calculations show univalent zinc species change the electronic structures of ZnO surface, so as to accelerate the charging process of ZnO anode materials. Such ZnO-CDs derived nanocomposites exhibit excellent rate capability (95.3%, 84.7% and 75.0% of capacity retention rate at 2, 5 and 10 A g−1, respectively) and outstanding cycling stability with 92.0% of capacity retention rate after 5000 cycles, which is far better than ZnO based anodes without the protection of CDs (39.1% retention rate from 1 to 10 A g−1 and 71.6% of capacity retention rate after 500 cycles). |
ArticleNumber | 130660 |
Author | Chen, Liwei Zhang, Yi-Xiao Xiong, Huan-Ming Wei, Ji-Shi Liu, Xi Niu, Xiao-Qing Zhao, Xiao Huang, Jian-Hang Zhu, Ze-Yang Wang, Yong-Gang Song, Tian-Bing |
Author_xml | – sequence: 1 givenname: Ji-Shi surname: Wei fullname: Wei, Ji-Shi organization: Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China – sequence: 2 givenname: Ze-Yang surname: Zhu fullname: Zhu, Ze-Yang organization: Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China – sequence: 3 givenname: Xiao surname: Zhao fullname: Zhao, Xiao organization: Institute for Computation in Molecular and Materials Science, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China – sequence: 4 givenname: Tian-Bing surname: Song fullname: Song, Tian-Bing organization: Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China – sequence: 5 givenname: Jian-Hang surname: Huang fullname: Huang, Jian-Hang organization: Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China – sequence: 6 givenname: Yi-Xiao surname: Zhang fullname: Zhang, Yi-Xiao organization: School of Chemistry and Chemical Engineering, In-situ Center for Physical Science, and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China – sequence: 7 givenname: Xi surname: Liu fullname: Liu, Xi organization: School of Chemistry and Chemical Engineering, In-situ Center for Physical Science, and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China – sequence: 8 givenname: Liwei surname: Chen fullname: Chen, Liwei organization: School of Chemistry and Chemical Engineering, In-situ Center for Physical Science, and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China – sequence: 9 givenname: Xiao-Qing surname: Niu fullname: Niu, Xiao-Qing organization: Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China – sequence: 10 givenname: Yong-Gang surname: Wang fullname: Wang, Yong-Gang organization: Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China – sequence: 11 givenname: Huan-Ming surname: Xiong fullname: Xiong, Huan-Ming email: hmxiong@fudan.edu.cn organization: Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China |
BookMark | eNp90L1OwzAQwHELFYlSeAA2v0CKP5I4EROq-JIqdQAWFss5n6nTxKnsCAmenlRlYuh0t_xOuv8lmYUhICE3nC054-VtuwRsl4IJvuSSlSU7I3NeKZlJwcVs2mVVZFWdqwtymVLLGCtrXs9J84qdy0xK2DcdWvoRNhmY2AyB2mFM1ITBIu3NiNGbLlE3RLr1n1u6xzjtvQmANHjYYZf9-ADUdDvT-YC0MeMBYboi526ieP03F-T98eFt9ZytN08vq_t1BqJWY9YIEI4XoCoJ0kAl0DqncmUbXhd5ZRsLwHMsC1MxVcgmL1CUk3SlQmU5ygVRx7sQh5QiOg1-NKMfwhiN7zRn-pBKt3pKpQ-p9DHVJPk_uY--N_H7pLk7Gpxe-vIYdQKPUw3rI8Ko7eBP6F_HFIT6 |
CitedBy_id | crossref_primary_10_1021_acsami_4c02912 crossref_primary_10_3390_mi13020335 crossref_primary_10_1021_acsaem_4c02016 crossref_primary_10_1021_acs_iecr_3c01246 crossref_primary_10_1016_j_cej_2024_148779 crossref_primary_10_1016_j_apsusc_2023_157580 crossref_primary_10_1016_j_cej_2025_159674 crossref_primary_10_1002_aenm_202400035 crossref_primary_10_1016_j_cej_2023_144735 crossref_primary_10_1016_j_est_2022_106350 crossref_primary_10_1016_j_jallcom_2022_167631 crossref_primary_10_1021_acs_energyfuels_1c03104 crossref_primary_10_1021_acsami_3c11957 crossref_primary_10_1021_acsami_3c04004 crossref_primary_10_1016_j_jallcom_2022_168286 crossref_primary_10_1016_j_jcis_2021_10_103 crossref_primary_10_1007_s11581_025_06061_2 crossref_primary_10_1016_j_jcis_2022_02_110 crossref_primary_10_1039_D2TA02628G crossref_primary_10_1002_lpor_202401231 crossref_primary_10_1016_j_cej_2024_155618 crossref_primary_10_1016_j_jpowsour_2022_231903 crossref_primary_10_1360_SSC_2022_0103 crossref_primary_10_1016_j_jcis_2022_07_053 crossref_primary_10_3390_nano12020215 crossref_primary_10_1002_smll_202205558 crossref_primary_10_1039_D3TA05714C crossref_primary_10_1016_j_cej_2024_151779 crossref_primary_10_1021_acs_iecr_4c04779 crossref_primary_10_1016_j_ensm_2021_10_020 crossref_primary_10_1002_smll_202406539 crossref_primary_10_1002_aenm_202402721 crossref_primary_10_1088_2515_7655_acbf76 crossref_primary_10_1039_D4DT01713G crossref_primary_10_1021_acs_langmuir_4c03751 crossref_primary_10_1002_smll_202105770 crossref_primary_10_1016_j_electacta_2024_143816 crossref_primary_10_3390_su132413779 crossref_primary_10_1002_adfm_202109693 crossref_primary_10_1021_acs_iecr_3c01739 crossref_primary_10_1016_j_snb_2024_135637 crossref_primary_10_1016_j_ces_2023_119437 |
Cites_doi | 10.1002/aenm.202000058 10.1016/j.nanoen.2019.05.059 10.1016/j.jpowsour.2021.229547 10.1038/ncomms7420 10.1016/j.jcis.2019.11.083 10.1016/j.cej.2015.06.062 10.1016/j.jallcom.2017.07.136 10.1007/s12274-014-0644-3 10.1016/j.jpowsour.2019.226986 10.1007/s12598-017-0905-x 10.1016/j.nanoen.2018.09.021 10.1021/am400020n 10.1021/ja400757c 10.1039/C8TA07574C 10.1002/aenm.201802470 10.1021/ic062394m 10.1039/C8TA07809B 10.1002/adma.201603038 10.1016/j.jpowsour.2018.10.070 10.1039/C4RA04826A 10.1016/j.joule.2018.11.007 10.1016/j.elecom.2017.08.009 10.1016/j.matlet.2017.03.088 10.1016/j.ensm.2020.05.024 10.1021/ja4077342 10.1021/acsnano.9b00688 10.1039/C9TA11369J 10.1002/smll.201602164 10.1016/j.est.2017.11.008 10.1021/acsami.6b15746 10.1016/j.electacta.2019.07.017 10.1016/j.jpowsour.2018.10.071 10.1016/j.ensm.2020.03.011 10.1126/science.aax6873 10.1016/j.electacta.2015.09.066 10.1021/acsami.6b07807 10.1039/C9SC01902B 10.1016/j.electacta.2013.04.162 10.1016/j.jallcom.2016.08.245 10.1021/acs.jpcc.6b01025 10.1016/j.jpowsour.2014.11.121 10.1021/jp411848t 10.1002/adma.201806197 10.1016/j.ensm.2017.11.017 10.1039/c2sc20434g 10.1002/anie.201102320 10.1016/j.jpowsour.2018.06.031 10.1016/j.electacta.2017.03.164 10.1021/acsami.6b01305 10.1021/acsami.8b22557 10.1016/j.electacta.2019.135312 10.1039/C4CS00269E 10.1016/j.electacta.2018.11.167 10.1002/advs.201500424 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2021.130660 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2021_130660 S1385894721022464 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-b2c2f15c783c3ac82edff747db19548dbdcc14e65a80753b45e26297f67e7d1e3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 23:12:45 EDT 2025 Tue Jul 01 04:27:35 EDT 2025 Fri Feb 23 02:44:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Carbon dots Univalent Zinc ZnO anode Surface coating Nickel-zinc alkaline battery |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-b2c2f15c783c3ac82edff747db19548dbdcc14e65a80753b45e26297f67e7d1e3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2021_130660 crossref_primary_10_1016_j_cej_2021_130660 elsevier_sciencedirect_doi_10_1016_j_cej_2021_130660 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Jin, Xiao (b0050) 2018; 12 Jin, Zhu, Song, Zhao, Zhang, Guo, Li, Song, Yang, Zhao (b0170) 2016; 8 Li, Zhao, Shangguan, Li, Li, Wang, Wang, Chang, Li (b0075) 2017; 236 Guo, Tian, Yang, Lai, Li (b0265) 2017; 82 Zheng, Chen, Zhan, Lin, Zheng, Wei, Zhu, Zhu (b0185) 2007; 46 May, Davidson, Monahov (b0015) 2018; 15 Semeniuk, Yi, Poursorkhabi, Tjong, Jaffer, Lu, Sain (b0120) 2019; 13 Zeng, Yang, Fan, Cui, Meng, Chen, Chen (b0035) 2020; 562 Li, Ma, Han, Wang, Liu, Tang, Zhi (b0010) 2019; 62 Javed, Saqib, Ata-ur-Rehman, Ali, Faizan, Anang, Iqbal, Abbas (b0145) 2019; 297 Chen, Lan, Humphreys, Tao (b0025) 2020; 28 Long, Yang, Fan, Yang, Zhao, Jing (b0090) 2013; 105 Zeng, Yang, Meng, Chen, Chen, Qin (b0060) 2019; 438 Xu, Zheng, Wang, Qi, Su, Du, Gan, Wu, Wang, Deng (b0215) 2012; 3 Zhang, Bin, Wei, Niu, Chen, Xia, Xiong (b0115) 2019; 11 Shen, Mu, Chen, Wu, Wu (b0175) 2013; 5 Zhao, Yang, Peng, Tian, Lai (b0065) 2019; 410-411 Hasan Farooqi, Srivastava (b0190) 2017; 691 Wang, Yang, Chen, Qin, Yan (b0045) 2018; 396 Lai, Jamesh, Wu, Dong, Wang, Gao, Liu, Sun (b0270) 2017; 36 Liu, Duan, Song, Liu, Ren, Wu, Liu, Chen (b0130) 2017; 9 Huang, Yang, Sun, Xu, Wang, Ahmad, Xu (b0235) 2017; 724 Chen, Li, Liao, Hu, Fu, Asare, Shi, Liu, Zhou, Mai (b0040) 2018; 6 Parker, Ko, Rolison, Long (b0020) 2018; 2 Teng, Yang, Sun, Yin, Huang, Fu, Zhang, Lu, Jiang (b0240) 2019; 10 Jiao, Han, Ding, Zhang, Guo, Hu, Yang, Dong (b0085) 2015; 6 Chen, Zhao, Shang, Waterhouse, Kang, Wu, Tung, Zhang (b0210) 2016; 3 Feng, Yang, Huang, Xie, Zhang (b0255) 2015; 276 Qing, Meng, Wang, Li, Zhou, Liang, Zhang, Liu, Guo, Xiao (b0155) 2019; 319 Kwak, Kim, Park, Kim, Kang (b0100) 2015; 281 Sun, Yi, Lin, Liang, Wu, Cao, Wang (b0080) 2016; 120 Yang, Zhang, Tian, Zhang, Li, Lai (b0200) 2017; 197 Balogun, Luo, Lyu, Wang, Yang, Li, Liang, Huang, Huang, Tong (b0135) 2016; 8 Wu, Zhang, Ma, Howe, Yang, Chen, Aluri, Liu (b0165) 2018; 8 Zhang, Wu, Ding, Yan, Zhou, Ding, Liu (b0030) 2018; 53 Chen, Wu, Zhang, Wu, Ma, Pelkowski, Yang, Zhang, Hu, Liu (b0070) 2018; 6 Zhang, Zhang, Mathur, Ben-Yoseph, Xia, Wu, Liu (b0160) 2021; 491 Xia, Wallenmeyer, Anderson, Murowchick, Liu, Chen (b0205) 2014; 4 Li, McColl, Lu, Sathasivam, Dong, Kang, Li, Zhao, Kafizas, Wang, Brett, Shearing, Cora, He, Carmalt, Parkin (b0005) 2020; 10 Xie, Fei, Cai, Chen, Cui, Wang, Zhan (b0055) 2020; 31 Yan, Xu, Chen, Wang, Zhang, Zhao, Zhang, Deng, Xu, Yun, Zhang (b0245) 2020; 330 Liu, Guan, Zhou, Fan, Ke, Zhang, Liu, Wang (b0195) 2016; 28 Lim, Shen, Gao (b0140) 2015; 44 Gandhi, Ganesan, Abdulrahman Syedahamed, Thaiyan (b0180) 2014; 118 Xie, Xu, Jensen, Ding, Au, Feng, Luo, Qiao, Guo, Lu, Drew, Hu, Titirici (b0110) 2019; 7 Li, Li, Yan, Mu, Pan, Zou, Wang, Chen (b0230) 2011; 50 Zheng, Zhao, Tang, Yin, Quilty, Renderos, Liu, Deng, Wang, Bock, Jaye, Zhang, Takeuchi, Takeuchi, Marschilok, Archer (b0095) 2019; 366 Zhu, Song, Zhao, Shao, Zhang, Yang (b0125) 2015; 8 Zhao, Shangguan, Li, Li, Chang, Li, Yuan, Wang (b0250) 2015; 182 Yan, Chen, Wang, Li, Zhang (b0260) 2018; 407 Qi, Xu, Su, Chen, Wang, Deng (b0220) 2013; 135 Oda, Torigoe, Itadani, Ohkubo, Yumura, Kobayashi, Kuroda (b0225) 2013; 135 Wei, Ding, Zhang, Ding, Niu, Ma, Li, Wang, Xiong (b0105) 2019; 31 Wei, Ding, Zhang, Song, Chen, Wang, Xiong (b0150) 2016; 12 Li (10.1016/j.cej.2021.130660_b0005) 2020; 10 Zheng (10.1016/j.cej.2021.130660_b0185) 2007; 46 Chen (10.1016/j.cej.2021.130660_b0070) 2018; 6 Javed (10.1016/j.cej.2021.130660_b0145) 2019; 297 Feng (10.1016/j.cej.2021.130660_b0255) 2015; 276 Lai (10.1016/j.cej.2021.130660_b0270) 2017; 36 Liu (10.1016/j.cej.2021.130660_b0195) 2016; 28 Lim (10.1016/j.cej.2021.130660_b0140) 2015; 44 Gandhi (10.1016/j.cej.2021.130660_b0180) 2014; 118 Hasan Farooqi (10.1016/j.cej.2021.130660_b0190) 2017; 691 Xu (10.1016/j.cej.2021.130660_b0215) 2012; 3 Qing (10.1016/j.cej.2021.130660_b0155) 2019; 319 Jin (10.1016/j.cej.2021.130660_b0170) 2016; 8 Li (10.1016/j.cej.2021.130660_b0010) 2019; 62 Sun (10.1016/j.cej.2021.130660_b0080) 2016; 120 Xie (10.1016/j.cej.2021.130660_b0110) 2019; 7 Shen (10.1016/j.cej.2021.130660_b0175) 2013; 5 Jiao (10.1016/j.cej.2021.130660_b0085) 2015; 6 Balogun (10.1016/j.cej.2021.130660_b0135) 2016; 8 Chen (10.1016/j.cej.2021.130660_b0025) 2020; 28 Xia (10.1016/j.cej.2021.130660_b0205) 2014; 4 Zhang (10.1016/j.cej.2021.130660_b0030) 2018; 53 Li (10.1016/j.cej.2021.130660_b0230) 2011; 50 Zhang (10.1016/j.cej.2021.130660_b0160) 2021; 491 Wu (10.1016/j.cej.2021.130660_b0165) 2018; 8 Parker (10.1016/j.cej.2021.130660_b0020) 2018; 2 Li (10.1016/j.cej.2021.130660_b0050) 2018; 12 Kwak (10.1016/j.cej.2021.130660_b0100) 2015; 281 Liu (10.1016/j.cej.2021.130660_b0130) 2017; 9 Qi (10.1016/j.cej.2021.130660_b0220) 2013; 135 Guo (10.1016/j.cej.2021.130660_b0265) 2017; 82 Wei (10.1016/j.cej.2021.130660_b0150) 2016; 12 Zeng (10.1016/j.cej.2021.130660_b0060) 2019; 438 Li (10.1016/j.cej.2021.130660_b0075) 2017; 236 Long (10.1016/j.cej.2021.130660_b0090) 2013; 105 Zheng (10.1016/j.cej.2021.130660_b0095) 2019; 366 Semeniuk (10.1016/j.cej.2021.130660_b0120) 2019; 13 Huang (10.1016/j.cej.2021.130660_b0235) 2017; 724 Chen (10.1016/j.cej.2021.130660_b0040) 2018; 6 Chen (10.1016/j.cej.2021.130660_b0210) 2016; 3 Wang (10.1016/j.cej.2021.130660_b0045) 2018; 396 Zhao (10.1016/j.cej.2021.130660_b0065) 2019; 410-411 Yan (10.1016/j.cej.2021.130660_b0260) 2018; 407 Zhang (10.1016/j.cej.2021.130660_b0115) 2019; 11 May (10.1016/j.cej.2021.130660_b0015) 2018; 15 Xie (10.1016/j.cej.2021.130660_b0055) 2020; 31 Zhao (10.1016/j.cej.2021.130660_b0250) 2015; 182 Wei (10.1016/j.cej.2021.130660_b0105) 2019; 31 Yan (10.1016/j.cej.2021.130660_b0245) 2020; 330 Oda (10.1016/j.cej.2021.130660_b0225) 2013; 135 Zeng (10.1016/j.cej.2021.130660_b0035) 2020; 562 Yang (10.1016/j.cej.2021.130660_b0200) 2017; 197 Zhu (10.1016/j.cej.2021.130660_b0125) 2015; 8 Teng (10.1016/j.cej.2021.130660_b0240) 2019; 10 |
References_xml | – volume: 8 start-page: 9733 year: 2016 end-page: 9744 ident: b0135 article-title: Carbon quantum dot surface-engineered VO2 interwoven nanowires: A flexible cathode material for lithium and sodium ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 491 year: 2021 ident: b0160 article-title: An effective and accessible cell configuration for testing rechargeable zinc-based alkaline batteries publication-title: J. Power Sources – volume: 330 start-page: 135312 year: 2020 ident: b0245 article-title: Construction of highly ordered ZnO microrod@SnO2 nanowire heterojunction hybrid with a test-tube brush-like structure for high performance lithium-ion batteries: experimental and theoretical study publication-title: Electrochim. Acta – volume: 53 start-page: 666 year: 2018 end-page: 674 ident: b0030 article-title: Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes publication-title: Nano Energy – volume: 319 start-page: 740 year: 2019 end-page: 752 ident: b0155 article-title: Building nanoparticle-stacking MoO2-CDs via in-situ carbon dots reduction as high-performance anode material for lithium ion and sodium ion batteries publication-title: Electrochim. Acta – volume: 6 start-page: 19488 year: 2018 end-page: 19494 ident: b0040 article-title: Ni foam supported NiO nanosheets as high-performance free-standing electrodes for hybrid supercapacitors and Ni-Zn batteries publication-title: J. Mater. Chem. A – volume: 31 start-page: 1806197 year: 2019 ident: b0105 article-title: Robust negative electrode materials derived from carbon dots and porous hydrogels for high-performance hybrid supercapacitors publication-title: Adv. Mater. – volume: 691 start-page: 275 year: 2017 end-page: 286 ident: b0190 article-title: Structural, optical and photoconductivity study of ZnO nanoparticles synthesized by annealing of ZnS nanoparticles publication-title: J. Alloys Compd. – volume: 7 start-page: 27567 year: 2019 end-page: 27575 ident: b0110 article-title: Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency publication-title: J. Mater. Chem. A – volume: 9 start-page: 12663 year: 2017 end-page: 12672 ident: b0130 article-title: Red emission B, N, S-co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe3+ ions in complex biological fluids and living cells publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 3118 year: 2013 end-page: 3125 ident: b0175 article-title: Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 355 year: 2015 end-page: 381 ident: b0125 article-title: The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective publication-title: Nano Res. – volume: 135 start-page: 6762 year: 2013 end-page: 6765 ident: b0220 article-title: Low-temperature reactivity of Zn+ ions confined in ZSM–5 zeolite toward carbon monoxide oxidation: Insight from in situ DRIFT and ESR spectroscopy publication-title: J. Am. Chem. Soc. – volume: 297 start-page: 250 year: 2019 end-page: 257 ident: b0145 article-title: Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries publication-title: Electrochim. Acta – volume: 8 start-page: 1802470 year: 2018 ident: b0165 article-title: Ion-sieving carbon nanoshells for deeply rechargeable zn-based aqueous batteries publication-title: Adv. Energy Mater. – volume: 62 start-page: 550 year: 2019 end-page: 587 ident: b0010 article-title: Advanced rechargeable zinc-based batteries: Recent progress and future perspectives publication-title: Nano Energy – volume: 15 start-page: 145 year: 2018 end-page: 157 ident: b0015 article-title: Lead batteries for utility energy storage: A review publication-title: J. Energy Storage – volume: 2 start-page: 2519 year: 2018 end-page: 2527 ident: b0020 article-title: Translating materials-level performance into device-relevant metrics for zinc-based batteries publication-title: Joule – volume: 31 start-page: 27 year: 2020 end-page: 35 ident: b0055 article-title: Multicomponent hierarchical NiCo2O4@CoMoO4@Co3O4 arrayed structures for high areal energy density aqueous NiCo//Zn batteries publication-title: Energy Storage Mater. – volume: 3 start-page: 2932 year: 2012 ident: b0215 article-title: Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: Insight from solid-state NMR and theoretical calculations publication-title: Chem. Sci. – volume: 724 start-page: 1149 year: 2017 end-page: 1156 ident: b0235 article-title: Defective ZnCo2O4 with Zn vacancies: Synthesis, property and electrochemical application publication-title: J. Alloys Compd. – volume: 28 start-page: 205 year: 2020 end-page: 215 ident: b0025 article-title: Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery publication-title: Energy Storage Mater. – volume: 13 start-page: 6224 year: 2019 end-page: 6255 ident: b0120 article-title: Future perspectives and review on organic carbon dots in electronic applications publication-title: ACS Nano – volume: 438 year: 2019 ident: b0060 article-title: The cube-like porous ZnO/C composites derived from metal organic framework-5 as anodic material with high electrochemical performance for Ni-Zn rechargeable battery publication-title: J. Power Sources – volume: 562 start-page: 518 year: 2020 end-page: 528 ident: b0035 article-title: Shape-controlled growth of three-dimensional flower-like ZnO@Ag composite and its outstanding electrochemical performance for Ni-Zn secondary batteries publication-title: J. Colloid Interface Sci. – volume: 197 start-page: 163 year: 2017 end-page: 166 ident: b0200 article-title: Polydopamine-coated nano-ZnO for high-performance rechargeable Zn-Ni battery publication-title: Mater. Lett. – volume: 366 start-page: 645 year: 2019 end-page: 648 ident: b0095 article-title: Reversible epitaxial electrodeposition of metals in battery anodes publication-title: Science – volume: 3 start-page: 1500424 year: 2016 ident: b0210 article-title: Recent advances in the synthesis, characterization and application of Zn+-containing heterogeneous catalysts publication-title: Adv. Sci. – volume: 6 start-page: 6420 year: 2015 ident: b0085 article-title: Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties publication-title: Nature Commun. – volume: 396 start-page: 615 year: 2018 end-page: 620 ident: b0045 article-title: Formation of porous ZnO microspheres and its application as anode material with superior cycle stability in zinc-nickel secondary batteries publication-title: J. Power Sources – volume: 276 start-page: 162 year: 2015 end-page: 169 ident: b0255 article-title: The superior cycling performance of the hydrothermal synthesized carbon-coated ZnO as anode material for zinc-nickel secondary cells publication-title: J. Power Sources – volume: 8 start-page: 27956 year: 2016 end-page: 27965 ident: b0170 article-title: Precisely controllable core shell Ag@carbon dots nanoparticles: application to in situ super-sensitive monitoring of catalytic reactions publication-title: ACS Appl. Mater. Interfaces – volume: 36 start-page: 381 year: 2017 end-page: 396 ident: b0270 article-title: A promising energy storage system: rechargeable Ni-Zn battery publication-title: Rare Met. – volume: 46 start-page: 6675 year: 2007 end-page: 6682 ident: b0185 article-title: Luminescence and photocatalytic activity of ZnO nanocrystals: Correlation between structure and property publication-title: Inorg. Chem. – volume: 135 start-page: 18481 year: 2013 end-page: 18489 ident: b0225 article-title: Success in making Zn+ from atomic Zn0 encapsulated in an MFI-type zeolite with UV light irradiation publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 12337 year: 2016 end-page: 12343 ident: b0080 article-title: Fast and energy efficient synthesis of ZnO@RGO and its application in Ni-Zn secondary battery publication-title: J. Phys. Chem. C – volume: 11 start-page: 14085 year: 2019 end-page: 14094 ident: b0115 article-title: Efficient oxygen electrocatalyst for -ZnAir batteries: Carbon dots and Co9S8 nanoparticles in a N, S-codoped carbon matrix publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 5927 year: 2016 end-page: 5934 ident: b0150 article-title: Carbon dots/NiCo2O4 nanocomposites with various morphologies for high performance supercapacitors publication-title: Small – volume: 182 start-page: 173 year: 2015 end-page: 182 ident: b0250 article-title: Facile synthesis of high tap density ZnO microspheres as advanced anode material for alkaline nickel-zinc rechargeable batteries publication-title: Electrochim. Acta – volume: 236 start-page: 180 year: 2017 end-page: 189 ident: b0075 article-title: Enhancing the rate and cycling performance of spherical ZnO anode material for advanced zinc-nickel secondary batteries by combined in-situ doping and coating with carbon publication-title: Electrochim. Acta – volume: 82 start-page: 159 year: 2017 end-page: 162 ident: b0265 article-title: ZIF-8 derived nano-SnO2@ ZnO as anode for Zn/Ni secondary batteries publication-title: Electrochem. Commun. – volume: 4 start-page: 41654 year: 2014 end-page: 41658 ident: b0205 article-title: Hydrogenated black ZnO nanoparticles with enhanced photocatalytic performance publication-title: RSC Adv. – volume: 10 start-page: 7600 year: 2019 end-page: 7609 ident: b0240 article-title: Structural and defect engineering of cobaltosic oxide nanoarchitectures as an ultrahigh energy density and super durable cathode for Zn-based batteries publication-title: Chem. Sci. – volume: 10 start-page: 2000058 year: 2020 ident: b0005 article-title: Multi-scale investigations of delta-Ni0.25V2O5 center dot nH2O cathode materials in aqueous zinc-ion batteries publication-title: Adv. Energy Mater. – volume: 281 start-page: 368 year: 2015 end-page: 378 ident: b0100 article-title: Implementation of stable electrochemical performance using a Fe0.01ZnO anodic material in alkaline Ni-Zn redox battery publication-title: Chem. Eng. J. – volume: 28 start-page: 8732 year: 2016 end-page: 8739 ident: b0195 article-title: A flexible quasi-solid-state Nickel-Zinc battery with high energy and power densities based on 3D electrode design publication-title: Adv. Mater. – volume: 410-411 start-page: 10 year: 2019 end-page: 14 ident: b0065 article-title: Synergistic effect of ZnO@Bi/C sphere for rechargeable Zn-Ni battery with high specific capacity publication-title: J. Power Sources – volume: 6 start-page: 21933 year: 2018 end-page: 21940 ident: b0070 article-title: A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries publication-title: J. Mater. Chem. A – volume: 118 start-page: 9715 year: 2014 end-page: 9725 ident: b0180 article-title: Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method publication-title: J. Phys. Chem. C – volume: 50 start-page: 8299 year: 2011 end-page: 8303 ident: b0230 article-title: Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 232 year: 2018 end-page: 240 ident: b0050 article-title: Three-dimensional nanotube-array anode enables a flexible Ni/Zn fibrous battery to ultrafast charge and discharge in seconds publication-title: Energy Storage Mater. – volume: 407 start-page: 137 year: 2018 end-page: 146 ident: b0260 article-title: In-situ growth of ZnO nanoplates on graphene for the application of high rate flexible quasi-solid-state Ni-Zn secondary battery publication-title: J. Power Sources – volume: 105 start-page: 40 year: 2013 end-page: 46 ident: b0090 article-title: The effects of carbon coating on the electrochemical performances of ZnO in Ni-Zn secondary batteries publication-title: Electrochim. Acta – volume: 44 start-page: 362 year: 2015 end-page: 381 ident: b0140 article-title: Carbon quantum dots and their applications publication-title: Chem. Soc. Rev. – volume: 10 start-page: 2000058 year: 2020 ident: 10.1016/j.cej.2021.130660_b0005 article-title: Multi-scale investigations of delta-Ni0.25V2O5 center dot nH2O cathode materials in aqueous zinc-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000058 – volume: 62 start-page: 550 year: 2019 ident: 10.1016/j.cej.2021.130660_b0010 article-title: Advanced rechargeable zinc-based batteries: Recent progress and future perspectives publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.059 – volume: 491 year: 2021 ident: 10.1016/j.cej.2021.130660_b0160 article-title: An effective and accessible cell configuration for testing rechargeable zinc-based alkaline batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229547 – volume: 6 start-page: 6420 year: 2015 ident: 10.1016/j.cej.2021.130660_b0085 article-title: Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties publication-title: Nature Commun. doi: 10.1038/ncomms7420 – volume: 562 start-page: 518 year: 2020 ident: 10.1016/j.cej.2021.130660_b0035 article-title: Shape-controlled growth of three-dimensional flower-like ZnO@Ag composite and its outstanding electrochemical performance for Ni-Zn secondary batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.11.083 – volume: 281 start-page: 368 year: 2015 ident: 10.1016/j.cej.2021.130660_b0100 article-title: Implementation of stable electrochemical performance using a Fe0.01ZnO anodic material in alkaline Ni-Zn redox battery publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.06.062 – volume: 724 start-page: 1149 year: 2017 ident: 10.1016/j.cej.2021.130660_b0235 article-title: Defective ZnCo2O4 with Zn vacancies: Synthesis, property and electrochemical application publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.07.136 – volume: 8 start-page: 355 year: 2015 ident: 10.1016/j.cej.2021.130660_b0125 article-title: The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective publication-title: Nano Res. doi: 10.1007/s12274-014-0644-3 – volume: 438 year: 2019 ident: 10.1016/j.cej.2021.130660_b0060 article-title: The cube-like porous ZnO/C composites derived from metal organic framework-5 as anodic material with high electrochemical performance for Ni-Zn rechargeable battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226986 – volume: 36 start-page: 381 issue: 5 year: 2017 ident: 10.1016/j.cej.2021.130660_b0270 article-title: A promising energy storage system: rechargeable Ni-Zn battery publication-title: Rare Met. doi: 10.1007/s12598-017-0905-x – volume: 53 start-page: 666 year: 2018 ident: 10.1016/j.cej.2021.130660_b0030 article-title: Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.021 – volume: 5 start-page: 3118 issue: 8 year: 2013 ident: 10.1016/j.cej.2021.130660_b0175 article-title: Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am400020n – volume: 135 start-page: 6762 year: 2013 ident: 10.1016/j.cej.2021.130660_b0220 article-title: Low-temperature reactivity of Zn+ ions confined in ZSM–5 zeolite toward carbon monoxide oxidation: Insight from in situ DRIFT and ESR spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400757c – volume: 6 start-page: 19488 issue: 40 year: 2018 ident: 10.1016/j.cej.2021.130660_b0040 article-title: Ni foam supported NiO nanosheets as high-performance free-standing electrodes for hybrid supercapacitors and Ni-Zn batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07574C – volume: 8 start-page: 1802470 year: 2018 ident: 10.1016/j.cej.2021.130660_b0165 article-title: Ion-sieving carbon nanoshells for deeply rechargeable zn-based aqueous batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802470 – volume: 46 start-page: 6675 year: 2007 ident: 10.1016/j.cej.2021.130660_b0185 article-title: Luminescence and photocatalytic activity of ZnO nanocrystals: Correlation between structure and property publication-title: Inorg. Chem. doi: 10.1021/ic062394m – volume: 6 start-page: 21933 issue: 44 year: 2018 ident: 10.1016/j.cej.2021.130660_b0070 article-title: A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07809B – volume: 28 start-page: 8732 issue: 39 year: 2016 ident: 10.1016/j.cej.2021.130660_b0195 article-title: A flexible quasi-solid-state Nickel-Zinc battery with high energy and power densities based on 3D electrode design publication-title: Adv. Mater. doi: 10.1002/adma.201603038 – volume: 410-411 start-page: 10 year: 2019 ident: 10.1016/j.cej.2021.130660_b0065 article-title: Synergistic effect of ZnO@Bi/C sphere for rechargeable Zn-Ni battery with high specific capacity publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.070 – volume: 4 start-page: 41654 issue: 78 year: 2014 ident: 10.1016/j.cej.2021.130660_b0205 article-title: Hydrogenated black ZnO nanoparticles with enhanced photocatalytic performance publication-title: RSC Adv. doi: 10.1039/C4RA04826A – volume: 2 start-page: 2519 issue: 12 year: 2018 ident: 10.1016/j.cej.2021.130660_b0020 article-title: Translating materials-level performance into device-relevant metrics for zinc-based batteries publication-title: Joule doi: 10.1016/j.joule.2018.11.007 – volume: 82 start-page: 159 year: 2017 ident: 10.1016/j.cej.2021.130660_b0265 article-title: ZIF-8 derived nano-SnO2@ ZnO as anode for Zn/Ni secondary batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.08.009 – volume: 197 start-page: 163 year: 2017 ident: 10.1016/j.cej.2021.130660_b0200 article-title: Polydopamine-coated nano-ZnO for high-performance rechargeable Zn-Ni battery publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.03.088 – volume: 31 start-page: 27 year: 2020 ident: 10.1016/j.cej.2021.130660_b0055 article-title: Multicomponent hierarchical NiCo2O4@CoMoO4@Co3O4 arrayed structures for high areal energy density aqueous NiCo//Zn batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.05.024 – volume: 135 start-page: 18481 issue: 49 year: 2013 ident: 10.1016/j.cej.2021.130660_b0225 article-title: Success in making Zn+ from atomic Zn0 encapsulated in an MFI-type zeolite with UV light irradiation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4077342 – volume: 13 start-page: 6224 issue: 6 year: 2019 ident: 10.1016/j.cej.2021.130660_b0120 article-title: Future perspectives and review on organic carbon dots in electronic applications publication-title: ACS Nano doi: 10.1021/acsnano.9b00688 – volume: 7 start-page: 27567 issue: 48 year: 2019 ident: 10.1016/j.cej.2021.130660_b0110 article-title: Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11369J – volume: 12 start-page: 5927 issue: 43 year: 2016 ident: 10.1016/j.cej.2021.130660_b0150 article-title: Carbon dots/NiCo2O4 nanocomposites with various morphologies for high performance supercapacitors publication-title: Small doi: 10.1002/smll.201602164 – volume: 15 start-page: 145 year: 2018 ident: 10.1016/j.cej.2021.130660_b0015 article-title: Lead batteries for utility energy storage: A review publication-title: J. Energy Storage doi: 10.1016/j.est.2017.11.008 – volume: 9 start-page: 12663 issue: 14 year: 2017 ident: 10.1016/j.cej.2021.130660_b0130 article-title: Red emission B, N, S-co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe3+ ions in complex biological fluids and living cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15746 – volume: 319 start-page: 740 year: 2019 ident: 10.1016/j.cej.2021.130660_b0155 article-title: Building nanoparticle-stacking MoO2-CDs via in-situ carbon dots reduction as high-performance anode material for lithium ion and sodium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.07.017 – volume: 407 start-page: 137 year: 2018 ident: 10.1016/j.cej.2021.130660_b0260 article-title: In-situ growth of ZnO nanoplates on graphene for the application of high rate flexible quasi-solid-state Ni-Zn secondary battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.071 – volume: 28 start-page: 205 year: 2020 ident: 10.1016/j.cej.2021.130660_b0025 article-title: Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.03.011 – volume: 366 start-page: 645 issue: 6465 year: 2019 ident: 10.1016/j.cej.2021.130660_b0095 article-title: Reversible epitaxial electrodeposition of metals in battery anodes publication-title: Science doi: 10.1126/science.aax6873 – volume: 182 start-page: 173 year: 2015 ident: 10.1016/j.cej.2021.130660_b0250 article-title: Facile synthesis of high tap density ZnO microspheres as advanced anode material for alkaline nickel-zinc rechargeable batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.09.066 – volume: 8 start-page: 27956 year: 2016 ident: 10.1016/j.cej.2021.130660_b0170 article-title: Precisely controllable core shell Ag@carbon dots nanoparticles: application to in situ super-sensitive monitoring of catalytic reactions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07807 – volume: 10 start-page: 7600 issue: 32 year: 2019 ident: 10.1016/j.cej.2021.130660_b0240 article-title: Structural and defect engineering of cobaltosic oxide nanoarchitectures as an ultrahigh energy density and super durable cathode for Zn-based batteries publication-title: Chem. Sci. doi: 10.1039/C9SC01902B – volume: 105 start-page: 40 year: 2013 ident: 10.1016/j.cej.2021.130660_b0090 article-title: The effects of carbon coating on the electrochemical performances of ZnO in Ni-Zn secondary batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.04.162 – volume: 691 start-page: 275 year: 2017 ident: 10.1016/j.cej.2021.130660_b0190 article-title: Structural, optical and photoconductivity study of ZnO nanoparticles synthesized by annealing of ZnS nanoparticles publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.08.245 – volume: 120 start-page: 12337 issue: 23 year: 2016 ident: 10.1016/j.cej.2021.130660_b0080 article-title: Fast and energy efficient synthesis of ZnO@RGO and its application in Ni-Zn secondary battery publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b01025 – volume: 276 start-page: 162 year: 2015 ident: 10.1016/j.cej.2021.130660_b0255 article-title: The superior cycling performance of the hydrothermal synthesized carbon-coated ZnO as anode material for zinc-nickel secondary cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.11.121 – volume: 118 start-page: 9715 issue: 18 year: 2014 ident: 10.1016/j.cej.2021.130660_b0180 article-title: Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method publication-title: J. Phys. Chem. C doi: 10.1021/jp411848t – volume: 31 start-page: 1806197 year: 2019 ident: 10.1016/j.cej.2021.130660_b0105 article-title: Robust negative electrode materials derived from carbon dots and porous hydrogels for high-performance hybrid supercapacitors publication-title: Adv. Mater. doi: 10.1002/adma.201806197 – volume: 12 start-page: 232 year: 2018 ident: 10.1016/j.cej.2021.130660_b0050 article-title: Three-dimensional nanotube-array anode enables a flexible Ni/Zn fibrous battery to ultrafast charge and discharge in seconds publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.11.017 – volume: 3 start-page: 2932 year: 2012 ident: 10.1016/j.cej.2021.130660_b0215 article-title: Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: Insight from solid-state NMR and theoretical calculations publication-title: Chem. Sci. doi: 10.1039/c2sc20434g – volume: 50 start-page: 8299 issue: 36 year: 2011 ident: 10.1016/j.cej.2021.130660_b0230 article-title: Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201102320 – volume: 396 start-page: 615 year: 2018 ident: 10.1016/j.cej.2021.130660_b0045 article-title: Formation of porous ZnO microspheres and its application as anode material with superior cycle stability in zinc-nickel secondary batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.06.031 – volume: 236 start-page: 180 year: 2017 ident: 10.1016/j.cej.2021.130660_b0075 article-title: Enhancing the rate and cycling performance of spherical ZnO anode material for advanced zinc-nickel secondary batteries by combined in-situ doping and coating with carbon publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.164 – volume: 8 start-page: 9733 year: 2016 ident: 10.1016/j.cej.2021.130660_b0135 article-title: Carbon quantum dot surface-engineered VO2 interwoven nanowires: A flexible cathode material for lithium and sodium ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01305 – volume: 11 start-page: 14085 year: 2019 ident: 10.1016/j.cej.2021.130660_b0115 article-title: Efficient oxygen electrocatalyst for -ZnAir batteries: Carbon dots and Co9S8 nanoparticles in a N, S-codoped carbon matrix publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22557 – volume: 330 start-page: 135312 year: 2020 ident: 10.1016/j.cej.2021.130660_b0245 article-title: Construction of highly ordered ZnO microrod@SnO2 nanowire heterojunction hybrid with a test-tube brush-like structure for high performance lithium-ion batteries: experimental and theoretical study publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135312 – volume: 44 start-page: 362 issue: 1 year: 2015 ident: 10.1016/j.cej.2021.130660_b0140 article-title: Carbon quantum dots and their applications publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00269E – volume: 297 start-page: 250 year: 2019 ident: 10.1016/j.cej.2021.130660_b0145 article-title: Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.11.167 – volume: 3 start-page: 1500424 year: 2016 ident: 10.1016/j.cej.2021.130660_b0210 article-title: Recent advances in the synthesis, characterization and application of Zn+-containing heterogeneous catalysts publication-title: Adv. Sci. doi: 10.1002/advs.201500424 |
SSID | ssj0006919 |
Score | 2.5299783 |
Snippet | After incorporation of a few Carbon Dots (CDs), ZnO anodes process thin carbon shells, refined microstructures and special univalent zinc sites, which result... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 130660 |
SubjectTerms | Carbon dots Nickel-zinc alkaline battery Surface coating Univalent Zinc ZnO anode |
Title | Self-assembled ZnO-carbon dots anode materials for high performance nickel-zinc alkaline batteries |
URI | https://dx.doi.org/10.1016/j.cej.2021.130660 |
Volume | 425 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg6ehLVuNvs6lmKpFitYi8XLktdC65qWWi8e_O3O7EMrqAdPy24ysEwmk2_IzDeEnPI4FJxBpBrFOkVSbdxSgjmGcZF6vlJBiIXCN4OgN-LXY39cI52qFgbTKkvfX_j03FuXX1qlNlvzyaQ1dPFOK-YhK1jRkBOU8xCt_Pz9K80jiPPmHjjZwdnVzWae46XMFEJE5mJP5IKl8oezaeW86W6RzRIo0nbxL9ukZuwO2VihD9wlcmiy1AH0a55lZjR9tLeOEgs5sxRizRcq7EwbCpC0sDIK-JQiPTGdf1ULUDuBfZw5bxOrqMieBMJOKnPWTQii98ioe3nf6TllzwRHsThcOpIplrq-CiNPeUJFzOg0hZBBy5zaTUutlMtN4AtkIfYk9w0LQDKFNQm1a7x9Urczaw4I5TAWeRogYsQBNJnYNQA-lAfhtw4CIRrkotJWokpCcexrkSVV5tg0AQUnqOCkUHCDnH2KzAs2jb8m82oJkm8mkYC3_13s8H9iR2Qd34pMlWNSXy5ezQngjaVs5gbVJGvtq35vgM_-3UP_A46B1YM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YEJKZQ4zmtEFVWBtgxtpYol8itSSnCrUhYGfjvnOKEgAQNr7JOi8935O_nuO4TOaRwySiBTjWKZGlJt41KMOIpQlnq-EEFoGoV7_aAzondjf1xDraoXxpRVlrHfxvQiWpdfmqU2m7Msaw5c86YV05BYVjS6glYpuK8ZY3D5vqzzCOJiuofZ7Zjt1dNmUeQl1ARyROKaociWpvKHy-nLhdPeQpslUsTX9me2UU3pHbTxhT9wF_GBylMH4K965rmS-FE_OILN-VRjSDZfMNNTqTBgUmtmGAAqNvzEeLZsF8A6A0fOnbdMC8zyJ2ZwJ-YF7SZk0Xto1L4ZtjpOOTTBESQOFw4ngqSuL8LIEx4TEVEyTSFnkLzgdpNcCuFSFfjM0BB7nPqKBCCZwqGE0lXePqrrqVYHCFNYizwJGDGigJpU7CpAH8KD_FsGAWMNdFVpKxElo7gZbJEnVenYJAEFJ0bBiVVwA118iswsncZfm2l1BMk3m0gg3P8udvg_sTO01hn2ukn3tn9_hNbNii1bOUb1xfxVnQD4WPDTwrg-AOpT1W4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembled+ZnO-carbon+dots+anode+materials+for+high+performance+nickel-zinc+alkaline+batteries&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Wei%2C+Ji-Shi&rft.au=Zhu%2C+Ze-Yang&rft.au=Zhao%2C+Xiao&rft.au=Song%2C+Tian-Bing&rft.date=2021-12-01&rft.issn=1385-8947&rft.volume=425&rft.spage=130660&rft_id=info:doi/10.1016%2Fj.cej.2021.130660&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2021_130660 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |