A Novel n-Point Newton-Type Root-Finding Method of High Computational Efficiency
A novel Newton-type n-point iterative method with memory is proposed for solving nonlinear equations, which is constructed by the Hermite interpolation. The proposed iterative method with memory reaches the order (2n+2n−1−1+22n+1+22n−2+2n+1)/2 by using n variable parameters. The computational effici...
Saved in:
Published in | Mathematics (Basel) Vol. 10; no. 7; p. 1144 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel Newton-type n-point iterative method with memory is proposed for solving nonlinear equations, which is constructed by the Hermite interpolation. The proposed iterative method with memory reaches the order (2n+2n−1−1+22n+1+22n−2+2n+1)/2 by using n variable parameters. The computational efficiency of the proposed method is higher than that of the existing Newton-type methods with and without memory. To observe the stability of the proposed method, some complex functions are considered under basins of attraction. Basins of attraction show that the proposed method has better stability and requires a lesser number of iterations than various well-known methods. The numerical results support the theoretical results. |
---|---|
AbstractList | A novel Newton-type n-point iterative method with memory is proposed for solving nonlinear equations, which is constructed by the Hermite interpolation. The proposed iterative method with memory reaches the order ( 2n+2n−1−1+22n+1+22n−2+2n+1 ) /2 by using n variable parameters. The computational efficiency of the proposed method is higher than that of the existing Newton-type methods with and without memory. To observe the stability of the proposed method, some complex functions are considered under basins of attraction. Basins of attraction show that the proposed method has better stability and requires a lesser number of iterations than various well-known methods. The numerical results support the theoretical results. |
Author | Wang, Xiaofeng |
Author_xml | – sequence: 1 givenname: Xiaofeng orcidid: 0000-0001-8524-6488 surname: Wang fullname: Wang, Xiaofeng |
BookMark | eNptUdtKAzEQDVLBennzAwK-uppbdzePpVQreEP0OUwu26Zsk5pNlf69qxURcV5mmDlzhjnnEA1CDA6hU0ouOJfkcgV5QQmpKBViDw0ZY1VR9YPBr_oAnXTdkvQhKa-FHKLHMb6Pb67FoXiMPmR8795zDMXzdu3wU4y5uPLB-jDHdy4vosWxwTM_X-BJXK03GbKPAVo8bRpvvAtme4z2G2g7d_Kdj9DL1fR5MituH65vJuPbwjBZ5UITI0souXDM1m7kNJWGi1IDjCSvq5JBLZy2jnEGRLOG05HVhFFiuIaGMH6Ebna8NsJSrZNfQdqqCF59NWKaK0jZm9YpK0paawNAQIjalsCoJcZVVWW0Zlb2XGc7rnWKrxvXZbWMm9T_1SlWCtmLykvao853KJNi1yXX_FylRH1aoH5b0MPZH7jxO71yAt_-v_QBdyqK-w |
CitedBy_id | crossref_primary_10_1016_j_eswa_2023_119987 crossref_primary_10_1016_j_cam_2023_115096 crossref_primary_10_1177_09544070241265395 |
Cites_doi | 10.3390/math8071080 10.3390/fractalfract6010046 10.3390/fractalfract6020059 10.1137/100805340 10.1007/s11075-014-9951-8 10.1016/j.cam.2017.07.003 10.1137/1.9780898718898 10.3390/fractalfract6030174 10.3390/sym13050884 10.1145/321850.321860 10.3390/a8030786 10.1137/090758763 10.1016/j.aml.2011.01.002 10.1007/s11075-009-9345-5 10.3390/fractalfract5020027 10.1016/B978-0-12-397013-8.00002-9 10.1016/j.cam.2020.113053 10.3390/fractalfract5010025 10.1007/s10957-011-9929-9 10.1201/9781315153469 10.1016/j.cam.2013.05.013 |
ContentType | Journal Article |
Copyright | 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math10071144 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_d4618bcaa0a448d6a21d0ce777cbb2d9 10_3390_math10071144 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c297t-b0c96a634e2d8e5eb19c346baa5938762a84ebde232a0b2f315db0210c3baf023 |
IEDL.DBID | BENPR |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:31:37 EDT 2025 Fri Jul 25 11:53:51 EDT 2025 Tue Jul 01 02:58:10 EDT 2025 Thu Apr 24 22:55:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-b0c96a634e2d8e5eb19c346baa5938762a84ebde232a0b2f315db0210c3baf023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8524-6488 |
OpenAccessLink | https://www.proquest.com/docview/2649007361?pq-origsite=%requestingapplication% |
PQID | 2649007361 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d4618bcaa0a448d6a21d0ce777cbb2d9 proquest_journals_2649007361 crossref_primary_10_3390_math10071144 crossref_citationtrail_10_3390_math10071144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | (ref_18) 2011; 49 Chun (ref_3) 2008; 195 Chun (ref_10) 2009; 215 Neta (ref_12) 2011; 218 Ardelean (ref_32) 2011; 218 ref_31 Wang (ref_20) 2015; 8 Wang (ref_17) 2015; 70 ref_19 (ref_13) 2010; 216 Kung (ref_14) 1974; 21 (ref_16) 2014; 255 Soleymani (ref_4) 2012; 153 Neta (ref_11) 2010; 217 Susanto (ref_30) 2009; 215 ref_25 ref_24 ref_23 ref_22 Wang (ref_33) 2018; 330 ref_21 (ref_6) 2010; 47 ref_1 ref_2 ref_29 ref_28 Cordero (ref_34) 2007; 190 Ren (ref_7) 2009; 209 ref_8 Zheng (ref_15) 2011; 217 Geum (ref_5) 2011; 24 Sharma (ref_9) 2010; 54 Neta (ref_27) 2012; 218 Behl (ref_26) 2020; 405 |
References_xml | – volume: 218 start-page: 5043 year: 2012 ident: ref_27 article-title: Basin attrators for various methods for multiple roots publication-title: Appl. Math. Comput. – ident: ref_8 doi: 10.3390/math8071080 – ident: ref_31 doi: 10.3390/fractalfract6010046 – ident: ref_24 doi: 10.3390/fractalfract6020059 – volume: 216 start-page: 671 year: 2010 ident: ref_13 article-title: A class of three-point root-solvers of optimal order of convergence publication-title: Appl. Math. Comput. – volume: 49 start-page: 1317 year: 2011 ident: ref_18 article-title: Remarks on “On a general class of multipoint root-finding methods of high computational efficiency” publication-title: Siam. J. Numer. Anal. doi: 10.1137/100805340 – volume: 218 start-page: 88 year: 2011 ident: ref_32 article-title: A comparison between iterative methods by using the basins of attraction publication-title: Appl. Math. Comput. – ident: ref_1 – volume: 70 start-page: 357 year: 2015 ident: ref_17 article-title: Efficient n-point iterative methods with memory for solving nonlinear equations publication-title: Numer. Algor. doi: 10.1007/s11075-014-9951-8 – volume: 330 start-page: 695 year: 2018 ident: ref_33 article-title: A new accelerating technique applied to a variant of Cordero-Torregrosa method publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2017.07.003 – ident: ref_21 doi: 10.1137/1.9780898718898 – ident: ref_23 doi: 10.3390/fractalfract6030174 – ident: ref_19 doi: 10.3390/sym13050884 – volume: 21 start-page: 634 year: 1974 ident: ref_14 article-title: Optimal order of one-point and multipoint iteration publication-title: J. Assoc. Comput. Math. doi: 10.1145/321850.321860 – volume: 8 start-page: 786 year: 2015 ident: ref_20 article-title: A family of newton type iterative methods for solving nonlinear equations publication-title: Algorithms doi: 10.3390/a8030786 – volume: 47 start-page: 4402 year: 2010 ident: ref_6 article-title: On a general class of multipoint root-finding methods of high computational efficiency publication-title: Siam. J. Numer. Anal. doi: 10.1137/090758763 – volume: 217 start-page: 9592 year: 2011 ident: ref_15 article-title: An optimal Steffensen-type family for solving nonlinear equations publication-title: Appl. Math. Comput. – volume: 215 start-page: 1084 year: 2009 ident: ref_30 article-title: Newton’s method’s basins of attraction revisited publication-title: Appl. Math. Comput. – volume: 218 start-page: 2533 year: 2011 ident: ref_12 article-title: Interpolatory multipoint methods with memory for solving nonlinear equations publication-title: Appl. Math. Comput. – volume: 24 start-page: 929 year: 2011 ident: ref_5 article-title: A uniparametric family of three-step eighth-order multipoint iterative methods for simple roots publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2011.01.002 – volume: 54 start-page: 445 year: 2010 ident: ref_9 article-title: A new family of modified Ostrowski’s methods with accelerated eighth order convergence publication-title: Numer. Algor. doi: 10.1007/s11075-009-9345-5 – ident: ref_25 doi: 10.3390/fractalfract5020027 – ident: ref_2 doi: 10.1016/B978-0-12-397013-8.00002-9 – volume: 209 start-page: 206 year: 2009 ident: ref_7 article-title: A class of two-step Steffensen type methods with fourth-order convergence publication-title: Appl. Math. Comput. – volume: 215 start-page: 821 year: 2009 ident: ref_10 article-title: Certain improvements of Newton’s method with fourth-order convergence publication-title: Appl. Math. Comput. – volume: 195 start-page: 454 year: 2008 ident: ref_3 article-title: Some fourth-order iterative methods for solving nonlinear equations publication-title: Appl. Math. Comput. – volume: 190 start-page: 686 year: 2007 ident: ref_34 article-title: Variants of Newton’s Method using fifth-order quadrature foumulas publication-title: Appl. Math. Comput. – volume: 405 start-page: 113053 year: 2020 ident: ref_26 article-title: High order family of multivariate iterative methods: Convergence and stability publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2020.113053 – ident: ref_29 doi: 10.3390/fractalfract5010025 – ident: ref_22 – volume: 153 start-page: 225 year: 2012 ident: ref_4 article-title: An improvement of Ostrowski’s and King’s techniques with optimal convergence order eight publication-title: J. Optim. Theo. Appl. doi: 10.1007/s10957-011-9929-9 – volume: 217 start-page: 2448 year: 2010 ident: ref_11 article-title: Construction of optimal order nonlinear solvers usnig inverse interplation publication-title: Appl. Math. Comput. – ident: ref_28 doi: 10.1201/9781315153469 – volume: 255 start-page: 362 year: 2014 ident: ref_16 article-title: On generalized biparametric multipoint root finding methods with memory publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.05.013 |
SSID | ssj0000913849 |
Score | 2.1999302 |
Snippet | A novel Newton-type n-point iterative method with memory is proposed for solving nonlinear equations, which is constructed by the Hermite interpolation. The... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1144 |
SubjectTerms | Approximation Attraction Basins Computational efficiency Computing time Efficiency Interpolation Iterative methods Mathematics Methods nonlinear equation Nonlinear equations Numerical methods optimal convergence order Stability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1itsgc9SWiSzW6yxyotRWgpYqG3sF_BQknERn-_M5u0VES8eAvJQsJMdua9ZOYNIbcyDjXXBjwAlwNIARAHBRxFmdBJkVohC-xGnkzFeJ48LfhiZ9QX1oQ18sCN4fo2EVGmjVKhAiZhhYojGxqXpqnROra-dQ9y3g6Z8jFYRixLZFPpzoDX9wH_vWJFAOD_5FsO8lL9PyKxTy-jI3LY4kI6aJ7nmOy58oQcTLaiqutTMhvQafXpVrQMZtWyrCkEKBwAjFSSPldVHYyWvkeFTvxYaFoVFMs4aDO5of3qR4deNAI7Ls_IfDR8eRwH7UCEwMQyrQMdGimUYImLbeY4hFlpWCK0UlwyDGsqS5y2DlCSCnVcsIhbjaTOMK0KyM7npFNWpbsglONWjlQmMoe9bkwbbgor4xT4HOeF6JL7jYly06qF49CKVQ6sAQ2a7xq0S-62q98alYxf1j2gtbdrUNvanwCP563H87883iW9ja_ydsOtc8B1Ev86iujyP-5xRfZj7HPwJTo90qnfP9w1oI9a3_gX7Qsl4dgU priority: 102 providerName: Directory of Open Access Journals |
Title | A Novel n-Point Newton-Type Root-Finding Method of High Computational Efficiency |
URI | https://www.proquest.com/docview/2649007361 https://doaj.org/article/d4618bcaa0a448d6a21d0ce777cbb2d9 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-LnoQn1gfJQc9yeK-kk1OotIqQksRBW9LXqtC2VW7-vudSdOqiN6WTU6TzDfzTeZByJFMY820gROA5QhMAOAgh69EcJ1XheWywmrkwZBf3-c3D-whBNwmIa1yhokeqG1jMEZ-CoZb4rMST85eXiOcGoWvq2GExiJZBggWQL6WL3rD0e08yoJdL0UupxnvGfD7U_ADnzAzAHhA_sMW-Zb9vxDZm5n-OlkL_iE9nx7oBllw9SZZHcybq062yOicDpsPN6Z1NGqe65YCUOEgYKSU9LZp2qj_7GtV6MCPh6ZNRTGdg04nOIToH-355hFYeblN7vu9u8vrKAxGiEwqizbSsZFc8Sx3qRWOAdxKk-VcK8VkhvCmRO60deAtqVinVZYwq5HcmUyrCqz0Dlmqm9rtEspQpRMluHBY85Zpw0xlZVoAr2Os4h1yMhNRaULXcBxeMS6BPaBAy-8C7ZDj-e6XabeMP_ZdoLTne7DHtf_RvD2WQWVKm_NEaKNUrIBDWq7SxMbGFUVhtE6t7JCD2VmVQfEm5dc12ft_eZ-spFjJ4JNwDshS-_buDsG_aHWXLIr-VTdcpa5n6Z-EsdGw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE-xtIAP9ISiJo7txAeECnTZ0u6qQq3UW_ArpVKVlG4K4k_xG5lxkgWE4NZbFPs0nvlmxp6ZD-CF5qmV1uEJ4HKCLgBxUOFXVior6sIrXVM38nyhZsfiw4k8WYMfYy8MlVWOmBiB2reO7si30XFrelZS2euLLwmxRtHr6kih0avFfvj-DVO25au9d3i-W5xPd4_ezpKBVSBxXBddYlOnlVG5CNyXQSJWaZcLZY2ROidsMKUI1gcMNUxqeZ1n0lvKjFxuTR0HHSDk3xB5rsmiyun71Z0Ozdgshe7r63E93cao8zPVIWDWIf7wfJEg4C_8j05tehfuDNEo2-nV5x6sheY-3J6vRrkuH8DhDlu0X8M5a5LD9qzpGMIi0Q5TAss-tm2XTM9iZwybRzJq1taMikdYzxcx3DWy3Tiqgvo8H8LxtQjsEaw3bRMeA5MEIJkpVRmowy63Trraa15gFillrSbwchRR5YYZ5USVcV5hrkICrX4X6AS2Vrsv-tkc_9j3hqS92kMTteOP9vK0Ggy08kJlpXXGpAYzVq8Mz3zqQlEUzlru9QQ2x7OqBjNfVr-U8sn_l5_DzdnR_KA62Fvsb8AtTj0UsfxnE9a7y6vwFCObzj6L6sTg03Xr70-egQuo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBoeIptpTiAz2haBMnduIDQn3sqqXsalVRqbfgV6BSlZRuAPHX-HXMOMkCQnDrLYp9Go-_8WfPzAfwUvHYCGNxBXA4whCAOCjxKymkyarcSVVRNfJ8IY_Ps7cX4mIDfgy1MJRWOWBiAGrXWLojn2DgVvSsJJNJ1adFLI9mb64_R6QgRS-tg5xG5yKn_vs3pG-r1ydHuNZ7nM-m7w-Po15hILJc5W1kYquklmnmuSu8QNxSNs2k0VqolHBCF5k3zuOxQ8eGV2kinCGWZFOjq9D0AOF_M0dWFI9g82C6WJ6tb3io42aRqS7bPk1VPMEz6CfKSkAOkv0RB4NcwF_RIIS42X3Y6s-mbL9zpgew4euHcG--buy6egTLfbZovvorVkfL5rJuGYIkiRATnWVnTdNGs8tQJ8PmQZqaNRWjVBLWqUf0N49sGhpXUNXnYzi_FZM9gVHd1P4pMEFwkuhCFp7q7VJjha2c4jlySiEqOYZXg4lK23csJ-GMqxKZCxm0_N2gY9hbz77uOnX8Y94BWXs9h_prhx_Nzcey366ly2RSGKt1rJG_Oql54mLr8zy3xnCnxrAzrFXZb_pV-ctFt_8__ALuoO-W704Wp8_gLqeCipALtAOj9uaLf47HnNbs9v7E4MNtu_BPYpYROg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+n-Point+Newton-Type+Root-Finding+Method+of+High+Computational+Efficiency&rft.jtitle=Mathematics+%28Basel%29&rft.au=Wang%2C+Xiaofeng&rft.date=2022-04-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=10&rft.issue=7&rft.spage=1144&rft_id=info:doi/10.3390%2Fmath10071144&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math10071144 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |