A Novel n-Point Newton-Type Root-Finding Method of High Computational Efficiency

A novel Newton-type n-point iterative method with memory is proposed for solving nonlinear equations, which is constructed by the Hermite interpolation. The proposed iterative method with memory reaches the order (2n+2n−1−1+22n+1+22n−2+2n+1)/2 by using n variable parameters. The computational effici...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 10; no. 7; p. 1144
Main Author Wang, Xiaofeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel Newton-type n-point iterative method with memory is proposed for solving nonlinear equations, which is constructed by the Hermite interpolation. The proposed iterative method with memory reaches the order (2n+2n−1−1+22n+1+22n−2+2n+1)/2 by using n variable parameters. The computational efficiency of the proposed method is higher than that of the existing Newton-type methods with and without memory. To observe the stability of the proposed method, some complex functions are considered under basins of attraction. Basins of attraction show that the proposed method has better stability and requires a lesser number of iterations than various well-known methods. The numerical results support the theoretical results.
AbstractList A novel Newton-type n-point iterative method with memory is proposed for solving nonlinear equations, which is constructed by the Hermite interpolation. The proposed iterative method with memory reaches the order ( 2n+2n−1−1+22n+1+22n−2+2n+1 ) /2 by using n variable parameters. The computational efficiency of the proposed method is higher than that of the existing Newton-type methods with and without memory. To observe the stability of the proposed method, some complex functions are considered under basins of attraction. Basins of attraction show that the proposed method has better stability and requires a lesser number of iterations than various well-known methods. The numerical results support the theoretical results.
Author Wang, Xiaofeng
Author_xml – sequence: 1
  givenname: Xiaofeng
  orcidid: 0000-0001-8524-6488
  surname: Wang
  fullname: Wang, Xiaofeng
BookMark eNptUdtKAzEQDVLBennzAwK-uppbdzePpVQreEP0OUwu26Zsk5pNlf69qxURcV5mmDlzhjnnEA1CDA6hU0ouOJfkcgV5QQmpKBViDw0ZY1VR9YPBr_oAnXTdkvQhKa-FHKLHMb6Pb67FoXiMPmR8795zDMXzdu3wU4y5uPLB-jDHdy4vosWxwTM_X-BJXK03GbKPAVo8bRpvvAtme4z2G2g7d_Kdj9DL1fR5MituH65vJuPbwjBZ5UITI0souXDM1m7kNJWGi1IDjCSvq5JBLZy2jnEGRLOG05HVhFFiuIaGMH6Ebna8NsJSrZNfQdqqCF59NWKaK0jZm9YpK0paawNAQIjalsCoJcZVVWW0Zlb2XGc7rnWKrxvXZbWMm9T_1SlWCtmLykvao853KJNi1yXX_FylRH1aoH5b0MPZH7jxO71yAt_-v_QBdyqK-w
CitedBy_id crossref_primary_10_1016_j_eswa_2023_119987
crossref_primary_10_1016_j_cam_2023_115096
crossref_primary_10_1177_09544070241265395
Cites_doi 10.3390/math8071080
10.3390/fractalfract6010046
10.3390/fractalfract6020059
10.1137/100805340
10.1007/s11075-014-9951-8
10.1016/j.cam.2017.07.003
10.1137/1.9780898718898
10.3390/fractalfract6030174
10.3390/sym13050884
10.1145/321850.321860
10.3390/a8030786
10.1137/090758763
10.1016/j.aml.2011.01.002
10.1007/s11075-009-9345-5
10.3390/fractalfract5020027
10.1016/B978-0-12-397013-8.00002-9
10.1016/j.cam.2020.113053
10.3390/fractalfract5010025
10.1007/s10957-011-9929-9
10.1201/9781315153469
10.1016/j.cam.2013.05.013
ContentType Journal Article
Copyright 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math10071144
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_d4618bcaa0a448d6a21d0ce777cbb2d9
10_3390_math10071144
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c297t-b0c96a634e2d8e5eb19c346baa5938762a84ebde232a0b2f315db0210c3baf023
IEDL.DBID BENPR
ISSN 2227-7390
IngestDate Wed Aug 27 01:31:37 EDT 2025
Fri Jul 25 11:53:51 EDT 2025
Tue Jul 01 02:58:10 EDT 2025
Thu Apr 24 22:55:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-b0c96a634e2d8e5eb19c346baa5938762a84ebde232a0b2f315db0210c3baf023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8524-6488
OpenAccessLink https://www.proquest.com/docview/2649007361?pq-origsite=%requestingapplication%
PQID 2649007361
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_d4618bcaa0a448d6a21d0ce777cbb2d9
proquest_journals_2649007361
crossref_primary_10_3390_math10071144
crossref_citationtrail_10_3390_math10071144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References (ref_18) 2011; 49
Chun (ref_3) 2008; 195
Chun (ref_10) 2009; 215
Neta (ref_12) 2011; 218
Ardelean (ref_32) 2011; 218
ref_31
Wang (ref_20) 2015; 8
Wang (ref_17) 2015; 70
ref_19
(ref_13) 2010; 216
Kung (ref_14) 1974; 21
(ref_16) 2014; 255
Soleymani (ref_4) 2012; 153
Neta (ref_11) 2010; 217
Susanto (ref_30) 2009; 215
ref_25
ref_24
ref_23
ref_22
Wang (ref_33) 2018; 330
ref_21
(ref_6) 2010; 47
ref_1
ref_2
ref_29
ref_28
Cordero (ref_34) 2007; 190
Ren (ref_7) 2009; 209
ref_8
Zheng (ref_15) 2011; 217
Geum (ref_5) 2011; 24
Sharma (ref_9) 2010; 54
Neta (ref_27) 2012; 218
Behl (ref_26) 2020; 405
References_xml – volume: 218
  start-page: 5043
  year: 2012
  ident: ref_27
  article-title: Basin attrators for various methods for multiple roots
  publication-title: Appl. Math. Comput.
– ident: ref_8
  doi: 10.3390/math8071080
– ident: ref_31
  doi: 10.3390/fractalfract6010046
– ident: ref_24
  doi: 10.3390/fractalfract6020059
– volume: 216
  start-page: 671
  year: 2010
  ident: ref_13
  article-title: A class of three-point root-solvers of optimal order of convergence
  publication-title: Appl. Math. Comput.
– volume: 49
  start-page: 1317
  year: 2011
  ident: ref_18
  article-title: Remarks on “On a general class of multipoint root-finding methods of high computational efficiency”
  publication-title: Siam. J. Numer. Anal.
  doi: 10.1137/100805340
– volume: 218
  start-page: 88
  year: 2011
  ident: ref_32
  article-title: A comparison between iterative methods by using the basins of attraction
  publication-title: Appl. Math. Comput.
– ident: ref_1
– volume: 70
  start-page: 357
  year: 2015
  ident: ref_17
  article-title: Efficient n-point iterative methods with memory for solving nonlinear equations
  publication-title: Numer. Algor.
  doi: 10.1007/s11075-014-9951-8
– volume: 330
  start-page: 695
  year: 2018
  ident: ref_33
  article-title: A new accelerating technique applied to a variant of Cordero-Torregrosa method
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.07.003
– ident: ref_21
  doi: 10.1137/1.9780898718898
– ident: ref_23
  doi: 10.3390/fractalfract6030174
– ident: ref_19
  doi: 10.3390/sym13050884
– volume: 21
  start-page: 634
  year: 1974
  ident: ref_14
  article-title: Optimal order of one-point and multipoint iteration
  publication-title: J. Assoc. Comput. Math.
  doi: 10.1145/321850.321860
– volume: 8
  start-page: 786
  year: 2015
  ident: ref_20
  article-title: A family of newton type iterative methods for solving nonlinear equations
  publication-title: Algorithms
  doi: 10.3390/a8030786
– volume: 47
  start-page: 4402
  year: 2010
  ident: ref_6
  article-title: On a general class of multipoint root-finding methods of high computational efficiency
  publication-title: Siam. J. Numer. Anal.
  doi: 10.1137/090758763
– volume: 217
  start-page: 9592
  year: 2011
  ident: ref_15
  article-title: An optimal Steffensen-type family for solving nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 215
  start-page: 1084
  year: 2009
  ident: ref_30
  article-title: Newton’s method’s basins of attraction revisited
  publication-title: Appl. Math. Comput.
– volume: 218
  start-page: 2533
  year: 2011
  ident: ref_12
  article-title: Interpolatory multipoint methods with memory for solving nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 24
  start-page: 929
  year: 2011
  ident: ref_5
  article-title: A uniparametric family of three-step eighth-order multipoint iterative methods for simple roots
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2011.01.002
– volume: 54
  start-page: 445
  year: 2010
  ident: ref_9
  article-title: A new family of modified Ostrowski’s methods with accelerated eighth order convergence
  publication-title: Numer. Algor.
  doi: 10.1007/s11075-009-9345-5
– ident: ref_25
  doi: 10.3390/fractalfract5020027
– ident: ref_2
  doi: 10.1016/B978-0-12-397013-8.00002-9
– volume: 209
  start-page: 206
  year: 2009
  ident: ref_7
  article-title: A class of two-step Steffensen type methods with fourth-order convergence
  publication-title: Appl. Math. Comput.
– volume: 215
  start-page: 821
  year: 2009
  ident: ref_10
  article-title: Certain improvements of Newton’s method with fourth-order convergence
  publication-title: Appl. Math. Comput.
– volume: 195
  start-page: 454
  year: 2008
  ident: ref_3
  article-title: Some fourth-order iterative methods for solving nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 190
  start-page: 686
  year: 2007
  ident: ref_34
  article-title: Variants of Newton’s Method using fifth-order quadrature foumulas
  publication-title: Appl. Math. Comput.
– volume: 405
  start-page: 113053
  year: 2020
  ident: ref_26
  article-title: High order family of multivariate iterative methods: Convergence and stability
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2020.113053
– ident: ref_29
  doi: 10.3390/fractalfract5010025
– ident: ref_22
– volume: 153
  start-page: 225
  year: 2012
  ident: ref_4
  article-title: An improvement of Ostrowski’s and King’s techniques with optimal convergence order eight
  publication-title: J. Optim. Theo. Appl.
  doi: 10.1007/s10957-011-9929-9
– volume: 217
  start-page: 2448
  year: 2010
  ident: ref_11
  article-title: Construction of optimal order nonlinear solvers usnig inverse interplation
  publication-title: Appl. Math. Comput.
– ident: ref_28
  doi: 10.1201/9781315153469
– volume: 255
  start-page: 362
  year: 2014
  ident: ref_16
  article-title: On generalized biparametric multipoint root finding methods with memory
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.05.013
SSID ssj0000913849
Score 2.1999302
Snippet A novel Newton-type n-point iterative method with memory is proposed for solving nonlinear equations, which is constructed by the Hermite interpolation. The...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1144
SubjectTerms Approximation
Attraction
Basins
Computational efficiency
Computing time
Efficiency
Interpolation
Iterative methods
Mathematics
Methods
nonlinear equation
Nonlinear equations
Numerical methods
optimal convergence order
Stability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1itsgc9SWiSzW6yxyotRWgpYqG3sF_BQknERn-_M5u0VES8eAvJQsJMdua9ZOYNIbcyDjXXBjwAlwNIARAHBRxFmdBJkVohC-xGnkzFeJ48LfhiZ9QX1oQ18sCN4fo2EVGmjVKhAiZhhYojGxqXpqnROra-dQ9y3g6Z8jFYRixLZFPpzoDX9wH_vWJFAOD_5FsO8lL9PyKxTy-jI3LY4kI6aJ7nmOy58oQcTLaiqutTMhvQafXpVrQMZtWyrCkEKBwAjFSSPldVHYyWvkeFTvxYaFoVFMs4aDO5of3qR4deNAI7Ls_IfDR8eRwH7UCEwMQyrQMdGimUYImLbeY4hFlpWCK0UlwyDGsqS5y2DlCSCnVcsIhbjaTOMK0KyM7npFNWpbsglONWjlQmMoe9bkwbbgor4xT4HOeF6JL7jYly06qF49CKVQ6sAQ2a7xq0S-62q98alYxf1j2gtbdrUNvanwCP563H87883iW9ja_ydsOtc8B1Ev86iujyP-5xRfZj7HPwJTo90qnfP9w1oI9a3_gX7Qsl4dgU
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel n-Point Newton-Type Root-Finding Method of High Computational Efficiency
URI https://www.proquest.com/docview/2649007361
https://doaj.org/article/d4618bcaa0a448d6a21d0ce777cbb2d9
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-LnoQn1gfJQc9yeK-kk1OotIqQksRBW9LXqtC2VW7-vudSdOqiN6WTU6TzDfzTeZByJFMY820gROA5QhMAOAgh69EcJ1XheWywmrkwZBf3-c3D-whBNwmIa1yhokeqG1jMEZ-CoZb4rMST85eXiOcGoWvq2GExiJZBggWQL6WL3rD0e08yoJdL0UupxnvGfD7U_ADnzAzAHhA_sMW-Zb9vxDZm5n-OlkL_iE9nx7oBllw9SZZHcybq062yOicDpsPN6Z1NGqe65YCUOEgYKSU9LZp2qj_7GtV6MCPh6ZNRTGdg04nOIToH-355hFYeblN7vu9u8vrKAxGiEwqizbSsZFc8Sx3qRWOAdxKk-VcK8VkhvCmRO60deAtqVinVZYwq5HcmUyrCqz0Dlmqm9rtEspQpRMluHBY85Zpw0xlZVoAr2Os4h1yMhNRaULXcBxeMS6BPaBAy-8C7ZDj-e6XabeMP_ZdoLTne7DHtf_RvD2WQWVKm_NEaKNUrIBDWq7SxMbGFUVhtE6t7JCD2VmVQfEm5dc12ft_eZ-spFjJ4JNwDshS-_buDsG_aHWXLIr-VTdcpa5n6Z-EsdGw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE-xtIAP9ISiJo7txAeECnTZ0u6qQq3UW_ArpVKVlG4K4k_xG5lxkgWE4NZbFPs0nvlmxp6ZD-CF5qmV1uEJ4HKCLgBxUOFXVior6sIrXVM38nyhZsfiw4k8WYMfYy8MlVWOmBiB2reO7si30XFrelZS2euLLwmxRtHr6kih0avFfvj-DVO25au9d3i-W5xPd4_ezpKBVSBxXBddYlOnlVG5CNyXQSJWaZcLZY2ROidsMKUI1gcMNUxqeZ1n0lvKjFxuTR0HHSDk3xB5rsmiyun71Z0Ozdgshe7r63E93cao8zPVIWDWIf7wfJEg4C_8j05tehfuDNEo2-nV5x6sheY-3J6vRrkuH8DhDlu0X8M5a5LD9qzpGMIi0Q5TAss-tm2XTM9iZwybRzJq1taMikdYzxcx3DWy3Tiqgvo8H8LxtQjsEaw3bRMeA5MEIJkpVRmowy63Trraa15gFillrSbwchRR5YYZ5USVcV5hrkICrX4X6AS2Vrsv-tkc_9j3hqS92kMTteOP9vK0Ggy08kJlpXXGpAYzVq8Mz3zqQlEUzlru9QQ2x7OqBjNfVr-U8sn_l5_DzdnR_KA62Fvsb8AtTj0UsfxnE9a7y6vwFCObzj6L6sTg03Xr70-egQuo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBoeIptpTiAz2haBMnduIDQn3sqqXsalVRqbfgV6BSlZRuAPHX-HXMOMkCQnDrLYp9Go-_8WfPzAfwUvHYCGNxBXA4whCAOCjxKymkyarcSVVRNfJ8IY_Ps7cX4mIDfgy1MJRWOWBiAGrXWLojn2DgVvSsJJNJ1adFLI9mb64_R6QgRS-tg5xG5yKn_vs3pG-r1ydHuNZ7nM-m7w-Po15hILJc5W1kYquklmnmuSu8QNxSNs2k0VqolHBCF5k3zuOxQ8eGV2kinCGWZFOjq9D0AOF_M0dWFI9g82C6WJ6tb3io42aRqS7bPk1VPMEz6CfKSkAOkv0RB4NcwF_RIIS42X3Y6s-mbL9zpgew4euHcG--buy6egTLfbZovvorVkfL5rJuGYIkiRATnWVnTdNGs8tQJ8PmQZqaNRWjVBLWqUf0N49sGhpXUNXnYzi_FZM9gVHd1P4pMEFwkuhCFp7q7VJjha2c4jlySiEqOYZXg4lK23csJ-GMqxKZCxm0_N2gY9hbz77uOnX8Y94BWXs9h_prhx_Nzcey366ly2RSGKt1rJG_Oql54mLr8zy3xnCnxrAzrFXZb_pV-ctFt_8__ALuoO-W704Wp8_gLqeCipALtAOj9uaLf47HnNbs9v7E4MNtu_BPYpYROg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+n-Point+Newton-Type+Root-Finding+Method+of+High+Computational+Efficiency&rft.jtitle=Mathematics+%28Basel%29&rft.au=Wang%2C+Xiaofeng&rft.date=2022-04-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=10&rft.issue=7&rft.spage=1144&rft_id=info:doi/10.3390%2Fmath10071144&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math10071144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon