Artificial neural networks as speech recognisers for dysarthric speech: Identifying the best-performing set of MFCC parameters and studying a speaker-independent approach

•The best performing set of MFCC parameters for dysarthric speech was studied.•A speaker-independent dysarthric ASR model based on ANNs is proposed.•The ASR systems trained by mel cepstrum with 12 coefficients provided the best accuracy.•The proposed speaker-independent ASR model provided 68.38% wor...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering informatics Vol. 28; no. 1; pp. 102 - 110
Main Authors Shahamiri, Seyed Reza, Binti Salim, Siti Salwah
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2014
Subjects
Online AccessGet full text
ISSN1474-0346
DOI10.1016/j.aei.2014.01.001

Cover

Loading…
Abstract •The best performing set of MFCC parameters for dysarthric speech was studied.•A speaker-independent dysarthric ASR model based on ANNs is proposed.•The ASR systems trained by mel cepstrum with 12 coefficients provided the best accuracy.•The proposed speaker-independent ASR model provided 68.38% word recognition rate.•The highest word recognition rate of the speaker-dependent ASR systems was 95%. Dysarthria is a neurological impairment of controlling the motor speech articulators that compromises the speech signal. Automatic Speech Recognition (ASR) can be very helpful for speakers with dysarthria because the disabled persons are often physically incapacitated. Mel-Frequency Cepstral Coefficients (MFCCs) have been proven to be an appropriate representation of dysarthric speech, but the question of which MFCC-based feature set represents dysarthric acoustic features most effectively has not been answered. Moreover, most of the current dysarthric speech recognisers are either speaker-dependent (SD) or speaker-adaptive (SA), and they perform poorly in terms of generalisability as a speaker-independent (SI) model. First, by comparing the results of 28 dysarthric SD speech recognisers, this study identifies the best-performing set of MFCC parameters, which can represent dysarthric acoustic features to be used in Artificial Neural Network (ANN)-based ASR. Next, this paper studies the application of ANNs as a fixed-length isolated-word SI ASR for individuals who suffer from dysarthria. The results show that the speech recognisers trained by the conventional 12 coefficients MFCC features without the use of delta and acceleration features provided the best accuracy, and the proposed SI ASR recognised the speech of the unforeseen dysarthric evaluation subjects with word recognition rate of 68.38%.
AbstractList •The best performing set of MFCC parameters for dysarthric speech was studied.•A speaker-independent dysarthric ASR model based on ANNs is proposed.•The ASR systems trained by mel cepstrum with 12 coefficients provided the best accuracy.•The proposed speaker-independent ASR model provided 68.38% word recognition rate.•The highest word recognition rate of the speaker-dependent ASR systems was 95%. Dysarthria is a neurological impairment of controlling the motor speech articulators that compromises the speech signal. Automatic Speech Recognition (ASR) can be very helpful for speakers with dysarthria because the disabled persons are often physically incapacitated. Mel-Frequency Cepstral Coefficients (MFCCs) have been proven to be an appropriate representation of dysarthric speech, but the question of which MFCC-based feature set represents dysarthric acoustic features most effectively has not been answered. Moreover, most of the current dysarthric speech recognisers are either speaker-dependent (SD) or speaker-adaptive (SA), and they perform poorly in terms of generalisability as a speaker-independent (SI) model. First, by comparing the results of 28 dysarthric SD speech recognisers, this study identifies the best-performing set of MFCC parameters, which can represent dysarthric acoustic features to be used in Artificial Neural Network (ANN)-based ASR. Next, this paper studies the application of ANNs as a fixed-length isolated-word SI ASR for individuals who suffer from dysarthria. The results show that the speech recognisers trained by the conventional 12 coefficients MFCC features without the use of delta and acceleration features provided the best accuracy, and the proposed SI ASR recognised the speech of the unforeseen dysarthric evaluation subjects with word recognition rate of 68.38%.
Author Binti Salim, Siti Salwah
Shahamiri, Seyed Reza
Author_xml – sequence: 1
  givenname: Seyed Reza
  orcidid: 0000-0003-1543-5931
  surname: Shahamiri
  fullname: Shahamiri, Seyed Reza
  email: admin@rezanet.com
– sequence: 2
  givenname: Siti Salwah
  surname: Binti Salim
  fullname: Binti Salim, Siti Salwah
  email: salwa@um.edu.my
BookMark eNp9kE1OwzAQhb0Aid8DsPMFEuw4SlJYVRWFSiA2sLam9oS6tHY0dkG9EqfEKaxYsBrp6X1Pmu-MHfngkbErKUopZHO9LgFdWQlZl0KWQsgjdirrti6EqpsTdhbjOodNN2lP2deUkuudcbDhHnd0OOkz0HvkEHkcEM2KE5rw5l1EirwPxO0-AqUVOfPbuOELiz4v7Z1_42mFfIkxFQNSrm_HLGLioedP89mMD0CwxTSugbc8pp09cDCuwTtS4bzFAf24yWEYKIBZXbDjHjYRL3_vOXud373MHorH5_vFbPpYmGrSpgJakFYY7Oq2a2yt-k5Ji0uwplIdgJBqWVfS2K5a9i3WapIxkyNlKkTVNOqctT-7hkKMhL02LkFywScCt9FS6FGzXuusWY-atZA6G82k_EMO5LZA-3-Z2x8G80sfDklH49AbtC5bT9oG9w_9DSQEnuc
CitedBy_id crossref_primary_10_1007_s13369_024_08919_5
crossref_primary_10_1155_2024_8890592
crossref_primary_10_1109_TNSRE_2021_3076778
crossref_primary_10_1007_s11135_016_0375_5
crossref_primary_10_1007_s00521_020_05672_2
crossref_primary_10_1007_s11042_020_09580_4
crossref_primary_10_1016_j_eswa_2017_08_015
crossref_primary_10_1109_TNSRE_2014_2309336
crossref_primary_10_1007_s00521_020_04793_y
crossref_primary_10_1016_j_bbe_2015_11_004
crossref_primary_10_1186_s13636_023_00318_2
crossref_primary_10_1080_17549507_2018_1510033
crossref_primary_10_1109_TNSRE_2023_3331524
crossref_primary_10_1007_s11277_021_08899_x
crossref_primary_10_1016_j_ins_2020_05_017
crossref_primary_10_1109_TNSRE_2016_2638830
crossref_primary_10_1007_s10772_018_9523_8
crossref_primary_10_1016_j_compeleceng_2019_03_011
crossref_primary_10_2196_44489
crossref_primary_10_1007_s10772_021_09808_0
crossref_primary_10_1016_j_bbe_2016_05_003
crossref_primary_10_1080_23311916_2020_1751557
crossref_primary_10_1007_s12559_022_10041_3
crossref_primary_10_1007_s13198_019_00863_0
crossref_primary_10_1016_j_csl_2019_05_002
crossref_primary_10_1016_j_cmpb_2021_106602
crossref_primary_10_1142_S0218488517500052
crossref_primary_10_1080_0952813X_2021_1948921
crossref_primary_10_1016_j_aei_2024_102608
crossref_primary_10_4015_S1016237215500209
crossref_primary_10_3390_app11062477
crossref_primary_10_1007_s00034_024_02770_7
crossref_primary_10_1016_j_measurement_2024_114515
crossref_primary_10_1044_2024_JSLHR_23_00740
crossref_primary_10_1177_1729881417719836
crossref_primary_10_1016_j_future_2023_08_002
crossref_primary_10_1108_LHT_02_2022_0091
crossref_primary_10_26599_BDMA_2022_9020017
crossref_primary_10_1007_s11042_020_08824_7
crossref_primary_10_1007_s12652_020_02764_8
crossref_primary_10_4218_etrij_2017_0260
crossref_primary_10_1007_s10772_021_09899_9
crossref_primary_10_1016_j_asoc_2022_108411
crossref_primary_10_1080_09544828_2024_2434210
crossref_primary_10_3390_electronics12204278
crossref_primary_10_1007_s12652_021_03542_w
Cites_doi 10.1016/S0925-2312(00)00308-8
10.1080/07434619512331277289
10.1080/07434610012331279044
10.1080/aac.17.4.265.275
10.1080/07434610012331278904
10.21437/Interspeech.2009-444
10.1109/TNSRE.2005.856074
10.1044/1092-4388(2011/10-0349)
10.1016/j.infsof.2011.02.006
10.1016/j.specom.2011.10.006
10.21437/Interspeech.2008-480
10.1016/j.medengphy.2005.11.002
10.1109/TBME.2003.820386
10.1109/ICASSP.2006.1660840
10.3109/07434618.2010.532508
10.1080/14015430802657216
10.1080/10400435.2010.483646
10.1016/j.medengphy.2006.06.009
10.21437/Eurospeech.2003-384
10.1682/JRRD.2004.06.0067
10.1155/2009/540409
10.1016/j.dsp.2009.10.004
10.1016/S0021-9924(00)00023-X
10.1016/0169-2607(91)90071-Z
10.21437/ICSLP.2002-217
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.aei.2014.01.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EndPage 110
ExternalDocumentID 10_1016_j_aei_2014_01_001
S1474034614000020
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
UHS
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-a7a1d0ce84786d43f831debadc238aa013b421cd82bf7e439c29cb423c2ee3663
IEDL.DBID .~1
ISSN 1474-0346
IngestDate Tue Jul 01 02:02:35 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
Fri Nov 22 06:49:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mel-frequency cepstral coefficients
Artificial neural network
Dysarthria
Automatic speech recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-a7a1d0ce84786d43f831debadc238aa013b421cd82bf7e439c29cb423c2ee3663
ORCID 0000-0003-1543-5931
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_aei_2014_01_001
crossref_primary_10_1016_j_aei_2014_01_001
elsevier_sciencedirect_doi_10_1016_j_aei_2014_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2014
2014-01-00
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationTitle Advanced engineering informatics
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shahamiri, Kadir, Ibrahim, Hashim (b0170) 2011; 53
Selouani, Yakoub, O’Shaughnessy (b0015) 2009; 2009
H.V. Sharma, M. Hasegawa-Johnson, Universal access: speech recognition for talkers with spastic dysarthria, in: Proceedings of the 10th Annual Conference of the International Speech Communication Association 2009, Brighton, England, 2009, pp. 1447–1450.
Wiśniewski, Kuniszyk-Jóźkowiak, Smołka, Suszyński (b0105) 2007
S.R. Shahamiri, S.S. Binti Salim, Real-time frequency-based noise-robust automatic speech recognition using multi-nets artificial neural networks: a multi-views multi-learners approach, Neurocomputing, in press
Hawley, Enderby, Green, Cunningham, Brownsell, Carmichael, Parker, Hatzis, O’Neill, Palmer (b0050) 2007; 29
Kent (b0165) 2000; 33
Ferrier, Shane, Ballard, Carpenter, Benoit (b0040) 1995; 11
E. Sanders, M. Ruiter, L. Beijer, H. Strik, Automatic recognition of Dutch dysarthric speech: a pilot study, in: Proceedings of the 7th International Conference on Spoken Language Processing, Denver, CO, USA, 2002, pp. 661–664.
M. Hasegawa-Johnson, J. Gunderson, A. Perlman, T. Huang, HMM-based and SVM-based recognition of the speech of talkers with spastic dysarthria, in: Proceedings of the 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2006, pp. 1060–1063.
Raghavendra, Rosengren, Hunnicutt (b0155) 2001; 17
H. Kim, M. Hasegawa-Johnson, A. Perlman, J. Gunderson, T. Huang, K. Watkin, S. Frame, Dysarthric speech database for universal access research, in: Proc. of the 9th Annual Conference of the International Speech Communication Association, Brisbane, Australia, 2008, pp. 1741–1744.
Polur, Miller (b0075) 2006; 28
Trentin, Gori (b0130) 2001; 37
Godino-Llorente, Gomez-Vilda (b0110) 2004; 51
P. Green, J. Carmichael, A. Hatzis, P. Enderby, M. Hawley, M. Parker, Automatic speech recognition with sparse training data for dysarthric speakers, in: Proceedings of the 8th European Conference on Speech Communication and Technology, Geneva, Switzerland, 2003, pp. 1189–1192.
Talbot (b0070) 2000; 41
Polur, Miller (b0010) 2005; 42
Jurafsky, Martin (b0100) 2008
Young, Mihailidis (b0045) 2010; 22
Bourlard, Morgan (b0085) 1994
Deller, Hsu, Ferrier (b0120) 1991; 35
Kitzing, Maier, Ahlander (b0030) 2009; 34
H.V. Sharma, M. Hasegawa-Johnson, State-transition interpolation and MAP adaptation for HMM-based dysarthric speech recognition, in: Proceedings of the NAACL HLT 2010 Workshop on Speech and Language Processing for Assistive Technologies, Association for Computational Linguistics, Los Angeles, CA, 2010, pp. 72–79.
Borrie, McAuliffe, Liss (b0025) 2012; 55
Doyle, Leeper, Kotler, Thomas-Stonell, Oneill, Dylke, Rolls (b0035) 1997; 34
.
Hux, Rankin-Erickson, Manasse, Lauritzen (b0060) 2000; 16
Polur, Miller (b0115) 2005; 13
Dede, Sazli (b0135) 2010; 20
Rudzicz (b0150) 2012; 54
Jayaram, Abdelhamied (b0145) 1995; 32
Fager, Beukelman, Jakobs, Hosom (b0055) 2010; 26
Morales, Cox (b0020) 2009; 2009
Rosen, Yampolsky (b0005) 2000; 16
Wiśniewski (10.1016/j.aei.2014.01.001_b0105) 2007
10.1016/j.aei.2014.01.001_b0095
Godino-Llorente (10.1016/j.aei.2014.01.001_b0110) 2004; 51
10.1016/j.aei.2014.01.001_b0090
Hawley (10.1016/j.aei.2014.01.001_b0050) 2007; 29
Jurafsky (10.1016/j.aei.2014.01.001_b0100) 2008
Shahamiri (10.1016/j.aei.2014.01.001_b0170) 2011; 53
Kent (10.1016/j.aei.2014.01.001_b0165) 2000; 33
Jayaram (10.1016/j.aei.2014.01.001_b0145) 1995; 32
Polur (10.1016/j.aei.2014.01.001_b0115) 2005; 13
Hux (10.1016/j.aei.2014.01.001_b0060) 2000; 16
Trentin (10.1016/j.aei.2014.01.001_b0130) 2001; 37
Selouani (10.1016/j.aei.2014.01.001_b0015) 2009; 2009
Talbot (10.1016/j.aei.2014.01.001_b0070) 2000; 41
Ferrier (10.1016/j.aei.2014.01.001_b0040) 1995; 11
Young (10.1016/j.aei.2014.01.001_b0045) 2010; 22
10.1016/j.aei.2014.01.001_b0160
Raghavendra (10.1016/j.aei.2014.01.001_b0155) 2001; 17
Kitzing (10.1016/j.aei.2014.01.001_b0030) 2009; 34
10.1016/j.aei.2014.01.001_b0080
Dede (10.1016/j.aei.2014.01.001_b0135) 2010; 20
Deller (10.1016/j.aei.2014.01.001_b0120) 1991; 35
10.1016/j.aei.2014.01.001_b0125
Fager (10.1016/j.aei.2014.01.001_b0055) 2010; 26
10.1016/j.aei.2014.01.001_b0065
10.1016/j.aei.2014.01.001_b0140
Polur (10.1016/j.aei.2014.01.001_b0010) 2005; 42
Morales (10.1016/j.aei.2014.01.001_b0020) 2009; 2009
Doyle (10.1016/j.aei.2014.01.001_b0035) 1997; 34
Bourlard (10.1016/j.aei.2014.01.001_b0085) 1994
Polur (10.1016/j.aei.2014.01.001_b0075) 2006; 28
Borrie (10.1016/j.aei.2014.01.001_b0025) 2012; 55
Rosen (10.1016/j.aei.2014.01.001_b0005) 2000; 16
Rudzicz (10.1016/j.aei.2014.01.001_b0150) 2012; 54
References_xml – volume: 11
  start-page: 165
  year: 1995
  end-page: 175
  ident: b0040
  article-title: Dysarthric speakers’ intelligibility and speech characteristics in relation to computer speech recognition
  publication-title: Augment. Altern. Comm.
– volume: 28
  start-page: 741
  year: 2006
  end-page: 748
  ident: b0075
  article-title: Investigation of an HMM/ANN hybrid structure in pattern recognition application using cepstral analysis of dysarthric (distorted) speech signals
  publication-title: Med. Eng. Phys.
– reference: S.R. Shahamiri, S.S. Binti Salim, Real-time frequency-based noise-robust automatic speech recognition using multi-nets artificial neural networks: a multi-views multi-learners approach, Neurocomputing, in press, <
– reference: H.V. Sharma, M. Hasegawa-Johnson, State-transition interpolation and MAP adaptation for HMM-based dysarthric speech recognition, in: Proceedings of the NAACL HLT 2010 Workshop on Speech and Language Processing for Assistive Technologies, Association for Computational Linguistics, Los Angeles, CA, 2010, pp. 72–79.
– volume: 16
  start-page: 186
  year: 2000
  end-page: 196
  ident: b0060
  article-title: Accuracy of three speech recognition systems: case study of dysarthric speech
  publication-title: Augment. Altern. Comm.
– volume: 54
  start-page: 430
  year: 2012
  end-page: 444
  ident: b0150
  article-title: Using articulatory likelihoods in the recognition of dysarthric speech
  publication-title: Speech Commun.
– volume: 29
  start-page: 586
  year: 2007
  end-page: 593
  ident: b0050
  article-title: A speech-controlled environmental control system for people with severe dysarthria
  publication-title: Med. Eng. Phys.
– volume: 37
  start-page: 91
  year: 2001
  end-page: 126
  ident: b0130
  article-title: A survey of hybrid ANN/HMM models for automatic speech recognition
  publication-title: Neurocomputing
– reference: H.V. Sharma, M. Hasegawa-Johnson, Universal access: speech recognition for talkers with spastic dysarthria, in: Proceedings of the 10th Annual Conference of the International Speech Communication Association 2009, Brighton, England, 2009, pp. 1447–1450.
– year: 1994
  ident: b0085
  article-title: Connectionist Speech Recognition: A Hybrid Approach
– volume: 2009
  start-page: 1
  year: 2009
  end-page: 14
  ident: b0020
  article-title: Modelling errors in automatic speech recognition for dysarthric speakers
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 34
  start-page: 309
  year: 1997
  end-page: 316
  ident: b0035
  article-title: Dysarthric speech: a comparison of computerized speech recognition and listener intelligibility
  publication-title: J. Rehabil. Res. Dev.
– volume: 26
  start-page: 267
  year: 2010
  end-page: 277
  ident: b0055
  article-title: Evaluation of a speech recognition prototype for speakers with moderate and severe dysarthria: a preliminary report
  publication-title: Augment. Altern. Comm.
– volume: 53
  start-page: 774
  year: 2011
  end-page: 788
  ident: b0170
  article-title: An automated framework for software test oracle
  publication-title: Inf. Softw. Technol.
– volume: 17
  start-page: 265
  year: 2001
  end-page: 275
  ident: b0155
  article-title: An investigation of different degrees of dysarthric speech as input to speaker-adaptive and speaker-dependent recognition systems
  publication-title: Augment. Altern. Comm.
– volume: 35
  start-page: 125
  year: 1991
  end-page: 139
  ident: b0120
  article-title: On the use of hidden Markov modeling for recognition of dysarthric speech
  publication-title: Comput. Meth. Prog. Biomed.
– volume: 41
  start-page: 31
  year: 2000
  end-page: 38
  ident: b0070
  article-title: Improving the speech recognition in the ENABL project
  publication-title: KTH TMH-QPSR
– reference: M. Hasegawa-Johnson, J. Gunderson, A. Perlman, T. Huang, HMM-based and SVM-based recognition of the speech of talkers with spastic dysarthria, in: Proceedings of the 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2006, pp. 1060–1063.
– reference: E. Sanders, M. Ruiter, L. Beijer, H. Strik, Automatic recognition of Dutch dysarthric speech: a pilot study, in: Proceedings of the 7th International Conference on Spoken Language Processing, Denver, CO, USA, 2002, pp. 661–664.
– volume: 32
  start-page: 162
  year: 1995
  end-page: 169
  ident: b0145
  article-title: Experiments in dysarthric speech recognition using artificial neural networks
  publication-title: J. Rehabil. Res. Dev.
– volume: 20
  start-page: 763
  year: 2010
  end-page: 768
  ident: b0135
  article-title: Speech recognition with artificial neural networks
  publication-title: Digit. Signal Process.
– volume: 51
  start-page: 380
  year: 2004
  end-page: 384
  ident: b0110
  article-title: Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 22
  start-page: 99
  year: 2010
  end-page: 112
  ident: b0045
  article-title: Difficulties in automatic speech recognition of dysarthric speakers and implications for speech-based applications used by the elderly: a literature review
  publication-title: Assist. Technol.
– volume: 13
  start-page: 558
  year: 2005
  end-page: 561
  ident: b0115
  article-title: Experiments with fast Fourier transform, linear predictive and cepstral coefficients in dysarthric speech recognition algorithms using hidden Markov model
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: >.
– volume: 55
  start-page: 290
  year: 2012
  end-page: 305
  ident: b0025
  article-title: Perceptual learning of dysarthric speech: a review of experimental studies
  publication-title: J. Speech Lang. Hear. Res.
– volume: 16
  start-page: 48
  year: 2000
  end-page: 60
  ident: b0005
  article-title: Automatic speech recognition and a review of its functioning with dysarthric speech
  publication-title: Augment. Altern. Comm.
– volume: 2009
  start-page: 1
  year: 2009
  end-page: 12
  ident: b0015
  article-title: Alternative speech communication system for persons with severe speech disorders
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 34
  start-page: 91
  year: 2009
  end-page: 96
  ident: b0030
  article-title: Automatic speech recognition (ASR) and its use as a tool for assessment or therapy of voice, speech, and language disorders
  publication-title: Logop. Phoniatr. Voco.
– volume: 42
  start-page: 363
  year: 2005
  end-page: 371
  ident: b0010
  article-title: Effect of high-frequency spectral components in computer recognition of dysarthric speech based on a mel-cepstral stochastic model
  publication-title: J. Rehabil. Res. Dev.
– start-page: 445
  year: 2007
  end-page: 453
  ident: b0105
  article-title: Automatic detection of disorders in a continuous speech with the hidden Markov models approach
  publication-title: Computer Recognition Systems 2
– volume: 33
  start-page: 391
  year: 2000
  end-page: 428
  ident: b0165
  article-title: Research on speech motor control and its disorders: a review and prospective
  publication-title: J. Commun. Disord.
– reference: P. Green, J. Carmichael, A. Hatzis, P. Enderby, M. Hawley, M. Parker, Automatic speech recognition with sparse training data for dysarthric speakers, in: Proceedings of the 8th European Conference on Speech Communication and Technology, Geneva, Switzerland, 2003, pp. 1189–1192.
– year: 2008
  ident: b0100
  article-title: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition
– reference: H. Kim, M. Hasegawa-Johnson, A. Perlman, J. Gunderson, T. Huang, K. Watkin, S. Frame, Dysarthric speech database for universal access research, in: Proc. of the 9th Annual Conference of the International Speech Communication Association, Brisbane, Australia, 2008, pp. 1741–1744.
– year: 1994
  ident: 10.1016/j.aei.2014.01.001_b0085
– volume: 32
  start-page: 162
  year: 1995
  ident: 10.1016/j.aei.2014.01.001_b0145
  article-title: Experiments in dysarthric speech recognition using artificial neural networks
  publication-title: J. Rehabil. Res. Dev.
– volume: 37
  start-page: 91
  year: 2001
  ident: 10.1016/j.aei.2014.01.001_b0130
  article-title: A survey of hybrid ANN/HMM models for automatic speech recognition
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(00)00308-8
– volume: 11
  start-page: 165
  year: 1995
  ident: 10.1016/j.aei.2014.01.001_b0040
  article-title: Dysarthric speakers’ intelligibility and speech characteristics in relation to computer speech recognition
  publication-title: Augment. Altern. Comm.
  doi: 10.1080/07434619512331277289
– volume: 16
  start-page: 186
  year: 2000
  ident: 10.1016/j.aei.2014.01.001_b0060
  article-title: Accuracy of three speech recognition systems: case study of dysarthric speech
  publication-title: Augment. Altern. Comm.
  doi: 10.1080/07434610012331279044
– ident: 10.1016/j.aei.2014.01.001_b0095
– volume: 17
  start-page: 265
  year: 2001
  ident: 10.1016/j.aei.2014.01.001_b0155
  article-title: An investigation of different degrees of dysarthric speech as input to speaker-adaptive and speaker-dependent recognition systems
  publication-title: Augment. Altern. Comm.
  doi: 10.1080/aac.17.4.265.275
– volume: 16
  start-page: 48
  year: 2000
  ident: 10.1016/j.aei.2014.01.001_b0005
  article-title: Automatic speech recognition and a review of its functioning with dysarthric speech
  publication-title: Augment. Altern. Comm.
  doi: 10.1080/07434610012331278904
– ident: 10.1016/j.aei.2014.01.001_b0125
  doi: 10.21437/Interspeech.2009-444
– volume: 13
  start-page: 558
  year: 2005
  ident: 10.1016/j.aei.2014.01.001_b0115
  article-title: Experiments with fast Fourier transform, linear predictive and cepstral coefficients in dysarthric speech recognition algorithms using hidden Markov model
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2005.856074
– volume: 55
  start-page: 290
  year: 2012
  ident: 10.1016/j.aei.2014.01.001_b0025
  article-title: Perceptual learning of dysarthric speech: a review of experimental studies
  publication-title: J. Speech Lang. Hear. Res.
  doi: 10.1044/1092-4388(2011/10-0349)
– volume: 53
  start-page: 774
  year: 2011
  ident: 10.1016/j.aei.2014.01.001_b0170
  article-title: An automated framework for software test oracle
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2011.02.006
– volume: 34
  start-page: 309
  year: 1997
  ident: 10.1016/j.aei.2014.01.001_b0035
  article-title: Dysarthric speech: a comparison of computerized speech recognition and listener intelligibility
  publication-title: J. Rehabil. Res. Dev.
– volume: 54
  start-page: 430
  year: 2012
  ident: 10.1016/j.aei.2014.01.001_b0150
  article-title: Using articulatory likelihoods in the recognition of dysarthric speech
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2011.10.006
– year: 2008
  ident: 10.1016/j.aei.2014.01.001_b0100
– ident: 10.1016/j.aei.2014.01.001_b0160
  doi: 10.21437/Interspeech.2008-480
– volume: 28
  start-page: 741
  year: 2006
  ident: 10.1016/j.aei.2014.01.001_b0075
  article-title: Investigation of an HMM/ANN hybrid structure in pattern recognition application using cepstral analysis of dysarthric (distorted) speech signals
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2005.11.002
– volume: 51
  start-page: 380
  year: 2004
  ident: 10.1016/j.aei.2014.01.001_b0110
  article-title: Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.820386
– volume: 2009
  start-page: 1
  year: 2009
  ident: 10.1016/j.aei.2014.01.001_b0020
  article-title: Modelling errors in automatic speech recognition for dysarthric speakers
  publication-title: EURASIP J. Adv. Signal Process.
– ident: 10.1016/j.aei.2014.01.001_b0080
  doi: 10.1109/ICASSP.2006.1660840
– start-page: 445
  year: 2007
  ident: 10.1016/j.aei.2014.01.001_b0105
  article-title: Automatic detection of disorders in a continuous speech with the hidden Markov models approach
– volume: 26
  start-page: 267
  year: 2010
  ident: 10.1016/j.aei.2014.01.001_b0055
  article-title: Evaluation of a speech recognition prototype for speakers with moderate and severe dysarthria: a preliminary report
  publication-title: Augment. Altern. Comm.
  doi: 10.3109/07434618.2010.532508
– volume: 41
  start-page: 31
  year: 2000
  ident: 10.1016/j.aei.2014.01.001_b0070
  article-title: Improving the speech recognition in the ENABL project
  publication-title: KTH TMH-QPSR
– volume: 34
  start-page: 91
  year: 2009
  ident: 10.1016/j.aei.2014.01.001_b0030
  article-title: Automatic speech recognition (ASR) and its use as a tool for assessment or therapy of voice, speech, and language disorders
  publication-title: Logop. Phoniatr. Voco.
  doi: 10.1080/14015430802657216
– volume: 22
  start-page: 99
  year: 2010
  ident: 10.1016/j.aei.2014.01.001_b0045
  article-title: Difficulties in automatic speech recognition of dysarthric speakers and implications for speech-based applications used by the elderly: a literature review
  publication-title: Assist. Technol.
  doi: 10.1080/10400435.2010.483646
– volume: 29
  start-page: 586
  year: 2007
  ident: 10.1016/j.aei.2014.01.001_b0050
  article-title: A speech-controlled environmental control system for people with severe dysarthria
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2006.06.009
– ident: 10.1016/j.aei.2014.01.001_b0090
  doi: 10.21437/Eurospeech.2003-384
– volume: 42
  start-page: 363
  year: 2005
  ident: 10.1016/j.aei.2014.01.001_b0010
  article-title: Effect of high-frequency spectral components in computer recognition of dysarthric speech based on a mel-cepstral stochastic model
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2004.06.0067
– volume: 2009
  start-page: 1
  year: 2009
  ident: 10.1016/j.aei.2014.01.001_b0015
  article-title: Alternative speech communication system for persons with severe speech disorders
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/2009/540409
– volume: 20
  start-page: 763
  year: 2010
  ident: 10.1016/j.aei.2014.01.001_b0135
  article-title: Speech recognition with artificial neural networks
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2009.10.004
– volume: 33
  start-page: 391
  year: 2000
  ident: 10.1016/j.aei.2014.01.001_b0165
  article-title: Research on speech motor control and its disorders: a review and prospective
  publication-title: J. Commun. Disord.
  doi: 10.1016/S0021-9924(00)00023-X
– volume: 35
  start-page: 125
  year: 1991
  ident: 10.1016/j.aei.2014.01.001_b0120
  article-title: On the use of hidden Markov modeling for recognition of dysarthric speech
  publication-title: Comput. Meth. Prog. Biomed.
  doi: 10.1016/0169-2607(91)90071-Z
– ident: 10.1016/j.aei.2014.01.001_b0140
– ident: 10.1016/j.aei.2014.01.001_b0065
  doi: 10.21437/ICSLP.2002-217
SSID ssj0016897
Score 2.304871
Snippet •The best performing set of MFCC parameters for dysarthric speech was studied.•A speaker-independent dysarthric ASR model based on ANNs is proposed.•The ASR...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102
SubjectTerms Artificial neural network
Automatic speech recognition
Dysarthria
Mel-frequency cepstral coefficients
Title Artificial neural networks as speech recognisers for dysarthric speech: Identifying the best-performing set of MFCC parameters and studying a speaker-independent approach
URI https://dx.doi.org/10.1016/j.aei.2014.01.001
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLCy8EW_dwIRkmsRukrKhiqqA2gWQ2CK_KsqjVCQMLPwgfiV3jlOBEAxMUZxzXnbuviTffcfYoRBOaKMzbnAzl6oteCfBF9fMZimiEaNcQtnIg2Hav5EXt-3bOdZtcmGIVhl8f-3TvbcOLa1wN1vT8bh1FctMRkJifIn8DzXKYMcmnNPH7zOaR5zmdYEV3MLJuvmz6Tleyo2J3SW9cmeoC_MjNn2JN70VthSAIpzW57LK5txkjS0H0AjhkSzX2QdZ1DIQQOKUfuGp3SWoEsqpc-YOAk-IUisBYSrYtxKv8g6dYLA4gTpl16c9AaJC0Bgv-LTOK6C20lXwPIJBr9sFEgx_IiINHmNiwWvUko2ivakH98LHs_K6FTS65Rvspnd23e3zUICBm6STVVxlKraRcRjB8tRKMcpFbJ1W1mCgVwrRo5ZJbGye6FHmENpgN4NNwiTOCcQym2x-8jxxWwxyMUqits5Jjg_dRDs3UmlnVUfiO1WcJtssam59YYI6ORXJeCwaGtp9gaNV0GgVUUxUvG12NOsyraU5_jKWzXgW3-ZXgaHj9247_-u2yxZprf5Us8fmq5dXt4_gpdIHfnYesIXT88v-8BPMq_GX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWAHuDCjtiZAyckq0nsJim3qqIqS3sBJG6Rt4qylIqEA7_EVzKTOBUIwYFTJGcmi-3MPMczbxg7FsIJbXTCDZ7mUrUEb0e4cE1sEiMaMcpFlI08GMb9W3lx17qbY906F4bCKr3tr2x6aa19S9P3ZnM6HjevQ5nIQEj0L0G5oTbPGsROhZO90Tm_7A9nmwlxWtVYQXlOCvXmZhnmpdyYArxkSd7pS8P8cE9fXE5vlS17rAid6nHW2JybrLMVjxvBf5X5BvsgiYoJAoifsjyU0d05qBzyqXPmHnyoEGVXAiJVsO85vug92kEvcQpV1m6Z-QQIDEGjy-DTKrWA2nJXwMsIBr1uF4gz_JliafAeEwslTS3JKLqaenSvfDyrsFtATV2-yW57ZzfdPvc1GLiJ2knBVaJCGxiHTiyNrRSjVITWaWUN-nqlEEBqGYXGppEeJQ7RDaoZbBImck4gnNliC5OXidtmkIpRFLR0Sox8aClaqZFKO6vaEpdVYRztsKDu-sx4gnKqk_GU1ZFoDxmOVkajlQUhRePtsJOZyrRi5_hLWNbjmX2bYhl6j9_Vdv-ndsQW-zeDq-zqfHi5x5boTPXnZp8tFK9v7gCxTKEP_Vz9BA9s9Eg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+networks+as+speech+recognisers+for+dysarthric+speech%3A+Identifying+the+best-performing+set+of+MFCC+parameters+and+studying+a+speaker-independent+approach&rft.jtitle=Advanced+engineering+informatics&rft.au=Shahamiri%2C+Seyed+Reza&rft.au=Binti+Salim%2C+Siti+Salwah&rft.date=2014-01-01&rft.pub=Elsevier+Ltd&rft.issn=1474-0346&rft.volume=28&rft.issue=1&rft.spage=102&rft.epage=110&rft_id=info:doi/10.1016%2Fj.aei.2014.01.001&rft.externalDocID=S1474034614000020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon